Title

New Goodness-of-fit Diagnostics for Conditional Discrete Response Models

Document Type

Discussion Paper

Publication Date

11-1-2013

CFDP Number

1924

CFDP Pages

33

Abstract

This paper proposes new specification tests for conditional models with discrete responses. In particular, we can test the static and dynamic ordered choice model specifications, which is key to apply efficient maximum likelihood methods, to obtain consistent estimates of partial effects and to get appropriate predictions of the probability of future events. The traditional approach is based on probability integral transforms of a jittered discrete data which leads to continuous uniform iid series under the true conditional distribution. We investigate in this paper an alternative transformation based only on original discrete data. We show analytically and in simulations that our approach dominates the traditional approach in terms of power. We apply the new tests to models of the monetary policy conducted by the Federal Reserve.

This document is currently not available here.

Share

COinS