Abstract

Trains of quasi-periodic high-frequency internal waves (IWs) of large amplitude are common in the upper thermocline of the ocean. Sources for these waves may be different ones but it is not always possible to experimentally establish them for certain. We analyzed results of many IW experiments carried out in different representative regions of the World Ocean, including continental margins in the Mid-Atlantic Bight, in the northwestern Pacific at Kamchatka, the Seyshelles-Mascarene bottom rise, and some regions of the open ocean where the intense short-period IWs occur. Comparative analysis of the intense IWs observed in the Mid-Atlantic Bight and at Kamchatka revealed similarity and difference in the IW field in these regions differing by their bottom topography. Most of the observed trains in the Mid-Atlantic Bight propagate shoreward from the shelf break in the form of soliton packets or solibores and do not occur seaward from the shelf. The soliton trains in the northwestern Pacific at Kamchatka are common not only at the shelf edge but also in deep water where they propagate in various directions that seem to be related to the supercritical steepness and complicated form of the continental slope. Observation of generation and evolution of the IW trains at the Seyshelles-Mascarene bottom rise where huge internal solitons have been encountered has shown that the undular bore generated at the lee side of the bottom rise gradually evolves in a train of solitons with the trailing linear waves. Large solitons are generated also in deep water as a result of ray propagation of the internal tide emanated from the rise as happens in the Bay of Biscay. Certain consequences of the IW interaction with the background current leading to intensification of the high-frequency waves were observed in several regions of the open ocean. Revealed dependency of the intense wave propagation direction on the current direction, and closeness of the wave frequency to the frequency at which the waveguide steeply tapers may be regarded as clear evidences for the important role which currents play in the IW intensification.

Share

COinS