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Abstract

We assess the capacity of gerrymandering to undermine the will of the people in a

representative democracy. Citizens have political positions represented on a spectrum,

and electoral maps separate people into districts. We show that unrestrained gerryman-

dering can severely distort the composition of a legislature, potentially leading half the

population to lose all representation of their views. This means that, under majority

rule in the congress, gerrymandering enables politicians to enact any legislation of their

choice as long as it falls within the interquartile range of the political spectrum. Just as

worrisome, gerrymandering can rig any legislation to pass instead of the median policy,

which would otherwise prevail in a referendum against any other choice.
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1 Introduction

Drawing election districts in America for political advantage dates as far back as the colonies,

but the Massachusetts incident in 1812 stamped a permanent name to the practice. Hav-

ing recently won full control of the Commonwealth’s Legislature, Jefferson’s Democratic-

Republicans passed a redistricting bill that cut up, joined, and divided counties in an ex-

traordinary manner. The governor at the time, Elbridge Gerry, signatory of the Declaration

of Independence and early advocate for the Bill of Rights, apparently regarded the redis-

tricting bill personally repugnant, but nevertheless complied with his party and signed the

policy into law. Outraged, the opposing Federalists denounced the law, blamed Gerry for

the policy’s invention, and satirized a particular district’s serpentine shape by calling it a

“Gerry-mander,” forever associating partisan redistricting with poor Elbridge. In a blistering

critique of the law, they wrote that the organization of districts was manipulated to “secure

a majority, in defiance of the will of the people.”1

Concerning the perils of gerrymandering, were the Federalists right? Notably, can unre-

strained redistricting defeat the declared voice of a citizenry, and in so doing, threaten the

integrity of representative institutions? Social scientists who have carefully examined gerry-

mandering have largely directed their energies towards ways to measure it, how to administer

it optimally, or identifying its downstream consequences on areas of interest, like policy, polar-

ization, and voting.2 But we do not yet understand the full lengths to which gerrymandering

can pervert the composition of a legislative body and upset the self-determination of an elec-

torate. If a resolute party eyes a desired outcome in an election or in policy, can it shrewdly

assign the populace into organized districts on a map so as to expressly achieve that purpose?

In this paper, we show that the answer, by and large, is “yes.” We study an environment

with a continuum of citizens. Each person has an ideal position on political issues, and

we represent the spectrum of people’s positions as an interval. An observer could say that

1For a history of U.S. partisan redistricting through the mid-19th century, see Griffith (1907). For bi-
ographies of Elbridge Gerry see Austin (1828-1829) and Billias (1976). The quote from the Federalists is
from the February 13th, 1812 edition of the Boston Gazette. See also the February 6th edition for another
Federalist editorial about the 1812 Massachusetts law, and the March 26th edition for the political cartoon
of the Gerry-mander, “a new species of Monster” fabricated to mock the grotesque figure of the newly drawn
election district of Essex County, Massachusetts.

2For measurement, see Grofman and King (2007); Chambers and Miller (2010); Fryer Jr and Holden
(2011); McGhee (2014); Stephanopoulos and McGhee (2015); Duchin (2018); Tapp (2019). For optimal
gerrymandering under either partisan or social welfare objectives, see Owen and Grofman (1988); Sherstyuk
(1998); Shotts (2001); Coate and Knight (2007); Friedman and Holden (2008); Puppe and Tasnádi (2009);
Gul and Pesendorfer (2010); Bracco (2013); Ely (2019); Friedman and Holden (2020); Kolotilin and Wolitzky
(2020). For studies on consequences, see Shotts (2002); Besley and Preston (2007); McCarty, Poole, and
Rosenthal (2009); Hayes and McKee (2009); Caughey, Tausanovitch, and Warshaw (2017); Stephanopoulos
and Warshaw (2020).
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those on the left side of the interval are more liberal, whereas those on the right are more

conservative, but this interpretation is not the only one, as the divide might split the politics

of the left-wing from the right-wing.

Under this representation, we define a map as a way to split the distribution of citizens

into electoral districts, where each district itself is a distribution of political positions. Given

a map, citizens then elect their districts’ representatives. Election results abide by the median

voter property á la Downs (1957) and Black (1958). That is, elected representatives must have

ideal positions at the medians of their districts. The representatives then form a legislature.

As our main result, we characterize all possible compositions of the legislature that a map

can induce. Two extreme legislatures are important in this regard: an “all-left” body and an

“all-right” body. In the former, every representative occupying the legislature has an ideal

position that is left of the median voter’s ideal, whereas in the latter, every representative is

to the right. Hence, in the all-left legislature, only the views of citizens with ideal positions

left-of-median are represented, whereas in the all-right legislature, only the views of citizens

with positions right-of-median are represented.

Theorem 1 shows that a map can induce any legislature within the bounds of these two

extreme bodies. Mathematically speaking, there exists a map such that the distribution

of the elected representatives’ ideal positions coincides with a distribution H if and only if

HR ≤ H ≤ HL, where HL (HR, respectively) is the distribution of citizens’ ideal positions

conditional on being left (right, respectively) of the median. In other words, a map can

induce every distribution bounded by the two extremes—the all-left legislature (HL) and the

all-right legislature (HR)—in the sense of first-order stochastic dominance.

Consequently, as members of the most extreme legislatures, HL and HR, only hold views

consistent with half the population, Theorem 1 implies that gerrymandering can inflict serious

damage on the citizenry by depriving many of their just claim to representation. Furthermore,

because a map can obtain any distribution of representatives between the all-left and the all-

right, if political conspirators crave a particular composition of the legislature in this range,

they have the recipe to get it, and by so doing, block the aspirations of the people.

To better understand the intuition behind Theorem 1, consider the following map that

induces, say, the all-right legislature, where every position right-of-the-median is represented

and none of the positions left-of-the-median are. In this map, every position on the right is

placed into a separate district from one other, whereas all positions on the left are uniformly

pooled into each district, which spreads them out to narrowly lose each district’s election. In

other words, each district contains one and only one position on the right and just enough

positions on the left so that the (only) position that is right of the population median becomes

a median of that district. As a result, every district eventually elects a representative whose
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ideal position equals the separated position on the right, leading to an all-right legislature.

Knowing all possible distributions of representatives, we then pick a canonical voting

procedure for the legislature, simple majority rule, and ask: Under this procedure, what scope

of legislative outcomes can gerrymandering achieve? The broader the scope, the greater the

power relinquished to a partisan group to construct a map that carries out a desired intent,

thereby suspending the dominion of the people. Corollary 1 shows that the subversive power

of gerrymandering is alarmingly broad. Given the initial distribution of citizens’ political

views, gerrymandering can procure any legislation within the 25th and 75th percentiles of

ideal positions. Thus, the scope of gerrymandering’s subversion of legislative policy is the

interquartile range of the population’s political views, and it reaches that far out no matter

the properties of the distribution of ideals. But more or less extreme legislative policies can

be secured if enough of the citizenry subscribes to them.

Tracing the range of legislative outcomes that gerrymandering can obtain offers but one

aspect from which to describe the practice’s subversive scope. Another is to ask: What

legislation can a map engender that would defeat the median voter’s ideal in a head-to-head

vote in the legislature? If all citizens voted genuinely in a referendum within a political system

governed by any Condorcet voting method, the median position would prevail. No majority

of voters would agree to an alternative. To what extent can gerrymandering undermine

this Condorcet winner? The answer is more striking: In some circumstances, such as when

the distribution of voters’ ideal positions is uniform, Corollary 2 implies that maps can be

designed so that any bill can defeat the median legislative policy in a congressional vote,

wholly bankrupting the promise of representative democracy.

Recognizing the subversive power of gerrymandering, we then explore remedies that can

weaken or undue its effects. A major benefit of our framework is distilling the complex

problem of designing maps, which are high-dimensional objects, into the far simpler problem

of choosing a value within an interval of legislative outcomes, which is a one-dimensional

object. A common proposal to impede gerrymandering is to strip the majority party of

the power to draw districts and grant that authority to a bipartisan committee. In our

setting, a negotiation between committee members over maps can be modeled as a two-

person bargaining game over surplus, which corresponds to the interquartile range of possible

legislation under majority rule. If both sides were infinitely patient negotiators and bargained

per the model in Rubinstein (1982), the legislative policy chosen would be the position held

by the median voter, consistent with majority rule and striking out all injurious effects of

gerrymandering.

Even after the mapmaking stage, remedies are possible. We explore changes to legislative

voting rules. We show that no voting procedure can narrow the interquartile range of possible
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legislative outcomes whenever such a procedure would pass legislation that a majority of the

representatives would most prefer to pass. However, if one’s objective, instead, is to shrink

the range of legislative policies that can defeat the median in a head-to-head vote, we show

that a supermajority voting threshold can do exactly that.

In the final part of the paper, we study several extensions of our baseline setting, including

when maps must be drawn on two-dimensional geographical planes; when they must respect

state boundaries; when the number of districts are fixed; when districts within a state must

be of equal population; and when residual uncertainty affects elections after a map is drawn.

Overall, the extensions maintain the same general spirit of our main results.

Related Literature. This paper relates to the literature on optimal gerrymandering. In

a notable contribution, Owen and Grofman (1988) characterize optimal district maps that

maximize either the expected number of seats or the probability of winning a majority of

a certain party, within a setting featuring individual-level uncertainty, but not aggregate

uncertainty. Friedman and Holden (2008) solve for optimal district maps that maximize the

expected number of seats for a designer who has imperfect (but nearly perfect) informa-

tion about voters’ preferences, as part of a setting with aggregate uncertainty.3 Meanwhile,

Gul and Pesendorfer (2010) consider a strategic setting where two parties who control fixed

shares of regions can draw district maps simultaneously. In their model, both aggregate

and individual uncertainty are present, and both parties observe a noisy signal of voters’

party registration. In a similar spirit to ours, Kolotilin and Wolitzky (2020) cast optimal

gerrymandering as a Bayesian persuasion problem. They characterize the optimal maps in

a setting with both aggregate and (linear) individual uncertainty, and a designer has perfect

information about voters’ types when structuring a map to maximize the expected number

of seats.

Generally, these papers focus on either finding optimal maps for a single designer or

modeling strategic interactions between two parties. With different assumptions about the

information available to the designer(s), as well as the form of uncertainty at the voting

stage, the authors characterize the solutions and discuss the structures of their optimal or

equilibrium maps. By contrast, this paper characterizes every possible composition of a

legislative body that a map can generate. In so doing, we allow a map to allocate citizens

according to their preferences in arbitrary ways, and we abstract from both individual-level

and aggregate-level uncertainty in our baseline model. From this perspective, our results

complement existing findings, as we identify an upper bound to the set of feasible outcomes

3See Friedman and Holden (2020) for an extension where two parties can draw election maps at the same
time.
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in this literature.

Our paper also connects to the Bayesian persuasion literature. Since a map in our model

is, in fact, equivalent to a Blackwell experiment for a one-dimensional state, our framework

corresponds to that of Kamenica and Gentzkow (2011). In this regard, this paper shares the

same spirit as several recent works that describe the set of feasible outcomes across all possible

information structures in various environments (see, for instance, Bergemann, Brooks, and

Morris 2015; Bergemann, Brooks, and Morris 2017; Roesler and Szentes 2017; Condorelli

and Szentes 2020; Bergemann, Brooks, and Morris 2021; Yang 2021; Armstrong and Zhou

2022; Elliot, Galeotti, Koh, and Li 2022; Haghpanah and Siegel 2022; Haghpanah and Siegel

forthcoming; and Condorelli and Szentes forthcoming).4

Furthermore, since our main result can be regarded as a complete characterization of

the distribution of medians of posteriors induced by all possible signals, our paper contrasts

with Bayesian persuasion problems in which the sender’s objective depends only on the mean

(see, for instance, Gentzkow and Kamenica 2016; Kolotilin, Li, Mylovanov, and Zapechel-

nyuk 2017; Kolotilin 2018; and Dworczak and Martini 2019). Since the characterization of

Rothschild and Stiglitz (1970) does not apply to medians of posteriors, persuasion problems

where the sender’s objective depends on medians is relatively less understood than those

where the sender’s objective depends on means. Our main result reduces the dimensionality

of this class of persuasion problems so that it is without loss for the sender to choose from

distributions characterized by our Theorem 1.

Outline. The paper proceeds as follows: Section 2 provides an informal, illustrative exam-

ple of gerrymandering in our setting that spotlights its subversive effects. Section 3 formally

establishes the setting. Section 4 presents the central result on gerrymandering’s power to

the limit representative democracy. Section 5 studies remedies that constrict the subversive

scope of gerrymandering, and Section 6 provides extensions of the baseline model. Section 7

concludes.

2 Gerrymandering Illustrated

In this section, we provide a simple illustration of gerrymandering in our framework to

shed light on its power to undermine representative democracy. Figure I provides a circular

representation of a big city and the surrounding suburban and rural areas. The urban core

4It is noteworthy that proposition 1 of Gomberg, Pancs, and Sharma (2021) shares the same flavor as our
Theorem 1. However, the authors assume that each district elects amean candidate as opposed to the median,
and, hence, their characterization follows from Blackwell’s theorem and properties of the majorization order,
which do not apply to our setting.
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is labeled Region 1; the suburbs, Region 2; and the rural zones are split into Regions 3 and

4. All regions share equal population.

1

2

3 3

4

4

Figure I
Gerrymandered Map

Citizens identify with one of four ideal positions over political issues. All citizens within

a region hold the same ideal position and are uniformly distributed over each region. The

number assigned to each region matches the ideal position of the area’s inhabitants. Residents

of the big city lean heavily left, which we illustrate by coloring Region 1 dark blue. Suburban

residents of Region 2 are closer to the median, but still left of it, which we represent by coloring

the area light blue. Rural residents of Region 3 lean right, so that the section is colored light

red; and finally, those living in rural Region 4 lean heavily right, making that region colored

dark red.

A map is a partition of the entire circle of regions, and each element of the partition

represents a district. Given a map, citizens of each district then elect a representative with

an ideal position matching their median political view. As different maps can induce different

groups of representatives, a natural question arises: What compositions of the legislature can

a map create?

We propose an example map in the figure, which we represent as a collection of different

patterned sections. This map demonstrates that very extreme compositions of the legislature

are possible. In the map, a small fraction of citizens with positions 1 and 2—those who belong

to the section patterned with dots in Figure I—are drawn into one, “X”-looking, district.
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This district would certainly elect a representative whose position is either 1 or 2.

In the meantime, the remaining population is uniformly partitioned into many equally-

sized districts. These districts can be categorized into two types. The first type is illustrated

by the two rectangular and two triangular sections patterned with bricks that join at the

center of the city. (Only one type of this district is shown as an example.) Collectively,

districts of this first type form a partition of the population consisting of half the remaining

left-leaning population, as well as all citizens with position 4. As a result, citizens with

position 4 would constitute a majority in each of these districts, and thus, each of these

districts would elect a representative whose ideal position is also 4. The second type of district

is illustrated by the two rectangular and two triangular sections patterned with squares that

too join at the center. (Only one example of this second type of district is shown.) For

the same reason as before, each of these districts would elect a representative whose ideal

position is 3. Notice that, by construction, all districts share the same population under this

map. Nonetheless, all but one elected representative would have a position of either 3 or 4,

whereas a lone representative would subscribe to position 1 or 2.

This example map demonstrates the formidable power of gerrymandering: All right-

leaning citizens have representatives who match their political views, whereas virtually all

left-leaning citizens do not. In essence, this map achieves a nearly “all-right” legislature,

consisting of almost all members with ideal positions right-of-median. The map accomplishes

this feat by following this strategy: (i) separate the two right-leaning positions (i.e., 3 and

4) so that citizens with those positions are never drawn into the same district, and (ii) pool

the right-leaning citizens with the left-leaning ones in a way that the right-leaning positions

have just enough support to win in every district they belong to.

Figure I illustrates, in a simple way, the power of unrestrained gerrymandering to ma-

nipulate the makeup of a legislative body. In what follows, we consider a richer environment

and characterize every possible composition of a legislature that a map can produce.

3 Model

A continuum of citizens vote, and each citizen has single-peaked preferences over positions on

political issues. The variety of these positions is represented by the unit interval X := [0, 1],

and each citizen is identified by an ideal position x ∈ X. The distribution of citizens’ ideal

positions is given by a continuous and strictly increasing CDF F .5

A map segments citizens into electoral districts, where each district elects a representative.

5Continuity and strict monotonicity of F are, in fact, not necessary; the setting can naturally be extended
to any CDF F , even discrete ones over a finite set of political positions. The set of citizens may also be finite
rather than a continuum. We impose these assumptions here for the ease of exposition.
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Formally, let D be the collection of CDFs with supports on X.6 A map is defined as a

probability distribution m over D such that∫
D
D(x)m(dD) = F (x), ∀x ∈ X. (1)

That is, a map, m, splits the distribution of citizens’ ideal positions F into districts in

supp(m) so that the collection of districts average back to F .7 Let M denote the collection

of all maps. As a consequence, for any map m ∈ M, each D ∈ supp(m) represents a district

of citizens.

Election results at the district-level follow the median voter property. That is, given any

map m ∈ M, the elected representative of each district D ∈ supp(m) must have an ideal

position that is a median of D.8 Specifically, let med(D) := [D−1(1/2), D−1(1/2+)] denote the

set of medians of D. Any elected representative in district D must be an element of med(D).9

As the median of a distribution may not be unique in general, the exact distribution of

representatives of a district D depends on tie-breaking rules in each district. Henceforth,

we describe district-level tie-breaking rules by a transition probability r : D → ∆(X) with

supp(r(D)) ⊆ med(D) for all D. The set of all district-level tie-breaking rules is denoted by

R.

Given any map m ∈ M and any tie-breaking rule r ∈ R, let H(·|m, r) be the distribution

of the ideal positions of the elected representatives induced by map m. That is,

H(x|m, r) :=

∫
D
r([0, x]|D)m(dD).

Our goal is to characterize the set of distributions of representatives’ ideal positions that can

be induced by some map m ∈ M and some tie-breaking rule r ∈ R.

Because we allow for arbitrary ways of splitting the distribution of citizens’ ideal positions,

6D is endowed with the weak-* topology and the associated Borel σ-algebra.
7In other words, each district is defined as the conditional distribution of the ideal positions of citizens

who belong to that district. In other words, we implicitly assume that a map can allocate citizens according
to their ideal positions in arbitrary ways. In Section 6, we further discuss sufficient conditions under which
any map of this form can be obtained by partitioning an underlying geographical space of citizens, as well as
several extensions that relax this assumption.

8Any district-level election system that meets the Condorcet criterion satisfies the median voter property
(Downs 1957; Black 1958). An example is majority voting with two office-seeking candidates. Alternatively,
any citizen-candidateship voting system with sufficiently high entry costs would elect a median representative
in each district. An extensive empirical literature suggests that median voter preferences can more or less
be mapped onto a single-issue space satisfying an ideal point (Congleton 2004). See, for example, Poole and
Daniels (1985), Congleton and Bennett (1995), and Gerber and Lewis (2004)

9Recall that x is a median of D if and only if D(x) ≥ 1/2 and 1−D(x−) ≥ 1/2. Thus, the set of medians
of D is an interval [D−1(1/2), D−1(1/2+)], where D−1 is the (left-continuous) quantile of D.
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every possible map in the literature on gerrymandering can be represented by somem ∈ M.10

From this perspective, our result can be regarded as identifying the largest possible set of

distributions of representatives that a map can engineer.

4 The Limits of Representative Democracy

4.1 Distributions of Representatives

In that follows, we characterize the set of all possible distributions of representatives’ ideal

positions. To this end, we first introduce two crucial distributions. For any x ∈ X, let

HL(x) :=

{
2F (x), if x ∈ [0, F−1(1/2)]

1, if x ∈ (F−1(1/2), 1]
,

and

HR(x) :=

{
0, if x ∈ [0, F−1(1/2)]

2F (x)− 1, if x ∈ (F−1(1/2), 1]
.

In other words, HL and HR are distributions of representatives that only reflect one side

of voters’ political positions relative to the median of the population. The distribution HL

describes an “all-left” legislature, in which each representative elected has an ideal position

that is left of the median voter’s ideal. Conversely, HR represents an “all-right” legislature,

in which all representatives are positioned to the right of the median voter.

The distributions HL and HR are arguably extreme legislative bodies, as the views of fifty

percent of the citizens are completely unrepresented. Nonetheless, our main characterization

below shows that these distributions can, in fact, be induced by some maps. In fact, as shown

by Theorem 1, a map can procure any distribution bounded by HL and HR in the sense of

first-order stochastic dominance. This leads to our main result.

Theorem 1 (Limits of Representative Democracy). For any distribution H : X → [0, 1], the

following are equivalent:

1. There exists a map m ∈ M and tie-breaking rule r ∈ R such that H(x) = H(x|m, r)

for all x ∈ X.

2. HR(x) ≤ H(x) ≤ HL(x) for all x ∈ X.

10For instance, for any aggregate state and for any realized taste shock per voter, a strategy profile of the
two parties in Gul and Pesendorfer (2010) induces a map that has four elements in its support. Each element
is assigned a probability equal to the fraction of the population that the left/right party controls multiplied
by the probability that voters are on the left/right according to that party’s strategy.
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The set of possible distributions of representatives’ ideal positions is depicted in Figure II.

The all-left distribution, HL, is colored blue, whereas the all-right distribution, HR, is colored

red. The green dotted curve represents the population distribution of citizens’ ideal positions,

F . According to Theorem 1, any distribution H bounded by HL and HR (for instance, the

black curve in the figure) can be induced by a map and a tie-breaking rule.

0 F−1
0 (0.25) F−1

0 (0.50) F−1
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Figure II
Legislature Distributions

The proof of Theorem 1 can be found in the Appendix. To better understand the intuition

behind the result, consider any map m ∈ M under which (almost) all districts D ∈ supp(m)

have a unique median. In this case, for any tie-breaking rule r ∈ R, the induced distribution

of representatives’ ideal positions must coincide with the distribution of district medians.

Furthermore, since each district has a unique median, for any x ∈ X, the share of represen-

tatives with ideal positions left of x must equal the share of districts in which at least 1/2 of

the citizens in that district have ideal positions left of x. Namely,

H(x|m, r) = m({D ∈ D|D−1(1/2) ≤ x}) = m({D ∈ D|D(x) ≥ 1/2}).

From (1), for {D(x)|D ∈ supp(m)} to have an average of F (x), the probability that D(x)

is at least 1/2 must be at most 2F (x) whenever 1/2 ≥ F (x). Similarly, the probability that

D(x) is a least 1/2 must be at least 2F (x) − 1 whenever 1/2 < F (x).11 As a result, it must

11More specifically, for any fixed x ∈ X, we may regard D(x) as a random variable whose distribution is

10



be that HR(x) ≤ H(x|m, r) ≤ HL(x) for all x ∈ X. The proof in the Appendix extends this

observation to cases when some districts D ∈ supp(m) may have multiple medians.

As for the converse part of Theorem 1, the proof is completed by (i) approximating

any HR ≤ H ≤ HL with a distribution that has finite support; (ii) finding a map and a

tie-breaking rule that induces the approximating distribution; and (iii) demonstrating that

there exists some map and some tie-breaking rule in the limit that induce H (see details in

the Appendix). Below, we reveal the intuition by constructing maps and tie-breaking rules

(without approximation) that induce the extreme distributions HL and HR. To this end, for

any z ∈ [0, F−1(1/2)], define district Dz
L as

Dz
L(x) :=


0, if x ∈ [0, z)
1
2
, if x ∈ [z, F−1(1/2))

F (x), if x ∈ [F−1(1/2), 1]

,

for all x ∈ X. Similarly, for any z ∈ [F−1(1/2), 1], define district Dz
R as

Dz
R(x) :=


F (x), if x ∈ [0, F−1(1/2))

1
2
, if x ∈ [F−1(1/2), z)

1, if x ∈ [z, 1]

,

for all x ∈ X. Now define maps mL,mR ∈ M as

mL({Dz
L|z ≤ x}) := HL(x); and mR({Dz

R|z ≤ x}) := HR(x),

for all x ∈ X. By construction, both mL and mR satisfy (1). Furthermore, for any

Dz
L ∈ supp(mL), med(Dz

L) = [z, F−1(1/2)]. Likewise, for any Dz
R ∈ supp(mR), med(Dz

R) =

[F−1(1/2), z]. Together with the tie-breaking rule that selects the smallest (largest, resp.)

median in each district, the elected representative in district Dz
L (Dz

R, resp.) must have an

ideal position of z. Therefore, under map mL (mR, resp.), every political candidate with

an ideal position to the left (right, resp.) of the population median F−1(1/2) is elected per

district, while no candidate with a position on the other side of the median is elected. This,

in turn, implies that the distribution of representatives’ ideal positions must coincide with

HL (HR, resp.). Figure III illustrates these maps by plotting districts Dz
L, D

z′
L , D

y
R, D

y′

R for

some z < z′ < F−1(1/2) < y < y′.

In essence, mL andmR induce the most extreme compositions of the legislature by making

each district as competitive as possible. For example, to induce a legislature to only represent

implied by m. As a result, (1) implies that D(x) dominates F (x) in the convex order. With this observation,
inequalities here then follow directly from the characterization of Rothschild and Stiglitz (1970).
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Figure III
All-left and All-right Districts

citizens on the left of the median voter, the map mL separates citizens holding each ideal

position on the left into different districts and then uniformly pools citizens holding all the

ideal positions on the right with each one of these left positions. This pattern creates districts

where each contain one and only one left position that is held by exactly 1/2 the share of the

citizens in the district.12 With the tie-breaking rule that selects the smallest median, each

district would elect the political candidate holding the (one and only one) position to the left

of the population median. The map mL generates an all-left legislature by ensuring that, in

every district, a candidate with a position to the left of the median has just enough of votes

to win.

While the tie-breaking rule seems to play a crucial role under these extreme maps, this is

the case only because the extreme distributions are non-generic. For a generic distribution

bounded by HL and HR, there exists a map where almost all districts have a unique median,

leaving no room for tie-breaking.

12Note that this structure is reminiscent of the F p districting of Gul and Pesendorfer (2010), as well as
the segregate-pool districting described by Kolotilin and Wolitzky (2020). The difference is that under either
of their maps, a citizen (type) is either maximally separated from all other citizens (types), or pooled with
the rest of them, whereas under our map mR (mL, resp.), a citizen that is right (left, resp.) of the median
is separated from all other citizens on the right (left, resp.) and pooled with all other citizens on the left
(right, resp.). The maps mL, mR are neither “packing” nor “cracking,” but are a combination of segregation
and pooling, in the sense that segregated citizens are at the same time pooled with those on the other side
of the median. This, in turn, is of a similar fashion as the “matching extremes” structure á la Friedman and
Holden (2008), except that matched citizens in each district only contain the “extremes” on one side.
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4.2 Implications for Enacted Legislation

As Theorem 1 provides a complete characterization of all possible compositions of the legisla-

ture, we may next explore the implications for legislative policy. Doing so requires specifying

the voting rules deciding how representatives enact legislation. But we may again exploit the

median voter property by supposing that the representatives pass the legislation that is a

median of the distribution of representatives’ ideal positions.13 Hence, given a map m ∈ M
and a tie-breaking rule r ∈ R, we assume that the enacted legislative outcomes must be an

element of med(H(·|m, r)).

Let Z ⊆ X denote the set of legislative outcomes that a map can attain. That is,

Z := {z ∈ X|z ∈ med(H(·|m, r), for some m ∈ M, r ∈ R}.

Relying on Theorem 1, the next corollary describes the set Z of achievable legislative out-

comes under any voting procedure of the congress satisfying the median voter property.

Corollary 1. Under a legislative voting procedure satisfying the median voter property, a

map can achieve the set of legislative outcomes Z = [F−1(1/4), F−1(3/4)].

Proof. By Theorem 1, for any map m ∈ M and for any tie-breaking rule r ∈ R, HR(x) ≤
H(x|m, r) ≤ HL(x) and, hence, H

−1
R (x) ≤ H−1(x|m, r) ≤ H−1(x+|m, r) ≤ H−1

L (x+), for all

x ∈ X. This, in turn, implies that

F−1(1/4) ≤ H−1(1/2|m, r) ≤ H−1(1/2+|m, r) ≤ F−1(3/4).

Conversely, consider any z ∈ [F−1(1/4), F−1(3/4)], since HL(z) ≥ 1/2 and HR(z) ≤ 1/2, there

exists λ ∈ [0, 1] such that λHL(z) + (1 − λ)HR(z) = 1/2, and that λHL + (1 − λ)HR is

strictly increasing in a neighborhood of z. Since λHL + (1 − λ)HR must satisfy condition

2 of Theorem 1, there exists a map m ∈ M and a tie-breaking rule r ∈ R such that

H(x|m, r) = λHL(x)+(1−λ)HR(x) for all x ∈ X and is strictly increasing in a neighborhood

of z. Therefore, med(H(·|m, r)) = {z}, as desired. ■

According to Corollary 1, a congress whose voting procedure satisfies the median voter

property can enact any legislation within the interquartile range of citizens’ ideal positions.14

13Whether the median voter property is true in legislative practice is debated among scholars, but empirical
evidence suggests that it is, at least, a good approximation. For data on the median legislator being decisive,
see McCarty, Poole, and Rosenthal (2001), Bradbury and Crain (2005), and Krehbiel (2010). In a model of
sequential bargaining between representatives in which each period a policy is proposed and voted on, Cho
and Duggan (2009) show that as representatives become increasingly patient, the set of policies that can pass
in any subgame perfect equilibrium converges to the median representative’s ideal position.

14It is noteworthy that the full-information and infinite districts limit of Friedman and Holden (2008) also
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The expansive range of achievable legislation is possible even when the median voter prop-

erty holding at both the district-level and the legislative-level would imply that only the

median legislative policy should be enacted if gerrymandered maps did not manipulate the

composition of the legislature. The subversive scope of gerrymandering is thus established.

A skillfully designed map can enact legislation well beyond the median citizen’s ideal posi-

tion, indeed, as far as the ends of the interquartile range of the population’s distribution of

political views.

In fact, not only can a map trigger non-median outcomes in the legislature, but many

policies can also defeat the median in a head-to-head vote. Specifically, if we instead consider

a majority voting rule among the representatives, and we compare the median citizen’s ideal

position to other positions, Corollary 2 below characterizes the set of legislative outcomes

z ∈ X that can have majority congressional support compared to the median citizen’s ideal

position. To state this result, let z := max{2F−1(1/4)−F−1(1/2), 0} and z := min{2F−1(3/4)−
F−1(1/2), 1}.

Corollary 2. For any z ∈ X, the following are equivalent:

1. There exists a map m ∈ M and a tie-breaking rule r ∈ R such that under H(·|m, r)

the share of representatives with ideal positions closer to z than to F−1(1/2) is at least

1/2.

2. z ∈ [z, z].

Proof. We first prove that 2 implies 1. Consider any z ∈ [z, z], if z = F−1(1/2), then 1 is

trivially satisfied. Suppose that z < F−1(1/2). Note that if the distribution of representatives’

ideal positions is HL, then the share of representatives whose ideal positions are closer to

z than to F−1(1/2) would be 2F ((F−1(1/2) + z)/2), which, in turn, is at least 1/2, as z ≥ z.

Similarly, suppose that z > F−1(1/2). If the distribution of representatives’ ideal positions

is HR, then the share of representatives whose ideal position is closer to z than to F−1(1/2)

would be 2(1− F ((F−1(1/2) + z)/2)), which, in turn, is at least 1/2, as z ≤ z. Therefore, by

Theorem 1, 1 is satisfied for all z ∈ [z, z].

Conversely, to prove that 2 implies 1, fix any z ∈ X and suppose that there exists

a map m ∈ M and a tie-breaking rule r ∈ R such that under H(·|m, r), the share of

representatives with ideal positions closer to z than to F−1(1/2) is at least 1/2. That is,

H((F−1(1/2) + z)/2|m, r) ≥ 1/2 if z ≤ F−1(1/2) and H((F−1(1/2) + z)/2|m, r) ≤ 1/2 if z >

leads to the conclusion that the induced outcome under the left-leaning party’s optimal gerrymander equals
the 25th percentile. Corollary 1 here, using Theorem 1, provides a simpler proof and characterizes the entire
set of possible outcomes.
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F−1(1/2). By Theorem 1, it then follows that

2F

(
F−1(1/2) + z

2

)
≥ H

(
F−1(1/2) + z

2

∣∣∣∣m, r

)
≥ 1

2

if z ≤ F−1(1/2) and

2F

(
F−1(1/2) + z

2

)
− 1 ≤ H

(
F−1(1/2) + z

2

∣∣∣∣m, r

)
≤ 1

2

if z > F−1(1/2). Together with the monotonicity of F , this, in turn, implies z ≤ z ≤ z, as

desired. ■

Given a collection of preferences over legislative outcomes, recall that a Condorcet winner

is defined as an outcome that has majority support when compared to any other alterna-

tive. In our setting, where every citizen has single-peaked preferences over positions in X,

a Condorcet winner always exists and must be the median citizen’s ideal position, F−1(1/2).

Despite this fact, Corollary 2 demostrates that for any legislative outcome z ∈ [z, z], there

exists a map (and a tie-breaking rule) such that z has majority support of the representatives

compared to the Condorcet winner F−1(1/2). In fact, under some distributions, such as uni-

form, we would have z = 0 and z = 1, which is a complete reversal of the desirable property

of the Condorcet winner and a total bankruptcy of the promise of political representatives

to serve on behalf of the people.

5 Remedies

In this section, we use the characterizations in Section 4 to discuss possible remedies to

gerrymandering, from the mapmaking process to legislative voting rules.

5.1 Mapmaking

In most U.S. states, one of two institutions draw state and Congressional election districts:

(1) the state legislatures themselves or (2) a commission (Brennan Center for Justice 2019).

Advocates for redistricting reform often regard the second body, notably bipartisan or in-

dependent commissions, as superior to the first in producing fair maps (see, for instance,

Kubin 1996; Cox 2006; Cain 2011; and Gartner 2019). Any commission in practice in-

evitably would involve some negotiation between members. Without the characterizations

in Section 4, modeling such negotiations is challenging, as maps are complex objects that

involve distributions over distributions. A benefit of Theorem 1 and Corollary 1 is that they

15



greatly reduce the complexity of this negotiation process. After all, according to Theorem 1,

the set of all possible maps is, in fact, equivalent to the set of all distributions bounded by

the two extremes, HL and HR. Moreover, with the assumption that the legislative voting

procedure satisfies the median voter property, the relevant objects of negotiation are further

reduced to a one-dimensional interval, [F−1(1/4), F−1(3/4)].

Regarding negotiation over the mapmaking process, consider the simple theoretical case of

a bipartisan commission involving just two members, one from the left side of the median and

one from the right. Instead of arguing over maps, they instead would argue over the division

of the interquartile range of the citizenry’s distribution of ideal positions. Whatever division

they might agree upon, there would exist a map that accompanies that agreement. Their

interaction could be represented as a bargaining game, and, depending on the chosen model,

the equilibrium could appeal to several canonical results. For example, if the game followed

the setting of Rubinstein (1982), as both sides became increasingly patient negotiators, the

bipartisan commission would agree to a map that coincided with the median citizen’s ideal

point, thus satisfying the will of the majority. The only legislative outcome possible would

be the median, and any damage done by gerrymanding would be entirely erased.

This example is just one way to study reforms to redistricting at the stage when maps are

developed. Endless other models of mapmaking are possible. Whatever the model, we have

shown that the choices of participants in the environment need not be over high-dimensional

maps, but potentially over the much simpler set of one-dimensional legislative outcomes that

such maps induce.

5.2 Legislative Voting Rules

In addition to bipartisan negotiations during the mapmaking process, another way to mitigate

the effects of gerrymandering is through the voting procedure in the legislature. Although

Corollary 1 concludes from Theorem 1 that a rather wide range of legislation is possible,

that conclusion relies on the assumption that the legislative voting system satisfies the me-

dian voter property. Consequently, a natural question arises: Might an alternative voting

procedure restrain the effect of gerrymandering and reduce the range of possible legislation?

To better formulate this question, we may regard a legislative voting procedure as a

mapping from the distribution of representatives’ ideal positions to a legislative outcome. Of

course, if any arbitrary voting procedure—regardless of complexity and practicality—is under

consideration, then the answer to the question must be “yes.” After all, always enacting the

median citizen’s ideal position regardless of how representatives vote (i.e., a constant mapping

that maps every distribution to F−1(1/2)) is feasible.

A more reasonable thought experiment would be to impose some minimal and reasonable
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requirements on the legislative voting procedure. One natural requirement would be that

it must reflect the will of a majority whenever it is unambiguous. In other words, for any

distribution of representatives’ ideal positions where more than 1/2 of the representatives have

an ideal position x ∈ X, then a reasonable legislative voting system must yield outcome x.

From this perspective, the aforementioned question can be reframed as the following:

Does a mapping from the set of distributions of representatives’ ideal positions to legislative

outcomes exist such that its image is narrower than the interquartile range and reflects

any unambiguous majority will at the same time? From Corollary 3 below, unfortunately,

the answer is “no.” To state this observation, let H be the collection of distributions of

representatives’ ideal positions that a map can induce.

Corollary 3. Consider any C : H → X. Suppose that C(H) = x for all H that assigns

probability greater than 1/2 to x. Then, C(H) ⊇ (F−1(1/4), F−1(3/4)).

Proof. Consider any x ∈ (F−1(1/4), F−1(3/4)). Let Hx be a distribution that assigns probabil-

ity 2 ·min{F (x), 1−F (x)} to x, and probability 1−2 ·min{F (x), 1−F (x)} to F−1(1/2). Then

HR ≤ Hx ≤ HL. Therefore, by Theorem 1, Hx ∈ H, which in turn implies that C(Hx) = x,

as desired. ■

While Corollary 3 might suggest a pessimistic answer to whether legislative voting pro-

cedures can remedy gerrymandering from the perspective of Corollary 1, changes to voting

rules may still be useful in providing remedies from the point of view of Corollary 2. Specif-

ically, instead of using majority rule when comparing alternatives to the median citizen’s

ideal position, the legislature can potentially adopt other criteria. We say that a legislature

adopts an α-absolute majority rule against F−1(1/2) when legislation z ∈ X can defeat the

median citizen’s ideal position, F−1(1/2), in a head-to-head vote, if and only if at least a share

α ∈ [1/2, 1] of the representatives prefer z over F−1(1/2).

Clearly, α-absolute majority rule raises the threshold to defeat the median, and, hence,

it should be expected to limit the set of alternatives that can pass the legislature over the

median under a map and tie-breaking rule. Corollary 4 describes the exact degree to which

the effect of gerrymandering can be alleviated in this regard. To state this result, let z(α) :=

max{2F−1(α/2)− F−1(1/2), 0} and z(α) := min{2F−1(1− α/2)− F−1(1/2), 1}.

Corollary 4. For any z ∈ X and for any α ∈ [1/2, 1], the following are equivalent:

1. There exists a map m ∈ M and a tie-breaking rule r ∈ R such that under H(·|m, r), z

defeats the median under the α-absolute majority rule.

2. z ∈ [z(α), z(α)].
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The proof of Corollary 4 is analogous to that of Corollary 2 and is therefore omitted.

To better understand Corollary 4, it is noteworthy that z(α) is increasing in α and z(α) is

decreasing in α. Moreover, z(1) = z(1) = F−1(1/2). In other words, according to Corollary 4,

the set of alternatives that can defeat the median, F−1(1/2), shrinks as the threshold α

increases. When unanimity is required, no alternative legislation can defeat the median.

The supermajority voting procedure of the type described in Corollary 4 can protect the

median from defeat and undue the power of gerrymandering to decide legislative outcomes.

But the median legislative policy might not be the most progressive one, as half the citi-

zenry must subscribe to its merit. Thus, one could think of the median as a stand-in for

the status quo. Elevating the threshold for changing the status quo in the legislature may

partially remedy gerrymandering, but it may also stall progressive change. This deterrence

to change resembles the consequences of the filibuster in the United States Senate. There,

a supermajority of members must agree to invoke cloture to close debate on a bill (United

States Senate Committee on Rules and Administration 2022). Nowadays, legislation that is

filibustered effectively requires a supermajority to pass. Corollary 4 reveals that a filibuster-

type rule in a legislative body (or, at least, a supermajority requirement to end debate) can

partly cure the subversive effects of gerrymandering, but at the cost of potentially hindering

progress.

6 Extensions

Here, we discuss several extensions of the baseline model to illustrate how the framework

accommodates several salient features of political redistricting in practice.

Geographic Maps. Thus far, we model a map as splitting the distribution of citizens’ ideal

positions into several district distributions that average back to the population distribution.

In practice, districts can only be drawn on a geographic map. To better connect our model

to gerrymandering in reality, we further explain whether and when it is possible to generate

a map m ∈ M in our setting by actually drawing election districts on a physical map.

Drawing districts on this kind of map can be regarded as partitioning a two-dimensional

space that is spanned by latitude and longitude. Thus, the question of whether and when

someone can generate a map m ∈ M in our model by drawing election districts on a geo-

graphic map can be recast as whether and when it is possible to generate a distribution m

over distributions by partitioning an underlying characteristic space.

More specifically, let Θ := [0, 1]2 denote a geographic map. Suppose that every citizen

who resides at the same location θ ∈ Θ shares the same ideal position x(θ), where x : Θ → X
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is a measurable function. Furthermore, suppose that citizens are distributed on Θ according

to a density function ϕ > 0. Under this setting, theorem 1 of Yang (2020) ensures that for

any m ∈ M with countable support, there exists a countable partition of Θ, such that the

distributions of citizens’ ideal positions within each element coincide with the distributions

in the support of m. Indeed, together with the fact that any line segment must have measure

zero under ϕ, these partitions can even be chosen such that each element is connected and

compact, which are requirements for drawing districts in many states (Brennan Center for

Justice 2019).15

If we further assume that x is non-degenerate, in the sense that each of its indifference

curves {θ ∈ Θ|x(θ) = x}x∈X is isomorphic to the unit interval, then theorem 2 of Yang

(2020) ensures that for any m ∈ M, there exists a partition on Θ that generates the same

distributions in each district.

State Boundaries. The baseline model in Section 3 allows for any arbitrary way to split

the population distribution. In the U.S., however, election maps can only be drawn within

the boundary of a state, which implicitly imposes constraints on which maps are feasible.

To extend our model so that maps can only be drawn within state boundaries, suppose that

there are N ∈ N states. Ideal positions of citizens in state i are distributed according to Fi.

Each state i has λi share of the total population. A map in this setting can be regarded as

a collection {mi}Ni=1 of distributions on D such that∫
D
D(x)mi(dD) = Fi(x),

for all x ∈ X and for all i ∈ {1, . . . , N}. Given a map {mi}Ni=1 and a tie-breaking rule {ri}Ni=1,

the distribution of the representatives’ ideal positions is

H(x|{mi}Ni=1, {ri}Ni=1) :=
N∑
i=1

λiH(x|mi, ri),

where H(·|mi, ri) is the conditional distribution of the ideal positions of representatives

elected in state i. As in the baseline model, let H i
L(x) := min{2Fi(x), 1} and let H i

R(x) :=

max{2Fi(x) − 1, 0} for all x ∈ X. Under this extension, our main result can be readily

generalized, as described in Proposition 1 below.

Proposition 1. For any distribution H : X → [0, 1], the following are equivalent:

15If any element of the partition is not connected, then one can “connect” the disjoint parts by drawing a
line segment that connects them. Since line segments have measure zero, this would not affect the conditional
distribution of citizens’ ideal positions.
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1. There exists a map {mi}Ni=1 and a tie-breaking rule {ri}Ni=1 such that

H(x) = H(x|{mi}Ni=1, {ri}Ni=1)

for all x ∈ X.

2. H(x) =
∑N

i=1 λiHi(x) for all x ∈ X and for some {Hi} ⊆ D such that H i
R ≤ Hi ≤ H i

L

for all i.

Finite Number of Districts. In practice, electoral maps contain only a finite number of

districts. Each U.S. state is apportioned a fixed number of districts every 10 years, and the

total number of districts nationwide is 435. Our model can readily satisfy this reality. Notice

that whenever x ∈ X is a median of a collection of distributions D ∈ D, x must also be a

median of any mixture of those distributions. Therefore, a natural extension of Theorem 1

follows.

Proposition 2. For any distribution H : X → [0, 1] with |supp(H)| = K ∈ N, the following

are equivalent:

1. There exists a map m ∈ M with |supp(m)| = K and a tie-breaking rule r ∈ R such

that H(x) = H(x|m, r) for all x ∈ X.

2. HR(x) ≤ H(x) ≤ HL(x) for all x ∈ X.

Equal-Population Requirement. In the baseline model, we regard a distribution over

distributions m as a map and each of its realizations D ∈ supp(m) as a district. The

distribution of representatives is then implied by each district D and the overall distribution

m. In particular, m dictates relative population shares of any two districts. In practice, one

might argue that each district should have the same population. This criterion is equivalent

to the “one person, one vote” requirement imposed by US case law on Congressional and

state legislative districts. The requirement stipulates that districts within states must have

equal population as is practicable (Smith 2014).

An equal population requirement can immediately be accommodated, and the reason

why is simple. Suppose that under a map m, there is a district D that is larger than

another district D′ in terms of its size. We may further split D uniformly so that it becomes

several smaller districts whose conditional distributions all remain D. This way, we construct

districts that are of the same size.
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Formally, consider any map m ∈ M. Since D is a standard Borel space, there exists a

measurable function M : [0, 1] → D such that

L({u ∈ [0, 1]|M(u) ∈ A}) = m({D ∈ A}),

for any measurable subset A of D, where L is the Lebesgue measure on R. Therefore, we

may regard each district implied by a map m as M(u), where u is uniformly distributed on

[0, 1].

Residual Uncertainty. Another extension is to further restrict the set of feasible maps by

introducing residual uncertainty even after a map is drawn (e.g., aggregate uncertainty of cit-

izens’ preferences or limitations to map-drawing technology so that only some characteristics

that are correlated with citizens’ ideal positions are observed). Specifically, a general model

that allows for residual uncertainty is as follows: Citizens carry an observable characteristic

θ ∈ Θ. Across citizens, characteristics are distributed according to a probability measure ν0.

For any characteristic θ ∈ Θ, ideal positions of citizens with characteristic θ are distributed

according to F (·|θ). A map is defined as a probability measure m over ∆(Θ) so that∫
∆(Θ)

ν(A)m(dν) = ν0(A),

for all measurable sets A ⊆ Θ.

Characterizing all possible compositions of a legislative body under residual uncertainty

is beyond the scope of this paper; the set of possible distributions of representatives’ ideal

positions depends largely on the correlation structure implied by F (·|θ). Here, we provide a

specific example. Namely, we assume that |Θ| < ∞ and that {supp(F (·|θ))|θ ∈ Θ} form a

partition of Θ.16 In this case, the proof of Theorem 1 can be readily applied, which leads to

the following extension.

Proposition 3. Let N be the largest n ∈ N under which the partition induced by Xn :=

{F−1(1/2n), . . . , F−1(2n−1/2n)} is coarser than the partition {supp(F (·|θ))|θ ∈ Θ}. Then, for

any n < N and for any H ∈ F with supp(H) = Xn, there exists a map m and a tie-breaking

rule r such that H(x) = H(x|m, r) if and only if HR(x) ≤ H(x) ≤ HL(x) for all x ∈ Xn.

16In fact, the same argument can be applied to a similar generalization, where Θ = X and F (·|θ) is
unimodal with its (unique) median being equal to the mode. Note that this generalization corresponds to
the setting of Friedman and Holden (2008). In this generalized setting, the same conclusion would hold.
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7 Conclusion

Gerrymandering’s dreadful talent to stifle the voice of an electorate has been understood for

two centuries. But in this paper, we rigorously measure the maximum possible extent of

that supression. We represent the variety of a citizenry’s political positions as a spectrum on

the unit interval. We characterize all possible distributions of elected representatives’ ideal

positions in a legislature that a map can engender. Unrestrained gerrymandering can per-

vert the composition of a legislature so severely that half the population loses representation

of their political positions. No matter the distribution of positions, a partisan body may

cleverly design a district map that can procure any but the 25 percent most extreme-left or

extreme-right legislation under majority rule. When the criterion changes from majority rule

to legislation that can defeat voters’ median preference, the subversive scope of gerryman-

dering can inch even further, reaching the maximum possible extent when political views are

uniformly distributed. In that case, gerrymandering can engender maps that empower any

bill to defeat the median in a head-to-head vote in the legislature.

We explore reforms that can undue or confine the damage of gerrymandering. A significant

advantage of our framework is that it simplifies any discussion over district maps, which

are high-dimensional objects, into eligible legislative policies, which are one-dimensional.

The simplification permits a far easier analysis of remedies in the mapmaking process. For

instance, a bipartisan commission with members negotiating a redistricting plan can be

modeled as a two-person bargaining game over splitting a surplus. Canonical results from

bargaining theory then imply that gerrymandering’s entire subversive scope can be erased if

both parties are sufficiently patient negotiators. In that case, all agreed maps would comply

with the will of the majority.

Beyond mapmaking, reforms to the voting rules of the elected legislative body can help

undue the effects of gerrymandering. Supermajority voting rules limit the set of policies

that can defeat the median. As the fraction of representatives necessary for approving a bill

increases, the set of legislation that can win against the median position in a head-to-head

vote shrinks. But the median might represent the status quo, and voting procedures that

greater insulate the median from defeat grant more power to the minority, which can entrench

the status quo and arrest progress.

We provide several extensions of our baseline model to demonstrate how it makes room

for notable features of gerrymandering in practice. Maps can display as two-dimensional

geographical diagrams, and redistricting can respect state boundaries. The number of dis-

tricts can be finite and satisfy the equal-population requirement. And residual uncertainty

can disturb voters’ preferences. Even so, our framework leaves room for continuing work.
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Preferences might depart from being single-peaked, citizens may engage in strategic voting

or be subject to behavioral biases in their decisions, and politicians may manipulate infor-

mation so as to alter voter perceptions or turnout. Incorporating these aspects and others is

a promising research area left for the future.
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Appendix

Proof of Theorem 1

To show that 1 implies 2, consider any m ∈ M and any r ∈ R. By definition of H(·|m, r), it must be that

for all x ∈ X,

H(x|m, r) ≤ m({D ∈ D|D−1(1/2) ≤ x}) = m({D ∈ D|D(x) ≥ 1/2}).

Now consider any x ∈ X. Clearly, m({D ∈ D|D(x) ≥ 1/2}) ≤ 1 as m is a probability measure. Moreover,

let M+
x (z) := m({D ∈ D|D(x) ≥ z}) for all z ∈ X. From (1), it follows that the left-limit of 1 −M+

x is a

CDF and a mean-preserving spread of a Dirac measure at F (x). Therefore, whenever x ≤ F−1(1/2), it must

be that 1/2 ≥ F (x), and, hence, M+
x (1/2) can at most be 2F (x) to have a mean of F (x).17 Together, this

implies that m({D ∈ D|D(x) ≥ 1/2}) ≤ HL(x) for all x ∈ X.

In the meantime, by the definition of H(·|m, r), again, it must be that for all x ∈ X,

H(x−|m, r) ≥ m({D ∈ D|D−1(1/2+) < x}) = m({D ∈ D|D(x) > 1/2}).

Consider any x ∈ X. Since m is a probability measure, it must be that m({D ∈ D|D(x) > 1/2}) ≥ 0 for all

x ∈ X. Furthermore, let M−
x (z) := m({D ∈ D|D(x) > z}) for all z ∈ X. From (1), it follows that 1−M−

x

is a CDF and a mean-preserving spread of a Dirac measure at F (x). Therefore, whenever x ≥ F−1(1/2),

it must be that 1/2 ≤ F (x), and, hence, M−
x (1/2) must be at least 2F (x) − 1 to have a mean of F (x).18

Together, this implies that m({D ∈ D|D(x) > 1/2}) ≥ HR(x) for all x ∈ X, which, in turn, implies that

HR(x) ≤ H(x−|m, r) ≤ H(x|m, r) ≤ HL(x) for all x ∈ X.

To prove that 2 implies 1, we first consider the case where H is a step function whose jumps are a subset

of Xn := {F−1(1/2n), . . . , F−1(2n−1/2n)}, for some n ∈ N. In this case, we may represent H as a probability

distribution η = {ηj}2n−1
j=1 on the set Xn. We first claim that for any step function H with jumps in a subset

of Xn and satisfies

2F (x)− 1 +
1

n
≤ H(x) ≤ 2F (x), ∀x ∈ X,

there exists a map m ∈ M and a tie-breaking rule r ∈ R, such that H(x|m, r) = H(x) for all x ∈ X. To

see this, first notice that the collection of CDFs that satisfy these conditions can be characterized by the

following conditions:

ηj ≥ 0, ∀j ∈ {1, . . . , 2n− 1}, (A.2)

and
2n−1∑
j=1

ηj = 1, (A.3)

17More specifically, to maximize the probability at 1/2, a mean-preserving spread of F (x) must assign probability
2F (x) at 1/2, and probability 1− 2F (x) at 0.

18More specifically, to minimize the probability at 1/2, a mean-preserving spread of F (x) must assign probability
2F (x)− 1 at 1, and probability 2(1− F (x)) at 0.
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as well as

k∑
j=1

ηj ≤ 2F (F−1(k/2n)) =
k

n
, ∀k ∈ {1, . . . , n},

k∑
j=1

η2n−j ≤ 2F (F−1(k/2n)) =
k

n
, ∀k ∈ {1, . . . , n}. (A.4)

Denote the convex set of vectors η that satisfy (A.2), (A.3), and (A.4) by Hn, and notice that the extreme

points of Hn must have at least 2n−1 inequalities among (A.2), (A.3), and (A.4) that bind (see Proposition

15.2 of Simon 2011).

Now, consider the following map m∗ that assigns probability 1/n to each district Dk for all k ∈ {1, . . . , n},
where Dk is the conditional CDF on the set

[F−1(k−1/2n), F−1(k/2n)] ∪ [F−1(n+k−1/2n), F−1(n+k/2n)].

Note that, for any j ∈ {1, . . . , n},

F−1(j/2n) ∈ med(Dk) ⇐⇒ k ≤ j, (A.5)

and

F−1(2n−j/2n) ∈ med(Dk) ⇐⇒ j ≤ k. (A.6)

As a result, for any tie-breaking rule r ∈ R that always selects medians in Xn in each district, the prob-

ability distribution associated with H(·|m∗, r) must satisfy (A.3). We now argue that for any probability

distribution η ∈ Hn where at least 2n − 2 of the inequalities among (A.2) and (A.4) bind, there exists a

tie-breaking rule r ∈ R, such that η has CDF H(·|m∗, r).

Indeed, for any η ∈ H, such that at least 2n− 2 inequalities among (A.2) and (A.4) bind, η must be in

a one dimensional affine space. Moreover, by the nature of these constraints, (A.3) implies that at most n

out of 2n − 2 binding constraints are from (A.4). Meanwhile, for any j ∈ {1, . . . , n}, by (A.5) and (A.6),

both F−1(j/2n) ∈ Xn and F−1(2n−j/2n) ∈ Xn can be assigned at most j/n probability under any tie-breaking

rule. Conversely, (A.5) and (A.6) also imply that for any subset J ⊆ {1, . . . , 2n − 1} with |J | ≤ n, and,

for any k, l /∈ J , there exists a tie-breaking rule such that the total probability assigned to {F−1(j/2n)}j∈J
equals to |J |/n and every other elements of Xn, except for at most F−1(k/2n) and F−1(l/2n), is assigned

with probability zero. Together, there exists a tie-breaking rule r ∈ R such that η has CDF H(·|m∗, r).

Since every extreme point of H must have at least 2n− 2 inequalities among (A.2) and (A.4) binding, and

since, for any such η, there exists a tie-breaking rule r ∈ R such that η has CDF H(·|m∗, r), any element

of Hn must be in the convex hull of finitely many probability distributions associated with CDFs of form

H(·|m∗, r), for some r ∈ R, as desired. Furthermore, since r 7→ H(·|m∗, r) is affine, it then follows that, for

any CDF H whose associated probability distribution is in Hn, there exists a tie-breaking rule r ∈ R such

that H(x) = H(x|m∗, r) for all x ∈ X.

Finally, consider any CDF H that satisfies condition 2. Since F is continuous and strictly increasing,

there must exist a sequence {Hn} such that the probability distribution ηn associated with Hn is in Hn and
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that {Hn} → H under the weak-* topology. Moreover, for any n ∈ N, there exists a map mn ∈ M and a

tie-breaking rule rn ∈ R such that Hn(x) = H(x|mn, rn) for all x ∈ X. Since M is a compact set under the

weak-* topology, after possibly taking a subsequence, {mn} converges to some m ∈ M under the weak-*

topology on M. In the meantime, by the definition of H(·|m, r), for any n ∈ N, we must have

Hn(x) = H(x|mn, rn) ≤ mn({D ∈ D|D−1(1/2) ≤ x}) = mn({D ∈ D|D(x) ≥ 1/2}),

for all x ∈ X, and

Hn(x
−) = H(x−|mn, rn) ≥ mn({D ∈ D|D−1(1/2) < x}) = mn({D ∈ D|D(x) > 1/2}),

for all x ∈ X.

Notice that, for any {Dn} ⊂ D such that Dn → D under the weak-* topology and that Dn(x) ≥ 1/2 for

all x ∈ X and for all n ∈ N,
1

2
≤ lim

n→∞
Dn(x) ≤ lim sup

n→∞
Dn(x) ≤ F (x)

for all x ∈ X. Hence, the set {D ∈ D|D(x) ≥ 1/2} is closed in D. By similar arguments, the set {F ∈
D|D(x) > 1/2} is open in D. Together, since {mn} → m under the weak-* topology, for any x ∈ X at which

H is continuous,

H(x) = lim
n→∞

Hn(x) = lim
n→∞

H(x|mn, rn)

≤ lim sup
n→∞

mn({D ∈ D|D(x) ≥ 1/2})

=m({D ∈ D|D(x) ≥ 1/2})

=mn({D ∈ D|D−1(1/2) ≤ x}),

and

H(x) = lim
n→∞

Hn(x
−) = lim

n→∞
Hn(x

−|mn, rn)

≥ lim inf
n→∞

mn({D ∈ D|D(x) > 1/2})

≥m({D ∈ D|D(x) > 1/2})

=mn({D ∈ D|D−1(1/2+) < x}).

Moreover, since x 7→ m({D ∈ D|D−1(1/2) ≤ x}) is right-continuous and x 7→ m({D ∈ D|D−1(1/2+) < x}) is
left-continuous, it must be that

m({D ∈ D|D−1(1/2+) < x}) ≤ H(x−) ≤ H(x) ≤ m({D ∈ D|D−1(1/2) ≤ x}), ∀x ∈ X.

As a result, there exists a tie-breaking rule r ∈ R such that H(x|m, r) = H(x) for all x ∈ X. This completes

the proof. ■
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