The Bay of Bengal hosts persistent, measurable, but sub-micromolar, concentrations of oxygen in its oxygen-minimum zone (OMZ). Such low-oxygen conditions are not necessarily rare in the global ocean and seem also to characterize the OMZ of the Pescadero Basin in the Gulf of California, as well as the outer edges of otherwise anoxic OMZs, such as can be found, for example, in the Eastern Tropical North Pacific. We show here that biological controls on oxygen consumption are required to allow the semistable persistence of low-oxygen conditions in OMZ settings; otherwise, only small changes in physical mixing or rates of primary production would drive the OMZ between anoxic and oxic states with potentially large swings in oxygen concentration. We propose that two controls are active: an oxygen-dependent control on oxygen respiration and an oxygen inhibition of denitrification. These controls, working alone and together, can generate low-oxygen concentrations over a wide variability in ocean mixing parameters. More broadly, we discuss the oxygen regulation of organic matter cycling and N2 production in OMZ settings. Modern biogeochemical models of nitrogen and oxygen cycling in OMZ settings do contain some of the parameterizations that we explore here. However, these models have not been applied to understanding the persistence of low, but measurable, concentrations of oxygen in settings like the Bay of Bengal, nor have they been applied to understanding what biological/physical processes control the transition from a weakly oxygenated state to a “functionally” anoxic state with implications for nitrogen cycling. Therefore, we believe that the approach here illuminates the relationship between oxygen and the biogeochemical cycling of carbon and nitrogen in settings like the Bay of Bengal. Furthermore, we believe that our results could further inform large-scale ocean models seeking to explore how global warming might influence the spread of low-oxygen waters, influencing the cycles of oxygen, carbon, and nitrogen in OMZ settings.