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Abstract

In digital advertising, a publisher selling impressions faces a trade-off in deciding how precisely to

match advertisers with viewers. A more precise match generates effi ciency gains that the publisher

can hope to exploit. A coarser match will generate a thicker market and thus more competition.

The publisher can control the precision of the match by controlling the amount of information that

advertisers have about viewers. We characterize the optimal trade-off when impressions are sold by

auction. The publisher pools premium matches for advertisers (when there will be less competition

on average) but gives advertisers full information about lower quality matches.

Jel Classification: D44, D47, D83, D84.

Keywords: Second Price Auction, Conflation, Digital Advertising, Impressions, Bayesian Persuasion,

Information Design.

∗We acknowledge financial support from NSF grants SES1824137 and SES 1948336, and ANID Fondecyt Iniciacion

11200365. We thank Steve Berry, Ozan Candogan, Phil Haile, Jason Hartline, Nicole Immorlica, Maxim Ivanov, Anton

Kolotilin, Renato Paes Leme, Denis Shishkin, Rann Smorodinsky, Philipp Strack, Alex Wolitzky and Song Zuo for informative

discussions. We thank seminar audiences at Informs AMD, UCSD, PUC Chile, the China Meetings of the Econometric Society

and the Stony Brook International Conference on Game Theory for many helpful comments. While preparing the manuscript

we become aware of Sorokin and Winter (2021) that establishes in Theorem 1 the result stated here in Proposition 1 with

an independent and self-contained proof.
†Department of Economics, Yale University, New Haven, CT 06520, U.S.A., dirk.bergemann@yale.edu.
‡Instituto de Economía, Pontificia Universidad Católica de Chile, Santiago, Chile; tibor.heumann@uc.cl.
§Department of Economics, MIT, Cambridge, MA 02139, USA, semorris@mit.edu

1



1 Introduction

In the internet advertising market, it has become technologically feasible to match advertisers to viewers

with ever-greater precision. But do publishers selling impressions have an incentive to do so? Finer

matching generates effi ciency gains that sellers can hope to exploit. But coarser matching generates

market thickness, and so more market competition and less information rent for advertisers. Impressions

are typically sold by auction and publishers can control the precision of the match by controlling the

information that bidders have access to. We characterize the trade-off between effi ciency and competition

for the publisher.

We do this in two steps. First, we characterize what information a seller would choose to give buyers

about their values in a second price auction in a standard independent private values setting. Second, we

provide a model of the market for impressions in digital advertising markets, and show how our character-

ization applies in this setting. We now discuss these two steps in turn.

Consider a second price auction where bidders’valuations are independently and symmetrically dis-

tributed, but initially unknown to the bidders. The seller can choose what information each bidder can

learn about their own value. If the seller did not allow them to learn anything, then all bidders would bid

their (common) expected value and the good would be randomly (and ineffi ciently) allocated among them.

If the seller allowed bidders to learn their true value, then they would have a dominant strategy (under

private values in a second price auction) to bid their values. The good would be allocated effi ciently to the

bidder with the highest value. The revenue of the seller would equal the value of the effi cient allocation

minus the bidders’information rent. By permitting bidders to learn something but not everything about

their values, the seller can trade off effi ciency loss with information rent reduction. Our main result is a

characterization of the optimal (among symmetric) information policies for the seller.

Conditional on having a low value, a bidder is likely to be competing with other bidders and earn low

information rents. But conditional on having a high value, a bidder is likely to win (facing no competition)

and thus can expect to win at a price significantly below his value, thus earning high information rents.

Thus the gains from concealing information will be highest when valuations are high. In the optimal policy,

high values are pooled and low values are revealed. There is a critical threshold described by a quantile

above which all valuations are bundled together (Proposition 1). The threshold is given by a quantile of

the distribution that depends only on the number of bidders (and not the distribution of valuations). The

optimal quantile until which disclosure occurs is increasing in the number of participating bidders and goes

towards 1 (i.e., full disclosure) as the number of bidders grows arbitrarily large. Thus, the information

policy is influencing the distribution of bids, holding fixed the distribution of preferences among the bidders.
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The assumption of a fixed finite number of bidders is extreme for many applications. We provide two

results about what happens in large markets. First, we show that if the distribution of values has fat tails,

then even as the number of bidders becomes large, and the quantile at which pooling starts approaches one,

the gains from the optimal information policy relative to complete information or no information is high.

We also consider the case where there is random entry into the auction. Suppose there is a prior probability

that any bidder has a positive value for the object and a complementary probability that the bidder has

zero value or no interest in the specific item. Then the optimal information structure intentionally invites

the advertiser to bid on an item with positive probability even when the bidder has zero value for the item.

That is, sometimes a market is made more competitive even when this lowers the expected value of the

object (Proposition 3).

Our motivation for studying this problem is the market for impressions in digital advertising. A

large share of digital advertising, whether in search, display advertising or social networks, is allocated by

auction mechanisms. The second price auction is commonly used in digital advertising to form a match

between competing advertisers (the bidders) and a viewer. A match between viewer and advertiser creates

an impression (or search result) on the publisher’s website. The seller (a publisher or intermediary) or

the publisher by an auction platform sells the attention (“eyeball”) of the viewer to competing advertisers.

The viewer is thus the object of the auction. The viewers are typically heterogeneous in many attributes,

their demographic characteristics, their preferences, their (past) shopping behavior, their browsing history

and many other aspects, observable and unobservable. The advertisers therefore display a corresponding

degree of heterogeneity in their willingness to pay for a match between their advertisement and a specific

viewer. The private (and the social) value of any particular match is then determined jointly by a vector of

attributes of the viewer and a vector of preferences for those attributes of the advertiser. In the presence

of this heterogeneity on both sides of the match, viewer and advertiser, internet advertising has moved

towards targeted advertising to join the information. The auction can therefore support highly targeted

advertising that may increase the social effi ciency in the match formation between viewer and advertiser.

But - as discussed earlier - allowing for finely targeted bidding may also thin the market among the

advertisers, and hence reduce the competition between advertisers. Publishers distinguish two schemes,

or algorithms, for mapping preferences and attributes into bids, automated bidding and manual bidding.

In automated bidding, autobidding for short, the seller offers a bidding algorithm that generates optimal

bids for the advertisers given the disclosed information.1 In manual bidding, the seller offers a disclosure

1See Google Ads Help Center (2021b), Google Ads Help Center (2021a) or Facebook Business Help Center (2021) for

summary descriptions of automated bidding mechanisms.

3



algorithm that generates information about the attributes, and in particular a bid recommendation, which

each bidder then manually adopts or modifies into a bid for the impression, also referred to as dashboard

mechanism in Hartline, Johnsen, Nekipelov, and Zoeter (2019). Autobidding has become increasingly

prevalent in digital advertising to convert the high-dimensional information across millions of impressions

into bids with minimal latency, see Aggarwal, Badanidiyuru, and Mehta (2019) and Deng, Mao, Mirrokni,

and Zuo (2021).

In this market, publishers can control the information that advertisers have about their values. While

there are many reasons why advertisers’values might be correlated, they will not be if variation in viewers’

attributes is horizontal. A second contribution of the paper is to develop a stylized model of the market

for impressions, establish that our earlier model applies to this market, and show how the results apply

under reasonable assumptions on the market.

In our model of this market, a viewer is characterized a (perhaps high-dimensional) attribute. The

publisher (but not the advertisers) knows the attribute of the viewer. The advertiser (but not the publisher)

knows his preference over attributes. The viewer attribute can be combined with an advertiser’s preference

to generate a match quality, and the value of the viewer to the advertiser is an increasing function of the

match quality. A key feature of this model is that the advertiser’s private information is not informative

about his value of a viewer unless it is combined with information held by the publisher. The publisher

sells impressions (the allocation of the viewer to an advertiser) in a second price auction. Because only

the publisher knows the attributes of the viewer, the publisher can control the information that advertisers

have about their match quality with the viewer.

We present two results in our model. We first show that this model of two-sided information gives

rise to the setting of our main result: an independent private values setting, where the advertiser has

no information about his value of the viewer, but the combination of the publisher’s information about

attributes and advertiser’s information about preferences fully reveals the state. Now we can identify the

optimal information structure from our earlier analysis. But how can this be implemented in practise? We

consider autobidding. The advertiser reports his preferences to the publisher and the publisher commits to

bid optimally for the bidder as a function of the optimal information structure. We show that the bidder

will have an incentive to truthfully report his preferences. Thus autobidding implements the optimal

outcome in this market.
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Literature Levin and Milgrom (2010) suggested that the idea of conflation (central in many commodity

markets) by which similar but distinct products are treated as identical in order to make markets thicker

or reduce cherry-picking, may be relevant for the design on online advertising markets. The information

structure (4) determines exactly when conflation should occur, in the upper interval, and when not, in the

lower interval.

The paper relates to the literature studying optimal information disclosure in selling mechanisms.

Ganuza (2004) studies the optimal information disclosure in a second-price auction, where bidder’s val-

uation are determined by the quality of a match between a bidder’s taste and the good’s characteristic

represented by Hotelling model on a circle. The seller chooses the optimal public signal about the good’s

characteristic. He shows that the equilibrium information provision is less than the surplus-maximizing

one. His result is about costly public signals and so it does not address the trade-off between effi ciency

and market thickness that is central in our paper.

Bergemann and Pesendorfer (2007) analyze the joint optimal design of auction and information struc-

ture. In particular, they allow for asymmetric information structures and personalized reserve prices. Here,

we fix the selling mechanism to be a second-price auction as it is a better fit for the markets for selling

impressions.

Palfrey (1983) studies the bundling decision of a monopolist who sells J goods to N bidders via a

second-price auction. He gives necessary and suffi cient conditions for a single bundle to generate a higher

revenue than J independent auctions. The trade-off that governs the decision is similar as in our model,

effi ciency vs. market thickness, but the decision available for the seller is coarser as he compares only

two options, to bundle or not to bundle. This is akin to comparing when no information generates higher

revenue than complete information in our model.

Similar high-dimensional models with attribute (or features) and preferences have appeared recently in

dynamic pricing literature. Here, the seller does not initially know the values of the different features, but

can learn the values of the features based on whether products were sold at the posted prices in the past,

see Cohen, Lobel, and Leme (2020).

2 Model

There are N agents who bid for an indivisible good in an auction. Bidder i’s valuation is denoted by vi.

We assume that the valuations are independently and identically distributed across agents according to an

absolutely continuous distribution, denoted by F . The assumptions that F is absolutely continuous helps
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simplify some of the expressions but all results go through unchanged if we relax this assumption.

The seller can choose how much information each bidder will have about his own valuation. An

information structure is denoted by:

si : R+ → ∆R+,

where si(vi) is the signal observed by bidder i when his valuation is vi. After observing si, the bidder forms

his beliefs about his valuation. An agent’s expected valuation is denoted by:

wi , E[vi | si].

We denote by Gi the distribution of expected valuations. Note that we are making two assumptions about

the information structure. First, each bidder only observes information about his own valuation, which is

reflected by the fact that si takes as an argument vi only (instead of (v1, ..., vN)). Additionally, there is

no common source of randomization in the signals. Hence, the signals will be independently distributed

across agents. Finally, we assume that the seller is restricted to symmetric information structures, i.e.,

si(·) = sj(·).
The objective of the seller is to maximize revenue. Since agents are bidding in a second-price auction

it is a dominant strategy to bid their expected valuation. Hence, revenue is equal to the second-highest

expected valuation across bidders. We denote the k-th highest valuation by w(k). The objective of the

seller is to solve:

R , max
{s:R→∆R}

E[w(2)]. (1)

3 Optimal Information Structure

Since the expected revenue is equal to the expectation of second-highest valuation, the distribution of

expected valuations generated by the signal is a suffi cient statistic to compute the seller’s expected revenue.

Hence, instead of studying explicitly the signal chosen by the seller, we frequently refer to the distribution

of expected valuations generated by a signal (recall that this is denoted by G).

The second-order statistic of N symmetrically and independently distributed random variables is dis-

tributed according to

P(w(2) ≤ t) = NGN−1(t)(1−G(t)) +GN(t).

The expected revenue of the auctioneer is therefore:

E[w(2)] =

∫ ∞
0

td(NGN−1(t)(1−G(t)) +GN(t)).
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We now characterize the set of feasible distributions G.

By Blackwell (1951), Theorem 5, there exists a signal s that induces a distribution of expected valuations

if and only if F is a mean preserving spread of G. F is defined to be a mean preserving spread of G if∫ ∞
v

dF (t) ≤
∫ ∞
v

dG(t), ∀v ∈ R+

and ∫ ∞
0

dF (t) =

∫ ∞
0

dG(t).

If F is a mean preserving spread of G we write F ≺ G.

We can now express the seller’s problem as finding an optimization over a distribution G subject to

a mean-preserving restriction. The choice of the optimal information structure can be written as the

following maximization problem:

R = max
G

∫ ∞
0

td(NGN−1(t)(1−G(t)) +GN(t)) (2)

subject to F ≺ G.

This problem consists of maximizing over feasible distributions of expected valuations. However, the

objective function is non-linear in the probability (or density) of the optimization variable G. Moreover,

the non-linearity cannot be confined to be either concave or convex on G.

The key step in our argument comes from a change of variables, re-writing the above in terms of the

quantile q of the second order statistic. We denote by SN(q) the cumulative distribution function of the

quantile of the second-highest valuation: SN(q) , P(F (w(2)) ≤ q). We index by N to highlight the

dependence on the number of buyers. We observe that SN(q) is given by:

SN(q) = NqN−1(1− q) + qN .

The quantile distribution SN is independent of the underlying distribution F or G. Just as the quantile

of any random variable is uniformly distributed, the quantile of the second-order statistic of N symmetric

independent random variables is distributed according to SN for any underlying distribution. Hence, the

revenue can be computed by taking the expectation over quantiles using measure SN(q): the revenue given

the quantile of the second-order statistic is G−1. So maximization problem (2) can be transformed into:

max
G−1

∫ 1

0

S ′N(q)G−1(q)dq (3)

subject to G−1 ≺ F−1
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The corresponding constraint states that the seller can choose any distribution of expected valuations whose

quantile function G−1 is a mean-preserving spread of the quantile function F−1 of the initial distribution

of valuations. This uses a well-known property of the distribution function, see Shaked and Shanthikumar

(2007), Chapter 3, stating that F ≺ G if and only if G−1 ≺ F−1. Hence, we have a linear (in G−1)

maximization problem subject to a majorization constraint, which will allow us to solve the problem with

known methods.

Proposition 1 (Optimal Information Structure)

The unique optimal symmetric information structure is given by:

s(vi) =

vj if F (vi) ≤ q∗N

E[vj | F (vj) ≥ q] if F (vi) ≥ q∗N

(4)

where the critical quantile q∗N ∈ [0, 1) is independent of F . In particular, q∗2 = 0; q∗N is increasing in N ;

q∗N → 1 as N →∞; and for each N ≥ 3, q∗N is the unique solution in (0, 1) to:

S ′N(q)(1− q) = 1− SN(q). (5)

Note that (5) is an N−th degree polynomial in q. Thus, the optimal information structure is to reveal
the valuation of all those bidders who have a valuation lower than some threshold determined by a fixed

quantile q∗N and otherwise reveal no information beyond the fact that the valuation is above the threshold.

The threshold in terms of the valuation is given by F−1(q∗N), but the quantile q∗N is independent of the

distribution F of valuations. The optimal information structures thus supports more competition at the

top of the distribution at the expense of an effi cient allocation. The information structure bundles for every

bidder all valuations above the threshold F−1(q∗N) into a single mass point. It therefore fails to distinguish

in the allocation between any two valuations that are in the upper tail of the distribution [F−1(q∗N),∞).

The benefit accrues through more competitive bids among the high value bidders. Namely, if the second

highest bid is in the interval, then its competitive bid matches exactly the bid of the winning bid, and

thus the information rent of the winning bidder is depressed considerably with a corresponding gain in the

revenue for the seller.

The pooling at the top ensures competition when values are high. A natural question to ask is how

many bidders will be in the pooling region. Note that the number of bidders with valuations above the

threshold has a binomial distribution with parameters (N, 1 − q∗N). We can evaluate numerically the

expected number of bidders who have values above the threshold: It is always in the interval [1.75, 2.25]
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and is decreasing in N for N ≥ 3. Results in the following Section imply that the expectation converges

down to 1.79 as N →∞.
Before we prove the result, we will provide some intuition for the critical quantile by confirming that

it must be given by equation (5) as long as information takes the form given in the proposition. Suppose

that we fix a quantile threshold q and write v = F−1 (q) for the corresponding value. At the cutoff v there

is a discontinuity in the bids as a function of the bidders’valuation. Bidders with values marginally below

v will bid essentially v; bidders with values marginally above v will bid EF [t|t ≥ v]. The difference is given

by:

∆ , EF [t|t ≥ v]− v.

Now what happens to revenue if we decrease the threshold by dq? Now with probability S ′N (q) dq the

second-highest bid was not in the pooling zone before the decrease and is after the decrease; and revenue

increases by ∆. With probability 1 − SN (q), the second-highest bid was in the pooling zone before the

decrease and there is a loss of revenue of d
dq

∆. But one can show that d
dq

∆ = 1
1−q∆, so equating expected

loss and gains requires

S ′N (q) dq∆ = (1− SN (q))
1

1− q∆dq

giving (5).

To prove Proposition 1, we state a result of Kleiner, Moldovanu, and Strack (2021) in terms of our

maximization problem (3).

Proposition 2 (Kleiner, Moldovanu, and Strack (2021), Proposition 2)

Let G−1 be such that for some countable collection of intervals {[xi, x̄i) | i ∈ I},

G−1(q) =

F−1(q) q 6∈ ∪i∈I [xi, x̄i)∫ x̄
x F
−1(t)dt

x̄i−xi
q ∈ [xi, x̄i)

If convSN is affi ne on [xi, xi) for each i ∈ I and if convSN = SN otherwise, then G−1 solves problem (3).

Moreover, if F−1 is strictly increasing the converse holds.

Here, convSN is the convexification of SN , i.e., the largest convex function that is smaller than SN .

With this result we can prove our main result.

Proof of Proposition 1. The second derivative of the distribution SN of the quantile of the second

order statistic is given by:

S ′′N(q) = qN−3(N − 1)N(N − 2− q(N − 1)).

9



Figure 1: Convexification of S(q) for N = 3.

Hence, SN(q) is concave if and only if

q ≥ (N − 2)/(N − 1),

and convex otherwise. Thus, the convex hull of SN for N ≥ 3 is given by:2

convSN (q) =

SN(q) if q ≤ q∗N ;

S ′N(q∗N)(q − q∗N) + S(q∗N) otherwise.

where q∗N is defined as in (5) for N ≥ 3. In Figure 1 we illustrate SN and convSN for N = 3.

For N = 2, we have

convS2 (q) = q

and can define q∗2 = 0. Now let G−1 be given by:

G−1(q) =


F−1(q) q < q∗N∫ 1
q∗
N
F−1(t)dt

1−q∗N
q ∈ [q∗N , 1)

1 q = 1

(6)

Then, G−1 satisfies all the assumptions of Proposition 2, so it is the unique optimal solution to (3). For

all valuations below G−1(q∗N) the distribution over expected valuations is the same as that of the real

2To verify this is the convex hull, note that q̃ ≤ (N−2)/(N−1) so by construction convS is convex for q̃ ≤ (N−2)/(N−1),
affi ne for q̃ ≥ (N − 2)/(N − 1), and with continuous derivative, so it is convex. Also, by construction, whenever convS < S

(i.e., the affi ne section), the graph of convS is in the graph of the convex hull of S.
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valuations. Hence, types below G−1(q∗N) know their own values. On the other hand, for valuations above

G−1(q∗N) the distribution over expected valuations is a mass point at the expected valuation conditional

on being above G−1(q∗N). Hence it is clear that this distribution is induced by information structure (4).

To check that q∗N is strictly increasing in N we define:

ψ(q,N) , S ′N(q)(1− q)− (1− SN(q)).

By definition, ψ(q∗N , N) = 0. We now note that:

ψ(q,N + 1)− ψ(q,N) = N(q − 1)2(N(q − 1) + 1)qN−2.

so ψ(q,N + 1)− ψ(q,N) ≥ 0 if and only if q ≥ (N − 1)/N . As previously argued, q∗N < (N − 2)/(N − 1)

so q∗N < (N − 1)/N , which implies that:

ψ(q∗N , N + 1) < 0. (7)

We also have that ψ(0, N) = −1 and ψ(1−ε,N) > 0 for ε small enough, where the last part can be verified

by noting that

ψ(1, N) =
∂ψ(1, N)

∂q
= 0 and

∂2ψ(1, N)

∂q2
= N(N − 1) > 0.

As previously argued ψ(q,N + 1) has a unique root in (0, 1), so (7) implies that q∗N < q∗N+1.

Finally, if N diverges to infinity and limN→∞ q
∗
N < 1, then in the limit we would have that

SN(q∗N), S ′N(q∗N)→ 0.

So (5) would not be satisfied. We thus must have that limN→∞ q
∗
N = 1.

The information structure (4) that emerges here for every bidder is sometimes referred to as "upper

censorship" in the Bayesian persuasion literature, as it pools all the states above a cutoff and reveals all

the states below the cutoff, see Proposition 3 in Alonso and Camara (2016) or Theorem 1 in Kolotilin,

Mylovanov, and Zapechelnyuk (2021). It is useful to compare our problem to a Bayesian persuasion

model where the objective function permits a nonlinear evaluation u (x) of an outcome but linear in the

probability, thus

max
G

∫ 1

0

u(t)dG(t),

subject to F ≺ G,

as, for example in Dworczak and Martini (2019). Our original maximization problem (2) did not take

this form as it was non-linear in probabilities. However, we reformulated the problem to one that is linear
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in the new optimization variable G−1, changing the direction of the constraint. For this problem, the

convexification of SN was key to identifying the optimal information structure. The fact that SN is always

convex-concave then generated the upper censorship information structure.

4 Large Markets

We now develop some implications of the optimal information structure in markets with a large number of

(possible) bidders which is arguably the prevailing condition in digital advertising. We first consider how

the information responds to the random participation of bidders. We then consider the revenue performance

of the auction with the optimal information structure when the actual number of participating bidders

grows large. Here we analyze the a class of distribution with heavy tails that have been proposed by

Arnosti, Beck, and Milgrom (2016) in their analysis of internet advertising.

Random Number of Bidders We now assume that the valuation of bidders is distributed according

to F with probability 1 − p and with probability p the valuation is equal zero. To analyze the optimal
information structure, we analyze the optimal quantile in the limit as N → ∞ and p → 1. We keep the

expected number of bidders who have strictly positive values constant at:

λ , N(1− p).

In this limit, the number of bidders who have a strictly positive values is randomly distributed according to

a Poisson distribution with parameter λ (this is called the law of rare events or the Poisson limit theorem).

Hence, in the limit, it is as if the number of bidders is randomly distributed.

To characterize the optimal information structure, let ρ be the unique solution larger than zero to the

following equation:

ρ2 + ρ+ 1 = eρ, (8)

with ρ ≈ 1.793. We denote the expected valuation conditional on v being drawn from the distribution F

by

vF = EF [v] .

Proposition 3 (Optimal Information )

In the limit as N →∞, p→ 1, the optimal information structure is:

12



1. If λ ≤ ρ, then bidders observe binary signals and their expected valuation is either 0 or vFλ/ρ.

2. If λ > ρ, bidders with valuation F (vi) ≤ (λ − ρ)/λ learn their value, and bidders with valuation

vi ∈ [F−1((λ− ρ)/λ), 1] only learn that their valuation is in this interval.

Proof of Proposition 3. For any fixed N , we define the expected number of bidder who have value

above the q∗N quantile as:

ρ , N(1− q∗N). (9)

In the limit N →∞, (5) converges to the following equation (in terms of ρ):

ρ2e−ρ = 1− e−ρ − ρe−ρ,

We then get the result by applying Proposition 1.

The distribution of bidders whose expected valuation is above the cutoffquantile is distributed according

to a Poisson distribution with parameter ρ (regardless of λ):

ρ = N(1− q∗N), (10)

So the expected number of bidders whose expected valuation is above the cutoff quantile is equal to ρ. It

is also interesting that the probability that there is just one bidder above the cutoff is approximately 0.3,

while the probability that there are at least 3 bidders is approximately 0.27. In the former case, there is

not enough competition to extract this bidder’s surplus, in the latter case there are excess bidders so it

would be best to have less bidders with higher valuation. The optimal information structure approximately

equates the probability of these two type of errors.

In the model with a random number of bidders, we also get a more nuanced analysis when there are few

bidders. We can see that if expected number of “serious”bidders (i.e., bidders with non-zero valuation)

is small, it is optimal to attract bidders whose valuation is zero and disclose no information. This is

intuitive, when there are few bidders the priority is increasing market thickness, which comes about at the

cost of lower expected valuations. In terms of the random entry, this means that it is part of the optimal

information structure to present objects to the bidder that have zero value to the bidder as long as the

bundle also includes objects that have positive value, but the bidder is bidding for them without being

able to make the distinction. This practice thus bundles low value and high value impression to maintain

a competitive market.

The optimal information structure thus supports a match process between advertiser and viewer that

is often referred to as "broad match" in digital advertising, see Dar, Mirrokni, Muthukrishnan, Mansour,
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and Nadav (2009) and Eliaz and Spiegler (2016). By broad matching which is common in ad auctions, the

seller provides matches not only on the exact and narrow matches for specific keywords and characteristics

but also for a larger, hence broad set of matches, see Google Ads Help Center (2021c). Proposition 3 then

establishes that broad matching is an important instrument to maintain competition in the ad auction.

The first part of the Proposition 3 suggests that with thin markets, it is even optimal to include irrelevant

matches with value 0 and thus lower the expected value as it increases the probability of competitive bids.

Revenue Performance with Large Number of Bidders We now examine the difference between

the revenue generated under the optimal information structure and under complete information when the

number of bidders become large. Throughout this subsection we assume that the density of distribution

of valuations has regularly varying tails with index α− 1, that is,

lim
t→∞

f(kt)

f(t)
= kα−1, for all t > 0.

We assume that α < −1.3 For example, the Pareto distribution satisfies this assumption, f(v) = −αvα−1

for v ≥ 1. Intuitively, the densities that have regularly varying tails have fat tails that decay as a

Pareto distribution with shape parameter α. As argued by Arnosti, Beck, and Milgrom (2016), the Pareto

distribution, with its fat tail provides a good fit for demand in the digital advertising market, our leading

application.

We denote by Rc the expected revenue in the second price auction under complete disclosure of infor-

mation:

Rc , E[v(2)].

We now compare the revenue under the optimal information structure, R with the revenue under complete

disclosure, Rc for large N .

Proposition 4 (Revenue Gain with Large Number of Bidders )

As the number of bidders grows, there exists z ∈ (1,∞) such that:

lim
N→∞

R

Rc

= z. (11)

Furthermore, in the limit α→ −1, z →∞.

As the number of bidders grows, the gains from using an optimal information structure does not vanish.

The reason is that despite there being many bidders, there always remains a suffi ciently high probability

3The condition α < −1 is necessary and suffi cient to guarantee that the distribution of valuations has finite first moment.
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of there being a bidder with a disproportionately high valuation. Under complete information, it is not

possible to extract the surplus from this bidder because there is not enough competition. Formally, when

the distribution has fat tails:4

E[v(1)]− E[v(2)]→∞, as N →∞. (12)

By contrast, the optimal information structure thickens the market at the tail of the distribution and can

thus provide a revenue improvement even as the numbers of bidders becomes arbitrarily large.

5 Market for Impressions

We now translate the earlier results into a market for impressions with two-sided information. This

translation recasts the optimal information design as bidding mechanisms in the world of digital advertising.

The choice of the optimal information structure can then interpreted in terms of the information policy of

the publisher who matches the viewer with the advertisers.

The viewer has attribute x ∈ X ⊂ RJ distributed according to Fx. Each advertiser i has a preference
for the attributes described by, y ∈ Y ⊂ RJ , distributed according to Fy, identically and independently
distributed across advertisers.

An impression is a match between an advertiser and a viewer. The value vi of advertiser i from

attracting a viewer is determined by a function u:

u : X × Y → R+,

such that:

vi , u(x, y),

and we refer to u as the valuation function. The distribution of characteristics (x, y) and the valuation

function u induce a distribution of the bidder i’s value vi, which we denote by F .

We assume that the unconditional distribution of values (v1, ..., vN) generated by (x, y) are independent

across bidders. We further assume that the unconditional distribution of values are the same as the condi-

tional distribution of values (v1, ..., vN) conditional on either x or y. That is, (x, v1, ..., vN) and (y, v1, ..., vN)

are random vectors consisting of independently distributed random variables. Of course, (x, yi, vi) are not

independently distributed. In other words, the preference vector yi provides only information about the

value vi when combined with information about the attributes x of the viewer. Moreover, each advertiser

4This result is immediately implied by the analysis in the proof of Proposition 4.
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i’s belief about the valuation of their competitors is unaffected by attribute x or preference yi. Thus, the

present model of attributes and preferences generates a model of independent private values.

These assumptions implicitly impose restrictions on the set of valuations functions and distributions

of attributes and characteristics that we consider. In other words, not every valuation function u and

distributions Fx, Fy will generate joint distributions of values that satisfy these assumptions. The attributes

of viewer therefore reflect an aspect of horizontal differentiation with value implications that depend on the

preferences of the advertiser. Conversely, an aspect of vertical differentiation that has similar implications

across all preferences would fail the equivalence between unconditional and conditional value distribution.

We now briefly describe two classes of models that satisfy the above conditions, one high-dimensional

and one low-dimensional set of models.

Our leading example is given by the following specification. Let there be a vector of attributes x ∈
{−1, 1}J , so attribute j takes values −1 or 1. Each advertiser i has a preference for attribute j, yij ∈
{−1, 1}. Thus yi ∈ {−1, 1}J is advertiser i’s preference, and y = (y1, ..., yN) ∈ {−1, 1}NJ is the profile
of the preferences of the advertisers. The attributes and preferences are uniformly and independently

distributed across components and bidders. The valuation function is given by:

u(x, yi) = u

(
1√
J

J∑
j=1

xjyij

)
, (13)

for some strictly increasing function u.

An alternative class of models is given the following Hotelling location model that has only a one-

dimensional space of uncertainty. Suppose that x, yi ∈ [0, 1] are positions in a circle of perimeter 1

uniformly and independently distributed. Let di be the shortest distance between x, yi on the circle and

u(x, yi) = u(di (xi, y)) (14)

for some strictly decreasing function u.

Both of these classes of models satisfy the independence conditions above.

We will now analyze automated bidding in the second-price auction based on a signal of the value of

the impression. Thus, the publisher commits: (i) to complement the advertiser’s information with a signal

regarding the match quality; and (ii) to set the advertiser-optimal bid. In turn, the advertiser submits his

preference y (and thus a description of the attributes he cares about). The central aspect of automated

bidding is that the publisher complements the advertiser’s private information y with information about

the viewer’s attribute x that is unknown to the advertiser.
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Formally, the publisher chooses a signal

si : R→ ∆R

as a function of the advertiser’s reported value vi (x, yi). While the publisher cannot directly observe vi,

she elicits the advertiser’s preferences and knows the viewer attributes, so she can infer vi. The publisher

submits a bid bi : Y × R→ R satisfying that:

bi(yi, si) = E[vi | yi, si(vi)] (15)

That is, the publisher submits a bid on behalf of advertiser i equal to the advertiser’s expected valuation

given his preferences yi and the additional information si provided by the publisher. This is a advertiser’s

dominant strategy given the available information (yi, s(vi)). Because (vi, yi) are independently distributed,

we have that:

E[vi | yi, si(vi)] = E[vi | si(vi)].

Hence, the publisher’s problem reduces to find an information structure s that solves the original problem

stated earlier in (1):

R , max
s:R→∆R

E[b(2)].

We now verify that under the automated bidding in the second price auction, it is optimal for each advertiser

to truthfully report their preferences to the publisher. A reporting strategy for bidder i is denoted by:

ỹi : Y → ∆Y.

Given the reported preferences, the seller discloses to the bidder a signal s(ṽi), where ṽi is the valuation

of an advertiser with preferences ỹi. The induced bid is denoted by b̃i, while bi denotes the bid when

preferences are reported truthfully.

Proposition 5 (Truthful Reporting)

Under the optimal information structure, it is a dominant strategy for an advertiser to report truthfully his

preferences to the publisher.

Proof of Proposition 5. By assumption, (vi, yi) are independently distributed. Thus the distribution

of the bid b̃i is the same for every reported preference ỹi. Of course, the joint distribution of (vi, b̃i) does

depend on the reporting strategy. In fact, we note that for all v′, b′ ∈ R:

Pr(vi ≤ v′, b̃i ≤ b′) ≤ min{Pr(vi ≤ v′),Pr(b̃i ≤ b′)} = min{Pr(vi ≤ v′),Pr(bi ≤ b′)} = Pr(vi ≤ v′, bi ≤ b′),
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The first inequality is true for any bivariate distribution, the first equality is because both distributions

have the same marginals, and the second equality follows from the fact that:

Pr(vi ≤ v′, bi ≤ b′) =

F (v′) if v′ ≤ b′ or b′ = E[vi | vi ≥ F−1(q∗N)],

F (b′) otherwise.

By definition, this means that (vi, bi) is greater than (vi, b̃i) in the positive quadrant dependent order (see

Shaked and Shanthikumar (2007)).

We now write the difference in the expected bidder’s surplus under truthful reporting and misreporting

as follows:

∆V , E[(vi − bi) Pr(bi ≥ max
j 6=i

bj)]− E[(vi − b̃i) Pr(b̃i ≥ max
j 6=i

bj)]

= E[(vi Pr(bi ≥ max
j 6=i

bj)]− E[vi Pr(b̃i ≥ max
j 6=i

bj)],

where Pr(b ≥ maxj 6=i bj) is the probability that the N − 1 competing bids are less than b and we use that

the distribution of bi is the same as b̃i to cancel out two terms. Clearly Pr(b ≥ maxj 6=i bj) is an increasing

function of b, so v Pr(b ≥ maxj 6=i bj) is supermodular in (v, b), which implies that

E[vi Pr(b̃i ≥ max
j 6=i

bj)] ≤ E[vi Pr(bi ≥ max
j 6=i

bj)],

see (9.A.18.) in Shaked and Shanthikumar (2007).

The proposition states that advertisers are willing to submit their preferences honestly to the publisher.

The intuition for the proof is that misreporting would not change the distribution of bids, but instead, only

decrease the correlation between an advertiser’s bid and his valuation. The automated bidding algorithm

can alternatively be interpreted as a restriction on the bidding language imposed by a publisher. The

publisher then runs a second price auction conditional on the realized attributes and the bidding rules.

We can illustrate this in our leading example of binary characteristics described above in (13). The

optimal information structure can be implemented in a straightforward manner in the model of charac-

teristics. Namely, the seller informs each bidder about the number of matched characteristics as long as

this number is smaller than a threshold number n∗ implied by the optimal quantile q∗N . If the number

of matched characteristics exceeds n∗, then the seller only reports that the realized matches exceed the

threshold number n∗. Thus, a restriction in terms of the bidding language would allow the bidder to place

bids as a function of the matched characteristics up to n∗, but not beyond that. This restriction in terms

of the bidding language would then lead to the optimal bids as described by (15).
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In the context of digital advertising, the information structure can be given a second interpretation. In

the standard auction setting, we fix an object and then the value of the bidder for the object is random

and given by a distribution F . An alternative interpretation is that the valuation of the bidder, his

taste, is fixed and the objects are drawn at random. A particular expected value for each bidder is then

attained by bundling objects of different characteristics so that a given expected value is attained. In

this interpretation, the seller has to offer the bidder a particular distribution of impressions to attain a

particular expectation. Namely, all objects that offer more matches than the threshold level n∗ are sold in

package, whereas all objects with fewer than n∗ matches are sold and priced in fine segments equal to the

number of matches.

An important qualification is that our results suggest that in the presence of heterogeneous bidders,

the conflation of objects is personalized, and optimally dependent on the preferences of each bidder. Thus,

the items are not conflated uniformly across bidders, but in a manner that depends on the preferences

elicited from the bidders.

6 Discussion and Conclusion

We presented a model of attributes of an object and preferences of the bidders that generated a model

of independent private values. The seller controls the revenue in the second price auction through the

elicitation of preferences and the flow of information into the bids. By disclosing only limited information,

the seller can increase the revenue at the expense of some effi ciency losses. The optimal information design

can be interpreted as form of personalized conflation.

Manual Bidding and Obedience We discussed how the optimal information structure can be imple-

mented by automated bidding algorithms. These algorithms generate bids for the advertisers as function of

the preferences elicited from the advertisers and the attributes of the viewer. We established in Proposition

5 that automated bidding supports truthful revelation of the preference information by the advertisers. A

different class of algorithms is frequently described as manual bidding algorithms. Here, the bidders are

asked to reveal their preferences first, and then are invited to bid on the basis of bid recommendations

that take into account both preference and attribute information. These algorithms implicitly require

both truthtelling and obedience constraints to be satisfied. The additional restrictions imposed by the

obedience constraints, namely that the bidder wishes to follow the bid recommendation, may sometimes

prevent the implementation of the optimal information structure for a given number N of bidders. Yet,

we can show that in the presence of a large number of bidders we can approximate the revenue of the

19



optimal information structure even when we impose the dual incentive constraints of thruthtelling and

obedience on the information design. Namely, even if the seller has to elicit the private taste vector of the

bidders in an incentive compatible manner, the optimal revenue can be approximated arbitrarily closely.

Thus, there is a class of information structures that can appropriately balance revenue-maximization and

incentive compatibility when there is a large number of bidders.

Horizontal vs. Vertical Differentiation An interpretation of the characteristics model is that it

generates horizontal differentiation among bidders. By contrast, other models of characteristics would

generate vertical differentiation and correlated values. For example, if each dimension of attributes and

tastes were represented by the positive orthant, then a higher realization of any attribute would represent

an element of vertical differentiation, and the ex-ante distribution of values would be correlated across

bidders, thus introducing an element of common values. If valuations are correlated among bidders, then

bidders would be subject to the winner’s curse. This would introduce new trade-offs that relate the bidders’

information to the winner’s curse. From a technical perspective, the second price would no longer have

a dominant-strategy equilibrium, so the characterization of the revenue in terms of the order statistic

of expected valuations would no longer hold. While extending the analysis formally is not trivial, the

linkage principle suggests that the seller would publicly disclose any shocks about common shocks affecting

correlations, thus making the valuations conditionally independent (which would allow us to go back to

our analysis). Bergemann, Brooks, and Morris (2017), (2019) analyze in detail how correlated information

across bidders can improve the revenue performance of standard auctions, such as first and second price

auctions.

Auction Format In the current environment with independent private values, the revenue equivalence

result holds. Thus all classic auction formats generate the same expected revenue. Hence, while we formally

study the second-price auction, the results extend to all classic auction formats, e.g., first-price auction,

all-pay auction as long as we maintain to sell the object with probability one.

Reserve Price Our main analysis focuses on the second-price auction without reserve price. However,

the analysis of the optimal information structure can be extend to the auctions with a reserve price r with

minor modifications. With a reserve price r, the optimal information structure now displays two pooling

regions. Next to the pooling region at the top that remains, there is now a pooling region of value such

that the expected valuation in this lower pool exactly matches the reserve price r. The details are spelt

out in the Appendix. There remains an intermediate interval in which the bidders learn their valuation.
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In the presence of the reserve price, the logic of the lower pooling region is similar to the pooling region at

the top. Given that there is a reserve price r, which acts as if there is a competing bid, the information

structure create a thicker market by pooling the valuations even if the pooling leads to a loss in effi ciency.

Asymmetric Information Structures We focus on describing the optimal symmetric information

structure. While we do not have a general result showing that the optimal information structure is always

symmetric, we have some partial results that point to this direction. The symmetric information structure

that we derive is indeed the unique optimal information structure when there are two or three bidders,

thus N = 2 or N = 3. We can also show that, if the information structure is the optimal symmetric

information for N − 1 bidders, then it is optimal for the remaining bidder to also observe the optimal

symmetric information. Hence, there is no improvement that involves changing the information structure

of only one bidder. The detailed results are in the Appendix.
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7 Appendix

Proof of Proposition 4. Before we begin, it is useful to establish the rate at which ρ as defined earlier

in (9) converges to 1 as N diverges to infinity. In the limit, the optimal quantile satisfies:

lim
N→∞

1− q∗N
1/N

= ρ,

with ρ satisfying (8).5 Hence, for N large enough, q ≈ 1− ρ/N , for some ρ ∈ R
In what follows, for any two positive functions H, H̃,

H(t) ∼ H̃(t), as t→∞

means that

lim
t→∞

H(t)

H̃(t)
= 1

Throughout the proof, we use the following results about regularly-varying functions. First, for any

regularly varying function H(t) with index γ, there exists a slowly varying function l(t) such that:

H(t) = l(t)tγ.

Second, the slowly varying function behaves as a constant under integration of the tail:∫ ∞
t

l(y)yγdy ∼ −l(t)tγ+1(γ + 1)−1, as t→∞

whenever γ < −1.

We can then write the density as follows:

f(t) = −αl(t)tα−1.

In the limit t→∞, the hazard rate satisfies:

F̄ (t) , 1− F (t) ∼ l(t)tα, as t→∞.

We thus have that F̄ is also a slowly varying function.

5We can verify this claim, by noting that if we replace q = 1 − ρ/N in equation (5) and take the limit, we get this

expression for ρ. Similarly, if q converges to 1 at a faster or slower rate than 1/N , then clearly (5) cannot be satisfied in the

limit.
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We consider the following upper-pooling information structures:

G−1(q) =

F−1(q) q ≤ 1− ρ
N

;∫∞
F−1(1− ρ

N
)
tdF (t)

1/N
if q > 1− ρ

N
,

(16)

with ρ ∈ R. The quantile threshold is not necessarily the same as in the optimal information structure.
We define:

V (N) , F−1(1− ρ

N
),

which is the value at which the pooling zone begins. We denote by R′ the expected revenue generated by

this information structure.

We denote the difference between revenue generated under information structure (16) and under com-

plete information as follows:

∆R , R′ −Rc.

Since w(2) = v(2) whenever v(2) < V (N), we can write the difference as follows:

∆R =P(v(2) ≥ V (N))E[vi | vi ≥ V (N)]− E[v(2)1v(2)≥V (N)]

=

∫∞
V (N)

tdF (t)

ρ/N
(1− S(1− ρ/N))−

∫ ∞
V (N)

tN(N − 1)FN−2(t)(1− F (t))dF (t).

Finally, we can bound the difference as follows:

∆R̃ ,
∫∞
V (N)

tdF (t)

ρ/N
(1− S(1− ρ/N))−

∫ ∞
V (N)

tN(N − 1)(1− F (t))dF (t) ≤ ∆R,

where we omitted the term FN−2 in the integral and denoted the lower bound by ∆R̃. Finally, we give a

bound on the revenue generated under complete information:

R̃c ,S(1− ρ/N)V (N) +

∫ ∞
V (N)

tN(N − 1)(1− F (t))f(t)dt

≥
∫ V (N)

0

tN(N − 1)(1− F (t))FN−2(t)f(t)dt+

∫ ∞
V (N)

tN(N − 1)(1− F (t))FN−2(t)f(t)dt = E[v(2)]

where we obtained the upper bound by omitting the term FN−2 in the integral, replaced t in the integral

with V (N), and denoted the lower bound by R̃c. We note that:

R

Rc

− 1 ≥ ∆R

Rc

≥ ∆R̃

R̃c

.
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We prove that the right-hand-side of the inequalities does not converge to 0 as N grow large.

In the limit N →∞, ∫ ∞
V (N)

tdF (t) ∼αl(V (N))(V (N))(α+1)

(α + 1)∫ ∞
V (N)

tN(N − 1)(1− F (t))dF (t) ∼αN(N − 1)

(2α + 1)
l(V (N))2V (N)2α+1

(1− S(1− ρ/N)) ∼e
ρ − ρ− 1

eρ

We now recall that:

l(V (N))V (N)α ∼ F̄ (1− ρ/N) =
ρ

N
, as N →∞. (17)

We thus have the following approximations: ∫ ∞
V (N)

tdF (t) ∼αρ V (N)

N(α + 1)
;∫ ∞

V (N)

tN(N − 1)(1− F (t))dF (t) ∼αN(N − 1)

(2α + 1)

ρ2

N2
V (N).

So we conclude that:

∆R̃ ∼ V (N)(
α

(α + 1)

eρ − ρ− 1

eρ
− αρ2

(2α + 1)
), as N →∞.

Using the same calculations as before, in the limit N →∞:

R̃c ∼ V (N)(
1 + ρ

eρ
+ α

1

(2α + 1)
)

So, we have that:

∆R̃

R̃c

∼
( α

(α+1)
eρ−ρ−1
eρ
− αρ2

(2α+1)
)

(1+ρ
eρ

+ α 1
(2α+1)

)
, as N →∞

Finally, in the limit ρ→ 0,

lim
ρ→0

eρ−ρ−1
eρ

ρ2
=

1

2
.

However, we also have that:

(
α

(α + 1)

1

2
− α

(2α + 1)
) > 0.

Hence, α( 1
(α+1)

eρ−ρ−1
eρ
− ρ2

(2α+1)
) > 0 for a small enough ρ, so get that:

lim
N→∞

R

Rc

− 1 > 0.
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This proves that the ratio (11) converges to a number larger than 1. Furthermore, in the limit α → −1,

we have that:

lim
α→−1

lim
N→∞

R

Rc

− 1 =∞.

This limit holds uniformly for every ρ. This proves that the ratio diverges in the limit α→ −1.

Finally, we prove that z in (11) exists (i.e., it is not infinite). For this, we now define:

∆R̃′ ,
∫∞
V (N)

tdF (t)

1/N
S(1− 1/N)− FN−2(V (N))

∫ ∞
V (N)

tN(N − 1)(1− F (t))dF (t)

R̃′N−2
c (V (N))

∫ ∞
V (N)

Nt(1− F (t))f(t)dt.

and note that:
R

Rc

− 1 ≤ ∆R̃′

R̃′c
.

The difference with the lower bounds previously calculated is that instead of omitting the term FN−2, we

evaluate it at the lower limit of the integral. Following similar steps as before, we have that, as N →∞:

∆R̃′ ∼− αV (N)(
1

(α + 1)

eρ − ρ− 1

eρ
− ρ2

eρ
1

(2α + 1)
),

R̃′c ∼−
1

eρ
α

1

(2α + 1)
V (N).

We thus conclude that, in the limit N →∞:

R

Rc

− 1 ≤ ∆R̃′

R̃′c
∼
−α( 1

(α+1)
eρ−1−ρ
eρ
− ρ2

eρ
1

(2α+1)
)

1
eρ
α 1

(2α+1)

<∞,

for all ρ ∈ R. Finally, we note that the optimal quantile converges to 1 at a rate of ρ/N , so the upper
pooling information structure we are studying converges to the optimal one for some ρ. This proves that

the limit z does not diverge.

27



8 Appendix with Extensions

8.1 Manual Bidding

We now examine a model of manual bidding. We suppose that the seller needs to elicit the preference yi
and then present the bidder a signal as a function of the realized match quality (based on the reported

preference). The buyer can then freely choose his bid based on the information presented to him. As

before, the buyers bid in a second-price auction without reserve, and the seller’s objective is to maximize

revenue. While the optimal information structure may not be incentive compatible, we provide another

information structure that is incentive compatible and generates a revenue approximately optimal when

the number of bidders is large.

8.1.1 Model of Manual Bidding

To analyze the incentives of bidders to truthfully report their preferences to the publisher, we need to

make further assumptions about the payoff environment. In particular, we will assume that the valuation

function is as in (13). As before, attributes and preferences take values in {−1, 1}, are uniformly and
independently distributed across components and bidders.

As with autobidding, a reporting strategy for bidder i is denoted by:

ỹi : {−1, 1}J → ∆{−1, 1}J .

Given the reported preferences, the seller discloses to the bidder a signal s(ṽi), where

ṽi , u(
1√
J

J∑
j=1

ỹij(yij)xj).

That is, ṽi is the valuation of an advertiser with preferences ỹi.

We denote by ŵi the expected value of vi conditional on s(ṽi):

ŵi , E[vi | s(ṽi), yi].

and by Ĝi the distribution of expected valuations. As before, wi denotes the expected valuation when a

bidder reports truthfully, and Gi denotes the respective distribution. The seller’s problem is then to find

a information structure that solves:

R , max
{s:R→∆R}

E[w(2)]; (18)

E[max
{
wi −max{wj}j 6=i , 0

}
] ≥ E[max

{
ŵi −max{wj}j 6=i , 0

}
], for all ỹi (19)
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Here the constraint is the incentive compatibility constraint: the expected bidder surplus is weakly larger

when reporting truthfully than any other reporting strategy. Here we require Bayesian incentive compati-

bility to keep the notation more compact, but this will play no role.

8.1.2 Incentive Compatibility Under Manual Bidding

Since the preferences and attributes are symmetrically distributed, a suffi cient statistic for the bidder’s

strategy is the fraction of preferences truthfully reported:

ρi ,
J∑
j=1

ỹijyij
J

.

Note that ρi is the correlation between the reported preference and the real preference. In other words, for

any reporting strategy ỹi, ỹ′i satisfying ρi = ρ′i, the induced distribution of expected valuations will be the

same. In this case, ỹi and ỹ′i are equivalent from the perspective of the information generated for the bidder.

If ρi = 1 then the preference has been correctly reported; if ρi = 0 then half of all preference components

have been misreported; if ρi = −1 then every preference component has been incorrectly reported.

Since ṽi is a a noise signal about vi, a natural conjecture is that bidders will want to report their

preference truthfully. However, misreporting every preference component (i.e., ρi = −1) may sometimes

be profitable. In this case, the bidder will observe signal s(u(−mi)) (instead of s(u(mi))). In this case, the

distribution of expected valuations will be:

Ĝ−1(t) ,

F
−1(t) for all t ≥ 1− q∗N∫ 1−q∗N

0 F−1(q)dq

q∗N
for all t < 1− q∗N

with q∗N defined in (5). This expression is akin to (6), but the pooling section is at the lower quantile

instead of the upper quantile.

We begin by establishing that the only relevant incentive constraints are those induced by reporting

the exact opposite preference.

Lemma 1 (Informativeness of Signals)

Let s be the optimal information structure. The generated signal for every ρi ∈ [0, 1) is less informative

than the signal generated for ρi = 1. The generated signal for every ρi ∈ [−1, 0) is less informative than

the signal generated for ρi = −1.
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Proof of Lemma 1. We prove the statement for ρi ∈ [0, 1]. We denote by F̂ the distribution of the

expected value of vi conditional on ṽi (i.e., E[vi | ṽi] ∼ F̂ ). We denote by Ĝ the distribution of ŵi, which

is given by:

Ĝ−1(t) =

F̂
−1(t) for all t < q∗N∫ 1
q∗
N
F̂−1(q)dq

1−q∗N
for all t ∈ [q∗N , 1)

with q∗N defined in (5) (this is simply (6) but replacing F with F̂ ).

We first observe that ṽi is a noisy signal of vi. Hence, F̂ is a mean preserving contraction of F , which

is equivalent to stating that: ∫ t

0

F−1(q)dq ≤
∫ t

0

F̂−1(q)dq

for all t with equality for t = 1. We thus have that:∫ t

0

G−1(q)dq ≤
∫ t

0

Ĝ−1(q)dq

for all t ≤ q∗N (in this range Ĝ
−1(t) = F̂−1(t) and G−1(t) = F−1(t)). Since∫ 1

0

Ĝ−1(q)dq =

∫ 1

0

G−1(q)dq

and Ĝ−1(t), G−1(t) are constant for t > q∗N we must have that:∫ 1

q∗N
F̂−1(q)dq

1− q∗N
≤

∫ 1

q∗N
F−1(q)dq

1− q∗N

and ∫ t

0

Ĝ−1(q)dq ≤
∫ t

0

G−1(q)dq

for all t ≥ q∗N , with equality only for t = 1. This proves the result for ρi ∈ [0, 1].

The case ρi ∈ [−1, 0] can be proved in a completely analogous way except for the fact that the distrib-

ution of expected valuations under signals s(−mi) is:

Ĝ−1(t) =

F̂
−1(t) for all t ≥ 1− q∗N∫ q∗N

0 F̂−1(q)dq

q∗N
for all t < 1− q∗N

and analogously for s(ṽi). This is because the signals generate pooling for low quantiles instead of high

quantiles. The rest of the proof proceed in a completely analogous way.
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The lemma shows that there are two strategies that lead to the most informative signals: reporting

truthfully and reporting the opposite preference.

It is possible to verify that reporting truthfully may fail to be an equilibrium for some model parameters

(in particular, for some N, u).6 The reason is that by misreporting his preference, an advertiser may gain

better information about his own valuation when this is high. This is because when he misreports his

preferences the distribution of expected valuations is fully informative at the top but has a pooling section

at the bottom. Depending on the shape of u and the number of advertisers, reporting truthfully may fail

to be an equilibrium (in fact, it will not be an equilibrium unless u is suffi ciently concave).

8.1.3 Approximately Optimal Mechanism

Our analysis here pursues a limited objective. We do not attempt to characterize the set of feasible and

incentive compatible mechanism which would be an interesting avenue to pursue. Rather, we suggest a

small modification of the optimal mechanism of Proposition 1 and show that the modified mechanism

is indeed incentive compatible. Moreover, as the number of bidders becomes large, the revenue of the

modified mechanism approximates the mechanism of the optimal information structure.

While truthtelling will not be an equilibrium for every N, u there is a class of information structures

that can appropriately balance revenue-maximization and incentive compatibility when there is a large

number of bidders. Consider the following information structure.

s(vi) =


E[vj | F (vj) ≤ 1− q] if F (vj) ≤ 1− q∗N
vj if 1− q∗N ≤ F (vj) ≤ q∗N

E[vj | F (vj) ≥ q] if F (vj) ≥ q∗N

(20)

with q∗N defined in (5). In other words, the information structure is as the optimal information structure

(4) but in addition to the pooling at the top, there is pooling at the bottom.

Proposition 6 (Incentive Compatibility)

Under manual bidding and information structure (20), it is a dominant strategy for the advertiser to report

his preference truthfully.

Proof of Proposition 6. It is easy to check that Lemma 1 also holds for the two-sided pooling

information structures. We now notice that s(vi) = s(−vi), so reporting truthfully or the exact opposite
6For example, if F has a mass of size q∗N at v = 0, the optimal information structure will not be incentive compatible.

This can be immediately verified by noting that reporting the exact opposite preference (i.e., ρi = −1) allows the bidder to
learn his value perfectly.
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generates the same signal. Hence, reporting truthfully generates the most informative signal about an

bidder’s own type, so this is a dominant strategy.

Under the optimal information structure, truthtelling might not be an equilibrium because bidders have

an incentive to report the exact opposite of their preferences. Because the two-sided pooling information is

symmetric —that is, there is the same pooling zone for high and low quantiles —the incentive to misreport

the tastes disappears. In particular, reporting truthfully and reporting the exact opposite preference

generates the same signal for the bidder.

Information structure (20) will not maximize revenue across all information structure, but the loses

from having pooling at the bottom as the number bidders becomes large is negligible. This is because the

probability that the valuation of the second-highest bidder is smaller than F−1(1− q∗N) converges to zero

as N becomes large. Note that there are two complementary effects by which this probability converges to

0. First, (1− q∗N) converges to 0 as N becomes large, so the probability that the valuation of any bidder is

below this threshold converges to 0. Second, for any fixed quantile q the probability that the valuation of

the second-highest bidder is smaller than F−1(1 − q∗N) converges to zero as N becomes large. Hence, the

revenue losses from having pooling at the bottom vanish due to both effects, and are expected to be small.

Proposition 7 (Approximate Optimality)

Under the two-sided pooling information structure the revenue converges to the one under the optimal

information structure when the number of bidders grows large:

lim
N→∞

(E[w(2)]−R) = 0

Proof of Proposition 7. We denote by H (resp. G) the distribution of expected valuations

induced by the two-sided pooling information structure (resp. optimal information structure) and write

the difference as follows:

(E[w(2)]−R) =

∫ 1

0

H−1(q)S ′(q)dq −
∫ 1

0

G−1(q)S ′(q)dq

Whenever vi ≥ G−1(1 − q) the two-sided pooling information structure and the optimal information

structures are the same, so H−1(q) = F−1(q). We thus have that,

(E[w(2)]−R) =

∫ 1−q

0

(H−1(q)−G−1(q))S ′(q)dq.

In the limit N → ∞, we have that q → 0 and S ′(q) → 0 for every fixed q. Since H−1(q) and G−1(q) are

bounded in the interval [0, 1− q], we must have that

lim
N→∞

(E[w(2)]−R) = 0
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which establishes the result.

The proposition states that the two-sided pooling information structure can effectively balance the

trade-off between incentive compatibility and revenue maximization when there is a large number of bid-

ders. This result is specially relevant when the distribution of valuations has a thick tail because in this

case the gains from using the optimal information structure (instead of complete information) do not van-

ish. Finding the optimal incentive compatible information structure is an interesting open question that

is left for future work.

8.2 Reserve Price

We now assume that the second-price auction has reserve price r > 0. As before, we can assume that the

bid is equal to an advertiser’s expected valuation wi.

Proposition 8 (Optimal Information Structure)

There are quantiles q1, q2, q3 such that an optimal information structure is given by:

s(vi) =



s1 if F (vi) ∈ [0, q1)

s2 if F (vi) ∈ [q1, q2)

vi if F (vi) ∈ [q2, q3]

s3 if F (vi) ∈ [q3, 1]

(21)

The intervals may be degenerate, and E[vi | s = s2] = r.

Proof. The expected revenue is given by:

R = P{w(1) ≥ r and w(2) < r}r + E[w(2)1w(2)≥r].

For any distribution of expected valuations G, the distribution of w(2) is given by (nGn−1(x)(1−G(x)) +

Gn(x)) and

P{w(1) ≥ r and w(2) ≤ r} = nGn−1(r)(1−G(r)),

so we can write the revenue as follows:

R = 1− rG(r)n −
∫ 1

r

(nGn−1(x)(1−G(x)) +Gn(x))dx.
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Let Ĝ be the distribution of expected valuations induced by the optimal information structure. Let

q̂r = Ĝ(r) and Q̂ = Ĝ−1. Then, we can write it as follows

R = 1− q̂nr Q̂(q̂r)−
∫ 1

q̂r

(nqn−1(1− q)− qn)dQ̂(q)

The majorization constraint states that for all x ∈ [0, 1]:∫ 1

x

Q̂(q)dq ≤
∫ 1

x

F−1(q)dq.

Let ψ ∈ [0, 1] be such that, ∫ 1

q̂r

Q̂(q)dq =

∫ 1

q̂r

1{q≥ψ}F
−1(q) + 1{q<ψ}Q̂(q̂r)dq (22)

Let F̃−1 : [q̂r, 1]→ [0, 1] be defined as follows:

F̃−1(q) = 1{q≥ψ}F
−1(q) + 1{q<ψ}Q̂(q̂r)

Consider the following maximization problem:

Qr , arg max
Q:[q̂r,1]→[Q̂(q̂r),1]

−
∫ 1

q̂r

(nqn−1(1− q)− qn)dQ(q) (23)

subject to: for all q ≥ q̂r,
∫ 1

x

Q(q)dq ≤
∫ 1

x

F̃−1(q)dq with equality when x = q̂r, (24)

We first note that Q̂(x) = Qr(x). To verify this, consider the following function:

Q̂′(q) =

Q̂(q) if q ≤ q̂r

Qr(q) otherwise

The revenue under Q̂′ is given by:

R =1− q̂rQ̂′(q̂r)−
∫ 1

q̂r

(nqn−1(1− q)− qn)dQ̂′(q)

=1− q̂rQ̂(q̂r)−
∫ 1

q̂r

(nqn−1(1− q)− qn)dQr(q)

≥1− q̂rQ̂(q̂r)−
∫ 1

q̂r

(nqn−1(1− q)− qn)dQ̂(q)
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where the last term is the revenue under Q̂. Hence, Q̂′ is optimal. We also note that:∫ 1

x

Q̂′(q)dq ≤
∫ 1

x

Q̂(q)dq,

with equality for x ≤ q̂r. Hence, Q̂′ satisfies the majorization constraint. The inequality follows from the

fact that Qr satisfies (24) and ψ is such that (22) is satisfied.

We now note that (23) is the same problem that we solved to prove Propositions 1 but restricted to

[q̂r, 1]. Hence, Qr(q) restricted to [q̂r, 1] is

Qr(q) =


F̃−1(q) if q ∈ [q̂r, q

∗
N ]

E[vj | F (vj) ≥ q] q ∈ [q∗N , 1)

1 q = 1

for some q∗N . By definition, Q̂(q) < r for all q < q̂r, so the expected valuation induced by these quantiles is

less than the reserve price. Hence, the distribution of expected valuations below this quantile is irrelevant.

Finally, we note that the following information structure generates this distribution of expected valuations:

s(vi) =



s1 if F (vi) ∈ [0, q̂r)

s2 if F (vi) ∈ [q̂r, ψ)

vi if F (vi) ∈ [ψ, q∗]

s3 if F (vi) ∈ [q∗, 1]

It is straightforward that information structure (21) generates the distribution of expected valuations

(where we just replaced the specific quantiles with generic variables q1, q2, q3).

The proposition shows that the information structure has three pooling intervals and one interval of

full disclosure. The first interval consists of bidders who know their valuation is below r so they do not

buy the good (i.e., interval [0, q1)). The second interval consists of the bidders whose conditional expected

valuation is r, so they buy the good. The third interval are the bidders who know their valuation. The

fourth interval is the bidders who know their valuation is the highest possible. The last two intervals are

the same as in the case without reserve price.

8.3 Asymmetric Information Structures

We now relax the assumption that the publisher is restricted to symmetric signals. That is, we allow for

the possibility that si 6= sj.
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8.3.1 No Optimal Asymmetric Information Structure When N = 2, 3

We now show that there is no optimal information structure when N = 2, 3, which we state in the following

proposition.

Proposition 9 (Uniqueness of the Optimal Information Structure)

If N = 2 or N = 3, then the optimal symmetric information structure is the unique optimal information

structure.

The case N = 2 is straightforward to argue. In this case the revenue is the minimum between the

expected valuation of the two bidders. Thus, giving no information maximizes revenue. A formal proof

can be found in Board (2009). We thus focus on the case N = 3.

The distribution of the second-highest expected valuation is:

P (w(2) ≤ x) = G1(x)G2(x) +G2(x)G3(x) +G1(x)G3(x)− 2G1(x)G2(x)G3(x)

Let Ψ(F ) be defined as follows:

Ψ , {G : F ≺ G and G is monotonic}.

Integrating by parts, we can write (1) as follows:

max
G1,G2,G3∈Ψ

1−
∫
G1(x)G2(x) +G2(x)G3(x) +G1(x)G3(x)− 2G1(x)G2(x)G3(x)dx (25)

The objective function is linear on each of the functions G1, G2, G3, but it is not jointly linear. This means

that, holding fixed two of the distributions, say G1, G2, the maximization over G3 is a classic problem of

Bayesian persuasion with a continuous state space as studied by Dworczak and Martini (2019), among

others. However, because the problem is not jointly linear, it is not possible to maximize over each of the

functions independently. Furthermore, for some arbitrary functions G1, G2 the maximization problem over

G3 can attain its maximum over functions that do not resemble qualitatively those describe in Proposition

1. Note that because the problem is not linear, it is not even clear that the optimum will be attained at

extreme points of Ψ.

We first argue that, if an asymmetric optimal information structure exists, then there also exists an

optimal information structure in which G1, G2 and G3 are extreme points of Ψ. For simplicity, we make

the argument assuming that G2 = G3 ∈ Ψ, while G1 is not. Since (25) is linear in G1 and G1 is in the

interior of Ψ, we can find G′1 6= G′′1 that are: (a) extreme points of Ψ, (b) in the support of G1, and (c) the
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information structures (G′1, G2, G3) and (G′′1, G2, G3) yield the same expected revenue as (G1, G2, G3). We

can then without loss of generality find an optimal information structure (G′1, G2, G3) that is an optimal

information structure, in which all elements are extreme points of Ψ and and such that G′1 6= G2 = G3 (if

G′ = G2, then we just pick G′′). The case in which G2 or G3 are not extreme points of Ψ can be argued

analogously.

We denote by β1
j the maximum in the support of Gj:

β1
j = max{x ∈ suppGj}. (26)

Throughout the proof, we label agents such that β1
3 ≤ β1

2 ≤ β1
1. Fixing the distribution G1, G2 and

maximize over all distributions for bidder 3, we solve:

max
G∈Ψ

1−
∫
G1(x)G2(x) +G2(x)G(x) +G1(x)G(x)− 2G1(x)G2(x)G(x)dx

We write the maximization problem as follows:

max
G∈Ψ

∫
G(−G2(x)−G1(x) + 2G1(x)G2(x))dx+ constants (27)

where the term “constants”refers to terms that do not depend on G. Of course, one can write analogously

the optimization over the distribution of expected valuations for bidder 1 and 2 keeping the other two

bidders fixed. This optimization problem will arise several times throughout the proofs.

Lemma 2

For every optimal information structure, β1
2 = β1

1 < 1.

Proof of Lemma 2. Suppose that β1
2 < β1

1. That is, the highest element in the support of the

distribution of G1 is strictly larger than the highest element in the support of the distribution of G2, G3.

We write the expected revenue as follows:7

R = P(w1 > β1
2)E[w(2) | w1 > β1

2] + P(w1 ≤ β1
2)E[w(2) | w1 ≤ β1

2].

We note that:

E[w(2) | w1 > β1
2] > E[w(2) | w1 ≤ β1

2].

7Recall that the subindex refers to the agent number when it is without parenthesis and it refers to the respective order

statistic when it is with a parenthesis. That is, w2 is the expected valuation of agent 2 and w(2) is the second-order statistic

of the expected valuations.
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That is, the expected revenue is strictly higher when the realization of bidder 1’s expected valuation is β1
1.

We also note that

E[w(2) | w1 >= w′] = E[w(2) | w1 = w′′]

for all w′, w′′ > β1
2. That is, the expected revenue is the same whenever th realization of bidder 1’s

expected valuation is higher than β1
2 (this is because the revenue is the second-highest expected valuation).

So, without loss of generality we can assume that the distribution of expected valuations G1 has a mass

point at β1
1 and every other element in the support is weakly lower than β

1
2.

We now consider the following information structure that is constructed based on the signal that

generated G1:

s1 =

β
1
1 − ε if w1 = β1

1 or if with probability δ if w1 < β1
1

w1 with probability (1− δ) if w1 < β1
1

We take δ and ε small enough such that β1
2 < β1

1 − ε and such that:

E[w1 | s1 = β1
1 − ε] = β1

1 − ε.

We can then write the revenue under this new information structure as follows:

R = P(w′1 > β1
2)E[w(2) | w′1 > β1

2] + P(w′1 ≤ β1
2)E[w′(2) | w′1 ≤ β1

2].

Using the same arguments as before, we have that:

E[w′(2) | w′1 ≤ β1
2] = E[w(2) | w1 ≤ β1

2] and E[w′(2) | w′1 > β1
2] = E[w(2) | w1 > β1

2].

However, we now have that P(w′1 > β1
2) > P(w1 > β1

2) so this new information structure generates a higher

expected revenue. We thus conclude that β1
1 = β1

2.

We now suppose that β1
1 = β1

2 = 1. We then must have that the distribution of expected valuations is

absolutely continuous in some neighborhood [1− δ, 1]. In this case, we consider the following information

structure:

s1 =

1− ε if w1 ≥ 1− e;

w1 if w1 < β1
1,

where

1− ε = E[w1 | w1 ≥ 1− δ].

We rewrite (27) but for bidder 1:

max
G∈Ψ

∫
G(−G2(x)−G3(x) + 2G3(x)G2(x))dx+ constants. (28)
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We note that (−G2(x)−G3(x) + 2G3(x)G2(x)) must be increasing in a neighborhood [1− δ, 1] for a small

enough δ.8 Hence, the new information structure generates higher revenue, which proves that β1
1 = β1

2 < 1.

This lemma implies that there exists x < 1 such that G1(x) = G2(x) = G3(x) = 1. Theorem 2 in

Kleiner, Moldovanu, and Strack (2021) implies that for every Gj, there exists ṽj < 1 such that:

1. G is increasing at most in two points in [ṽj, 1];

2. G(ṽj) = F (ṽj) and
∫ 1

ṽj
G(x)dx =

∫ 1

ṽj
F (x)dx;

3.
∫ 1

y
F (x)dx <

∫ 1

y
G(x)dx for all x ∈ (ṽj, 1).

We denote by β2
j < β1

j the two steps of Gj and by ∆1
j and ∆2

j the size of these two steps. If Gj has

only one step in [ṽj, 1] we adopt the convention that the step is at β1
j (which is consistent with (26)).

Lemma 3

Suppose that ∆1
1,∆

1
2 ≥ 1/2, then a solution to (28) is:

G∗(x) =


F (x) x ≤ x̄;

F (x̄) x ∈ [x̄, β1
1);

1 otherwise.

(29)

where x̄ solves β1
1 = E[v | v ∈ [x̄, 1]].

Proof of Lemma 3. We first note that, Lemma 2 implies that every solution to (28) satisfies

G3(β1
1) = 1. Hence, we can, without loss of generality, the maximization problem (28) as follows:

max
G

∫ β1
1

0

G(x)(−G2(x)−G1(x) + 2G1(x)G2(x))dx+ constants (30)

subject to: F ≺ G and G(β1
1) = 1 (31)

8This is immediate to check at every point of differentiability:

h′(x) = (−g2(x)− g3(x) + 2g3(x)G2(x) + 2G3(x)g2(x)) > (−g2(x)− g3(x) + g3(x) + g2(x)) = 0,

whenever G2(x), G3(x) > 1/2. However, G2(x), G3(x) > 1/2 for every x in a neighborhood [1 − δ, 1]. Clearly, at points of
non-differentiability it must also be increasing.
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Hence, we write the problem as a maximization with a majorization constraint with range in [0, β1
1]. We

define:

Ψ̃ , {G : G ∈ Ψ and G(β1
1) = 1},

and note that G∗ ∈ Ψ̃ (where G∗ is defined in (29)).

We now note that for every G ∈ Ψ̃, G∗ ≺ G. To verify this it is suffi cient to check that G∗(x) = F (x)

for all x ≤ x̄ and by construction for all G ∈ Ψ,
∫ y

0
G(x)dx ≤

∫ y
0
F (x)dx =

∫ y
0
G∗(x)dx. Finally, since

G∗(x) = G(x) for all x > x̄, we must have that for all G ∈ Ψ,
∫ y

0
G(x)dx ≤

∫ y
0
G∗(x)dx for all y ∈ [0, 1].

We now note that, for every x < β1
1, G1(x), G2(x) ≤ 1/2, and so the coeffi cient:

h(x) , (−G2(x)−G1(x) + 2G1(x)G2(x))

is decreasing in x.9 Hence, G∗ is an optimal solution, which follows from the Fan-Lorentz inequality (see

Section 3.2.2. in Kleiner, Moldovanu, and Strack (2021)).

Lemma 3 shows that, when ∆1
1,∆

1
2 ≥ 1/2 we will have that β1

3 = β1
2 = β1

1. Furthermore, we have that

∆1
3 = 1− F (x̄), so it must also be that ∆1

3 ≥ ∆1
3,∆

1
2 ≥ 1/2. Using the same argument for bidder 1 and 2,

we must have that ∆1
3 = ∆1

2 = ∆1
1 = 1− F (x̄) and the optimal information structure is symmetric. Since

there is a unique symmetric information structure, which proves the result. We are thus left with proving

that ∆1
1,∆

1
2 ≥ 1/2. We state this formally in the following lemma and then prove it, which concludes the

proof.

Lemma 4

In every optimal information structure ∆1
1,∆

1
2 ≥ 1/2.

Proof. We establish the result by addressing separately the case β1
1 = β1

2 > β1
3 and the case β

1
1 = β1

2 =

β1
3, which we refer to as “Case 1”and “Case 2”, respectively.

Case 1 We now assume that β1
1 = β2

2 > β1
3 and show that a information structure is optimal only if

∆1
1,∆

1
2 > 1/2.

Sub-case A We begin by considering the case in which Gj has two steps in [ṽj, 1] for at least one of

j ∈ {1, 2}. When Gj have two steps, then β
2
j and ∆2

j are defined without ambiguity. If Gj has only one

9This is immediate to check at every point of differentiability:

h′(x) = (−g2(x)− g1(x) + 2g1(x)G2(x) + 2G1(x)g2(x)) < (−g2(x)− g1(x) + g1(x) + g2(x)) = 0.

Clearly, at points of non-differentiability it must also be decreasing.

40



step and G` has two steps in [ṽj, 1], for j, ` ∈ {1, 2}, we adopt the following convention for β2
j ,∆

2
j (which

are not well defined since Gj has only one step).

We define:

zj , max{x ∈ suppGj\{β1
j}}. (32)

That is, zj is the highest element in the support of Gj taking our β
1
j . We adopt the following convention

for β2
j ,∆

2
j :

β2
j =

0 if zj ≤ β2
` ;

β2
`+zj
2

if zj > β2
` ,

(33)

∆2
j = sup

x<β1
j

Gj(x)− sup
x<β2

j

Gj(x). (34)

In other words, ∆2
j is the mass probability of Gj in [β2

j , β
1
j). The important thing about the conventions

adopted is the following. Let k, h ∈ {1, 2} be such that β2
k ≥ β2

h, then by construction ∆2
k > 0 and

suppGh ∩ (β2
k, β

1
k) = ∅.

Sub-sub-case (i) Throughout sub-sub-case (i), we relabel agents without loss of generality so that

β2
1 ≥ β2

2. We show that, if ∆1
2 ≤ 1/2 or β1

3 ≤ β2
1, the information structure is not optimal. Consider the

information structure in which G̃2 = G2, G̃3 = G3 and

G̃1(x) =


G1(x) if x < β2

1

G1(β2
1)− supx<β2

1
G1(x) if β2

1 ≤ x < E[v1 | v1 ∈ [β2
1, 1]]

1 otherwise

In other words, the signal remains the same if the expected utility is below E[v1 | s1] < β2
1 and otherwise,

all signals are pooled into one signal s̄.

We have that:

R− R̃ =

∫ β1
1

β2
1

(G1(x)− G̃1(x))(−G2(x)−G3(x) + 2G2(x)G3(x))dx. (35)

To see why we get this expression, note that G̃2 = G2, G̃3 = G3 and G1(x) = G̃1(x) for all x 6∈ [β2
1, β

1
1)

so the terms in the integral outside this interval cancel out, so we just need to analyze the integral in the

interval as it appears in (35).

Note that G2 is constant in (β2
1, β

1
1). Regarding G3 we need to consider two cases. If β

1
3 ≤ β1

2, then

G3 is constant in (β2
1, β

1
1); if β1

3 > β1
2 and ∆1

2 ≤ 1/2, then G2(x) ≥ 1/2 in the interval (β2
1, β

1
1), so
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(−G2(x)−G3(x) + 2G2(x)G3(x)) is non-decreasing in (β2
1, β

1
1). Hence, (−G2(x)−G3(x) + 2G2(x)G3(x)) is

non-decreasing regardless of whether β1
3 ≤ β1

2 or β
1
3 > β1

2. We also have that
∫ β1

1

y
G1(x)dx ≤

∫ β1
1

y
G̃1(x)dx

with equality if y = β2
1. We thus conclude that R ≤ R̃. However, information structure G̃1, G2, G3, is such

that β̃
1

1, β
1
3 < β1

2, so Lemma 2 implies this is not an optimal information structure. Hence, we conclude

that ∆1
2 > 1/2 is a necessary condition for an information structure to be optimal.

Also, note that if β2
2 = β2

1, then we could use the same argument to prove that if ∆1
1 ≤ 1/2, the

information structure is suboptimal. Hence, a necessary condition for optimality (in addition to ∆1
2 > 1/2)

is that β2
2 < β2

1 or ∆1
1 > 1/2.

Sub-sub-case (ii) We now adopt the convention (32)-(34), but assume that ∆1
2 > 1/2 and β1

3 >

max{β2
1, β

2
2} and show that the information structure is optimal only if ∆1

1 > 1/2. As argued above, if

∆1
1 ≤ 1/2 and the information structure is optimal, then β2

2 < β2
1.We assume that ∆1

1 ≤ 1/2 and show the

information structure is not optimal.

We first note that, if G1 has only one step in [ṽ1, 1], then we necessarily have that ∆1
1 ≥ ∆1

2 > 1/2.

Hence, if ∆1
1 ≤ 1/2, then G1 has two steps in [ṽ1, 1]

We next prove that, if β2
2 < β2

1 and ∆1
1 ≤ 1/2 then the information structure is suboptimal. Now

consider the information structure in which G̃2 = G2, G̃3 = G3 and

G̃1(x) =


G1(x) x < β2

1 − ε

G1(β2
1)− η β2

1 − ε ≤ x ≤ β1
1

1 otherwise,

where η is such that:

(G1(β2
1)− η)(β1

1 − (β2
1 − ε)) = G1(β2

1)(β1
1 − β2

1),

and ε is small enough so that β2
1 − ε > β1

1 and
∫ 1

y
G̃1(x)dx ≥

∫ 1

y
F (x)dx for all y ∈ [β2

1 − ε, 1]. We then

have that:

R− R̃ =

∫ β1
1

β2
1

(G1(x)− G̃1(x))(−G2(x)−G3(x) + 2G2(x)G3(x))dx. (36)

Note that G̃2 = G2, G̃3 = G3 and G1(x) = G̃1(x) for all x 6∈ [β2
1, β

1
1) so the terms in the integral

outside this interval cancel out, so we just need to analyze the integral in the interval as it appears

in (36). Also, note that G2 is constant in (β2
1, β

1
1) while G3 is strictly increasing at one point in this

interval. However, since ∆1
2 > 1/2, we must have that G2(x) < 1/2 in the interval (β2

1, β
1
1). We then have

that (−G2(x) − G3(x) + 2G2(x)G3(x)) is strictly increasing at one point in (β2
1, β

1
1). We also have that∫ β1

1

y
G1(x)dx ≥

∫ β1
1

y
G̃1(x)dx with equality if y = β2

1. We thus conclude that R < R̃.
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Sub-case B Finally, we consider the case in which Gj has only one step in [ṽj, 1] for both j ∈ {1, 2}.
We note that in this case:

∆1
1 = ∆1

2 = 1−G(ṽ1) = 1−G(ṽ1).

Hence, we assume that ∆1
1 = ∆2

1 ≤ 1/2 and reach a contradiction. Following Theorem 2 in Kleiner,

Moldovanu, and Strack (2021), we know that for j ∈ {1, 2} there exists a second interval [ṽ′j, ṽj] such

that Gj in this interval either: (a) is equal to F (i.e., there is complete information), (b) has one or two

atoms and is constants everywhere else. There case in which Gj has one or two atoms in [ṽ′j, ṽj] for some

j ∈ {1, 2} implies the information structure is suboptimal, which can be proven in a completely analogous
case sub-case 1A. We thus imply that Gj is equal to F in the interval [ṽ′j, ṽj]. We thus conclude that there

exists a ε such that G1(x) = G2(x) for every x ∈ [ṽ1 − ε, 1], and the distributions have an atom of size

smaller than 1/2 at β1
1.

We consider the following information structure:

G̃j(x) =



Gj(x) x ≤ ṽ1 − ε

F (ṽ1 − ε) x ∈ [ṽ1 − ε, ṽ1]

F (x− ε) x ∈ [ṽ1, ṽ1 + ε]

F (ṽ1) x ∈ [ṽ1 + ε, β1
1 − η]

1 otherwise,

where η is such that: ∫ 1

ṽ1−ε
Gj(x)dx =

∫ 1

ṽ1−ε
G̃j(x)dx.

We can write this condition also as follows:

η(F (ṽ1)− 1) = ε(F (ṽ1 − ε)− F (ṽ1)) (37)

We now prove that information structure G̃1, G̃2, G3 generates higher revenue than G1, G2, G3. We then

can write the difference between the revenues generated as follows:

R̃−R =

∫ ṽ1−ε

ṽ1−ε
−(G̃2(x) + 2G̃(x)G3(x)− 2G̃2G3(x)) + (G2(x) + 2G(x)G3(x)− 2G2G3(x))dx

+

∫ β1
1

β1
1−η
−(G̃2(x) + 2G̃(x)G3(x)− 2G̃2G3(x)) + (G2(x) + 2G(x)G3(x)− 2G2G3(x))dx,
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where we used that G̃(x) , G̃1(x) = G̃2(x) and G(x) , G1(x) = G2(x) in the range of the intervals. We

now use the expressions for G̃ and the fact that G3(β1
1 − η) = 1 to write the difference between revenues

as follows:

R̃−R =

∫ ε

0

((
F 2(ṽ1 − ε+ x) + 2G3(ṽ1 + x)F (ṽ1 − ε+ x)− 2F 2(ṽ1 − ε+ x)G3(ṽ1 + x)

)
−
(
F 2(ṽ1 − ε+ x) + 2G3(ṽ1 − ε+ x)F (ṽ1 − ε+ x)− 2F 2(ṽ1 − ε+ x)G3(ṽ1 − ε+ x)

))
dx

+ ε

((
F 2(ṽ1) + 2

∫ ṽ1+ε

ṽ1

G3(x)dx(F (ṽ1)− F 2(ṽ1))
)

−
(
F 2(ṽ1 − ε) + 2

∫ ṽ1

ṽ1−ε
G3(x)dx(F (ṽ1 − ε)− F 2(ṽ1 − ε))

))
+ η(F (ṽ1)− 1)

Since G3 is non-decreasing, we have that:

R̃−R ≥ε
((
F 2(ṽ1) + 2G3(ṽ1)F (ṽ1)− 2F 2(ṽ1)G3(ṽ1)

)
−
(
F 2(ṽ1 − ε) + 2G3(ṽ1)F (ṽ1 − ε)− 2F 2(ṽ1 − ε)G3(ṽ1)

))
+ η(F (ṽ1)− 1)

Letting I denote the expression to the right of the inequality and taking derivatives of this expression with

respect G(ṽ1) we get:

dI

dG3(ṽ1)
= 2((F (ṽ1)− F 2(ṽ1))− F (ṽ1 − ε)− F 2(ṽ1 − ε)) ≤ 0,

where the inequality follows from the fact that 1/2 ≤ F (ṽ1 − ε) < F (ṽ1), for ε small enough. Hence,

R̃−R ≥ε
((
F 2(ṽ1) + 2F (ṽ1)− 2F 2(ṽ1)

)
(38)

−
(
F 2(ṽ1 − ε) + 2F (ṽ1 − ε)− 2F 2(ṽ1 − ε)

))
+ η(F (ṽ1)− 1) (39)

44



Using (37) to replace the last term, we get that:

R̃−R ≥ε
((
F 2(ṽ1) + 2F (ṽ1)− 2F 2(ṽ1)

)
−
(
F 2(ṽ1 − ε) + 2F (ṽ1 − ε)− 2F 2(ṽ1 − ε)

))
+ ε(F (ṽ1 − ε)− F (ṽ1))

=2ε

((
F (ṽ1)− F 2(ṽ1)

)
−
(
F (ṽ1 − ε)− F 2(ṽ1 − ε)

))
> 0,

where we once again use that 1/2 ≤ F (ṽ1− ε) < F (ṽ1), for ε small enough. We thus conclude that R̃ > R,

and hence, G1, G2, G3 is not an optimal information structure.

Case 2 We now assume that β1
1 = β1

2 = β1
3 and prove that there exists i, j ∈ {1, 2, 3} such that

∆1
i ,∆

1
j ≥ 1/2. For each j let zj be the maximum of the points in the support of Gj except for β

1
j :

zj = max{x ∈ suppGj | x < β1
j}.

Suppose that there exists zj > zk, z` or zj ≥ zk, z` and zj = β2
j and ∆2

j > 0. Then we can find an

information structure that generates the same revenue and in which b̃1
j < β1

i , β
1
` . Without loss of generality

we assume that j = 3. Consider the information structure in which G̃1 = G1, G̃2 = G2 and

G̃3(x) =


G3(x) if x ≤ β2

3

G2(β2
3)−∆2

3 if β2
3 ≤ x <

∆2
3β

2
3+∆1

3β
1
3

∆2
3+∆1

3

1 otherwise

In other words, the signal remains the same if the expected utility is below E[v3 | s3] < β2
3 and otherwise,

all signals are pooled into one signal s̄. We then have that:

R− R̃ =

∫ β1
3

β2
3

(G3(x)− G̃3(x))(−G1(x)−G2(x) + 2G1(x)G2(x))dx. (40)

Note that G̃1 = G1, G̃2 = G2 and G3(x) = G̃3(x) for all x 6∈ [β2
3, β

1
3) so the terms in the integral outside

this interval cancel out, so we just need to analyze the integral in the interval as it appears in (40). Also,

note that G1 and G2 are constant in (β2
1, β

1
1), so (−G1(x)−G2(x) + 2G1(x)G2(x)) is constant in (β2

3, β
1
3).

We also have that
∫ β1

3

y
G3(x)dx ≤

∫ β1
3

y
G̃3(x)dx with equality if y = β2

3. We thus conclude that R = R̃.

However, information structure G1, G2, G̃3, is such that β
1
3 < b̃1

1, β
1
2, and in Case 1 we proved that this is

optimal only if ∆1
1 = ∆1

2 > 1/2.
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8.3.2 Local Optimality of the Symmetric Information Structures

Finally, we verify that, if we fix the information structure of N − 1 bidders to be the optimal symmetric

one and optimize over the information structure of the remaining bidder, we get the optimal symmetric

information structure. In other words, it is not possible to generate a higher expected revenue by changing

the information structure of only one bidder. Hence, the optimal symmetric information structure is a

local optimum.

Proposition 10 (Local Optimality)

If the distribution of expected valuations of agents {1, ..., N − 1} is fixed to be the optimal symmetric
information structure, then the information structure for bidder N that maximizes revenue is the optimal

symmetric information structure.

Proof. Let Ĝ be the optimal symmetric information structure (characterized in Proposition 1). If the

distribution of expected valuations of agent N is G, the probability that the second-order statistic is less

than x is given by:

P{v(2) ≤ x} = ĜN−1(x) + (N − 1)ĜN−1(x)(1− Ĝ(x))G(x).

We then have that the expected revenue is given by:

R = 1−
∫
ĜN−1(x)+(N−1)ĜN−1(x)(1−Ĝ(x))G(x)dx = −

∫
(N−1)ĜN−1(x)(1−Ĝ(x))G(x)dx+constants.

where the term “constants”refers to terms that do not depend on G. Integrating by parts,

R =

∫
u(x)dG(x) + constants,

where

u(x) =

∫ x

0

(N − 1)ĜN−1(y)(1− Ĝ(y))dy.

We then have that the optimal information structure for agent N is given by:

G∗ ∈ arg max
F≺G

∫
u(x)dG(x). (41)

This is a Bayesian persuasion problem as studied by Dworczak and Martini (2019) . More precisely, the

maximization problem is a Bayesian persuasion problem where there is a continuum of states (in our model,

a continuum of valuations), the sender’s utility (in our model, the seller’s revenue) only depends on the

expected state induced by the signal (in our model, the distribution of expected valuation).

To begin, it is convenient to give the verification result found in Dworczak and Martini (2019):
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Proposition 11 (Verification Theorem by Dworczak and Martini (2019))

If there exist a cumulative distribution function G and a convex function ψ : [0, 1]→ R, with ψ(x) ≥ u(x)

for all x ∈ [0, 1], that satisfy

supp(G) ⊂ {x ∈ [0, 1] : u(x) = ψ(x)} (42)∫ 1

0

ψ(x)dG(x) =

∫ 1

0

ψ(x)dF (x) (43)

F is a mean-preserving spread of G, (44)

then G is a solution to problem (41).

We use this verification theorem top show that Ĝ is a solution to (41).

We first recall that we can write Ĝ (the optimal symmetric information structure) as follows:

Ĝ =


F (x) x2 ≤ x

F (x2) x2 ≤ x ≤ x1

1 otherwise

,

where

x2 , F−1(q) and x1 ,
∫ 1

x2
xdF (x)

1− F (x2)
,

with q begin as in Proposition 1 . We constructing function ψ as follows:

ψ(x) =

u(x) x ≤ x2

u(x2) + u′(x2)(x− x2) x ≥ x2

We make two observations. First, ψ(x) = u(x) for all x ≤ x1 (note that Ĝ(x) is constant in (x2, x1)

so u(x) is affi ne in this segment). Second, ψ(x) is convex. To verify the convexity, note that ψ(x) is

convex if and only if u(x) is convex in [0, x2]. However, taking the second derivative of u(x) it is easy to

verify that u(x) is convex if and only if x ≤ (N − 2)/(N − 1) and by construction of the optimal quantile

x2 = F (q) ≤ (N − 2)/(N − 1) (see the proof of Proposition 1).

To verify that Ĝ is a solution to (41) we check that (42)-(44) are satisfied. First, Ĝ satisfies (44) because

by construction the optimal symmetric information structure satisfies this condition. Second, note that

supp(Ĝ) = [0, x2] ∪ {x1} and as previously explained u(x) = ψ(x) in this set, so (42) is also satisfied.
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Finally, we have that:∫ 1

0

ψ(x)dF (x) =

∫ x2

0

ψ(x)dF (x) + (1− F (x2))ψ(

∫ 1

x2
ψ(x)dF (x)

1− F (x2)
) (45)

=

∫ x2

0

ψ(x)dF (x) + (1− F (x2))ψ(x1) =

∫ 1

0

ψ(x)dĜ(x). (46)

Hence, (43) is also satisfied. It follows that Ĝ is a solution to (41).
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