Early life environment, fertility and age of menarche: A test of life history predictions using a longitudinal assessment of adversity perception and economic status

Dorsa Amir  
*Yale University*, dorsa.amir@yale.edu

Matthew R. Jordan  
*Yale University*, matthew.jordan@yale.edu

Richard G. Bribiescas  
*Yale University*, richard.bribiescas@yale.edu

Follow this and additional works at: [http://elischolar.library.yale.edu/dayofdata](http://elischolar.library.yale.edu/dayofdata)  
Part of the [Biological and Physical Anthropology Commons](http://elischolar.library.yale.edu/dayofdata)

[http://elischolar.library.yale.edu/dayofdata/2014/Posters/7](http://elischolar.library.yale.edu/dayofdata/2014/Posters/7)

This Event is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Day of Data by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.
Early life environment, fertility, and age of menarche: A test of life history predictions in a human population

Dorsa Amir¹, Matthew R. Jordan², Richard G. Bribiescas¹
¹Yale University Department of Anthropology
²Yale University Department of Psychology

Introduction:

1. Life history theory (LHT)
   - An organism has access to finite resources and energy that must be allocated in an optimal way to maximize fitness.
   - Developmental trajectories are optimized according to environmental context, resulting in phenotypic plasticity.
   - LHT predicts that organisms exposed to high extrinsic mortality and fluctuations in population density will have an earlier age of sexual maturity, larger broods, and higher reproductive effort [2].

2. Extrinsic mortality
   - Extrinsic mortality: death due to unavoidable causes [1], not sensitive to changes in reproductive decisions [2].
   - Differs from intrinsic mortality, which originates within an organism and may be influenced by tradeoffs in energetic allocations to reproduction, maintenance, and growth [2].
   - Changes in extrinsic mortality risk have been shown to influence the timing of life history events such as age of reproductive maturation [3].

3. Access to resources
   - Environmental stability is dependent on availability of resources, a significant factor in life history strategies [4].
   - Ancestral humans may have relied upon somatic capital; contemporary Western humans tend to invest in and rely upon extra-somatic resources (e.g., money, land, social capital) [5].

4. Early life environment
   - Early life environment has significant effects on later life outcomes.
   - Adjustments in reproductive effort as reflected by age at reproductive maturation and fertility in response to experimentally induced variation in mortality has been documented in a number of species under various conditions [6,7].

Methods:

- We used data from the National Longitudinal Study of Adolescent Health (Add Health) to test our hypotheses [8].
- The database is a nationally-representative sample of Americans, with data collected in four waves across 14 years (1994-2008).
- The initial wave targeted students in grades 7-12, and the following waves continued assessing the same individuals until they were 24-32 years old.

Results:

1. Number of live births in early adulthood:
   - An individual's perceived likelihood of living to the age of 35 (β=0.046, p<0.001), whether or not they reported their neighborhood as safe (β=0.467, p<0.001), and family income as a child (β=0.004, p<0.001; see Figure 1) were all independently predictive in the hypothesized direction (fewer resources and less early life safety lead to more children).

2. Age at menarche:
   - An individual's perceived likelihood of living to the age of 35 (β=0.049, p<0.001), whether or not they reported their neighborhood as safe (β=0.234, p<0.001), and household income as a child (β=0.015, p<0.01) were all independently predictive in the hypothesized direction (fewer resources and less early life safety lead to an earlier age of menarche).

Methods (cont.):

- We used family income as a proxy for early extra-somatic resource access.
- Perceived environmental safety was estimated with two Wave I variables: answers to the questions:
  - Do you feel safe in your neighborhood?
  - “On a scale of ‘No chance’ to ‘It will happen’, what do you think are the chances you will live to age 35?”
- Although we have no way of determining or accounting for objective extrinsic mortality rates, our predicting variables track individuals' perceptions of adversity in their environments.
- The perceived risk metrics were used to predict:
  - (1) number of live births up to age 34
  - (2) Age at menarche
- The variables of interest reflect how cues in the environment have been aggregated and internalized.

Discussion:

- Our results support the hypothesis that perceptions of environmental adversity are associated with variation in reproductive effort in a contemporary human population in a manner that is consistent with predictions made by LHT in regards to presence and perception of available resources and extrinsic hazards.
- It is possible that stress endocrine responses may influence skeletal growth patterns that contribute to earlier onset of menarche.
- Along with other factors, lower adrenal androgen levels were associated with delayed onset of menarche in otherwise healthy girls [11].
- Positive associations between perceptions of environmental adversity and early adult fertility may involve decreases in inter-birth intervals which may include increases in ovarian function (higher estrogen levels) [9], shorter periods of lactational amenorrhea [10], increased coital activity, or shorter gestational periods.
- Biodemographic methods are fruitful for assessing human evolutionary biology and elucidating our evolutionary trajectory.

References: