Document Type

Discussion Paper

Publication Date

2-1-2015

CFDP Number

1984R5

CFDP Revision Date

2016-11-01

CFDP Pages

37

Abstract

We derive mean-unbiased estimators for the structural parameter in instrumental variables models with a single endogenous regressor where the sign of one or more first stage coefficients is known. In the case with a single instrument, there is a unique non-randomized unbiased estimator based on the reduced-form and first-stage regression estimates. For cases with multiple instruments we propose a class of unbiased estimators and show that an estimator within this class is efficient when the instruments are strong. We show numerically that unbiasedness does not come at a cost of increased dispersion in models with a single instrument: in this case the unbiased estimator is less dispersed than the 2SLS estimator. Our finite-sample results apply to normal models with known variance for the reduced-form errors, and imply analogous results under weak instrument asymptotics with an unknown error distribution.

Comments

Supplement Materials, 31 pp

d1984-r5s.pdf (441 kB)
Supplemental material

Included in

Economics Commons

Share

COinS