Document Type

Discussion Paper

Publication Date

7-1-2000

CFDP Number

1267

CFDP Pages

46

Abstract

Estimation of the memory parameter in time series with long range dependence is considered. A pooled log periodogram regression estimator is proposed that utilizes a set of mL periodogram ordinates with L approaching infinity rather than m ordinates used in the conventional log periodogram estimator. Consistency and asymptotic normality of the pooled regression estimator are established. The pooled estimator is shown to have smaller variance but larger bias than the conventional log periodogram estimator. Finite sample performance is assessed in simulations, and the methods are illustrated in an empirical application with inflation and stock returns.

Included in

Economics Commons

Share

COinS