Title

Fictive Learning in Choice under Uncertainty: A Logistic Regression Model

Document Type

Discussion Paper

Publication Date

3-1-2013

CFDP Number

1890R

CFDP Revision Date

2014-03-01

CFDP Pages

14

Abstract

This paper is an exposition of an experiment on revealed preferences, where we posite a novel discrete binary choice model. To estimate this model, we use general estimating equations or GEE. This is a methodology originating in biostatistics for estimating regression models with correlated data. In this paper, we focus on the motivation for our approach, the logic and intuition underlying our analysis and a summary of our findings. The missing technical details are in the working paper by Bunn, et al. (2013). The experimental data is available from the corresponding author: donald.brown@yale.edu . The recruiting poster and informed consent form are attached as appendices.

This document is currently not available here.

Share

COinS