Date of Award
11-3-2009
Document Type
Open Access Thesis
Degree Name
Medical Doctor (MD)
First Advisor
Mark Horowitz
Abstract
As the prevalence of osteoporosis is expected to increase over the next few decades, the development of novel therapeutic strategies to combat this disorder becomes clinically imperative. These efforts draw extensively from an expanding body of knowledge pertaining to the physiologic mechanisms of skeletal homeostasis. To this body of knowledge, we contribute that cells of hematopoietic lineage may play a crucial role in balancing osteoblastic bone formation against osteoclastic resorption. Specifically, our laboratory has previously demonstrated that megakaryocytes can induce osteoblast proliferation in vitro, but do so only when direct cell-to-cell contact is permitted. To further investigate the nature of this interaction, we have effectively neutralized several adhesion molecules known to function in the analogous interaction of megakaryocytes with another cell-type of mesenchymal origin - the fibroblast. Our findings implicate the involvement of fibronectin/RGD-binding integrins including α3β1 (VLA-3) and α5β1 (VLA-5) as well as glycoprotein IIb (CD41), all of which are known to be expressed on megakaryocyte membranes. Furthermore, we demonstrate that IL-3 can enhance megakaryocyte-induced osteoblast activation in vitro, as demonstrated in the megakaryocyte-fibroblast model system. Taken together, these results suggest that although their physiologic and clinical implications are very different, these two models of hematopoietic-mesenchymal cell activation are mechanistically analogous.
Recommended Citation
Lemieux, Justin, "Mechanisms of Hematopoietic-Mesenchymal Cell Activation" (2009). Yale Medicine Thesis Digital Library. 127.
https://elischolar.library.yale.edu/ymtdl/127
This Article is Open Access
Comments
This is an Open Access Thesis.