Density variations show evidence of interfacial solitary waves (ISW) running up the sloping boundary of an island in the St. Lawrence Estuary, confirming inferences based remote sensing. Further detail is suggested by simulations created with a two-dimensional nonhydrostatic numerical model. The simulations confirm theoretical predictions of the location of wave breaking, something that is difficult to observe in the field. Two other results of the simulations match laboratory findings: the creation of turbulent boluses that propagate upslope of the breaking zone, and the creation of an intermediate layer that transports mixed water away from the mixing site. Although our sampling could not resolve the intermediate mixing layer, it did provide evidence of boluses. In addition to ISW breaking the bolus and intrusion effects may also be important in coastal regions.