Date of Award
Spring 2021
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Statistics and Data Science
First Advisor
Karbasi, Amin
Abstract
As a projection-free algorithm, Frank-Wolfe (FW) method, also known as conditional gradient, has recently received considerable attention in the machine learning community. In this dissertation, we study several topics on the FW variants for scalable projection-free optimization. We first propose 1-SFW, the first projection-free method that requires only one sample per iteration to update the optimization variable and yet achieves the best known complexity bounds for convex, non-convex, and monotone DR-submodular settings. Then we move forward to the distributed setting, and develop Quantized Frank-Wolfe (QFW), ageneral communication-efficient distributed FW framework for both convex and non-convex objective functions. We study the performance of QFW in two widely recognized settings: 1) stochastic optimization and 2) finite-sum optimization. Finally, we propose Black-Box Continuous Greedy, a derivative-free and projection-free algorithm, that maximizes a monotone continuous DR-submodular function over a bounded convex body in Euclidean space.
Recommended Citation
Zhang, Mingrui, "Scalable Projection-Free Optimization" (2021). Yale Graduate School of Arts and Sciences Dissertations. 143.
https://elischolar.library.yale.edu/gsas_dissertations/143