Date of Award
January 2014
Document Type
Open Access Thesis
Degree Name
Medical Doctor (MD)
Department
Medicine
First Advisor
Joseph Santos-Sacchi
Subject Area(s)
Acoustics, Physiology
Abstract
IR LASER-INDUCED PERTURBATIONS OF THE VOLTAGE-DEPENDENT SOLUTE CARRIER PROTEIN, SLC26A5. Oluwarotimi S. Nettey and Joseph Santos-Sacchi. Sections of Otolaryngology and Neurobiology, Department of Surgery, Yale University, School of Medicine, New Haven, CT.
Alterations in membrane capacitance can arise from linear and nonlinear sources. For example, changes in membrane surface area or dielectric properties can modify capacitance linearly, whereas sensor residues of voltage-dependent proteins can modify capacitance nonlinearly. Here, we examined the effects of fast temperature jumps induced by an IR laser in control and prestin (SLC26a5)-transfected HEK cells under whole cell voltage clamp. Prestin's voltage sensor imparts a characteristic bell- shaped, voltage-dependent nonlinear capacitance (NLC). Temperature jumps in control HEK cells cause a monophasic increase in membrane capacitance (Cm) regardless of holding voltage due to double layer effects. Prestin-transfected HEK cells, however, additionally show a biphasic increase/decrease in Cm with a reversal potential corresponding to the voltage at peak NLC of prestin (Vh), attributable to a rapid temperature-following shift in Vh, with shift rates up to 14 V/s over the course of a 5 ms IR pulse. Treatment with salicylate, a known inhibitor of NLC, re-establishes control cell behavior. A simple kinetic model recapitulates our biophysical observations. These results verify a voltage-dependent protein's ability to respond to fast temperature perturbations on par with double layer susceptibility, likely arising from prestin's unique ability to move sensor charge at kilohertz rates, a requirement for the OHC's role as cochlear amplifier.
Recommended Citation
Nettey, Oluwarotimi, "Ir Laser‐induced Perturbations Of The Voltage‐dependent Solute Carrier Protein, Slc26a5" (2014). Yale Medicine Thesis Digital Library. 1910.
https://elischolar.library.yale.edu/ymtdl/1910
Comments
This is an Open Access Thesis.