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This supplementary appendix contains proofs of the results in the main text as well as
auxiliary results. Section B contains auxiliary results used in the rest of this appendix. These
results are restatements or simple extensions of well known results on uniform convergence,
and do not constitute part of the main novel contribution of the paper. Section C of this
appendix derives critical values for CvM statistics with variance weights. Section D contains

proofs of the results in the body of the paper.

B Auxiliary Results

We state some results on uniform convergence that will be used in the proofs of the main
results. The results in this section are essentially restatements of results used in Armstrong
(2014b), which are in turn minor extensions of results in Pollard (1984). Throughout this
section, we consider iid observations 71, ..., Z, and a sequence of classes of functions F,, on
the sample space. Let o(f)? = Ef(Z;)*> — (Ef(Z;))* and let 6(f)? = E,.f(Z:)* — (E.f(Z;)).

Lemma B.1. Suppose that |f(Z;)| < f a.s. and that

supsup N (e, Fn, L1(Q)) < Ae™V
neN Q@
for some A and W, where N is the covering number defined in Pollard (1984) and the

supremum over @ 1s over all probability measures. Let o, be a sequence of constants with

ony/n/logn — co. Then, for some constant C,

NG

sup (B, — E)f(Z)
Vviegn fer,

<C
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with probability approaching one and

| (B = E)F(2)

D
= 0.
reFa | o(f)?Voi

Proof. The first display follows by applying Lemma A.1 in Armstrong (2014b) to the se-
quence of classes of functions {f — Epf(Z;)|f € F.}, which satisfies the conditions of that
lemma by Lemma A.5 in Armstrong (2014b). The second display follows from the first

display since

wp | B = BFE)| L (B E)(Z)| _ VioER Vi | (B, - E)f(Z)
R | oGPV | S b | o Ve | onv/n Viogn jeh | o(f) Vo

and v/logn/(o,\/n) — 0. O

Lemma B.2. Under the conditions of Lemma B.1,

sup o) Von _ 1120
feFa |o(f) Vo,
Proof. By continuity of ¢ — v/t at 1, it suffices to prove that sup FeFn ZEQ;&Z’E —1] 5 0. We
have
5(F)2V o2 5(F)2V o2 — 2\ 52 SN2 2
ap [JEVE | _ oy |V oD AU
reFalo(f)> Vol fEFn o(f)?Vop feFa| o(f)?Voy
Note that
o(f)? —o(f)? = (En— B)f(Z:) — Ef(Z) = [(En — E)f(Z:)]. (14)

Since o[(f — Ef(Z,)%]? < E[f(Z) — Ef(Z)]* < 4f o(f)?, we have

o (B = B)F(Z) — BZ)P _ |~ E)F(Z) — Bf(Z)P)

FEFn o(f)?Vor T jer.  ol(f = Ef(Z))*? Vo3

(v

which converges in probability to zero by Lemma B.1 (using Lemma A.5 in Armstrong,
2014b to verify that the sequence of classes of functions {[f — Ef(Z;)]?|f € Fn} satisfies the
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conditions of the lemma). Since

[(En — E)f(Z:)]?

p
0
o(f)Ever

by Lemma B.1, the result now follows from this and the triangle inequality applied to
(14). ]

Lemma B.3. Suppose that |f(Z;)| < f and that o,/n > 1. Then

‘ VB, — E)f(Z)

\/O’n

p

< Op,f

for a constant C, 5 that depends only on p and 7.

Proof. By Bernstein’s inequality,
1 72

> t) < exp nga(fl\/ o)
2n02(f)+§~2f-\/ﬁa Voot

[o(f)
. < 1 2 ) ( 1 >< ( 1 )
exp — 7 exp 5T 1 = L Se&Xp\ 51 = |-
21+ 2f - e 214+5-2f-t 214 3-2f-t

For t > 1, this is bounded by exp (—ﬁ) Thus,
3

(‘ V(B — B)f(Z)

\/O'n

NP NP
\/ On \/ On
00 tl/p
=1 2+ 3" 2f
which is finite and depends only on p and f as claimed. O]

C Critical Values for CvM Statistics with Variance
Weights

For bounded choices of w (which corresponds to o,, bounded away from zero when a truncated
variance weighting is used), Kim (2008) and Andrews and Shi (2013) derive a y/n rate of

convergence to an asymptotic distribution that may be degenerate. Armstrong (2014b)
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shows that letting o, go to zero generally decreases the rate of convergence to \/W
for the KS statistic 7}, .. In contrast to the KS case, CvM statistics do not behave much
differently if the variance is allowed to go to zero, although some additional arguments are
needed to show this.

To deal with the behavior of the CvM statistic for small variances, I place the following

condition on the measure over which the sample means are integrated.
Assumption C.1. u({glo;(0,9) <d}) =0 asd — 0 for all j.

This condition will hold for the choices of G and p used in the body of the paper, and
also allow for more general choices of G and p. I also make the following assumption on the

complexity of the class of functions G, which is also satisfied by the class used in the paper.

Assumption C.2. For some constants A and e, the covering number N(e,G, L1(Q)) defined
in Pollard (1984) satisfies

sup N (e, G, L1(Q)) < Ae™W,
Q

whre the supremum is over all probability measures.
The following condition imposes a bounded distribution of the function m.

Assumption C.3. For some nonrandom constant Y, |m;(W;,0)] <Y for each j with
probability one.

Theorem C.1. Suppose that o,+/n/logn — oo and that Assumptions C.1, C.2 and C.3
hold. Then, for 6 € O,

p

VilE, — E)ym; (Wi, 0)g(X:)
5;(6,9) Vo,

1/p
nl/QTn,p,(&\/Jn [ dﬂ(g)]

dy 1/p
/Z|Gj(979)/0j(9,9)lp du(g)]

where G(g,0) is a vector of Gaussian processes with covariance function

plg,9) = E[m(W;,0)g(Xi) — Em(W;,0)g(X:)][m(Wi, 0)§(Xi) — Em(W;,0)3(X;)]'-
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Proof. The result with the integral truncated over {o;(6,g) < dlall j} follows immediately
from standard arguments using functional central limit theorems. This, along with Lemma
C.1 below gives, letting Z,(d) be the integral truncated at {o;(6,¢9) < dlall j} and Z(J) be

the limiting variable with this truncation,
P(Z,(8) —e <t) —e < P(n?T 0, (0) <) < P(Z,(0) < 1)

for large enough n for any € > 0. The liminf of the left hand size is greater than P(Z(§) <
t — 2¢) — 2¢, and the limsup of the right hand side is less than P(Z(0) < t+¢)+¢e. We
can bound P(Z(0) < t — 2¢) — 2¢ from below by P(Z < t — 2¢) — 2¢, and we can bound
P(Z(0) < t+¢e)+e from above by P(Z < t+2¢)+2¢ by making ¢ small enough by a version

of Lemma C.1 for the limiting process. Since € was arbitrary, this gives the result. [

The proof of the theorem above uses the following auxiliary lemma, which shows that

functions g with low enough variance have little effect on the integral asymptotically.

Lemma C.1. Fiz j and suppose that Assumptions C.1, C.2 and C.3 hold, and that the null
hypothesis holds under 6. Then, for every e > 0, there exists a § > 0 such that

1/p

P \/ﬁ[/ (B (W, 0)9(X0)/(6,(60,9) V 0[P dulg)| > | <e.
o;(0,9)<o

Proof. We have

E/ IVnE,m;(W;,0)9(X;)/(0;(0,9) V a,) " du(g)
0;(0,9)<6

_ / g EIVAE, (Wi, 8)9(X)/ (03(6.9) v ou)]” di(o)

< /.(0 )<6E|\/H(En—E)mj(VVi,9>g(Xi)/(Uj(9,g> \/O-n)|pdu(g) < M({g|0j(0,g) < 5})'Cp’7

for €, given in Lemma B.3. Applying Markov’s inequality and using Assumption C.1, it
follows that, for any £ > 0, there exists a ¢ such that

1/p

P(va [/ |Bam; (Wi, 0)9(X.)/(0;(6,9) V 0,) P du(g)| > 2/2| <ef2.
0;(0,9)<6
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The result follows since

1/p
vn [/ | B (Wi, 0)g(X3)/(65(0,9) V on)|” du(g>]
a;(8,9)<é

J

1/p
<Vn [/_(9 » | Enm(Wi,0)9(X3)/(0(6, 9) V o) [” du(g)] -Sgp(%(@,g) V0n)/(65(0,9) Vo)

and sup,(o;(0,9) V 0,)/(6;(0,9) V 0,) < 2 with probability approaching one by Lemma
B.2. ]

D Proofs

This section contains proofs of the results in the body of the paper. The proofs use a number
of auxiliary lemmas, which are stated and proved first. In the following, 6,, is always assumed

to be a sequence converging to 6.

Lemma D.1. Under the assumptions of Theorem 4.5, there exists a constant C' such that

sup ——Y" (B, — Eym(W,, 6,)k((X, — x)/h)| < C

zcrix \/hix logn

and

sup L |(B, — EY((X, — 2)/h)| < C

zerix \/hix logn

with probability approaching one. In addition,

Enk((Xi — h)/h) P
sup —1{ = 0.
{z|w;(On,z)>0 some j} Ek((Xl - h)/h‘)

Proof. The first two displays follow from Lemma B.1 after noting that
var(m(W;, 0,)k((X; — z)/h)) < Yk F B hix

where k and f y are bounds for k and fy, and B is such that k(u) = 0 whenever max;<j<g, |u;| >
B/2, and similarly for var(k((X; — z)/h)), and that vV héx\/n/\/logn — oo under these as-

sumptions.
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For the last display, note that, for x such that w;(6,, ) > 0 for some j, Ek((X; —x)/h) >

f thX J k(u) du for large enough n, where f s a lower bound for the density of X; (which

can be taken to be € in Assumption 3.7). Thus,
Enk((Xi —h)/h)

sup — 1‘ < sup
{z|w;(0n,z)>0 some j} Ek((XZ - h)/h) zE€RIX

Jn

(B, — E)E((X; —h)/h)
ithX J k(u) du

\/ hix logn

= sup ————|(F, — E)k((X; —h)/h)| -
xeRg)X V hix logn I K /)] vnf  hix [ k(u) du
: : Vlogn
The result then follows from the second display, since Ty 0. O]

Let

Tnp (6Von)~ 11 [/h>0/

and let
n D, kern [

The notation 0;(6, Z, h) is used to denote 0;(6, g) where g(x) = k((z — 2)/h).

E.m(Wi, 0)k((Xi — x)/h) "
o;(0,z,h)V o,

1/p
(x,h)dx dh]

E,m m,e (( z)/h) "
- x)/h)

1/p
w;(0,x) dz dh] :

Lemma D.2. Under Assumptions 3.3, 3.4, 3.5 and 3.0,
VT 6von -1 (On) = \/ﬁTn,p,(&vUn)*l,u(en)(l +op(1))

for any sequence 0,, — 0y. If Assumption 3.7 holds as well, then
() 2T or(B) = (02T ern(80)(1 -+ 0p(1)

for any sequence 6, — 0.

Proof. We have

|\/5Tn,p,(6\/on)*1,u(0n) - \/ﬁTn,p,(&\/an)*l,,u(Qn” S \/ﬁTn,p,(&\/an)*l,y(e) ' Sup ~
Thus, the first display follows from Lemma B.2.
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Similarly, for the second display,

|(nhdx)1/2Tn,p,kern(6n) - (nhdx)lﬂj—’n:p,kem(e””
Ek((X; —x)/h) B

< dx\1/27 .
< (™) 7T pxern (On) Sup Enk((Xi —z)/h)

{z|w;(0,£)>0 some j}

Y

and the result follows from Lemma D.1. O

Let

Tnp (6Von)~1u [/h>0/

and let
n D, kern [

1/p
/h>0/ | Em(W;, 0)k(( i—x)/h)ﬁfu(x,h)dxdh] ,

Em( Wz,e) (X; —2)/h)|"
(0,2, h) Vo,

1/p
(x,h)dx dh]

Em( WZ,G ( z)/h) P
- x)/h)

1/p
wj (0, ) dx dh] :

Also define

nplu

Lemma D.3. Under Assumptions 3.3, 3.4, 3.5 and 3.6,

\/ﬁTn,p,(&\/an)*l,u(en) = \/ﬁTn,p,(&Van)*l,u(Qn) + OP(l)-

and

\/_Tnplu( ) = \/_Tnplu( ) +op(1).

Proof. Let &,, — 0 be such that &,/n/logn — oo and &, /0, — 0 (i.e. 7, is chosen to be

much smaller than o, but such that the assumptions still hold for &,). Note that

\/ﬁrj—'np 6Von)~Lu (0n> - Tn,p,(c}\/an)*l,u(en”

// S \En = EYm(Ws, 62 )k((Xs —x)/h) "
(:rheg ](6‘,$,h)\/0n

1/p
(x,h)dz dh]
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where G = {(z, h)|Em(W;, 0,)k((X; — z)/h) < 0 or E,(W;,0,)k((X; — z)/h) < 0}.
For any € > 0, there exists an n > 0 such that, for h > ¢ and large enough n,

1
—2

Em;(Wi, 0,)k((Xi — x)/h) = nER(X; — 2)/h) = 1 - var[m;(Wi, 6,)k((X; — 2)/h)] - kY

where the second inequality follows since
varm; (Wi, 0,)k((X; — 2)/h)] < Y E[k((X; — 2)/h)?] < Y EEK((X; — z)/h).
Thus, for large enough n we will have

Enmi(Wi, 0,)k((X; — x)/h)
n
> (En — E)m;(Wi, 0)k((Xi — x)/h) + var[m;(W;, 0,)k((X; — x)/h)] - el
and the last line is positive for all (z, h) with o;(6,,x, h) > &, with probability approaching
one by Lemma B.1.
From this and the fact that Em(W;, 6,,)k((X; — z)/h) > 0 for all h > ¢ for large enough

n, it follows that G C {(z,h)|h < eoro;(b,x,h) < d,} with probability approaching one.
Note that

/ / (ehines) ‘f = ;Vf}f)@ (/)

by Fubini’s theorem, and this can be made arbitrarily small by making ¢ small by Lemma

Vi(E, — Eym(W;, 0,)k((X; —x)/h) "
o;(0,z,h)V o,

(x,h)dx dh

(x,h)dxdh

B.3 and Assumption 3.4. Similarly,

dy
VI(E, — Eym(Wi, 0,)k((Xi —2)/h) "
//(:p h)|o;(0n,x,h)<&n some _]} Z Uj<0 x, h) V On ($7 h> d dh
% 10, " Vi(En = Eym(Wi, 0)k((X; = ) /h) |
< HRE [0, 00 {(a:ha)\cr](eth )<én} ‘ 03(9 z,h)V oy,
LR X 10.00)) . Vi(Ey — EYm(Ws, 0,)k((X: —2)/h) | 62
HR > [0,00) {(x,hvjnoj(oﬁxvh)@} ' 0;(9 z,h) V&, On’
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which converges to zero by Lemma B.3. Using this and Markov’s inequality, it follows
that ﬁ‘fn’p7(&vgn)—l’u(0> — Thp(3von)-1.u(0)] can be made arbitrarily small with probability
approaching one by making € small. This gives the first display of the lemma.

The second display follows by the same argument with o, set to the supremum of

0;(6,x, h) over z, h on the support of 4, # in a neighborhood of 6y and all j. ]

Lemma D.4. Under Assumptions 3.3, 3.4, 3.5, 3.6 and 3.7,
(nhdx)l/2fn,p,kern(9n> = (nhdx)1/2Tn,p,kern<9n) + 0P<1)-

Proof. For any € > 0, there is an n > 0 such that Em;(W;,0,)k((X; —x)/h) > nEk((X; —
x)/h) for all z € X(g) where X(¢) is the set of x with ||z — z;|| > e forall k =1,...,¢ and
w; (6, ) > 0 for some j. Thus, arguing as in Lemma D.3 and using Lemma D.1, it follows

that, with probability approaching one,

(nth )1/2 |Tn,p,kern(0n> - fn,p,kern(en”

v nhix(E, — EYm;(W;,0,)k((X; —x)/h) P | 1/p
: [/xg“?(f) ]Zl Ek((X; —x)/h) w; (O, x) dx .

Using Markov’s inequality and Fubini’s theorem along with the fact that fm %) w;(0px) dx

can be made arbitrarily small by making € small, the result follows so long as

p

VAl (E, — E)m,;(W;, 6,)k((X, — 2)/h)

b EE((X, — 2)/1)

can be bounded uniformly over  such that w;(6,,,z) > 0. But this follows from Lemma B.3,
since, by Assumptions 3.3 and 3.7, for some § > 0, Ek((X; — x)/h) > 0h®* for all z with
wj(Qn, $) > 0. ]

For the following lemma, recall that w;(xx) = (s3(2k, 00) fx (zx) [ k(u)? du) /2 and s3(z, 0) =
var(m(W;,0)|X; = x).

Lemma D.5. Under Assumptions 3.3, 3.4, 3.5 and 3.6, fork=1,... ¢

sup |h_dx/20j(9n,l', h) — w;(zr) | = 0.
Il (z,h)—(z,0) | <en

for any sequences €, — 0 and 6,, — 6.
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Proof. By differentiability of the square root function at w;2(mk), it suffices to show that
SUD|| () — (21,0 | <en \h—anﬁ(en, z,h) — w;Q(xk)| — 0. Note that

h™ 02 (0, x, h) = h™ X E[m(W;,0,)°k((X; — 2)/h)*] = b= X {Em(W;, 0,)k((X; — x)/h)]}>
— pdx /sg(;z, 0,)k((& — ) /)2 fx(T) d7

+ hdx /E[m(m, 0,)|X; = 7°k(( — x) /) fx (%) dZ
s { [ B 0.1 = Ak — ) /1) x(@) dfc} |

By Assumption 3.3 and part (iii) of Assumption 3.5, the second term is bounded by a constant
times Sup|(,p)— (o 0)l|<en EM(Wi, 0,)|X; = 2]?, which converges to zero by continuity of
E[m(W;,0)|X; = z] at (0o, zx). By Assumptions 3.3 and 3.5, the third term is bounded by
a constant times h9x - h24x < gdx yniformly over (z,h) with ||(z, h) — (x1,0)|| < &,. Using
a change of variables, the first term can be written as [ s3(z 4 uh, 0,)k(u)? fx (x + uh) du,
which converges to w;?(xy) uniformly over |[(z,h) — (2,0)|| < &, by continuity of s; and
fx, and by Assumption 3.3. O

Lemma D.6. Suppose that Assumptions 3.3, 3.4, 3.5, 3.6 and 3.7 hold, and that [ k(u)du =
1. Then

sup |hNEE(X; —x)/h) — fx(z)] =0

lz—zk | <e

ash—0ande —0 fork=1,..., ¢
Proof. We have
h™XEk((X; — x)/h) = h™ % /k((f —x)/h) fx (%) dE = /k(u)fx(:v + uh) du,
and [ k(u)du =1 and fx(x + uh) converges to fx () uniformly over ||z — x| < e and u
in the support of k as ¢ — 0 and h — 0. O
For notational convenience in the following lemmas, define, for (j, k) with j € J(k),

mj (90, il') — mj (90, iL'k)
[EREATER

V(v —ap) =

o6



so that

sup
|z —all<é

Uin(T — x1) — Yy (M> ‘ — 0

[l — |
under Assumption 3.5.

Lemma D.7. Under Assumptions 3.3, 3.4, 3.5 and 3.6, for any a € R%,

dy
pldxtpldxr)+l/y / / > 1Em;(Wi, 0y + ra)k((X; — 2) /)" (&, h) dz dh
j=1

Xo

T:>O Z Z )\bdd(aaja k>p)

k=1 jej(k)

Proof. For simplicity, assume that v(j, k) = « for all j, k. The general result follows from
applying the same arguments to show that areas of (x, h) near (j, k) with (7, k) < v do not
matter asymptotically.

For C large enough, the integrand will be zero unless max{||# — x|, h} < Cr'/" for some
k with j € J(k). Thus, it suffices to prove the lemma for, fixing (j, k) with j € J(k),

/ / |Em; (Wi, 0+ ra)k((X; — &) /)" f,(F, h) di dh

://‘/mj(éo+m,as)k((:v—.%)/h)fx(m)da:I:fu(i",h)da}dh

p

= // ‘/[Hx — 2" k(@ — 1) 4 g, (6% (r), x)ralk((z — &) /h) fx (z) dx ) fulE, h) dE dh

where the integrals are taken over ||# — x| < Cr'/7, h < Cr'/7 and 6*(r) is between 6, and
0o + ra (we suppress the dependence of 0*(r) on x in the notation). Using the change of

variables u = (x — x3,)/r'/7, v = (& — x3,) /r'/7, h = h/r'/7, this is equal to

p

// ‘/[||7‘1/7U||Wj,k(7‘1/vu) + Mg (0°(r), @, + 7 T u)ralk((u — v) /R) fx (ze + 7w du
fulzr + 7"1/71), rl/vﬁ)rdxm dvrt/" dh
= pldx+1+p(y+dx)l/y // ‘/[HUHV@ZNJL;C(TVVU) + mg (0" (1), xp + Tl/Vu)a]k((u — v)/ﬁ)fx(mk + rl/vu) du

Ful@y 4+ 0, 7Y 7h) dv dh

p

o7



where the integrals are taken over |[v]| < C,h < C. The result now follows from the
dominated convergence theorem (here, and in subsequent results involving sequences of the
form [| [ gn(z, w)dp(z)[" dv(w), the dominated convergence theorem is applied to the inner
integral for each w, and again to the outer integral).

]

Lemma D.8. Under the conditions of Theorem 4.3, for any a € R%,

dy
p—ldx+p(dx /247)+1]/7 / / Z |Em;(W;, 00 + ra)k((X; — x)/h)/(0j(00 +ra,z,h) V o,) " f.(Z, h)dT dh

SZ Z A’U(l’f(a”j7k7p>+0(]‘)

k=1 jeJ(k)
for any r = r, — 0. If, in addition, JnT;dX/(QA’) — 0, the above display will hold with the

inequality replaced by equality.

Proof. As in the previous lemma, the following argument assumes, for simplicity, that
v(j, k) = v for all (j, k) with j € J(k). Let 5;(r,2,h) = 0;(6p + ra,z,h)/h¥*/2. As be-
fore, for large enough C, the integrand will be zero unless max{||Z — x|, h} < Cr'/” for
some k with j € J(k). Thus, it suffices to prove the result for, fixing (j, k) with j € J(k),

/ / |Em; (Wi, 6 + ra)k((X; — #)/h) (=25 (r, &, h) A o )P fu(@, ) d dh

///||x—xk||w]k<x—xk>+mm<a*<> 2)ral

(x —&)/h) (R 25 (r, 2, h) Aoy, V) fx(x) da|” fu(2, k) dE dh

where the integral is taken over ||Z — x| < Cr'/7, h < Cr'/7 and 6*(r) is between 6, and
0o + ra. Using the change of variables u = (z — 23)/r/7, v = (& — a)/r*/",h = h/r/7, this

o8



is equal to

[ | st 00 ol 0

p
(((rlhh) dx /25— (7’ xk—i—m’l/” rl/wh))/\a )fX(:vkjLurl/”)rdX”du

Fulxy 4 e Y)Y durl/Y dh

_ plprtdx /2 tdx 1)/ / /

((h dx /25~ (r zp + vrt/7, rl/Vh)) A (r dx/(27) 5 ))fX(xk—l—url/V) du

/ el () + .58 (), 5+ wralk((u — v) /)

p

Fulay +or'/Y rY7h) du dh.

where the integral is taken over ||v|| < C, h < C. By Lemma D.5 and the dominated

—dx /(27) —dx /(2

convergence theorem, this converges to Ayer(a, j, k, p) if 0,7y — 0. If 0,7 ") does

not converge to zero, the above display is bounded from above by the same expression with
o, ! replaced by oco.
O

Lemma D.9. Under the conditions of Theorem 4.5, for any a € R%,

—(yptdx)/v / Z [[Em; (Wi, 00 + ra)k((X; — x)/h)/Ek((X; — x)/h)|w;(0o + ra,x)” dx

|Xo

- Z Z )\ker’n a Chra]ak p)

k=1 jeJ(k

as v — 0 with h/r'/7 — Chy for cpy > 0. If the limit is zero for (a,ch,) in a neighborhood
of the given values, the sequence will be exactly equal to zero for large enough .
If h/rY/7 — 0, then, asr — 0,

pOptdx)/y / Z [Em;(W;, 00 +ra)k((X; — 2)/h)/Ek((X; — 2)/h)]w;(0 + ra,z)|" dz
| Xo|
— Z Z )\kern Cl .77k p)

k=1 jeJ(k

Proof. As before, this proof treats the case where J(k) = J(k) for ease of exposition. As
with the proofs of Lemmas D.7 and D.8, it suffices to prove the result for, fixing (j, k) with
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J € J(k),

/ |[Em;(Wi, 00 + ra)k((X; — 2)/h)/ Ek((X; — 2)/h)|w;(00 + ra, T)|Z dT

- / ‘/[llx — x|y — i) + g (07 (r), 2)ralk((@ — 2)/h) fx (x) deh™ " b(@)w; (6o + 7a,7)|  di

where the integral is over ||¥ — x4]| < Cr'/" and b(%) = h%/Ek((X; — Z)/h) converges
to (fx(xy))~! uniformly over Z in any shrinking neighborhood of x; by Lemma D.6. Let
h = h/r'/7. By the change of variables u = (z — x3,)/r'/7, v = (& — x3,)/r'/7, the above
display is equal to

/‘/ [l ab i (ur 7Y + 179,30 (1), i + wrt/ ) ralk((u — v) /h) fx (zr + wr/)rx du

1/7h) de(x + ort/7 Jw; (6o + ra, a:;ﬁ—r/”v)‘ rix/7 dy

—rp+dX/"’/‘/ [l bk (urtY) + g5 (0% (r), 2y, + ur Malk((u — v) /) fx (x5 + ur'/?) du

h=aXb(xy, 4 v w; (8 + ra, xk—l—r/%)‘ dv (15)

where the integral is over v < C. The first display of the lemma (the case where h/r'/7 — Chr
for ¢p,,. > 0) follows from this and the dominated convergence theorem.

To show that the sequence is exactly zero for small enough r when the limit is zero in
a neighborhood of (a, ¢, ), note, that, if the limit is zero in a neighborhood of (a,cp,.), we

will have, for all (@, é,,) in this neighborhood and any v,

J [t (i) + mos om0 k(= o))
- / [agmuauwj,k (ﬁ) + g (6, xk)a] k(i — ) &% dii > 0.

Evaluating this at (.5, @) such that & . < ¢} (1 —¢) and (for the case where my ;(0o, 7x)a

is negative) mg ; (6o, vx)a < (Mg ; (6o, :vk) )(1 + €) shows that

[t () - 020+ tmog(on )t + )] ko - 9y 0

for all v for some € > 0. The above display is, for small enough r, a lower bound for the

inner integral in (15) times a constant that does not depend on r, so that, for small enough
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7, the inner integral in (15) will be nonnegative for all v and (15) will eventually be equal to
Z€ro.
For the case where h = h/r*/7 — 0, multiplying (15) by r~(P*+dx/7) gives, after the change

of variables @ = (u — v)/h,

/

b(xy + vrl/v)wj(ﬁo +ra,xy; + rl/“’v) ’Zi dv

/[Hﬁﬂ + v||71/~1]k((iwl + U)rl/'y) + g ; (67 (r), x) + (ﬁﬂ + v)r1/7)a]k(a)fx(xk + (7171 + U)rl/'y) du

which converges to

/ o750/ ell) + 720,560, 2 )aleos (B, ). do

by the dominated convergence theorem, as required.

We are now ready for the proofs of the main results.

proof of Theorem 4.1. The result follows immediately from Lemmas D.3 and D.7 since
(n*’Y/{Z[dXJr“/Jr(dXJrl)/P}})*[dx+p(dx+7)+1]/("/p) — nl/2 ]

proof of Theorem 4.3. The result follows immediately from Lemmas D.2, D.3 and D.8 since
(n v/ Rldx 2+ (dx+ 1) /pIh) ~[dx +p(dx /247 11/ (0p) = p1/2, O

proof of Theorem 4.5. The result follows from Lemmas D.2, D.4 and D.9. Note that (nh®x)P/2 /(nl=dxs)p/2 .
cflxp/Q, and that, for the case where s > 1/[2(y + dx/p + dx/2),

(n—q>—(~/p+dx)/(7p) _ (n—(1—sdx)/[2(1+dx/(m))])—(vp+dx)/(w) — p(=sdx)/2

For the case where s < 1/[2(y + dx/p + dx/2)], it follows from Lemmas D.2, D.4 and D.9
that

1
o /P

PO (0 + an) B (Y Y Neemn(a, ey . K, p)
k=1 jeJ(k)

so that (nh®)'2T, (0, + a,) will converge to oo in this case if the limit in the above display

is strictly positive. If the limit in the above display is zero in a neighborhood of (a,¢;), it

61



follows from Lemmas D.2 and D.4 that (nh®)Y2T, (6, + a,,) is, up to 0,(1), equal to a term
that is zero for large enough n by Lemma D.9.
[
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