Abstract

Meridional distributions of particle, pigment, optical, chemical and physical in situ oceanographic properties, as well as satellite-sensed sea-surface temperature and color imagery, are used to investigate phytoplankton community distributions and their relation to the near-surface water masses of the S bnargasso Sea. 0-H3059 Measurements were made during April of 1985 along a 1200 km transect on 70W (from 24N to 35N). The seasonal evolution of subtropical Mode water (18° water) is shown to be the primary factor controlling the spatial distribution and evolution of the phytoplankton community in the northern Sargasso Sea (31 to 35N). The springtime near-surface restratification of recently ventilated 18° water initiated a diatom-dominated phytoplankton bloom. As the bloom declined, the phytoplankton community evolved into a diverse assemblage. The consequences of these phytoplankton successions were observed both temporally and as spatial variations along the meridional section. South of the region of 18° water wintertime ventilation (south of 31N), phytoplankton concentrations were considerably less and appeared to be regulated by different processes than the northern region. In particular, influences of subtropical convergence fronts were observed. For the northern Sargasso Sea, the wintertime ventilation of 18° water is shown to be the primary new nutrient flux into the euphotic zone, comprising most of the expected annual new production for this region.

Share

COinS