Near-surface particle dispersion, larval dispersal and connectivity along the U.S west coast were explored using a realistic numerical model of the California Current System. Seasonal model velocities were qualitatively and quantitatively evaluated using Global Drifter Program data. The model displayed a clear seasonal cycle of eddy energy near the coast with energy maxima southwest of major headlands. Eddy speeds were correlated with drifter-based estimates during summer and fall when compared spatially. Over six million passive, Lagrangian particles were released in the upper 20 m of the water column within 10 km of the California and Oregon coasts and tracked for 7 years. The effect of subgridscale vertical turbulence was parameterized with a random walk model. Resulting trajectories yielded climatological maps of particle dispersion. Particle densities varied with release region, release season and time-since-release. Dispersal distances and coastal connectivity varied with season of release, release location, release depth and pelagic larval duration (PLD). Connectivity was clearly influenced by major geographic features such as the Gulf of the Farallones and Cape Mendocino. Given a moderate (30–60 day) PLD, mean dispersal distances varied from ∼10–230 km, with standard deviations of ∼130–220 km. For release locations from Palos Verdes to Point Sur, the primary direction of dispersal was northward for a moderate PLD, regardless of season. For long PLDs (120–180 day), mean dispersal distances were larger (∼40–440 km), with standard deviations of ∼330–540 km. In winter given a long PLD, dispersal was primarily southward for release locations north of Point Arena. Increasing release depths to 40–60 m altered mean dispersal distances by 50–250 km polewards, but had little effect on standard deviations. Point Conception did not act as a barrier to dispersal for source regions in the Southern California Bight.