Document Type
Discussion Paper
Publication Date
12-2-1986
CFDP Number
811R
CFDP Revision Date
1987-08-01
CFDP Pages
49
Abstract
This paper develops a multivariate regression theory for integrated processes which simplifies and extends much earlier work. Our framework allows for both stochastic and certain deterministic regressors, vector autoregressions and regressors with drift. The main focus of the paper is statistical inference. The presence of nuisance parameters in the asymptotic distributions of regression F -tests is explored and new transformations are introduced to deal with these dependencies. Some specializations of our theory are considered in detail. In models with strictly exogenous regressors we demonstrate the validity of conventional asymptotic theory for appropriately constructed Wald tests. These tests provide a simple and convenient basis for specification robust inferences in this context. Single equation regression tests are also studied in detail. Here it is shown that the asymptotic distribution of the Wald test is a mixture of the chi square of conventional regression theory and the standard unit root theory. The new result accommodates both extremes and intermediate cases.
Recommended Citation
Park, Joon Y. and Phillips, Peter C.B., "Statistical Inference in Regressions with Integrated Processes: Part 1" (1986). Cowles Foundation Discussion Papers. 1054.
https://elischolar.library.yale.edu/cowles-discussion-paper-series/1054