Abstract

Seawater samples were collected and analyzed for cadmium during four cruises studying Gulf Stream warm-core rings and associated waters. Warm-core ring (WCR) 82-B was sampled in April (approximately two months after formation), in June (after seasonal stratification), and in August (during its interaction with the Gulf Stream). The September–October cruise studied closure and separation of a meander that formed ring 82-H. The depth of the cadmium maximum varied with the depth of the main thermocline; the maximum occurred at a potential temperature of 7.8 ± 0.5°C and sigma-theta 27.4 ± 0.05 in the Slope Water, Gulf Stream, and Sargasso Sea stations. As the upper 100 m of the ring progressed from vertically well-mixed in April to seasonally stratified in June, the mole-ratios of cadmium/nutrient removal in the mixed layer were similar to the calculated slopes of the linear regressions of cadmium with phosphate, nitrate and silicate calculated from spatial distributions. Lateral mixing processes near the boundaries of WCR 82-B markedly influenced the vertical cadmium distribution via intrusions of Shelf/Slope water containing elevated levels of cadmium. Comparison of ASV-labile and total dissolvable cadmium from the August WCR 82-B station indicated essentially 100% ASV-labile cadmium in the waters within and below the main thermocline but non-detectable (<0.010 nmol kg−1) ASV-labile cadmium in the waters above the thermocline.

Share

COinS