Document Type
Discussion Paper
Publication Date
2-1-2012
CFDP Number
1849
CFDP Pages
54
Abstract
The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we establish a surprising result that the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals do not depend on temporal dependence. Nevertheless, ignoring the temporal dependence in small samples may not lead to accurate inference. We then propose an easy-to-compute and more accurate inference procedure based on a “pre-asymptotic” sieve variance estimator that captures temporal dependence. We construct a “pre-asymptotic” Wald statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators of both regular (i.e., root-T estimable) and irregular functionals, a scaled “pre-asymptotic” Wald statistic is asymptotically F distributed when the series number of terms in the OS-LRV estimator is held fixed. Simulations indicate that our scaled “pre-asymptotic” Wald test with F critical values has more accurate size in finite samples than the usual Wald test with chi-square critical values.
Recommended Citation
Chen, Xiaohong; Liao, Zhipeng; and Sun, Yixiao, "Sieve Inference on Semi-nonparametric Time Series Models" (2012). Cowles Foundation Discussion Papers. 2208.
https://elischolar.library.yale.edu/cowles-discussion-paper-series/2208