At boundaries of oxygen minimum zones (OMZs), bathyal faunas experience steep gradients in oxygen and organic-matter availability. The present study compares changes in microbial, meiofaunal, macrofaunal and megafaunal benthic assemblages along these gradients on Volcano 7, a 2.3-km high seamount in the eastern tropical Pacific. Faunal tolerance to dysaerobic (low oxygen) conditions varies with organism size; microbial and meiofaunal abundances are less affected than macro- and megafaunal abundances. At the exceedingly low concentrations (<0.1 ml/l) encountered on the upper summit of Volcano 7, oxygen appears to exert primary control over abundance, composition and diversity of macrofauna, overriding other factors such as food availability and sediment grain size. When oxygen concentration is sufficient, food availability in sediments (indicated by the presence of labile material such as chlorophyll a) is highly correlated with meiofaunal and macrofaunal abundance. Four distinct physical zones were identified on Volcano 7: (1) the coarse-grained upper summit zone (730–770 m) where near-bottom oxygen concentrations were usually lowest (often <0.1 ml/l) and organic-matter (% organic carbon and chlorophyll a) availability was high, (2) the coarse-grained lower summit (770–1000 m) where near-bottom oxygen concentrations were usually slightly higher (0.11 to 0.16 ml/l) and organic-matter availability remained high, (3) the coarse-grained flank (1000–2000 m) where oxygen concentration was intermediate (0.7–0.9 ml/l) and sediment organic-matter content was very low, and (4) the finer-grained base (2000–3500 m) where oxygen values exceeded 2.5 ml/l, sediment organic carbon was moderate, and chlorophyll a was low. Abundances of larger forms (megafauna and macrofauna) were severely reduced on the upper summit, but attained high values (2.25/m2 and 8,457/m2 respectively) just tens of meters below. The smaller forms (bacteria and meiofauna) attained peak abundances on the low-oxygen upper summit, however, abundances of harpacticoid copepods were greatly reduced on the upper and lower summit, presumably due to oxygen limitation. Macrofaunal abundance and diversity patterns along the Volcano 7 oxygen/enrichment gradient resembled those typically observed along shallow-water gradients of organic pollution. Low densities of a few soft-bodied, low-oxygen tolerant species resided on the upper summit, a high-density, low-diversity assemblage inhabited the lower summit, and low-density, high-diversity assemblages occupied the flank and base sediments. The infaunal communities on Volcano 7 support the idea that OMZ boundaries are regions of enhanced biological activity. Modern faunal distributions and biogenic structures at OMZ boundaries may be useful in reconstructing oxygenation histories of ancient marine basins.