Document Type
Discussion Paper
Publication Date
7-1-2015
CFDP Number
2010R
CFDP Revision Date
2016-04-01
CFDP Pages
39
Abstract
In this paper, we construct confidence sets for models defined by many conditional moment inequalities/equalities. The conditional moment restrictions in the models can be finite, countably in finite, or uncountably in finite. To deal with the complication brought about by the vast number of moment restrictions, we exploit the manageability (Pollard (1990)) of the class of moment functions. We verify the manageability condition in five examples from the recent partial identification literature. The proposed confidence sets are shown to have correct asymptotic size in a uniform sense and to exclude parameter values outside the identified set with probability approaching one. Monte Carlo experiments for a conditional stochastic dominance example and a random-coefficients binary-outcome example support the theoretical results.
Recommended Citation
Andrews, Donald W.K. and Shi, Xiaoxia, "Inference Based on Many Conditional Moment Inequalities" (2015). Cowles Foundation Discussion Papers. 2447.
https://elischolar.library.yale.edu/cowles-discussion-paper-series/2447
Supplemental material
Comments
Supplement Materials, 41 pp