This note describes how the method of images may be used to determine the motion and evolution of two related kinds of phenomena within a wedge of inviscid fluid. The image field of a curved vortex within a wedge with vortex lines lying along sectors of circles around the apex of the wedge is that segment of a complete vortex ring which remains outside the wedge and of which the curved vortex forms a part. The image system can be used to describe the motion, interaction and stability of single or multiple vortices within the wedge. Axisymmetric jets form the image system for flow parallel to the edge of the wedge, akin to alongshore currents. Knowledge of the instability of jets provides information about the evolution of waves in the wedge domain. Existing results on the motion and instability of single or multiple co-axial ring vortices and of waves and instabilities in jets may be applied to describe the evolution of low Froude number eddies and waves in alongshore flow over a steadily shelving sea bed.