Title

Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection

Document Type

Discussion Paper

Publication Date

10-1-2007

CFDP Number

1631

CFDP Pages

58

Abstract

The topic of this paper is inference in models in which parameters are defined by moment inequalities and/or equalities. The parameters may or may not be identified. This paper introduces a new class of confidence sets and tests based on generalized moment selection (GMS). GMS procedures are shown to have correct asymptotic size in a uniform sense and are shown not to be asymptotically conservative. The power of GMS tests is compared to that of subsampling, m out of n bootstrap, and “plug-in asymptotic” (PA) tests. The latter three procedures are the only general procedures in the literature that have been shown to have correct asymptotic size in a uniform sense for the moment inequality/equality model. GMS tests are shown to have asymptotic power that dominates that of subsampling, m out of n bootstrap, and PA tests. Subsampling and m out of n bootstrap tests are shown to have asymptotic power that dominates that of PA tests.

This document is currently not available here.

Share

COinS