Nonstationary Discrete Choice

Document Type

Discussion Paper

Publication Date


CFDP Number


CFDP Pages



This paper develops an asymptotic theory for time series discrete choice models with explanatory variables generated as integrated processes and with multiple choices and threshold parameters determining the choices. The theory extends recent work by Park and Phillips (2000) on binary choice models. As in this earlier work, the maximum likelihood (ML) estimator is consistent and has a limit theory with multiple rates of convergence ( n 3/4 and n 1 /4 ) and mixture normal distributions where the mixing variates depend on Brownian local time as well as Brownian motion. An extended arc sine limit law is given for the sample proportions of the various choices. The new limit law exhibits a wider range of potential behavior that depends on the values taken by the threshold parameters.

This document is currently not available here.