Document Type

Discussion Paper

Publication Date


CFDP Number


CFDP Revision Date

September 16, 2020

CFDP Pages


Journal of Economic Literature (JEL) Code(s)

M1, M3, C8, C5


The authors address two significant challenges in using online text reviews to obtain fine-grained attribute level sentiment ratings. First, they develop a deep learning convolutional-LSTM hybrid model to account for language structure, in contrast to methods that rely on word frequency. The convolutional layer accounts for the spatial structure (adjacent word groups or phrases) and LSTM accounts for the sequential structure of language (sentiment distributed and modified across non-adjacent phrases). Second, they address the problem of missing attributes in text in construct-ing attribute sentiment scores—as reviewers write only about a subset of attributes and remain silent on others. They develop a model-based imputation strategy using a structural model of heterogeneous rating behavior. Using Yelp restaurant review data, they show superior accuracy in converting text to numerical attribute sentiment scores with their model. The structural model finds three reviewer segments with different motivations: status seeking, altruism/want voice, and need to vent/praise. Interestingly, our results show that reviewers write to inform and vent/praise, but not based on attribute importance. Our heterogeneous model-based imputation performs better than other common imputations; and importantly leads to managerially significant corrections in restaurant attribute ratings.

Included in

Economics Commons