Changes in the sinking rates, ash-free dry weights, particulate carbon and nitrogen content, and carbon:nitrogen ratios from the fecal pellets of several species of oceanic salps were examined in ten-day decomposition studies. Although bacteria and protozoa became abundant in the incubation vessels, most of the fecal pellets remained physically intact throughout the study. Bacterial activity in the pellets (measured by the rate of uptake of 3H-thymidine) increased, but microbial degradation had little effect on the sinking speeds of most of the fecal pellets. The average losses of ash-free dry weight and carbon and nitrogen content, along with changes in carbon:nitrogen ratio, were small compared to their initial values. We conclude that microbial degradation of large salp fecal pellets would not prevent the vertical flux to the deep ocean of a significant fraction of the particulate organic material contained in the pellets. The fecal pellets of oceanic salps provide a rapid, and potentially important, mechanism for the consolidation and vertical transport of organic and lithogenic material associated with minute particles in the open ocean.