Three unialgal strains of Prochlorococcus and four of Synechococcus were grown in batch culture at low irradiances. The spectral values of light absorption, scattering and backscattering of intact cells in suspension were determined, together with cell counts, size distribution and pigment composition (via HPLC). The spectral efficiency factors Qa, Qb, Qbb for light absorption, scattering and backscattering respectively, were derived, as well as the corresponding chlorophyll-specific coefficients a*, b* and bb*. The pigment used when normalizing is “true” chlorophyll a for Synechococcus, and divinyl-chlorophyll a for Prochlorococcus. In correspondence with small sizes (0.6 μm, on average) Prochlorococcus exhibits Qb values below those of Synechococcus (size about 0.9 μm, on average). In contrast, Qa is higher for Prochlorococcus than for Synechococcus, in response to high internal divinyl-chlorophyll content. In the blue part of the spectrum the probability for photons of being absorbed by a Prochlorococcus cell exceeds that of being scattered. Such a combination has never been found before for other algal cells, consistently more efficient as scatterers than as absorbers. The magnitude of the three efficiency Q-factors, as well as their spectral variations, can be understood and reconstructed in the frame of the Mie theory. The impact of these small organisms, dominant in oligotrophic environment, upon the optical properties of such waters are discussed on the basis of their chlorophyll-specific optical coefficients. Their absorption capabilities (per unit of chlorophyll) are not far from being maximum, to the extent that the package effect is rather reduced. With respect to scattering, Prochlorococcus cells have a minute signature compared to that of Synechococcus. This point is illustrated using vertical profiles of fluorescence, attenuation coefficient, cell number, Chl a and divinyl-Chl a concentrations, as observed in an oligotrophic tropical situation. Even if the backscattering-to-scattering ratio is, as theoretically expected, higher for Prochlorococcus than for all other algae (including Synechococcus), their light backscattering capacity definitely remains negligible.