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Dual-self representations of ambiguity preferences∗

Madhav Chandrasekher Mira Frick Ryota Iijima Yves Le Yaouanq

June 8, 2021

Abstract

We propose a class of multiple-prior representations of preferences under ambiguity,
where the belief the decision-maker (DM) uses to evaluate an uncertain prospect is the
outcome of a game played by two conflicting forces, Pessimism and Optimism. The
model does not restrict the sign of the DM’s ambiguity attitude, and we show that
it provides a unified framework through which to characterize different degrees of am-
biguity aversion, and to represent the co-existence of negative and positive ambiguity
attitudes within individuals as documented in experiments. We prove that our base-
line representation, dual-self expected utility (DSEU), yields a novel representation of
the class of invariant biseparable preferences (Ghirardato, Maccheroni, and Marinacci,
2004), which drops uncertainty aversion from maxmin expected utility (Gilboa and
Schmeidler, 1989), while extensions of DSEU allow for more general departures from
independence. We also provide foundations for a generalization of prior-by-prior belief
updating to our model.

1 Introduction

1.1 Motivation and overview

A central approach to modeling preferences under ambiguity is based on the idea that the
decision-maker (DM) quantifies uncertainty with a set of beliefs and may use a different
belief from this set to evaluate each uncertain prospect. A well-known limitation underlying
many such multiple-prior models—notably Gilboa and Schmeidler’s (1989) maxmin expected
∗Chandrasekher: Pinterest, Inc (mcchandrasekher@gmail.com); Frick: Yale University
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utility model and several of its generalizations1—is a restrictive mechanism of belief selection,
whereby the DM evaluates each prospect according to the worst possible belief in her set.
Behaviorally, this restriction is reflected by Schmeidler’s (1989) uncertainty aversion axiom,
which captures a negative attitude towards ambiguity through a strong form of preference
for hedging.

While consistent with Ellsberg’s seminal two-color urn experiment, the uncertainty aver-
sion axiom has been questioned both by subsequent theoretical work, which has proposed
alternative formalizations and measures of ambiguity aversion,2 and by more recent ex-
perimental evidence. Indeed, this evidence points to more nuanced patterns of ambiguity
attitudes: The same subjects may appear ambiguity-averse in some decision problems, but
may also display ambiguity-seeking preferences in other notable settings, some of which we
discuss below (for a survey, see Trautmann and van de Kuilen, 2015).

In this paper, we propose a decision-theoretic framework that provides a unified lens
through which to represent and organize such mixed attitudes towards ambiguity. To do so,
we introduce a class of multiple-prior representations that allows for a flexible mechanism of
belief selection: Instead of assuming that the DM uses the worst possible belief to evaluate
any given prospect, our representations adopt a “dual-self” perspective on ambiguity, by
modeling the DM’s belief selection as the outcome of a game between two conflicting forces,
Pessimism and Optimism.3

Our baseline representation generalizes maxmin expected utility by incorporating an
ambiguity-seeking force via the addition of a maximization stage: Under dual-self expected
utility (DSEU), there is a compact collection P of closed and convex sets of beliefs and an
affine utility u such that the DM evaluates each (Anscombe-Aumann) act f according to

WDSEU(f) = max
P∈P

min
µ∈P

Eµ[u(f)].

That is, the belief used to evaluate f is the outcome of a sequential zero-sum game: First,
Optimism chooses a set of beliefs P from the collection P with the goal of maximizing the
DM’s expected utility to f ; then Pessimism chooses a belief µ from P with the goal of
minimizing expected utility. Maxmin expected utility corresponds to the extreme case in
which Optimism has no choice, while the opposite extreme, maxmax expected utility, results

1See, for example, Maccheroni, Marinacci, and Rustichini (2006); Chateauneuf and Faro (2009); Strzalecki
(2011); Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011); Skiadas (2013).

2See, for instance, Epstein (1999); Ghirardato and Marinacci (2002); Baillon, L’Haridon, and Placido
(2011); Dow and Werlang (1992); Baillon, Huang, Selim, and Wakker (2018).

3The idea that the DM consists of multiple strategic selves with conflicting motives is employed frequently
in behavioral economics, for example to model risk preferences and intertemporal choices (e.g., Thaler and
Shefrin, 1981; Bénabou and Pycia, 2002; Fudenberg and Levine, 2006; Brocas and Carrillo, 2008).
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when Pessimism has no choice.
Our main results are threefold. First, we provide foundations for the DSEU model. The-

orem 1 shows that DSEU represents the class of preferences that satisfy all of Gilboa and
Schmeidler’s (1989) axioms except for uncertainty aversion; thus, the presence of ambiguity
is captured solely by relaxing independence to certainty independence, without additionally
restricting the DM’s ambiguity attitude to be negative (or positive). Beyond maxmin and
maxmax expected utility, this important class of preferences—known as invariant bisep-
arable—nests Choquet expected utility and α-MEU as notable special cases. Section 1.2
contrasts DSEU with existing representations of invariant biseparable preferences due to
Ghirardato, Maccheroni, and Marinacci (2004) and Amarante (2009); moreover, Section 4.3
shows that the dual-self approach extends beyond this class, as extensions of DSEU represent
generalizations of invariant biseparable preferences that further relax certainty independence.
Proposition 1 notes that any DSEU preference % uniquely reveals a set of relevant priors
C =

⋃
P∈P P , which represents all possible outcomes of the belief-selection game (up to

convex closure and elimination of redundant beliefs). Sections 4.1–4.2 further discuss the
uniqueness properties and comparative statics of the DSEU model.

Our second contribution is to exploit the structure of the DSEU model to represent and
organize a range of natural intermediate ambiguity attitudes: In line with the aforemen-
tioned experimental evidence, these successively relax uncertainty aversion, by accommo-
dating some degree of ambiguity-seeking behavior. The main insight is that, under DSEU,
there is a correspondence between the degree of ambiguity aversion of the DM, as captured
by the strength of her preference for hedging, and the extent of overlap of sets in P, which
measures the relative “power” allocated to Pessimism vs. Optimism in the belief-selection
game. Section 3.1 formalizes this as follows:

• First, uncertainty aversion, i.e., a preference for all hedges, corresponds to the extreme
case where the intersection of all sets in P coincides with C. That is, all relevant priors
are available to Pessimism regardless of Optimism’s action, thus rendering Optimism
powerless.

• Second, we show that allocating more power to Optimism by only requiring the in-
tersection of all sets in P to be nonempty corresponds to Ghirardato and Marinacci’s
(2002) notion of absolute ambiguity aversion: This only imposes a preference for com-
plete hedges, i.e., for hedges that fully eliminate subjective uncertainty.

• Third, we further relax absolute ambiguity aversion, motivated in part by evidence that
many individuals are simultaneously ambiguity-averse for large/moderate-likelihood
events but ambiguity-seeking for small-likelihood events. For instance, in Example 1,
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we illustrate this pattern in the context of a many-color urn experiment considered in
the literature: Here, subjects are found to display ambiguity-seeking preferences when
betting on the (small-likelihood) event of drawing a ball of any one color, in contrast
with the ambiguity-averse behavior in Ellsberg’s two-color urn experiment.

We introduce the notion of k-ambiguity aversion (for some k = 2, 3, . . .), which weakens
absolute ambiguity aversion by imposing a preference for complete hedges only among
any k acts. As we discuss, this makes it possible to formalize the above odds-dependent
ambiguity attitudes, by imposing k-ambiguity aversion for small k, but not for large k.
We show that under DSEU, k-ambiguity aversion is equivalent to the intersection of
any k sets in P being nonempty and, as a result, the model can accommodate flexible
degrees of k-ambiguity aversion.

• Last, even 2-ambiguity aversion must be relaxed to accommodate another important
behavioral pattern: In many settings, individuals appear ambiguity-averse with re-
spect to unfamiliar sources of uncertainty (e.g., for investments in foreign stocks) but
ambiguity-seeking with respect to familiar sources (e.g., for investments in domestic
stocks). To model this pattern, we consider the sign of an event-based ambiguity aver-
sion index that is commonly used in experimental work. We show that DSEU can flex-
ibly accommodate source-dependent ambiguity attitudes, as the sign of the ambiguity
aversion index is characterized by a “local” version of the binary intersection condition
underlying 2-ambiguity aversion. By contrast, we prove that this phenomenon is in-
compatible with α-MEU, a special case of DSEU that is often used to capture a mix
of negative and positive ambiguity attitudes in applied work.

Finally, our third contribution (Section 3.2) is to propose and characterize a belief-
updating rule for DSEU, paving the way for dynamic applications of the model. While
updating rules have been defined and used in applied work for some special subclasses of in-
variant biseparable preferences, how to update this general class of preferences has remained
an important open question in the literature. For maxmin expected utility, one of the most
widely used updating rules is prior-by-prior updating, where the DM’s updated preference
conditional on any event is obtained by Bayesian-updating each prior in her ex-ante belief-set
P . Theorem 2 shows that this updating rule extends naturally to DSEU: In particular, while
Pires (2002) characterizes prior-by-prior updating for maxmin expected utility based on a
weak form of dynamic consistency (Axiom 9), we prove that imposing this same axiom under
DSEU amounts to updating each belief-set P in the ex-ante collection P prior-by-prior.
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1.2 Related literature

This paper contributes to the decision-theoretic literature on preferences under ambiguity
(for a survey, see Gilboa and Marinacci, 2016). Our first main result—in particular, the find-
ing that our baseline model, DSEU, represents the class of invariant biseparable preferences—
complements Ghirardato, Maccheroni, and Marinacci (2004) (henceforth GMM) and Ama-
rante (2009). In contrast, our second and third contributions of characterizing intermediate
ambiguity attitudes and defining an updating rule have no counterpart in these papers and
rely heavily on the structure of DSEU: We briefly spell out this point for intermediate ambi-
guity attitudes below, while we illustrate some complications with defining potential analogs
of prior-by-prior updating under GMM and Amarante’s models at the end of Section 3.2.

GMM introduce the class of invariant biseparable preferences to allow for nuanced am-
biguity attitudes and to give a common framework to several important subcases. One of
their key contributions is to provide a behavioral interpretation and analytical character-
ization (using Clarke differentials) of the set of relevant priors of an invariant biseparable
preference, on which we build to construct a DSEU representation without redundant beliefs
(see Section 2.3). GMM also show that every invariant biseparable preference % admits a
representation

W (f) = α(f) min
µ∈C

Eµ[u(f)] + (1− α(f)) max
µ∈C

Eµ[u(f)], (1)

where α(·) is a function from acts to [0, 1] and C is the set of relevant priors of %. However,
as GMM point out, the converse of this result does not hold without further joint restrictions
on the model parameters (α(·), C, u).4 Similar to (1), DSEU provides a representation of
invariant biseparable preferences that generalizes maxmin expected utility by incorporating
a force for optimism, in the form of a max operator, into the DM’s belief-selection process.
In contrast with (1), the DSEU representation is exact, in that any combination of the model
parameters (P, u) induces an invariant biseparable preference. This is key in enabling our
characterization of intermediate ambiguity attitudes in terms of the structure of P.

Amarante (2009) shows that the invariant biseparable axioms are both sufficient and
necessary for a representation of the form

W (f) =

ˆ
P

Eµ[u(f)] dν(µ), (2)

where ν is a Choquet capacity defined on some set of beliefs P ⊆ ∆(S). This representation
suggests an alternative interpretation in terms of a robust Bayesian DM who uses a non-

4Specifically, α(·) must be measurable with respect to a particular equivalence relation derived from u and
C (to guarantee certainty independence), and α(·) and C must be such that % is monotonic (see Remark 2
in GMM). Moreover, ensuring that C is the set of relevant priors of % entails solving a fixed-point problem.
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additive prior over probabilistic models. In contrast with our results for DSEU, there are
no known characterizations of absolute and comparative ambiguity attitudes in terms of the
model parameters in (2): Notably, unlike for Choquet expected utility (Schmeidler, 1989),
uncertainty aversion (resp., absolute ambiguity aversion) does not imply convexity (resp.,
non-emptiness of the core) of ν.

Our characterization of intermediate ambiguity attitudes is also an important difference
from other papers that relax uncertainty aversion, including Schmeidler (1989), Klibanoff,
Marinacci, and Mukerji’s (2005) smooth model, and models of preferences over utility dis-
persion (e.g., Siniscalchi, 2009; Grant and Polak, 2013): While some of these papers provide
representations of absolute ambiguity aversion, none use their models to characterize weaker
degrees of ambiguity aversion.

Related to the structure of DSEU, several recent papers employ belief-set or utility-set
collections in other contexts. While we maintain the weak order axiom and focus on relaxing
independence, Lehrer and Teper (2011), Nascimento and Riella (2011), Nishimura and Ok
(2016), Hara, Ok, and Riella (2019), and Aguiar, Hjertstrand, and Serrano (2020) study
preferences that violate completeness and/or transitivity.5 Whereas DSEU is a utility rep-
resentation, these papers provide generalized unanimity representations à la Bewley (2002)
and Dubra, Maccheroni, and Ok (2004), and the resulting proof methods are quite different.
In the context of attitudes to randomization under ambiguity, Ke and Zhang (2019) consider
preferences over lotteries over acts and propose a representation that adds minimization over
belief-set collections to maxmin expected utility. When restricted to acts (i.e., degenerate
lotteries), their representation is equivalent to Gilboa and Schmeidler (1989).

Finally, Theorem 1 relates to results in mathematics on the linearization of positively
homogeneous functions: These imply that a functional I : RS → R admits a so-called
“Boolean” representation, where I(φ) = maxU∈U min`∈U `·φ for some collection U of compact,
convex subsets of RS, if and only if I is positively homogeneous, lower semicontinuous, and
locally Lipschitz (see the survey by Rubinov and Dzalilov, 2002). We show that under the
additional assumption that I is monotonic and constant-additive, U can be taken to be a
belief-set collection. More importantly, our construction only makes use of beliefs µ in the
Clarke differential ∂I(0), which represents the DM’s set of relevant priors. As we discuss
(see Section 2.3), this requires a different proof approach.

5See also Kopylov (2019) for an extension of maxmin expected utility that relaxes transitivity by allowing
the set of priors to depend upon the acts under consideration. Mononen (2020) generalizes the DSEU model
(and some of its extensions) by relaxing monotonicity, and shows how to identify subjective probabilities
and state-dependent utilities for the resulting representations.
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2 Dual-self expected utility

2.1 Setup

Let Z be a set of prizes and let ∆(Z) denote the space of probability measures with finite
support over Z.6 We refer to typical elements p, q ∈ ∆(Z) as lotteries. Let S be a finite
set of states.7 An (Anscombe-Aumann) act is a mapping f : S → ∆(Z). Let F be the
space of all acts, with typical elements f, g, h. For any f, g ∈ F and α ∈ [0, 1], define
the mixture αf + (1 − α)g ∈ F to be the act that in each state s ∈ S yields lottery
αf(s) + (1− α)g(s) ∈ ∆(Z). As usual, we identify each lottery p ∈ ∆(Z) with the constant
act that yields lottery p in each state s ∈ S.

Let ∆(S) denote the set of all probability measures over S, which we embed in RS and
endow with the Euclidean topology. We refer to typical elements µ, ν ∈ ∆(S) as beliefs.
Given any act f ∈ F and map u : ∆(Z) → R, let u(f) denote the element of RS given by
u(f)(s) = u(f(s)) for all s ∈ S, and let Eµ[u(f)] := µ · u(f).

The DM’s preference over F is given by a binary relation % on F . As usual, � and ∼
denote the asymmetric and symmetric parts of %.

2.2 Representation

We now introduce our baseline representation, dual-self expected utility. Let K(∆(S)) denote
the space of all nonempty closed, convex sets of beliefs, endowed with the Hausdorff topology.
A belief-set collection is a nonempty compact collection P ⊆ K(∆(S)); that is, each
element P ∈ P is a nonempty closed, convex set of beliefs.

Definition 1. A dual-self expected utility (DSEU) representation of preference % con-
sists of a belief-set collection P and a nonconstant affine utility u : ∆(Z)→ R such that

WDSEU(f) = max
P∈P

min
µ∈P

Eµ[u(f)] (3)

represents %.8

Just as Gilboa and Schmeidler’s (1989) maxmin expected utility model, DSEU is a
multiple-prior model of ambiguity preferences: The DM has in mind a set of beliefs

⋃
P∈P P ,

and might use a different belief from this set to evaluate each act. However, unlike maxmin
6All results also hold more generally if ∆(Z) is replaced with any convex subset X of a vector space.
7The DSEU representation was also subsequently explored by Xia (2020), who shows that our main

representation results (Theorems 1 and 3) extend to the case of an infinite state space.
8The functional (3) is well-defined since P is nonempty and compact.
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expected utility, the belief µ used to evaluate any given act f is not necessarily worst-case
among all the DM’s beliefs. Instead, µ is the outcome of a sequential zero-sum game between
two conflicting forces or “selves:” First, self 1 (“Optimism”) chooses an action P ∈ P with
the goal of maximizing expected utility to act f ; then self 2 (“Pessimism”) chooses an action
µ ∈ P with the goal of minimizing expected utility to f .

Maxmin expected utility is given by the extreme case where Optimism’s action set is
trivial (i.e., P = {P} is a singleton), as in this case (3) reduces to W (f) = minµ∈P Eµ[u(f)].
Likewise, maxmax expected utility, W (f) = maxµ∈P Eµ[u(f)], corresponds to the opposite
extreme where Pessimism’s action set is always trivial (i.e., P = {{µ} : µ ∈ P} is a collection
of singletons).

Our first main result is that DSEU represents the class of preferences—known as invari-
ant biseparable—that satisfy all subjective expected utility axioms, except that indepen-
dence is relaxed to certainty independence:

Axiom 1 (Weak Order). % is complete and transitive.

Axiom 2 (Monotonicity). If f, g ∈ F and f(s) % g(s) for all s ∈ S, then f % g.

Axiom 3 (Nondegeneracy). There exist f, g ∈ F such that f � g.

Axiom 4 (Archimedean). For all f, g, h ∈ F with f � g � h, there exist α, β ∈ (0, 1) such
that

αf + (1− α)h � g � βf + (1− β)h.

Axiom 5 (Certainty Independence). For all f, g ∈ F , p ∈ ∆(Z), and α ∈ (0, 1],

f % g ⇐⇒ αf + (1− α)p % αg + (1− α)p.

Theorem 1. Preference % satisfies Axioms 1–5 if and only if % admits a DSEU represen-
tation.

Thus, like maxmin expected utility, DSEU captures the possible presence of ambigu-
ity by imposing independence only for mixtures with constant acts (Axiom 5). However,
unlike maxmin expected utility, DSEU does not additionally impose uncertainty aversion,
which reflects a negative attitude toward ambiguity through a preference for hedging (see
Section 3.1.1). Certainty independence is weak enough to allow the model to nest impor-
tant special cases such as Choquet expected utility and α-MEU.9 However, Section 4.3 will

9See also Ghirardato, Maccheroni, and Marinacci (2005), who argue why certainty independence is im-
portant for achieving a separation of tastes and beliefs.
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show that natural generalizations of DSEU represent classes of preferences that further relax
certainty independence.

We prove Theorem 1 in Appendix B.1. To understand the basic idea behind our con-
struction of a DSEU representation, consider, for any act f and belief µ, the constant act
pµ,f :=

∑
s∈S µ(s)f(s) ∈ ∆(Z). That is, the distribution over outcomes in Z induced by pµ,f

is equal to the distribution over outcomes that the DM expects under act f if her belief is
µ. Let

Pf := {µ ∈ ∆(S) : pµ,f % f}.

Under Axioms 1–5, one can show that (the closure of) the collection

P := {Pf : f ∈ F}, (4)

together with the utility u obtained from the DM’s preference over constant acts, yields a
DSEU representation of %. However, this representation potentially features some redundant
priors, i.e., beliefs µ that are never selected as an outcome of the game between Optimism
and Pessimism. Thus, our proof of Theorem 1 adapts this construction, by replacing each
belief-set Pf with its restriction P ∗f to the set of relevant priors, which we define in Section 2.3.

Remark 1. (i) General action sets. The specific form of action sets for Optimism and
Pessimism in (3) is without loss of generality. Indeed, % admits a DSEU representation with
utility u if and only if there exist arbitrary action sets A1, A2 and a mapping µ : A1×A2 →
∆(S) from action profiles to beliefs such that

W (f) = max
a1∈A1

min
a2∈A2

Eµ(a1,a2)[u(f)] (5)

is well-defined and represents %.10

(ii)Min-max form. While DSEU takes the max-min form, where Optimism moves first,
a natural alternative is to consider games where Pessimism is the first mover, as captured
by the functional W (f) = minQ∈Q maxµ∈Q Eµ[u(f)] for some belief-set collection Q. It can
be shown that the latter class of representations is equivalent to DSEU, in the sense that
preference % admits a DSEU representation (P, u) if and only if % admits a representation
(Q, u) of the min-max form for some belief-set collection Q. However, for a given preference
%, Q need not coincide with P in general. See Supplementary Appendix S.3 for details.

(iii) Single-self interpretation. In addition to the dual-self interpretation above, DSEU
10To see this, suppose (P, u) is a DSEU representation of %. Then (5) represents % with A1 := P,

A2 :=
∏
P∈P P , and µ(P, σ) := σ(P ) for all P ∈ A1, σ ∈ A2. Conversely, suppose (5) represents % for some

(A1, A2, µ, u). Then setting P := cl{co(µ(a1, A2)) : a1 ∈ A1} yields a DSEU representation of %.
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admits a single-self interpretation, whereby the DM optimally selects her own ambiguity
preference from a feasible set.11 Specifically, feasible ambiguity preferences take the maxmin
expected utility form minµ∈P Eµ[u(f)] and depending on f , the DM optimally controls the
parameter P , where P represents the constraints of the subjective optimization.

(iv) Finite representation. The special case of DSEU where the belief-set collection P
is finite is characterized by a weak form of uncertainty aversion that imposes a preference for
hedging only among acts f and g whose payoffs in all states are close enough. See Theorem
1 in the working paper version of Chandrasekher (2019). N

2.3 Relevant priors

For any DSEU representation (P, u) of %, the union
⋃
P∈P P captures the set of beliefs

that might be selected as an outcome of the corresponding game between Optimism and
Pessimism. To eliminate redundant beliefs that are never selected, we consider the smallest
closed, convex set of beliefs that can arise under any representation. The next result shows
that this set is uniquely identified from %:

Proposition 1. Suppose % satisfies Axioms 1–5. There exists a unique closed, convex set
C ⊆ ∆(S) such that, for all DSEU representations (P, u) of %,

C ⊆ co
⋃
P∈P

P, (6)

and such that (6) holds with equality for some representation (P, u).

We refer to the set C as the DM’s set of relevant priors, and call a DSEU representation
tight if (6) holds with equality.

GMM provide an alternative behavioral definition of the set of relevant priors, which is
based on quantifying departures from independence. For any invariant biseparable preference
%, GMM define the associated unambiguous preference %∗ as the largest independent
subrelation of %; equivalently, f %∗ g means that αf + (1− α)h % αg + (1− α)h holds for
all α ∈ (0, 1] and h ∈ F . Note that %∗ is incomplete whenever % violates independence.
GMM prove that %∗ admits a unanimity representation à la Bewley (2002) and identify the
DM’s set of relevant priors with the unique closed, convex set of beliefs in this unanimity
representation (i.e., the Bewley set of %∗).12 The following result shows that our approach

11See Sarver (2018) for an analogous model in the context of risk preferences.
12Ghirardato and Siniscalchi (2012) extend GMM’s characterization of relevant priors beyond the invariant

biseparable class.
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of identifying the set of relevant priors with the (smallest) set of outcomes of the DSEU
belief-selection game is equivalent to GMM’s behavioral definition:

Corollary 1. If % admits a DSEU representation with utility u, then the set of relevant
priors C identified in Proposition 1 is the Bewley set of %∗, i.e., for any f, g ∈ F ,

f %∗ g ⇐⇒ Eµ[u(f)] ≥ Eµ[u(g)] for all µ ∈ C. (7)

Both Proposition 1 and Corollary 1 rely on the following important observations due
to GMM. GMM show that any invariant biseparable preference % can be represented by
I ◦ u for some nonconstant affine utility u and a functional I : RS → R that is monotonic,
positively homogeneous, and constant-additive (Appendix A.1 defines these terms). They
then prove that the Clarke differential ∂I(0) ⊆ ∆(S) of I evaluated at the constant vector 0

(Clarke, 1990, see Appendix A.2) coincides with the Bewley set of %∗.
To prove Proposition 1 (Appendix B.2), we show that for any DSEU representation of

%, co
⋃
P∈P P includes the Clarke differential ∂I(0). Moreover, building partly on a non-

smooth generalization of results in Ovchinnikov (2001), our proof of the sufficiency direction
of Theorem 1 obtains a DSEU representation (P∗, u) of % that replaces each belief-set Pf
in (4) with its subset P ∗f := Pf ∩ ∂I(0). Thus, P∗ is a tight representation and the set of
relevant priors C identified by Proposition 1 also coincides with the Clarke differential ∂I(0).
Combined with GMM’s observations above, this implies Corollary 1.

3 Properties of the DSEU representation

In this section, we highlight two important properties of the DSEU model: Section 3.1
illustrates how varying the degree of overlap of sets in P allows one to represent and organize
a range of natural intermediate ambiguity attitudes, motivated in part by evidence that
individuals display a mix of ambiguity-averse and ambiguity-seeking tendencies. Section 3.2
shows that the DSEU model yields a natural way to perform belief updating under invariant
biseparable preferences.

3.1 Intermediate ambiguity attitudes

3.1.1 Shades of ambiguity aversion

We first show how DSEU can represent a range of different shades of ambiguity aversion that
vary in the degree to which they impose a preference for hedging. First, Schmeidler’s (1989)
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seminal uncertainty aversion axiom postulates that the DM always takes up an opportunity
to hedge between any equally valued prospects:

Axiom 6 (Uncertainty Aversion). If f, g ∈ F with f ∼ g, then αf + (1 − α)g % f for any
α ∈ [0, 1].

A second common definition of ambiguity aversion is due to Ghirardato and Marinacci
(2002): Recall the standard comparative notion of ambiguity aversion, whereby %1 is more
ambiguity-averse than %2 if, whenever f %1 p for some f ∈ F and p ∈ ∆(Z), then f %2 p.

Analogous to the definition of absolutely risk-averse as more risk-averse than a risk-neutral
preference, % is said to be absolutely ambiguity-averse if it is more ambiguity-averse than
some nondegenerate subjective expected utility (SEU) preference.13 Arguments in Grant and
Polak (2013) imply that, under DSEU, absolute ambiguity aversion is equivalent to relaxing
uncertainty aversion to preference for sure diversification, generalizing an observation due
to Chateauneuf and Tallon (2002) for Choquet expected utility. The latter condition only
postulates a preference for complete hedges, i.e., mixtures of acts that eliminate subjective
uncertainty entirely. Formally, a complete hedge for acts f1, . . . , fk ∈ F is a constant act
p ∈ ∆(Z) such that

∑k
i=1 αifi = p for some αi ∈ [0, 1] with

∑k
i=1 αi = 1.

Axiom 7 (Preference for Sure Diversification). For all k and f1, . . . , fk ∈ F with f1 ∼ · · · ∼
fk, if p ∈ ∆(Z) is a complete hedge for f1, . . . , fk, then p % f1.

The following result shows that, under DSEU, these two notions of ambiguity aversion
are characterized by different amounts of overlap between the sets in P:

Proposition 2. Suppose that % admits a DSEU representation (P, u). Then:

1.
⋂
P∈P

P = C if and only if % satisfies uncertainty aversion;

2.
⋂
P∈P

P 6= ∅ if and only if % is absolutely ambiguity-averse, which in turn holds if and

only if % satisfies preference for sure diversification.

We note that the intersection
⋂
P∈P P of all sets in P is uniquely identified from the

preference %, and that a greater amount of overlap captures a sense in which Pessimism is
allocated more “power” in the underlying belief-selection game.

In particular, by the first part of Proposition 2, uncertainty aversion corresponds to the
maximal allocation of power to Pessimism: Since

⋂
P∈P P = C, all relevant priors µ ∈ C

13See Epstein (1999) for another approach that takes as its benchmark probabilistic sophistication instead
of subjective expected utility.
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are available to Pessimism, no matter which set P ∈ P Optimism chooses. The game thus
boils down to Pessimism choosing a belief µ ∈ C, yielding maxmin expected utility; indeed,
if (P, u) is tight, then % satisfies uncertainty aversion if and only if P = {C}.

In contrast, by the second part, absolute ambiguity aversion allocates less power to
Pessimism, requiring only that there is some prior µ ∈

⋂
P∈P P that is always available

to Pessimism regardless of Optimism’s choice. The DM’s evaluation of any act f is then
bounded above by the expected utility Eµ[u(f)] of f under belief µ. In the special case when
% admits a Choquet expected utility representation with capacity ν, we note that

⋂
P∈P P

coincides with the core of ν; thus, our nonempty intersection condition generalizes the fact
that, in this case, absolute ambiguity aversion is characterized by the nonemptiness of the
core of ν.

However, absolute ambiguity aversion is still too strong to capture the following behavior
that was originally conjectured by Ellsberg (see Ellsberg, 2011) and subsequently confirmed
in laboratory experiments (e.g., Dimmock, Kouwenberg, Mitchell, and Peijnenburg, 2015;
Kocher, Lahno, and Trautmann, 2018):

Example 1 (Many-color Ellsberg urn). An urn of unknown composition contains balls of up
to 10 possible colors. A ball is drawn from the urn and its color observed. When given the
choice between receiving $10 if the observed color is one of five possible colors vs. receiving
$10 with probability 0.5, most subjects prefer the objective lottery, similar to the ambiguity-
averse behavior predicted by Ellsberg’s two-color urn experiment. However, when the choice
is between receiving $10 if the observed color is a single possible color vs. receiving $10 with
probability 0.1, many subjects strictly prefer the former uncertain bet.

Formally, let the state space S = {1, . . . , 10} represent the observed color, let fE denote
the uncertain bet that pays $10 if the observed color belongs to E ⊆ S and $0 otherwise,
and let pα denote the objective lottery that pays $10 with probability α and $0 otherwise.
Assume that, by symmetry, subjects are indifferent between betting on any two sets of colors
with the same cardinality, i.e., fE ∼ fF whenever |E| = |F |.

Then, when |E| = 5, the above evidence can be written as

p0.5 =
1

2
fE +

1

2
fEc � fE ∼ fEc .

However, when |E| = 1, the above evidence implies the opposite preference pattern,

p0.1 =
1

10
f{1} + · · ·+ 1

10
f{10} ≺ f{1} ∼ · · · ∼ f{10},

which violates preference for sure diversification. N
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To capture this behavior, we introduce the following axiom, which postulates a preference
for complete hedges only between a given number k of equally valued acts:

Axiom 8 (k-Ambiguity Aversion). For all f1, . . . , fk ∈ F with f1 ∼ · · · ∼ fk, if p ∈ ∆(Z) is
a complete hedge for f1, . . . , fk, then p % f1.

Preference for sure diversification requires k-ambiguity aversion for all k.14 In contrast,
the behavior in Example 1 is consistent with 2-ambiguity aversion, but not with 10-ambiguity
aversion. More generally, if a DM displays k-ambiguity aversion for small k but not for large
k, this formalizes a sense in which the DM is ambiguity-averse for large/moderate-likelihood
events but ambiguity-seeking for small-likelihood events.

This pattern can be interpreted as an analog for choice under ambiguity of the inverse S-
shaped probability distortion that underlies prospect theory for choice under risk.15 Indeed,
generalizing Example 1, consider a partition of the state space into (possibly asymmetric)
events E1, . . . , Ek, where k parametrizes how fine the partition is. Consider acts fEi that yield
a positive prize x with probability qi in event Ei and yield 0 otherwise. If fE1 ∼ · · · ∼ fEk ,
the DM’s subjective probability µk of winning the prize is the same under each bet fEi . At
the same time, a complete hedge for acts fE1 , . . . , fEk must yield the prize with some certain
probability πk, which is independent of the DM’s preference and thus can be thought of as
a benchmark objective winning probability associated with bets fEi . While µk = πk under
SEU, k-ambiguity aversion requires that µk ≤ πk. Moreover, the larger k (i.e., the finer
the partition), the smaller are both µk and πk. Thus, a DM who is k-ambiguity averse for
small k but not for large k subjectively underweights moderate or large objective winning
odds but might overweight small odds.16 Beyond the above urn example, such patterns of
probability distortion have been found to be relevant in many economic applications, from
financial investments to betting markets (see, e.g., the survey by Barberis, 2013).

Under DSEU, k-ambiguity aversion is characterized by further limiting the power of
Pessimism. Indeed, relative to absolute ambiguity aversion, which requires all belief-sets in
P to overlap, the following result requires this only for any k sets in P:

Proposition 3. Suppose that % admits a DSEU representation (P, u). Then the following
are equivalent:

14This can in turn be shown to be equivalent to |S|-ambiguity aversion, where |S| is the cardinality of the
state space. See Lemma 1 in the previous version, Chandrasekher, Frick, Iijima, and Le Yaouanq (2020).

15See Chapter 12 in Wakker (2010) for another formalization of probability weighting in the domain of
ambiguity.

16Capturing overweighting (resp. underweighting) of small (resp. large) losing odds (i.e., if x < 0) would
instead require k-ambiguity seeking for small k but not large k. Consistent with this, there is evidence
that subjects display opposite ambiguity attitudes for gains vs. losses, which can be accommodated by
generalizations of DSEU that relax certainty independence; see Section 4.3.
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1.
⋂

i=1,...,k

Pi 6= ∅ for all P1, . . . , Pk ∈ P;

2. % satisfies k-ambiguity aversion;

3. for all f1, . . . , fk ∈ F , there exists a nondegenerate SEU preference %̂ such that, when-
ever f % p for some f ∈ {αfi + (1 − α)q : i = 1, . . . , k, q ∈ ∆(Z), α ∈ [0, 1]} and
p ∈ ∆(Z), then f %̂ p.

To interpret the first part, suppose the DM faces k uncertain acts f1, . . . , fk. While
Optimism might potentially choose different belief-sets P1, . . . , Pk ∈ P depending on each
act, the condition requires there to be at least one prior µ ∈

⋂
i=1,...,k Pi that Pessimism can

choose in response to all Pi. Thus, the DM’s evaluation of each fi is bounded above by its
expected utility Eµ[u(fi)] under µ. Equivalently, while absolute ambiguity aversion requires
the DM to be more ambiguity-averse than some benchmark SEU preference in all decision
problems, the third part requires this comparison only for restricted decision problems whose
uncertainty can be summarized by k acts. Further generalizing the above example on odds-
dependent ambiguity attitudes, this allows the DM’s ambiguity attitude to vary with the
“richness” of the uncertainty underlying each decision problem.

Based on Proposition 3, it is easy to see that DSEU allows for flexible degrees of k-
ambiguity aversion, and hence can accommodate behavior such as Example 1.17 To illustrate,
consider the following important special case of DSEU: For any α ∈ [0, 1] and nonempty
closed, convex set of beliefs P , the representation (P, u) with P = {αP +(1−α){µ} : µ ∈ P}
yields the widely used α-MEU model , where % is represented by the functional

W (f) = αmin
µ∈P

Eµ[u(f)] + (1− α) max
µ∈P

Eµ[u(f)]. (8)

Then, Proposition 3 implies that (8) satisfies k-ambiguity aversion for all P if and only if
α ≥ 1− 1/k.18

17This contrasts, for instance, with Siniscalchi’s (2009) vector expected utility model, which also relaxes
uncertainty aversion, but for which 2-ambiguity aversion and preference for sure diversification are equivalent.
Dillenberger and Segal (2017) show that a version of Segal’s (1987) model is consistent with ambiguity-seeking
for small odds.

18If α ≥ 1 − 1
k , take any P and ν1, · · · , νk ∈ P . Then µ` := 1

α ( 1
k − 1 + α)ν` +

∑
j 6=`

1
αkνj ∈ P for all

` = 1, · · · , k, as P is convex and 1
k − 1 + α ≥ 0. Also, αµ` + (1 − α)ν` =

∑k
j=1

1
kνj for all `. Thus,∑k

j=1
1
kνj ∈

⋂k
`=1 αP + (1 − α){ν`}, whence Proposition 3 implies k-ambiguity aversion. Conversely, if

α < 1− 1
k , consider P = ∆(S) and P` := αP + (1−α){δs`} for distinct s1, · · · , sk ∈ S. If µ ∈

⋂k
`=1 P`, then

µ(s`) ≥ 1− α > 1
k for all `, which is impossible. Thus, by Proposition 3, k-ambiguity aversion is violated.
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3.1.2 Source-dependent ambiguity attitudes

While the preceding notions of ambiguity aversion are “global,” capturing the DM’s attitude
towards any uncertainty that can be generated in S, the experimental literature commonly
takes a “local” approach, measuring the DM’s ambiguity attitude relative to specific events
or sources of uncertainty. As noted in the introduction, an important finding is that a
DM might display source-dependent negative and positive ambiguity attitudes, depending on
whether she considers herself familiar or unfamiliar with a given source of uncertainty.

To formalize this idea, we use a local index of ambiguity attitude that was originally
proposed by Schmeidler (1989) and subsequently employed in both theoretical work (Dow
and Werlang, 1992) and experiments (Baillon and Bleichrodt, 2015; Baillon, Huang, Selim,
and Wakker, 2018):

Definition 2. The matching probability m(E) ∈ [0, 1] of an event E is defined by the
indifference condition

xEy ∼ m(E)δx + (1−m(E))δy,

where x, y ∈ Z are two outcomes such that δx � δy and xEy denotes the binary act that
yields x for all s ∈ E and y otherwise.19 The ambiguity aversion index of E is

AA(E) := 1−m(E)−m(Ec). (9)

Whereas SEU implies AA(E) = 0 for all E, AA(E) > 0 (resp. AA(E) < 0) is interpreted
as a negative (resp. positive) attitude to ambiguity associated with E. In particular, the
aforementioned evidence suggests that a DM might display AA(E) > 0 when E is condi-
tioned on an unfamiliar source of uncertainty, but might display AA(E) < 0 when she feels
particularly competent about the relevant source:

Example 2 (Source-dependent ambiguity attitudes). As a stylized example related to the
“home bias” phenomenon (French and Poterba, 1991; Coval and Moskowitz, 1999), let SH =

{U,D} be a state space specifying whether the domestic stock market goes up (“U”) or down
(“D”). Similarly, let SF = {U,D} describe the state of the stock market in a foreign country.
Consider the product state space S = SH × SF , and let EH = {UU,UD} be the event that
the domestic stock market goes up, and EF = {UU,DU} be the corresponding event for the
foreign stock market. Evidence in Anantanasuwong, Kouwenberg, Mitchell, and Peijnenberg
(2019) suggests that some investors display AA(EF ) > 0 > AA(EH), capturing negative
ambiguity attitudes towards foreign investments but positive attitudes towards domestic

19Under Axioms 1–5, m(·) is well-defined independent of the choice of x, y.
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investments.20 N

To see how DSEU can capture this pattern, we note that the sign of AA(E) is char-
acterized by the following local analog of the binary intersection condition for 2-ambiguity
aversion in Proposition 3. Given an event E and set of beliefs P , let P (E) := {µ(E) : µ ∈ P}.

Proposition 4. Suppose % admits a DSEU representation (P, u), and let E ⊆ S. Then:

1. AA(E) ≥ 0 ⇐⇒ P (E) ∩ P ′(E) 6= ∅ for all P, P ′ ∈ P;

2. AA(E) > 0 ⇐⇒ P (E) ∩ P ′(E) is a non-degenerate interval for all P, P ′ ∈ P.

Thus, while 2-ambiguity aversion implies that AA(E) ≥ 0 for all events E, further
limiting the overlap of sets in P can accommodate the behavior in Example 2. Indeed,
the following result shows that DSEU can capture source-dependent negative and positive
ambiguity attitudes with respect to any families E and F of unfamiliar and familiar events:21

Corollary 2. Fix any disjoint collections E and F of events, both of which are closed under
complements and do not contain S. There exists a DSEU representation (P, u) whose induced
preference satisfies AA(E) > 0 > AA(F ) for all E ∈ E , F ∈ F .

Corollary 2 highlights an important distinction between the general DSEU model and
its special case given by the α-MEU representation (8). Indeed, while the α-MEU model is
widely used in applied work to capture a mix of negative and positive ambiguity attitudes,
the following result shows that it is incompatible with the source-dependent variation in
ambiguity attitudes formalized above. This is because Proposition 4 applied to P = {αP +

(1− α){µ} : µ ∈ P} implies that under α-MEU the sign of the ambiguity aversion index is
the same for all events and is determined by the value of α:

Corollary 3. Suppose % admits an α-MEU representation where P is not a singleton. Then
α ≥ 1/2 (resp. α ≤ 1/2) if and only if AA(E) ≥ 0 (resp. AA(E) ≤ 0) for all E.

20Anantanasuwong, Kouwenberg, Mitchell, and Peijnenberg (2019) conduct an incentivized field survey
among investors and find reversals in ambiguity attitudes as in Example 2, where H and F correspond to a
domestic and foreign stock market index (see Figures 4 and 5). They also find a higher population average
AA index for EF than EH , but the difference is relatively small, as some investors display the opposite
reversal. Similarly, in an experiment involving German subjects, Keppe and Weber (1995) find that the
average ambiguity index is negative (resp. positive) for bets concerning German (resp. US) geography.

21Several papers (e.g., Nau, 2006; Chew and Sagi, 2008; Ergin and Gul, 2009; Gul and Pesendorfer,
2015; Cappelli, Cerreia-Vioglio, Maccheroni, Marinacci, and Minardi, 2016) propose formalizations of source
dependence based on the idea that the DM is probabilistically sophisticated over prospects that depend on a
single common source, but exhibits varying attitudes toward uncertainty across sources. Corollary 2 considers
a specific variation where the DM exhibits negative vs. positive attitudes depending on her familiarity with
each source. See also Abdellaoui, Baillon, Placido, and Wakker (2011); Chew, Miao, and Zhong (2018) for
experimental work using different notions of source dependence.
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At the same time, we point to another parametric special case of DSEU that retains
much of the tractability of α-MEU, but is flexible enough to accommodate source-dependent
negative and positive ambiguity attitudes (as well as all shades of ambiguity aversion dis-
cussed in Section 3.1.1): Consider (P, u) where P = {αP1 + (1 − α){µ} : µ ∈ P2} for some
closed, convex sets of beliefs P1, P2 and α ∈ [0, 1]. This yields an asymmetric α-MEU
representation, where the belief-sets P1 and P2 for Pessimism and Optimism might differ:

W (f) = αmin
µ∈P1

Eµ[u(f)] + (1− α) max
µ∈P2

Eµ[u(f)]. (10)

Using (10), the behavior in Example 2 can be captured in an intuitive manner, by allow-
ing Pessimism (resp. Optimism) to control beliefs about the foreign (resp. domestic) stock
market. For instance, if P1 = {µ : µ(EH) = 1

2
} and P2 = {µ : µ(EF ) = 1

2
}, then for any

α ∈ (0, 1), AA(EH) = α− 1 < 0 and AA(EF ) = α > 0.
Finally, the above insights extend to another common formalization of source dependence

(along the lines of experimental work by, e.g., Tversky and Fox, 1995; Heath and Tversky,
1991) that does not involve matching probabilities. As before, fix two outcomes x, y ∈ Z

such that δx � δy. Consider the preference pattern

xEy � xFy � xGy and xEcy � xF cy � xGcy, (11)

where event F is unambiguous , in the sense that f ∼ xFy ⇒ λf + (1 − λ)xFy ∼ xFy

for all λ ∈ (0, 1).22 In (11), the DM’s preference to bet on both F vs. G and F c vs. Gc

captures a negative attitude towards the uncertainty underlying event G. At the same time,
the preference for betting on E vs. F and Ec vs. F c reflects a positive attitude towards the
uncertainty underlying event E. It is easy to see that this implies AA(E) < AA(F ) = 0 <

AA(G). Thus, it is immediate from Corollary 3 that this form of source dependence is also
inconsistent with α-MEU, while it is again compatible with the general DSEU model:

Corollary 4. Suppose % admits an α-MEU representation. Then there do not exist events
E, F , G, where F is unambiguous, such that (11) is satisfied.

Supplementary Appendix S.4 derives a similar incompatibility result to Corollary 4 for
Klibanoff, Marinacci, and Mukerji’s (2005) smooth model.

22Under DSEU, this is equivalent to the condition that xFy is crisp as defined by GMM, which is in turn
equivalent to requiring µ(F ) to be constant across all beliefs µ ∈ C (Proposition 10 in GMM).
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3.2 Belief updating

Next, we use the DSEU representation to provide an answer to the question how to update
invariant biseparable preferences. In particular, we show that one of the most widely used
updating rules for maxmin expected utility, prior-by-prior updating, extends naturally to
DSEU.

Formally, given any event E ⊆ S, we enrich the primitives of the static model with a
conditional preference %E. We interpret % as the DM’s ex-ante preference and %E as the
DM’s updated preference conditional on learning that the state s is in E. For any acts f
and g, we write fEg for the act that yields f(s) in any s ∈ E and g(s) in any s /∈ E.

Suppose first that the ex-ante preference % admits a maxmin expected utility representa-
tion with belief-set P and utility u. Under the prior-by-prior updating (or full Bayesian
updating) rule, each conditional preference %E is induced by the maxmin representation
(PE, u), whose belief-set PE := {µE : µ ∈ P, µ(E) > 0} consists of the Bayesian updates µE
of all priors µ ∈ P . Pires (2002) shows that prior-by-prior updating for maxmin preferences
is characterized by the following axiom:

Axiom 9 (C-Dynamic Consistency). For all f ∈ F and p ∈ ∆(Z), f %E p⇔ fEp % p.

While full dynamic consistency requires that f %E g ⇔ fEg % g for all acts f and g,
Axiom 9 imposes this equivalence only when g is a constant act. This axiom guarantees that,
for any act f , if p is a constant equivalent for f conditional on event E evaluated from the
ex-ante perspective (i.e., fEp ∼ p), then p remains a constant equivalent for f after event
E has realized (i.e., f ∼E p), and vice versa.

We now show that, for general invariant biseparable preferences %, imposing Axiom 9
characterizes the following natural extension of prior-by-prior updating to DSEU. We say
that event E is non-null if p � qEp for some p, q ∈ ∆(Z).23

Theorem 2. Suppose that % admits a DSEU representation (P, u), that E is non-null, and
that %E is an Archimedean weak order (i.e., satisfies Axioms 1 and 4). Then, the following
are equivalent:

1. (%,%E) satisfies Axiom 9.

2. %E is represented by the DSEU representation (PE, u), where PE := {PE : P ∈ P}.

Thus, under DSEU, Axiom 9 amounts to requiring that each belief-set P in the ex-
ante representation P is updated prior-by-prior to PE. In other words, the game played by

23Under DSEU, this is equivalent to the following property: For any representation (P, u) of %, each P ∈ P
contains some µ ∈ P with µ(E) > 0.

19



Optimism and Pessimism after updating is obtained from the original game by replacing
each prior with its associated posterior.

Several features of prior-by-prior updating under DSEU are worth noting. First, even
though the ex-ante preference % can admit multiple DSEU representations (see Section 4.1),
Theorem 2 implies that the conditional preference %E is uniquely pinned down from the
ex-ante preference %. That is, if (P, u) and (P′, u′) both represent the ex-ante preference %,
then (PE, u) and (P′E, u′) induce the same conditional preference %E. Moreover, just as prior-
by-prior updating for maxmin, prior-by-prior updating for DSEU implies the normatively
appealing property of consequentialism, i.e., fEg ∼E fEh for all acts f, g, h.

Second, for maxmin, Epstein and Schneider (2003) show that Axiom 9 can be strength-
ened to full dynamic consistency for a given partition of events if and only if the supporting
set of priors P satisfies a property called rectangularity. In Supplementary Appendix S.2.1,
we show that this result also extends to prior-by-prior updating for DSEU, under an appro-
priate generalization of the notion of rectangularity to belief-set collections P.

Finally, prior-by-prior updating for DSEU yields a new and well-behaved way to update
the important special case when % admits an α-MEU representation (8). Treating the α-
MEU representation (α, P, u) as the DSEU representation (P, u) with P = {αP+(1−α){µ} :

µ ∈ P} and updating P prior-by-prior yields the conditional preference %E represented by

max
µ∈P

min
ν∈P

E(αν+(1−α)µ)E [u(f)]. (12)

The resulting %E is different from the conditional preference induced by the α-MEU
representation (α, PE, u), where the belief-set P is updated prior-by-prior while holding α and
u fixed: The latter representation can be written as max

µ∈P
min
ν∈P

E(ανE+(1−α)µE)[u(f)]; relative

to (12), this reverses the order of the α-mixture and Bayesian updating operations. While
the latter updating rule is sometimes used in applied work, Frick, Iijima, and Le Yaouanq
(2020) show that it is ill-defined at the level of preferences: It is possible to find two distinct
α-MEU representations (α, P, u) and (α′, P ′, u) of the same ex-ante preference, but such that
the updated models (α, PE, u) and (α′, P ′E, u) represent different conditional preferences. By
contrast, (12) does not suffer from this issue, because, as noted above, prior-by-prior updating
for DSEU uniquely pins down the conditional preference from the ex-ante preference.

Remark 2. No updating rules have thus far been proposed for the alternative represen-
tations of invariant biseparable preferences due to GMM and Amarante (see Section 1.2).
In Supplementary Appendix S.2.2, we illustrate some complications that arise in defining
potential extensions of prior-by-prior updating for these representations.

For example, a seemingly natural extension of prior-by-prior updating for GMM’s rep-
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resentation (1) might be to update the set of relevant priors C prior-by-prior to CE, while
holding the weight function α(·) and utility u fixed.24 However, as we show, this updating
rule does not satisfy Axiom 9, and thus less naturally extends prior-by-prior updating for
maxmin. Indeed, the resulting conditional preference is not necessarily invariant biseparable,
as it can violate monotonicity (Axiom 2), and consequentialism can fail.25

For Amarante’s representation (2), natural candidates for extending prior-by-prior updat-
ing are less clear. We show that one extension, which holds fixed u but updates the capacity
ν by shifting all weight from any prior belief to its posterior, suffers from the same issue dis-
cussed for α-MEU above, i.e., the conditional preference is not pinned down by the ex-ante
preference and instead depends on the choice of the (non-unique) ex-ante representation. N

4 Discussion and extensions

In this section, we briefly discuss the uniqueness properties and comparative statics of DSEU
representations. We also show how relaxing certainty independence leads to natural gener-
alizations of DSEU.

4.1 Uniqueness

While our results in the preceding sections apply to all DSEU representations (P, u) of a
given preference %, we briefly comment on the uniqueness properties of these representations.
As observed previously, % uniquely identifies the DM’s set of relevant priors C (i.e., the
smallest union co

⋃
P∈P P ) and the intersection

⋂
P∈P P . At the same time, the DM’s belief-

set collection P itself is not in general unique, analogous to other representations involving
belief-set or utility-set collections.26

However, the following result shows how any two DSEU representations (P, u) and (P′, u′)
of the same preference are related: The utilities must coincide up to some positive affine
transformation (denoted u ≈ u′), and the belief-set collections must coincide up to replacing
all sets of beliefs in P and P′ with the closed half-spaces that contain them. Formally, given

24Note that, in contrast with the aforementioned updating rule for α-MEU, this is well-defined at the level
of preferences, as the set of relevant priors C and weight function α(·) are uniquely pinned down by %.

25As we also discuss, if a GMM representation is instead updated by imposing Axiom 9, the parame-
ters αE(·) and CE of the conditional GMM representation must each depend jointly on both the ex-ante
parameters α(·) and C—in particular, CE is not in general the prior-by-prior update of C.

26One might conjecture that % admits a unique representation P̃ that is minimal, in the sense that it
features no redundant actions for Optimism or Pessimism (formally, P̃ is minimal if there is no alternative
representation P 6= P̃ with either (i) P ⊆ P̃ or (ii) ∀P̃ ∈ P̃,∃P ∈ P with P ⊆ P̃ ). However, this conjecture is
not valid, as some preferences admit multiple minimal representations.
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any belief-set collection P, define its half-space closure by

P := cl{H ⊆ ∆(S) : H is a closed half-space in ∆(S) and H ⊇ P for some P ∈ P},

where we call H a closed half-space in ∆(S) if H = Hφ,λ := {µ ∈ ∆(S) : µ · φ ≥ λ} for some
φ ∈ RS and λ ∈ R.

Proposition 5. Suppose (P, u) is a DSEU representation of %. Then (P, u) is also a DSEU
representation of %. Moreover, for any belief-set collection P′ and utility u′, (P′, u′) is a
DSEU representation of % if and only if P = P′ and u ≈ u′.

The uniqueness of u up to positive affine transformation is standard. The uniqueness of P
up to half-space closure parallels the identification result in Hara, Ok, and Riella (2019), who
represent independent (but possibly incomplete and intransitive) preferences over lotteries
using a collection of utility-sets. Analogous to Hara, Ok, and Riella (2019), the idea is that
for any P ∈ P, the closed half-spaces containing P capture all information about P that is
relevant to the representation. Indeed, in determining how any given utility act φ ∈ RS is
evaluated by the representation, the only relevant feature of P is the worst-case expectation
λP,φ := minµ∈P Eµ[φ], and this worst-case expectation is shared by the closed half-space
Hφ,λP,φ ⊇ P . Thus, replacing each set P in P with the closed half-spaces Hφ,λP,φ for all
φ ∈ RS yields an alternative DSEU representation of %. Finally, we show in Appendix D.1
that the half-space closure P of any P is uniquely determined by (the utility act functional
I associated with) the preference %.

4.2 Comparative ambiguity attitudes

Next, building on Proposition 5, we provide a representation under DSEU of the standard
comparative notion of ambiguity aversion defined in Section 3.1.1:

Proposition 6. Suppose %1 and %2 admit DSEU representations (P1, u1) and (P2, u2), re-
spectively. The following are equivalent:

1. %1 is more ambiguity-averse than %2.

2. u1 ≈ u2 and P1 ⊆ P2.

To interpret, note that P1 ⊆ P2 means that Optimism’s action set, and hence Optimism’s
ability to influence the DM’s belief, is more limited under representation P1 than under P2.
Thus, more ambiguity aversion corresponds (up to taking half-space closures) to DSEU
representations that allocate less relative “power” to Optimism. This comparative notion of
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power is consistent with the absolute measures in Section 3.1.1, because P1 ⊆ P2 implies that⋂
P1∈P1

P1 ⊇
⋂
P2∈P2

P2 and that %1 displays a weakly higher degree of k-ambiguity aversion
than %2.

In contrast with GMM’s characterization of comparative ambiguity aversion, which only
applies when the sets of relevant priors C1 and C2 associated with %1 and %2 are equal
(Proposition 12 in GMM), Proposition 6 does not assume any relationship between C1 and
C2. Indeed, there are natural cases in which one invariant biseparable preference is more
ambiguity-averse than another, despite the fact that their sets of priors do not coincide (nor
are nested). For example, as long as C1 ∩ C2 6= ∅, then for any u, the maxmin expected
utility preference %1 induced by C1 is more ambiguity-averse than the maxmax expected
utility preference %2 induced by C2.

4.3 Generalizations

As we have seen, our baseline model, DSEU, corresponds to a relaxation of subjective ex-
pected utility where independence is weakened to certainty independence and, equivalently,
to dropping uncertainty aversion from Gilboa and Schmeidler’s (1989) axioms. The repre-
sentation adds a maximization stage into Gilboa and Schmeidler’s (1989) model, suggesting
an interpretation in terms of a game between Optimism and Pessimism.

We highlight that this dual-self approach extends beyond certainty independence, yielding
intuitive representations that further relax independence but still allow for a flexible mix of
negative and positive ambiguity attitudes. To illustrate, consider the following two common
relaxations of certainty independence. First, Maccheroni, Marinacci, and Rustichini’s (2006)
(henceforth MMR’s) variational preferences generalize Gilboa and Schmeidler (1989) by
replacing certainty independence with weak certainty independence. This axiom retains
the “location invariance” property implied by certainty independence but relaxes the “scale
invariance” property; we refer the reader to MMR for a detailed discussion:

Axiom 10 (Weak Certainty Independence). For any f, g ∈ F , p, q ∈ ∆(Z), and α ∈ (0, 1),

αf + (1− α)p % αg + (1− α)p =⇒ αf + (1− α)q % αg + (1− α)q.

Second, Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio’s (2011) (henceforth
CMMM’s) model of uncertainty-averse preferences imposes an even weaker form of indepen-
dence that only holds for objective lotteries:

Axiom 11 (Risk Independence). For any p, q, r ∈ ∆(Z) and α ∈ (0, 1),

p % q =⇒ αp+ (1− α)r % αq + (1− α)r.
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While MMR and CMMM maintain uncertainty aversion, the following two results show
that dropping uncertainty aversion from their axioms yields dual-self representations that
extend DSEU to more general games between Optimism and Pessimism:

Theorem 3. Preference % satisfies Axioms 1–4 and Axiom 10 if and only if % admits
a dual-self variational representation; that is, there exists a nonconstant affine utility
u : ∆(Z) → R and a collection C of convex cost functions c : ∆(S) → R ∪ {∞} with
maxc∈C minµ∈∆(S) c(µ) = 0 such that

W (f) := max
c∈C

min
µ∈∆(S)

Eµ[u(f)] + c(µ) (13)

is well-defined and represents %.

In (13), Optimism first chooses a cost function c : ∆(S)→ R∪{∞} from some collection
C, and Pessimism then chooses a belief subject to this cost. This model adds a maximization
stage into MMR’s variational representation, which corresponds to the special case in which
C is a singleton.27 Likewise, the following representation incorporates a maximization stage
into CMMM’s representation:28

Theorem 4. Preference % satisfies Axioms 1–4 and Axiom 11 if and only if % admits
a rational dual-self representation; that is, there exists a nonconstant affine utility u :

∆(Z) → R and a collection G of quasiconvex functions G : R ×∆(S) → R ∪ {∞} that are
increasing in their first argument and satisfy maxG∈G infµ∈∆(S) G(a, µ) = a for all a such
that

W (f) := max
G∈G

inf
µ∈∆(S)

G(Eµ[u(f)], µ) (14)

is well-defined, continuous, and represents %.

The generalizations of DSEU in Theorems 3 and 4 can accommodate additional ex-
perimental evidence. For instance, by relaxing the positive homogeneity of I implied by
certainty independence but preserving constant-additivity, the dual-self variational model
can accommodate Machina’s (2009) paradoxes (see also Baillon, L’Haridon, and Placido,

27Castagnoli, Cattelan, Maccheroni, Tebaldi, and Wang (2021) consider a special case of (13) that imposes
the stronger normalization that minµ∈∆(S) c(µ) = 0 for all c ∈ C, ensuring that each choice of Optimism
induces a variational preference. They show that this special case is characterized by additionally requiring a
weak form of preference for hedging, where for all f ∈ F , p ∈ ∆(Z), and α ∈ (0, 1), f % p =⇒ αf+(1−α)p %
p. In contrast, Theorem 3 shows that our weaker normalization, maxc∈C minµ∈∆(S) c(µ) = 0, corresponds to
fully dropping any preference for hedging from the variational model, which is necessary in order to nest the
case of uncertainty-seeking preferences.

28Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2011) provide an alternative repre-
sentation of this class of preferences that generalizes (1). As for GMM, the necessity of the axioms requires
joint restrictions on the weight function α(·) and other model parameters in (1) to ensure thatW is monotone.
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2011).29 Another important finding is that ambiguity attitudes can differ for gains and
losses: For example, in urn experiments subjects who are ambiguity-averse for bets with
positive payoffs are often ambiguity-seeking when the sign of the bet is reversed (Trautmann
and Wakker, 2018). This is inconsistent with any model that displays constant-additivity,
but can be accommodated by the rational dual-self representation in (14).

5 Conclusion

We adopt a dual-self perspective on ambiguity preferences, by proposing a class of multiple-
prior representations where the belief the DM uses to evaluate each act is the outcome of a
game between Optimism and Pessimism. Our baseline model, DSEU, provides a novel repre-
sentation of the class of invariant biseparable preferences, which drops uncertainty aversion
from maxmin expected utility; further relaxing certainty independence yields dual-self gen-
eralizations of variational and uncertainty-averse preferences. Relative to existing work, we
highlight two key properties of the DSEU model: In the static context, DSEU provides a
unified framework to represent a range of intermediate ambiguity attitudes, motivated for
instance by evidence that individuals’ attitudes towards ambiguity can be odds-dependent
or source-dependent. In the dynamic context, DSEU yields a natural way to perform belief
updating under invariant biseparable preferences.

More broadly, representations based on a combination of max and min operators have
been used to provide foundations for maxmin values in zero-sum games (Hart, Modica, and
Schmeidler, 1994), utility aggregation (Chambers, 2007), and coarse reasoning (Saponara,
2020). These representations can be shown to be strict special cases of DSEU, suggesting
that the DSEU model and its extensions might serve as a unifying framework to capture
additional phenomena, beyond the focus on ambiguity attitudes in the current paper.

Appendix: Proofs

This appendix presents the proofs of all results in Sections 2–4.2. The supplementary ap-
pendix contains proofs for the generalizations in Section 4.3, as well as other omitted material.

29This follows from the fact that Siniscalchi’s (2009) vector expected utility model can accommodate these
paradoxes and is a special case of (13).
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A Preliminaries

Throughout this section, we fix any interval Γ ⊆ R and let U := ΓS. For any a ∈ R, let
a denote the vector in RS with a(s) = a for all s ∈ S. For any φ, ψ ∈ RS, write φ ≥ ψ if
φ(s) ≥ ψ(s) for all s.

A.1 Properties of functionals

Fix any functional I : U → R. We call I monotonic if I(φ) ≥ I(ψ) for all φ, ψ ∈ U with
φ ≥ ψ; normalized if I(a) = a for all a ∈ Γ; constant-additive if I(φ + a) = I(φ) + a

for all φ ∈ U and a ∈ Γ with φ + a ∈ U ; positively homogeneous if I(aφ) = aI(φ) for
all φ ∈ U and a ∈ R+ with aφ ∈ U ; and constant-linear if I is constant-additive and
positively homogeneous. It is easy to see that if 0 ∈ Γ, then any constant-linear functional
I is normalized.

A.2 Clarke derivative and differential

Consider a locally Lipschitz functional I : U → R. For every φ ∈ intU and ξ ∈ RS, the
Clarke (upper) derivative of I in φ in the direction of ξ is

I◦(φ; ξ) := lim sup
ψ→φ,t↓0

I(ψ + tξ)− I(ψ)

t
.

The Clarke (sub)differential of I at φ is the set

∂I(φ) := {χ ∈ RS : χ · ξ ≤ I◦(φ; ξ),∀ξ ∈ RS}.

We will frequently invoke the following properties of the Clarke differential. First, if I is
locally Lipschitz, then Rademacher’s theorem yields a subset Û ⊆ intU such that U \ Û has
Lebesgue measure zero and I is differentiable on Û . Combining this with Theorem 2.5.1 in
Clarke (1990), we obtain the following approximation of the Clarke differential:

Lemma A.1 (Theorem 2.5.1 in Clarke (1990)). Suppose I : U → R is locally Lipschitz.
Then there exists Û ⊆ intU such that U \ Û has Lebesgue measure zero, I is differentiable at
each ψ ∈ Û , and for every φ ∈ intU , we have

∂I(φ) = co{lim
n
∇I(φn) : φn → φ, φn ∈ Û}. (15)

The next result is an “envelope theorem” for Clarke differentials:
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Lemma A.2 (Theorem 2.8.6 in Clarke (1990)). Suppose functional I : U → R is given by

I(·) = sup
t∈T

It(·)

for some indexed family of functionals (It)t∈T with domain U . Assume that there exists some
K > 0 such that |It(ψ)− It(ξ)| ≤ K‖ψ− ξ‖ for every t ∈ T and ψ, ξ ∈ intU . Then for every
φ ∈ intU , we have ∂I(φ) ⊆ co{limi→∞∇Iti(φi) : φi → φ, ti ∈ T, Iti(φ)→ I(φ)}.

Last, we note the following relationship between properties of I and its Clarke differential:

Lemma A.3 (Part 1 of Proposition A.3 in GMM). If I : U → R is locally Lipschitz,
positively homogeneous, and 0 ∈ intU , then ∂I(φ) ⊆ ∂I(0) for all φ ∈ intU .

Lemma A.4 (Parts 2–3 of Proposition A.3 in GMM). If I : U → R is locally Lipschitz,
monotonic, and constant-additive, then ∂I(φ) ⊆ ∆(S) for all φ ∈ intU .

A.3 Boolean representation of locally Lipschitz I

Throughout this subsection, we assume that I : U → R is locally Lipschitz. Let Û be the
generic subset given by Lemma A.1.

Lemma A.6 below shows that, restricted to Û , I admits a so-called “Boolean” representa-
tion in terms of a family of affine functionals whose slopes correspond to gradients of I. This
result extends Ovchinnikov (2001), who establishes Lemma A.6 under the assumption that
I is continuously differentiable. Our non-smooth generalization is necessary for the proof
of Theorem 1, where the utility-act functional I is non-differentiable (except in the case of
subjective expected utility). We begin with a preliminary result:

Lemma A.5. For every φ, ψ ∈ Û and ε > 0, there exists ξ ∈ Û such that

I(ξ)− I(ψ) +∇I(ξ) · (ψ − ξ) ≥ 0, I(ξ)− I(φ) +∇I(ξ) · (φ− ξ) ≤ ε.

Proof. Take any φ, ψ ∈ Û and ε > 0. Let m := I(ψ)− I(φ). If ∇I(φ) · (ψ− φ) ≥ m, we can
set ξ = φ. Likewise if ∇I(ψ) · (ψ − φ) ≥ m, we can set ξ = ψ. It remains to consider the
case

∇I(φ) · (ψ − φ),∇I(ψ) · (ψ − φ) < m. (16)

Define
H(λ) := I(φ+ λ(ψ − φ))− λm− I(φ)

for each λ ∈ R with φ+λ(ψ−φ) ∈ U . Since φ, ψ ∈ Û , H is differentiable at λ ∈ {0, 1}, with
H(0) = H(1) = 0 and H ′(0), H ′(1) < 0 by assumption (16). Hence, H is negative for small
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enough λ > 0 and positive for λ < 1 close enough to 1. Thus, the set {λ ∈ (0, 1) : H(λ) = 0}
is nonempty and closed; let λ∗ denote its supremum.

Since H is locally Lipschitz, we have H(λ) =
´ λ
λ∗
H ′(λ′)dλ′ for all λ > λ∗. As H(λ) > 0

for all λ ∈ (λ∗, 1), we can choose λ∗∗ ∈ (λ∗, 1) close enough to λ∗ such that H is differentiable
at λ∗∗ with H ′(λ∗∗) > 0 and H(λ∗∗) ∈ (0, ε). But then

H ′(λ∗∗) = lim
t→0

I(φ+ (λ∗∗ + t)(ψ − φ))− I(φ+ λ∗∗(ψ − φ))

t
−m > 0,

which implies that

I◦(φ+ λ∗∗(ψ − φ);ψ − φ)−m ≥ H ′(λ∗∗) > 0.

Since I◦(ξ; ζ) = maxµ∈∂I(ξ) µ · ζ for any ζ, ξ (e.g., Proposition 2.1.2 in Clarke, 1990), this
yields some µ ∈ ∂I(φ+ λ∗∗(ψ − φ)) such that

µ · (ψ − φ)−m ≥ H ′(λ∗∗) > 0.

By (15), there exists a sequence ξn → φ + λ∗∗(ψ − φ) such that ξn ∈ Û for each n and
limn∇I(ξn) = µ. Then

lim
n

(I(ξn)− I(ψ) +∇I(ξn) · (ψ − ξn)) = I(φ+ λ∗∗(ψ − φ))− I(ψ) + (1− λ∗∗)µ · (ψ − φ)

= H(λ∗∗)− (1− λ∗∗)m+ (1− λ∗∗)µ · (ψ − φ) > 0

where the inequality uses the fact that H(λ∗∗) > 0 and that µ · (ψ − φ)−m ≥ H ′(λ∗∗) > 0.
Similarly,

lim
n

(I(ξn)− I(φ) +∇I(ξn) · (φ− ξn)) = I(φ+ λ∗∗(ψ − φ))− I(φ)− λ∗∗µ · (ψ − φ)

= H(λ∗∗) + λ∗∗m− λ∗∗µ · (ψ − φ) < ε

where the inequality uses H(λ∗∗) < ε and µ · (ψ−φ)−m ≥ H ′(λ∗∗) > 0. Thus, for any large
enough n, ξn ∈ Û is as desired.

We now establish the Boolean representation of I:

Lemma A.6. For each φ ∈ Û , we have

I(φ) = max
ψ∈Û

inf
ξ∈Kψ

I(ξ) +∇I(ξ) · (φ− ξ),

where Kψ := {ξ ∈ Û : I(ξ) +∇I(ξ) · (ψ − ξ) ≥ I(ψ)} for all ψ ∈ Û .
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Proof. For each φ, ψ ∈ Û and ε > 0, Lemma A.5 yields some ξ ∈ Kψ such that I(ξ)+∇I(ξ) ·
(φ−ξ) ≤ I(φ)+ε. Thus, infξ∈Kψ I(ξ)+∇I(ξ) ·(φ−ξ) ≤ I(φ). Moreover, by definition of Kφ,
infξ∈Kφ I(ξ) +∇I(ξ) · (φ− ξ) ≥ I(φ). Hence, I(φ) = maxψ∈Û infξ∈Kψ I(ξ) +∇I(ξ) · (φ− ξ),
as required.

B Proofs for Section 2

B.1 Proof of Theorem 1

We invoke the following standard result:

Lemma B.1 (Lemma 1 in GMM). Preference % satisfies Axioms 1–5 if and only if there
exists a monotonic, constant-linear functional I : RS → R and a nonconstant affine function
u : ∆(Z)→ R such that for all f, g ∈ F ,

f % g ⇐⇒ I(u(f)) ≥ I(u(g)). (17)

Moreover, I is unique and u is unique up to positive affine transformation.

The necessity proof for Theorem 1 is standard and we omit it. To prove sufficiency,
suppose % satisfies Axioms 1–5. Let I and u be as given by Lemma B.1. Consider the
following collection P∗:

P∗ := cl{P ∗φ : φ ∈ RS} with P ∗φ := {µ ∈ ∂I(0) : µ · φ ≥ I(φ)}, (18)

where cl denotes the topological closure in K(∆(S)) under the Hausdorff topology.
Note that since I is monotonic and constant-linear, it is 1-Lipschitz. Thus, ∂I(0) ⊆ ∆(S)

by Lemma A.4, so that each P ∗φ is indeed a closed, convex set of beliefs. Moreover, P∗ is
compact, as it is a closed subset of the compact space K(∆(S)). Thus, P∗ is a belief-set
collection. We will show that for all φ ∈ RS,

I(φ) = max
P∈P∗

min
µ∈P

µ · φ, (19)

which by (17) ensures that (P∗, u) is a DSEU representation of %.
Lemma A.1 yields a set Û ⊆ RS such that RS \ Û has Lebesgue measure zero and I is

differentiable on Û . Moreover, since I is positively homogeneous, Lemma A.3 implies that
∂I(φ) ⊆ ∂I(0) for all φ ∈ RS, so that for all φ ∈ Û , we have µφ := ∇I(φ) ∈ ∂I(0). We will
invoke the following lemma:
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Lemma B.2. For each φ ∈ Û , I(φ) = µφ · φ.

Proof. Take any φ ∈ Û . By positive homogeneity of I, αφ ∈ Û and ∇I(φ) = ∇I(αφ) for any
α ∈ (0, 1). Thus, the function h : [0, 1]→ R defined by h(α) = I(αφ) is differentiable at every
α ∈ (0, 1) and Lipschitz. Hence, I(φ) = h(1) − h(0) =

´ 1

0
h′(α′)dα′ =

´ 1

0
(∇I(αφ) · φ)dα′ =

φ · µφ.

To complete the proof of (19), first take any φ, ψ ∈ Û and let Kψ := {ξ ∈ Û : I(ξ) + µξ ·
(ψ − ξ) ≥ I(ψ)} be as in Lemma A.6. Then

I(φ) = max
ψ∈Û

inf
ξ∈Kψ

I(ξ) + µξ · (φ− ξ) = max
ψ∈Û

inf
ξ∈Kψ

µξ · φ, (20)

where the first equality holds by Lemma A.6 and the second by Lemma B.2. Letting Pψ :=

{µξ : ξ ∈ Û , µξ ·ψ ≥ I(ψ)}, Lemma B.2 ensures that ξ ∈ Kψ if and only if µξ ∈ Pψ. Moreover,
(15) implies that coPψ = P ∗ψ. Combining these two observations with (20) yields

I(φ) = max
ψ∈Û

inf
µ∈Pψ

µ · φ = max
ψ∈Û

min
µ∈coPψ

µ · φ = max
ψ∈Û

min
µ∈P ∗ψ

µ · φ. (21)

Next, take any φ, ψ ∈ RS. Then there exist sequences φn → φ, ψn → ψ such that
φn, ψn ∈ Û . For each n, pick µn ∈ P ∗ψn such that minµ∈P ∗ψn µ · φn = µn · φn and consider a
convergent subsequence (µnk) with limk→∞ µnk = µ∗. Note that µ∗ ∈ P ∗ψ: Indeed, for each
k, we have µnk · ψnk ≥ I(ψnk), which by continuity of I implies µ∗ · ψ ≥ I(ψ).

Moreover, for each k, we have µnk ·φnk = minµ∈P ∗ψnk
µ ·φnk ≤ I(φnk), where the inequality

holds by (21). Hence, continuity of I implies µ∗ · φ ≤ I(φ), so that

min
µ∈P ∗ψ

µ · φ ≤ µ∗ · φ ≤ I(φ). (22)

Since (22) holds for all ψ ∈ RS, it follows from the definition of P∗ that

min
µ∈P

µ · φ ≤ I(φ)

holds for all P ∈ P∗. Finally, applying (22) with ψ = φ yields minµ∈P ∗φ µ · φ ≤ I(φ) ≤
minµ∈P ∗φ µ · φ, where the second inequality holds by definition of P ∗φ . Thus,

I(φ) = min
µ∈P ∗φ

φ · µ = max
P∈P∗

min
µ∈P

µ · φ,

as required.
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B.2 Proof of Proposition 1

We begin with the following lemma:

Lemma B.3. Consider any functional I : RS → R and belief-set collection P such that
I(φ) = maxP∈P minµ∈P µ · φ for all φ ∈ RS. Then

∂I(0) ⊆ co
⋃
P∈P

P.

Proof. For each P ∈ P, let IP (φ) := minµ∈P µ · φ for each φ. Thus, I(φ) = maxP∈P IP (φ) for
each φ. Note that each IP is 1-Lipschitz and ∂IP (0) = P .

Take any convergent sequence (∇IPi(φi)) where φi → 0, Pi ∈ P, and ∇IPi(φi) exists for
each i. Then

∇IPi(φi) ∈ ∂IPi(φi) ⊆ ∂IPi(0) = Pi

where the set inclusion holds by Lemma A.3. Thus, limi∇IPi(φi) ∈ co
⋃
P∈P P . Hence, the

desired conclusion follows by applying Lemma A.2 to I.

Suppose % satisfies Axioms 1–5. Let I and u be as given by Lemma B.1. For P∗ as
in the sufficiency proof of Theorem 1, we have co

⋃
P∈P∗ P ⊆ ∂I(0). Thus, Lemma B.3

immediately implies that C = ∂I(0) is the unique closed, convex set satisfying (6) for all
DSEU representations of %, with equality for representation P∗.

B.3 Proof of Corollary 1

Since the proof of Proposition 1 identifies the set of relevant priors as C = ∂I(0), Corollary 1
is immediate from the following result in GMM:

Lemma B.4 (Theorem 14 in GMM). Suppose % satisfies Axioms 1–5 and let I and u be as
in Lemma B.1. Then the unique closed, convex set D satisfying

f %∗ g ⇐⇒ Eµ[u(f)] ≥ Eµ[u(g)] for all µ ∈ D

is given by D = ∂I(0).

C Proofs for Section 3

C.1 Proof of Proposition 2

Throughout the proof, let I be the functional given by Lemma B.1.
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C.1.1 Proof of part 1

To prove the “only if” direction, suppose that % satisfies uncertainty aversion. Since it
admits the maxmin expected utility representation of Gilboa and Schmeidler (1989), I(φ) =

minµ∈C µ · φ holds for all φ.
We first show that

⋂
P∈P P ⊇ C. If not, there exists P ∈ P such that P 6⊇ C. By the

standard property of support functions, this implies the existence of φ such that minµ∈C φ·µ <
minµ∈P φ · µ. This leads to I(φ) > minµ∈C µ · φ, a contradiction.

We now show that
⋂
P∈P P ⊆ C. If not, there exists µ∗ ∈

⋂
P∈P P \C. Then there exists φ

such that minµ∈C µ ·φ > µ∗ ·φ. But this implies I(φ) ≤ µ∗ ·φ < minµ∈C µ ·φ, a contradiction.
To prove the “ if” direction, suppose that

⋂
P∈P P = C. Take any φ. It suffices to show

that I(φ) = minµ∈C µ · φ. Note that by construction of the representation P∗ defined by
(18), we have I(φ) ≥ minµ∈C µ · φ. But the representation based on P yields the inequality
I(φ) ≤ minµ∈⋂P∈P P µ · φ = minµ∈C µ · φ, which ensures the desired claim.

C.1.2 Proof of part 2

Absolute ambiguity aversion ⇒ preference for sure diversification: This implica-
tion follows from the proofs of Theorem 2a and Corollary 3a in Grant and Polak (2013),
which imply the equivalence of absolute ambiguity aversion and preference for sure diversifi-
cation for any preference with a normalized, monotonic, continuous, constant-additive, and
unbounded utility act functional I (as is the case for DSEU).

Preference for sure diversification ⇒
⋂
P∈P P 6= ∅: If % satisfies preference for sure

diversification, then by Proposition 3 (see the proof below) any DSEU representation (P, u)

of % is such that every finite subcollection of P has nonempty intersection. Since each P ∈ P
is convex and compact, Helly’s theorem implies that the whole collection P has nonempty
intersection.⋂

P∈P P 6= ∅ ⇒ absolute ambiguity aversion: Suppose that there exists µ∗ ∈
⋂
P∈P P

for some DSEU representation (P, u) of %. For any f ∈ F and any P ∈ P, this implies that
minµ∈P µ · u(f) ≤ µ∗ · u(f), and hence maxP∈P minµ∈P µ · u(f) ≤ µ∗ · u(f). As a result,

f % p =⇒ max
P∈P

min
µ∈P

µ · u(f) ≥ u(p) =⇒ µ∗ · u(f) ≥ u(p) =⇒ f %µ∗ p

where %µ∗ is the subjective expected utility preference with belief µ∗ and utility function u.
Hence, % is more ambiguity-averse than %µ∗ , which proves the result.
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C.2 Proof of Proposition 3

We will invoke the following result, due to Samet (1998):

Lemma C.1. Let P1, . . . , Pk be nonempty closed, convex subsets of ∆(S). Then
⋂
i=1,...,k Pi =

∅ if and only if there exist φ1, . . . , φk ∈ RS such that
∑

i=1,...,k φi = 0 and minµ∈Pi µ · φi > 0

for each i = 1, . . . , k.

To prove Proposition 3, let I be the utility act functional of % given by Lemma B.1.
(1.) =⇒ (3.): Take any acts f1, . . . , fk. For each i = 1, . . . , k, let Pi ∈ P be such

that I(u(fi)) = minµ∈Pi µ · u(f). Take µ̂ ∈
⋂
i=1,...,k Pi. Then I(u(fi)) ≤ µ̂ · u(fi) for each

i = 1, . . . , k. This ensures that part 3 holds for the SEU preference %̂ represented by (u, µ̂).
(3.) =⇒ (2.): Take any acts f1, . . . , fk such that f1 ∼ fi for each i and such that p =∑
i αifi is a complete hedge for f1, . . . , fk. Let %̂ be the corresponding SEU preference from

part 3. By assumption, %̂ is represented by (u, µ̂) for some belief µ̂ such that I(u(fi)) ≤ µ̂ ·
u(fi) for each i = 1, . . . , k. Thus, u(p) = µ̂·

∑
i=1,...,k αiu(fi) =

∑
i αiµ̂·u(fi) ≥

∑
i αiI(u(fi)),

which implies u(p) ≥ I(u(f1)), as fi ∼ f1 for all i. Hence, p % f1.
(2.) =⇒ (1.): We prove the contrapositive. Suppose there exist P1, . . . , Pk ∈ P with⋂

i=1,...,k Pi = ∅. By Lemma C.1, there exist φ1, . . . , φk ∈ RS such that
∑

i=1,...,k φi = 0

and minµ∈Pi µ · φi > 0 for each i = 1, . . . , k. Let βi := I(φi) ≥ minµ∈Pi µ · φi > 0 for
each i. By constant-linearity of I, we have I(φi − βi) = 0 for each i but I( 1

k

∑
i(φi − βi)) =

I(− 1
k

∑
i βi) < 0. Then, for any acts f1, . . . , fk with u(fi) = φi−βi for each i (such acts exist

up a positive affine transformation of u), we have that f1 ∼ . . . ∼ fk and that p :=
∑k

i=1
1
k
fi

is a complete hedge but p ≺ f1, violating k-ambiguity aversion.

C.3 Proof of Proposition 4

Note that m(E) = maxP∈P minµ∈P µ(E), while m(Ec) = 1 − minP∈P maxµ∈P µ(E). Thus,
AA(E) = minP∈P maxµ∈P µ(E)−maxP∈P minµ∈P µ(E).

This implies that AA(E) ≥ 0 if and only if all P, P ′ ∈ P satisfy maxµ∈P µ(E) ≥
minµ′∈P ′ µ

′(E), i.e., if and only if P (E) ∩ P ′(E) 6= ∅. Similarly, AA(E) > 0 if and only
if all P, P ′ ∈ P satisfy maxµ∈P µ(E) > minµ′∈P ′ µ

′(E), i.e., if and only if P (E) ∩ P ′(E) is a
non-degenerate interval.
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C.4 Proof of Corollary 2

Pick any β > 0 and ν ∈ ∆(S) with β < mins∈S ν(s). Define P by P = {P F : F ∈ F}, where
for each F ∈ F ,

P F := {µ ∈ ∆(S) : µ(F ) = ν(F ) +
β

2
, µ(E) ∈ [ν(E)− β, ν(E) + β]∀E ⊆ S}.

Note that each P F is nonempty: Indeed, pick any s ∈ F and s′ ∈ F c (which exist since
F /∈ {S, ∅}). Then setting µ(s) = ν(s) + β

2
, µ(s′) = ν(s′) − β

2
, and µ(s′′) = ν(s′′) for all

s′′ 6= s, s′ yields µ ∈ P F . Since P F is also closed and convex, P is a well-defined belief-set
collection.

Take any F ∈ F , and observe that P F (F ) = {ν(F )+β/2}, while P F c(F ) = {ν(F )−β/2}.
Therefore, P F (F ) ∩ P F c(F ) = ∅, which implies by Proposition 2 that AA(F ) < 0.

Consider now any E ∈ E and any F ∈ F . Since E 6= F (as E and F are disjoint), we
either have (a) F \ E 6= ∅ 6= E \ F ; (b) E ( F ; or (c) F ( E. In each case, we show that
there exist µ, µ′ ∈ P F with µ(E) = ν(E) − β

2
and µ′(E) = ν(E) + β

2
. Since this is true for

any F , this implies that P F (E)∩P F ′(E) ⊇ [ν(E)− β
2
, ν(E) + β

2
] is a nondegenerate interval

for any F, F ′ ∈ F , which in turn implies that AA(E) > 0 by Proposition 4.
In case (a), pick s ∈ F \ E and s′ ∈ E \ F . Since E 6= F c (as F c ∈ F), there also exists

s′′ ∈ S \ (E ∪ F ). Then define µ by µ(s) = ν(s) + β
2
, µ(s′) = ν(s′)− β

2
, and µ(s′′′) = ν(s′′′)

for all s′′′ 6= s, s′; and µ′ by µ′(s) = ν(s) + β
2
, µ′(s′) = ν(s′) + β

2
, µ′(s′′) = ν(s′′) − β, and

µ′(s′′′) = ν(s′′′) for all s′′′ 6= s, s′, s′′.
In case (b), pick s ∈ F \E, s′ ∈ E, and s′′ ∈ F c ⊆ Ec. Then define µ by µ(s) = ν(s) +β,

µ(s′) = ν(s′) − β
2
, µ(s′′) = ν(s′′) − β

2
, and µ(s′′′) = ν(s′′′) for all s′′′ 6= s, s′, s′′; and µ′ by

µ′(s) = ν(s), µ(s′) = ν(s′) + β
2
, µ(s′′) = ν(s′′)− β

2
, and µ(s′′′) = ν(s′′′) for all s′′′ 6= s, s′, s′′.

In case (c), pick s ∈ F , s′ ∈ E \F , and s′′ ∈ Ec ⊆ F c. Then define µ by µ(s) = ν(s) + β
2
,

µ(s′) = ν(s′) − β, µ(s′′) = ν(s′′) + β
2
, and µ(s′′′) = ν(s′′′) for all s′′′ 6= s, s′, s′′; and µ′ by

µ′(s) = ν(s) + β
2
, µ′(s′′) = ν(s′′)− β

2
, and µ′(s′′′) = ν(s′′′) for all s′′′ 6= s, s′′.

C.5 Proof of Corollary 3

Recall that the α-MEU functional (8) coincides with the DSEU representation (P, u) where
P = {αP + (1− α){µ} : µ ∈ P}. Let P µ = αP + (1− α){µ} for any µ ∈ P . For any event
E and µ ∈ P , the interval P µ(E) = {ν(E) : ν ∈ P µ} is thus given by [αminν∈P ν(E) + (1−
α)µ(E), αmaxν∈P ν(E) + (1− α)µ(E)].
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Suppose that α ≥ 1/2. Then, for any µ ∈ P and any event E, we have

αmin
ν∈P

ν(E) + (1− α)µ(E) ≤ αmin
ν∈P

ν(E) + (1− α) max
ν∈P

ν(E)

≤1

2
min
ν∈P

ν(E) +
1

2
max
ν∈P

ν(E) ≤ (1− α) min
ν∈P

ν(E) + αmax
ν∈P

ν(E)

≤(1− α)µ(E) + αmax
ν∈P

ν(E).

Hence, 1/2 minν∈P ν(E) + 1/2 maxν∈P ν(E) ∈ P µ
E . Since this is true for every µ ∈ P , this

implies P µ(E) ∩ P µ′(E) 6= ∅ for all µ, µ′ ∈ P . Thus, AA(E) ≥ 0 by the first part of
Proposition 4. Moreover, consider the case α > 1/2. Since P is not a singleton, there exists
an event E such that minν∈P ν(E) < maxν∈P ν(E). Then the above inequality is strict for
each µ, i.e.,

αmin
ν∈P

ν(E) + (1− α)µ(E) <
1

2
min
ν∈P

ν(E) +
1

2
max
ν∈P

ν(E) < (1− α)µ(E) + αmax
ν∈P

ν(E).

Thus, for each µ, µ′ ∈ P , P µ(E)∩P µ′(E) is a non-degenerate interval, which impliesAA(E) >

0 by the second part of Proposition 4.
Next, suppose that α ≤ 1/2. Take any E and let µ be a minimizer of µ(E) on P , and µ′

be a maximizer. Since α ≤ 1/2, we have αµ′(E)+(1−α)µ(E) ≤ αµ(E)+(1−α)µ′(E). Since
P µ(E) = [µ(E), αµ′(E) + (1 − α)µ(E)] and P µ′(E) = [αµ(E) + (1 − α)µ′(E), µ′(E)], this
proves that P µ(E) ∩ P µ′(E) is not a non-degenerate interval. Thus, by the second part of
Proposition 4, AA(E) ≤ 0. Moreover, consider the case α < 1/2. Since P is not a singleton,
there exists an event E such that minµ∈P µ(E) < maxµ∈P µ(E). Then the above inequality
is strict, i.e., αµ′(E) + (1 − α)µ(E) < αµ(E) + (1 − α)µ′(E). Thus P µ(E) ∩ P µ′(E) = ∅,
which implies AA(E) < 0 by the first part of Proposition 4.

C.6 Proof of Theorem 2

Suppose that % admits a DSEU representation (P, u) and E is non-null. For each act f , let

WE(f) = max
P∈P

min
µE∈PE

∑
s∈E

µE(s)u(f(s)),

where for any µ with µ(E) > 0, µE is the Bayesian update of µ defined by µE(F ) =

µ(F ∩ E)/µ(E) for all F ⊆ S. Note that WE is well-defined because E is non-null.

Lemma C.2. For any f ∈ F and p ∈ ∆(Z), we have fEp % p⇔ WE(f) ≥ u(p).
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Proof. Observe that

fEp % p⇔ max
P∈P

min
µ∈P

[∑
s∈E

µ(s)u(f(s)) + (1− µ(E))u(p)

]
≥ u(p)

⇔ ∃P ∈ P, ∀µ ∈ P,
∑
s∈E

µ(s)u(f(s)) ≥ µ(E)u(p)

⇔ ∃P ∈ P, ∀µ ∈ P with µ(E) > 0,
∑
s∈E

µ(s)

µ(E)
u(f(s)) ≥ u(p)

⇔ max
P∈P

min
µE∈PE

∑
s∈E

µE(s)u(f(s)) ≥ u(p)

⇔ WE(f) ≥ u(p),

where the fourth equivalence uses the fact that for any P ∈ P, there is µ ∈ P such that
µ(E) > 0.

We now prove Theorem 2. For the implication (2.) ⇒ (1.), note thatWE is the functional
associated with the DSEU representation (PE, u). Thus, if %E is represented by (PE, u), the
equivalence in Lemma C.2 can be rewritten as fEp % p⇔ f %E p. Thus, Axiom 9 holds.

To prove that (1.) ⇒ (2.), note that for each act f , there exists pf ∈ ∆(Z) such that
WE(f) = u(pf ). We claim that f ∼E pf : Indeed, Lemma C.2 and Axiom 9 imply that
f %E pf . Suppose for a contradiction that f �E pf . By Lemma C.2 and Axiom 9, %E

restricted to constant acts is represented by u. Thus, since u is nonconstant, either (i) there
exists q ∈ ∆(Z) with pf �E q, or (ii) there exists q ∈ ∆(Z) with q �E pf . In case (i),
consider f ′ := (1 − ε)f + εq for some small enough ε ∈ (0, 1). Then, WE(f ′) < u(pf ), but
f ′ �E pf (by Archimedean continuity of %E), contradicting Lemma C.2 and Axiom 9. In
case (ii), consider p′ := (1− ε)p+ εq for some small enough ε ∈ (0, 1). Then, WE(f) < u(p′),
but f �E p′ (by Archimedean continuity), again contradicting Lemma C.2 and Axiom 9.

Hence, for any f, g ∈ F , f %E g iff pf %E pg (as %E is a weak order) iff u(pf ) ≥ u(pg)

iff WE(f) ≥ WE(g). Thus, %E is represented by WE, i.e., by the DSEU representation
(PE, u).

D Proofs for Sections 4.1–4.2

D.1 Proof of Proposition 5

Below we fix the unique functional I : RS → R associated with %, as given by Lemma B.1.
We begin with the following lemma:
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Lemma D.1. Suppose (P, u) is a DSEU representation of %. Then P = cl{Hφ,λ : φ ∈
RS, λ ≤ I(φ)}.

Proof. First, take any φ ∈ RS, λ ∈ R such that λ ≤ I(φ). Since (P, u) represents %, there
exists P ∈ P such that minµ∈P µ · φ = I(φ). Thus, P ⊆ Hφ,I(φ) ⊆ Hφ,λ, which implies
Hφ,λ ∈ P. This proves that P ⊇ cl{Hφ,λ : φ ∈ RS, λ ≤ I(φ)}.

Conversely, consider any φ ∈ RS, λ ∈ R such that there exists P ′ ∈ P with P ′ ⊆ Hφ,λ.
Since (P, u) represents %, I(φ) ≥ minµ∈P ′ µ · φ ≥ minµ∈Hφ,λ φ · µ. Hence, λ ≤ I(φ). This
proves that P ⊆ cl{Hφ,λ : φ ∈ RS, λ ≤ I(φ)}.

We now prove Proposition 5. Suppose first that (P′, u′) is another DSEU representation
of %. Then the fact that P = P′ is immediate from Lemma D.1 and the uniqueness of I.
The proof that u ≈ u′ is standard.

Conversely, suppose that u ≈ u′ and P = P′. To show that (P′, u′) represents %, it suffices
to show that maxP ′∈P′ minµ∈P ′ µ · φ = I(φ) for all φ ∈ RS. To prove this, observe first that
since (by Lemma D.1)Hφ,I(φ) ∈ P = P′, there exist sequences of P ′n ∈ P′ and half-spacesHn ⊇
P ′n with Hn → Hφ,I(φ). Then, for all φ, we have minµ∈Hφ,I(φ) µ ·φ = I(φ) = limn minµ∈Hn µ ·φ
and minµ∈Hn µ · φ ≤ minµ∈P ′n µ · φ for all n. This implies that maxP ′∈P minµ∈P ′ µ · φ ≥ I(φ).
Suppose next that minµ∈P ′′ µ · φ − I(φ) =: ε > 0 for some P ′′ ∈ P′. Then Hφ,I(φ)+ε ⊇ P ′′,
which implies Hφ,I(φ)+ε ∈ P′. Since P′ = P, this contradicts Lemma D.1.

Finally, note that the half-space closure of P is P itself. Thus, by the previous paragraph,
(P, u) is itself a DSEU representation of %.

D.2 Proof of Proposition 6

For each preference %i, let utility ui and functional Ii be as given by Lemma B.1. Note that
%1 is more ambiguity-averse than %2 if and only if u1 ≈ u2 and I1(φ) ≤ I2(φ) for all φ ∈ RS.
Thus, it suffices to show that I1(φ) ≤ I2(φ) for all φ if and only if P1 ⊆ P2.

Suppose first that I1(φ) ≤ I2(φ) for all φ. Then {Hφ,λ : φ ∈ RS, λ ≤ I1(φ)} ⊆ {Hφ,λ :

φ ∈ RS, λ ≤ I2(φ)}. By Lemma D.1, this implies that P1 ⊆ P2.
Conversely, if P1 ⊆ P2, then maxP∈P1

minµ∈P µ ·φ ≤ maxP∈P2
minµ∈P µ ·φ for all φ. Since

(Pi, ui) is a DSEU representation of %i for i = 1, 2, this inequality means that I1(φ) ≤ I2(φ)

for all φ.
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Supplementary Appendix to “Dual-self representations of

ambiguity preferences”

Madhav Chandrasekher, Mira Frick, Ryota Iijima, Yves Le Yaouanq

This supplementary appendix is organized as follows. Appendix S.1 povides the proofs
for the generalizations of DSEU considered in Section 4.3. Appendix S.2 presents additional
content for Section 3.2: a characterization of full dynamic consistency under DSEU, and
some supporting examples for Remark 2 on updating under the Amarante and GMM rep-
resentations. Appendix S.3 considers the representation obtained by inverting the order of
moves of Optimism and Pessimism. Appendix S.4 presents an incompatibility result for
source dependence under Klibanoff, Marinacci, and Mukerji’s (2005) smooth model.

S.1 Proofs for Section 4.3

S.1.1 Proof of Theorem 3

We will invoke the following result from MMR:

Lemma S.1.1 (Lemma 28 in MMR). Preference % satisfies Axioms 1–4 and Axiom 10 if
and only if there exists a nonconstant affine function u : ∆(Z) → R with U := (u(∆(Z)))S

and a normalized niveloid I : U → R such that I ◦ u represents %.

Recall that functional I : U → R is a niveloid if I(φ) − I(ψ) ≤ maxs(φs − ψs) for all
φ, ψ ∈ U . Lemma 25 in MMR shows that I is a niveloid if and only if it is monotonic and
constant-additive.

Based on this result, the necessity direction of Theorem 3 is standard. We now prove the
sufficiency direction. Suppose % satisfies Axioms 1–4 and Axiom 10. Let I, u, and U be as
given by Lemma S.1.1. Since I is a niveloid, it is 1-Lipschitz. Hence, Lemma A.1 yields a
subset Û ⊆ intU with U \ Û of Lebesgue measure 0 such that I is differentiable on Û . Define
µψ := ∇I(ψ) and wψ := I(ψ)−∇I(ψ) · ψ for each ψ ∈ Û . By Lemma A.4 and the fact that
niveloids are monotonic and constant-additive, µψ ∈ ∆(S) for all ψ ∈ Û . For each ψ ∈ U ,
define

Dψ := {(µ,w) ∈ ∆(S)× R : µ · ψ + w ≥ I(ψ)} ∩ co{(µξ, wξ) : ξ ∈ Û},

and let D := {Dψ : ψ ∈ U}. The following lemma implies that each Dψ is nonempty; note
also that it is closed, convex, and bounded below.
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Lemma S.1.2. For every φ, ψ ∈ U , min(µ,w)∈Dψ µ · φ+ w ≤ I(φ) with equality if φ = ψ.

Proof. First, consider any φ, ψ ∈ Û . Let Kψ := {ξ ∈ Û : µξ · ψ + wξ ≥ I(ψ)} be as in
Lemma A.6. Note that Dψ = co{(µξ, wξ) : ξ ∈ Kψ}, so that

inf
ξ∈Kψ

µξ · φ+ wξ = min
(µ,w)∈Dψ

µ · φ+ w,

where the minimum is attained as Dψ is closed and bounded below. Thus, Lemma A.6
implies that

min
(µ,w)∈Dψ

µ · φ+ w ≤ I(φ), (23)

where, by definition of Dψ, (23) holds with equality if ψ = φ.
Next, consider any φ, ψ ∈ U . Take sequences φn → φ, ψn → ψ such that φn, ψn ∈ Û for

each n, where we choose φn = ψn if φ = ψ. For each n, the previous paragraph yields some
(µn, wn) ∈ Dψn such that µn · φn + wn = min(µ,w)∈Dψn µ · φn + w ≤ I(φn), with equality if
φ = ψ. Thus, for each n, we have I(ψn) − µn · ψn ≤ wn ≤ I(φn) − µn · φn. Since φn → φ,
ψn → ψ, and I is continuous, this implies that sequence (wn) is bounded. Thus, up to
restricting to a suitable subsequence, we can assume that (µn, wn) → (µ∞, w∞) for some
(µ∞, w∞) ∈ ∆(S) × R. Then (µ∞, w∞) ∈ Dψ and µ∞ · φ + w∞ ≤ I(φ) by continuity of I,
with equality if φ = ψ. Thus, min(µ,w)∈Dψ µ · φ + w = inf(µ,w)∈Dψ µ · φ + w ≤ I(φ), with
equality if φ = ψ, where the minimum is attained since Dψ is closed and bounded below.

Finally, we obtain a dual-self variational representation of % as follows. For each D ∈ D,
define cD : ∆(S) → R ∪ {∞} by cD(µ) := inf{w ∈ R : (µ,w) ∈ D} for each µ ∈ ∆(S),
where by convention the infimum of the empty set is ∞. Note that cD is convex for all D
by convexity of D. Moreover, for all φ ∈ U , min(µ,w)∈D µ · φ + w = minµ∈∆(S) µ · φ + cD(µ).
Thus, Lemma S.1.2 implies

I(φ) = max
D∈D

min
µ∈∆(S)

µ · φ+ cD(µ) (24)

for all φ ∈ U . Since I is normalized, applying (24) to any constant vector a ∈ U , yields I(a) =

a+maxD∈D minµ∈∆(S) cD(µ) = a. Hence, C∗ := {cD : D ∈ D} satisfies maxc∈C∗ minµ∈∆(S) c(µ) =

0 and (C∗, u) is a dual-self variational representation of % by Lemma S.1.1.

Remark 3. We note that our characterization of the set of relevant priors under DSEU
generalizes to the dual-self variational model. Specifically, let dom(c) := {µ : c(µ) ∈ R}
denote the effective domain of any cost function. Then there exists a unique closed, convex
set C such that C ⊆ co

(⋃
c∈C dom(c)

)
for all dualf-self variational representations of %, with
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equality for the representation C∗ we constructed in the proof of Theorem 3. Moreover, it
can again be shown that C is the Bewley set of the unambigous preference %∗. The argument
relies on the observation that C = co

(⋃
φ∈intU ∂I(φ)

)
, where I is the utility act functional

obtained in the proof of Theorem 3 and U its domain. Details are available on request. N

S.1.2 Proof of Theorem 4

The following result follows from a minor modification of the proof of Lemma 57 in CMMM:

Lemma S.1.3. Preference % satisfies Axioms 1–4 and 11 if and only if there exists a non-
constant affine function u : ∆(Z)→ R with U := (u(∆(Z)))S and a monotonic, normalized
and continuous functional I : U → R such that I ◦ u represents %.

Based on this result, the necessity direction of Theorem 4 is standard. We now prove the
sufficiency direction. Suppose % satisfies Axioms 1–4 and 11. Let I, u, and U be as given
by Lemma S.1.3. Define Dψ := {(µ, I(ψ)− µ · ψ) ∈ RS

+ ×R : µ ∈ RS
+} for each ψ ∈ U . Note

that Dψ is nonempty and convex. Let Iψ(φ) := inf(µ,w)∈Dψ µ · φ+ w for each φ, ψ ∈ U .
Take any φ, ψ ∈ U . Observe that

Iψ(φ) = inf
α>0,s∈S

I(ψ) + α(φs − ψs) =

I(ψ) if φ ≥ ψ

−∞ if φ 6≥ ψ

Thus, I(φ) ≥ Iψ(φ) by monotonicity of I, with equality if φ = ψ. That is, for each φ ∈ U ,

I(φ) = max
ψ∈U

Iψ(φ). (25)

For each ψ ∈ U , define a function Gψ : R×∆(S)→ R ∪ {∞} by

Gψ(t, µ) = sup{Iψ(ξ) : ξ ∈ U, ξ · µ ≤ t}

for each (t, µ). The map is quasi-convex (Lemma 31 in CMMM) and increasing in t.

Lemma S.1.4. We have Iψ(φ) = infµ∈∆(S)Gψ(µ · φ, µ) for each φ, ψ ∈ U .

Proof. Observe that RHS = infµ∈∆(S) sup{Iψ(ξ) : ξ · µ ≤ φ · µ}. To see that LHS ≤ RHS,
observe that Iψ(φ) ≤ sup{Iψ(ξ) : ξ · µ ≤ φ · µ} holds for any µ ∈ ∆(S). To see that LHS ≥
RHS, note first that if φ ≥ ψ then LHS = I(ψ) and RHS ∈ {I(ψ),−∞}, so the inequality
clearly holds. If φ 6≥ ψ then φs < ψs for some s ∈ S. Thus, by taking µ = δs, any ξ with
ξ · µ ≤ φ · µ satisfies ξs ≤ φs, which implies ξ 6≥ ψ, whence Iψ(ξ) = −∞.
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Setting G = {Gφ : φ ∈ U}, Lemma S.1.4 and (25) ensure that the functional W given
by (14) represents % and is continuous. Finally, note that since I is normalized, we have
a = I(a) = maxG∈G infµ∈∆(S) G(a, µ) for any a ∈ R, as required.

S.2 Additional material for Section 3.2

S.2.1 Characterization of dynamic consistency

Fix any partition Π of S and a family of conditional preferences {%E}E∈Π. Consider the
following strengthening of C-dynamic consistency (Axiom 9):

Axiom 12 (Dynamic Consistency). For all f, g ∈ F , f %E g ⇔ fEg % g.

Epstein and Schneider (2003) show that prior-by-prior updating under the maxmin model
satisfies Axiom 1230 for each E ∈ Π if and only if the ex-ante set of priors P is rectangular
with respect to partition Π, meaning that there exist belief-sets Q0 ⊆ ∆(Π) and QE ⊆ ∆(E)

for each E ∈ Π such that31

P = Q0 × (QE)E∈Π := {µ ∈ ∆(S) : µ(·) =
∑
E∈Π

ν0(E)νE(·) for some ν0 ∈ Q0, νE ∈ QE}.

We show that for prior-by-prior updating under DSEU, Axiom 12 in turn characterizes
the following extension of the notion of rectangularity to belief-set collections. Say that P is
a rectangular belief-set collection (with respect to Π) if there exist belief-set collections
Q0 ⊆ K(∆(Π)) and QE ⊆ K(∆(E)) for each E ∈ Π such that

P = Q0 × (QE)E∈Π := {Q0 × (QE)E∈Π : Q0 ∈ Q0, QE ∈ QE∀E ∈ Π}.

Note that this is stronger than requiring each P ∈ P to be rectangular. Say that E ∈ Π is
strongly non-null if for all f ∈ F and p, q ∈ ∆(Z) with p � q, we have pEf � qEf .

Theorem S.2.1. Suppose that % satisfies Axioms 1–5, that each E ∈ Π is strongly non-null,
and that each (%E)E∈Π is an Archimedean weak order. Then, the following are equivalent:

1. Each pair (%,%E)E∈Π satisfies Axiom 12.

2. There exists a rectangular belief-set collection P and a nonconstant affine utility u such
that (P, u) is a DSEU representation of % and (PE, u) is a DSEU representation of %E

for each E ∈ Π.
30Epstein and Schneider (2003) use an alternative formulation of dynamic consistency, which is equivalent

to Axiom 12 in our setting (cf. Lemma S.2.1).
31In the following, we identify ∆(E) with the subset {µ ∈ ∆(S) : µ(E) = 1} ⊆ ∆(S).
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S.2.1.1 Proof of Theorem S.2.1

We will invoke the following lemma:32

Axiom 13 (Consequentialism). If f(s) = g(s) for all s ∈ E, then f ∼E g.

Lemma S.2.1. Suppose % and each (%E)E∈Π are weak orders. The following are equivalent:

1. Each pair (%,%E)E∈Π satisfies Axiom 12.

2. Each (%E)E∈Π satisfies Axiom 13 and, for all f, g ∈ F ,

[f %E g ∀E ∈ Π] =⇒ f % g; (26)

[f %E g ∀E ∈ Π and f �E g for some E ∈ Π] =⇒ f � g. (27)

Proof. (1.) =⇒ (2.): Suppose each (%,%E)E∈Π satisfies Axiom 12. To show Axiom 13,
consider any f, g ∈ F and E ∈ Π with f(s) = g(s) for all s ∈ E. Then fEg ∼ gEg since %

is reflexive, which implies f ∼E g by Axiom 12.
Then, for any f, g, h ∈ F and E ∈ Π, Axioms 12 and 13 imply

f %E g ⇐⇒︸ ︷︷ ︸
Ax. 13

fEh %E gEh ⇐⇒︸ ︷︷ ︸
Ax. 12

fEh % gEh. (28)

To show (26) suppose f %E g ∀E ∈ Π. Then enumerating Π = {E1, . . . , En} and applying
(28) iteratively, we have

f = fE1f % gE1f % gE1(gE2f) % gE1(gE2(gE3f)) % · · · % g,

as required. Moreover, if f �Ei g for some i, then the above ensures f � g, so (27) holds.
(2.) =⇒ (1.): For each f, g ∈ F and E ∈ Π, since %E is a weak order and satisfies

Axiom 13, we have
f %E g ⇐⇒ fEg %E g;

moreover, for each F ∈ Π \ {E},
fEg ∼F g

Thus, if f %E g then fEg % g by (26). If not f %E g, then g �E f since %E is a weak order,
which implies g � fEg by (27).

32For the direction (1.) ⇒ (2.), Hubmer and Ostrizek (2015) observe that dynamic consistency implies
consequentialism.

5



Proof of Theorem S.2.1.
(2.) =⇒ (1.): Since each %E admits the updated DSEU representation (PE, u), it satis-

fies Axiom 13. Thus, to prove that (%,%E)E∈Π satisfies Axiom 12, it suffices by Lemma S.2.1
to verify (26)-(27).

Observe that since P = Q0 × (QE)E∈Π is rectangular, the prior-by-prior updates PE
satisfy PE = QE for each E ∈ Π. Thus, each %E is represented by the functional WE(f) =

maxQE∈QE minνE∈QE ν
E · u(f). Moreover, % is represented by the functional

W (f) = max
P∈P

min
µ∈P

µ · u(f) = max
Q0∈Q0

min
ν0∈Q0

∑
E

ν0(E) max
QE∈QE

min
νE∈QE

νE · u(f)

= max
Q0∈Q0

min
ν0∈Q0

∑
E

ν0(E)WE(f).

Thus, for any f, g ∈ F , if WE(f) ≥ WE(g) for all E ∈ Π, then W (f) ≥ W (g), verifying
(26). To verify (27), suppose WE(f) > WE(g) for some E ∈ Π and WF (f) ≥ WF (g) for all
F ∈ Π \ {E}. Pick p, q ∈ ∆(Z) such that u(p) = WE(f) and u(q) = WE(g). Then

W (f) = W (pEf) > W (qEf) ≥ W (qEg) = W (g),

where the strict inequality holds since each E is strongly non-null.
(1.) =⇒ (2.): Since % satisfies Axioms 1–5, Lemma B.1 yields a nonconstant, affine u

and monotonic, constant-linear functional I : RS → R such that f % g iff I(u(f)) ≥ I(u(g)).
Up to applying a positive affine transformation, we can assume that u(∆(Z)) ⊇ [−1, 1].
Since Axiom 12 implies Axiom 9, each %E admits some DSEU representation (QE, u) by
Theorem 2. Let IE : RS → R denote the corresponding monotonic, constant-linear functional
given by IE(φ) = maxQE∈QE minνE∈QE ν

E · φ.
For each φ0, ψ0 ∈ RΠ, write φ0 %∗ ψ0 if there exist φ, ψ ∈ RS such that I(φ) ≥ I(ψ) and

φ0(E) = IE(φ), ψ0(E) = IE(ψ), ∀E ∈ Π. (29)

Note that %∗ is a weak order. Indeed, for any φ0 ∈ RΠ define G(φ0) = φ ∈ RS by φ(s) =

φ0(E) for each E ∈ Π and s ∈ E. Then, by construction of IE, we have φ0(E) = IE(φ) for
all E. Moreover, note that for any other φ′ ∈ RS with φ0(E) = IE(φ′), we have I(φ) = I(φ′):
To see this, take α > 0 small enough that αφ, αφ′ ∈ (u(∆(Z)))S. Since IE(αφ) = IE(αφ′)

for each E (as IE is constant-linear), the implication (26) of Axiom 12 in Lemma S.2.1 yields
I(αφ) = I(αφ′). Thus, I(φ) = I(φ′) (as I is constant-linear). Taken together, this shows
that for any φ0, ψ0 ∈ RΠ, φ0 %∗ ψ0 if and only if I(G(φ0)) ≥ I(G(ψ0)), i.e., %∗ is represented
by the functional I0 := I ◦G : RΠ → R.
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Note that I0 is monotonic, as I is monotonic and φ0 ≥ ψ0 implies G(φ0) ≥ G(ψ0).
Moreover, I0 is constant-linear, as I is constant-linear and for any φ0 ∈ RΠ, α > 0, and
β ∈ R, we have G(αφ0 + β) = αG(φ0) + β. Thus, by the proof of Theorem 1, there is
a belief-set collection Q0 ⊆ 2∆(Π) such that I0(φ0) = maxQ0∈Q0 minν0∈Q0 ν0 · φ0 for each
φ0 ∈ RΠ.

Set P := {Q0 × (QE)E∈Π : Q0 ∈ Q0, QE ∈ QE∀E ∈ Π}, which is rectangular. Then for
each φ ∈ RS,

max
P∈P

min
µ∈P

µ · φ = max
Q0∈Q0

max
QE∈QE ,∀E

min
ν0∈Q0

∑
E

ν0(E) min
νE∈QE

νE · φ

= max
Q0∈Q0

min
ν0∈Q0

∑
E

ν0(E) max
QE∈QE

min
νE∈QE

νE · φ.

We claim that (P, u) is a DSEU representation of %. Indeed, for any f, g with φ = u(f), ψ =

u(g), define φ0, ψ0 ∈ RΠ by φ0(E) = IE(φ), ψ0(E) = IE(ψ) for each E ∈ Π. Then

f % g ⇐⇒ φ0 %∗ ψ0

⇐⇒ max
Q0∈Q0

min
ν0∈Q0

ν0 · φ0 ≥ max
Q0∈Q0

min
ν0∈Q0

ν0 · ψ0

⇐⇒ max
Q0∈Q0

min
ν0∈Q0

∑
E

ν0(E) max
QE∈QE

min
νE∈QE

νE · φ

≥ max
Q0∈Q0

min
ν0∈Q0

∑
E

ν0(E) max
QE∈QE

min
νE∈QE

νE · ψ

⇐⇒ max
P∈P

min
µ∈P

µ · φ ≥ max
P∈P

min
µ∈P

µ · ψ.

Finally, by construction, we have QE = PE for each E ∈ Π, and thus (PE, u) is a DSEU
representation of %E.

S.2.2 Details for Remark 2

We elaborate on some difficulties, outlined in Remark 2, with extending prior-by-prior up-
dating to GMM and Amarante’s representations of invariant biseparable preferences.

S.2.2.1 GMM

Suppose the ex-ante preference% admits a GMM representation (1) with parameters (α(·), C, u).
As in Remark 2, consider the following potential extension of prior-by-prior updating: Define
the conditional preference %E by updating the set of relevant priors C prior-by-prior to CE,
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while holding the weight function α(·) and utility u fixed; that is, %E is represented by

WE(f) = α(f) min
µ∈CE

Eµ[u(f)] + (1− α(f)) max
µ∈CE

Eµ[u(f)].

The following example highlights several difficulties that arise for this updating rule: (i)
the induced %E need not be invariant biseparable, as it can violate monotonicity; and (ii) %E

may violate consequentialism. In particular, this implies (by Theorem 2) that this updating
rule does not in general satisfy C-dynamic consistency (Axiom 9).

Example 3. Take S = {1, 2, 3}, and a nonconstant affine utility u with range [0, 1]. Write
f = (f1, f2, f3) for the act f that yields the lottery fs in state s.

Suppose % is induced by an α-MEU representation (8) with α = 1/2, utility u, and belief-
set P = ∆(S). Then % equivalently admits a GMM representation (α(·), C, u), where:33

• The set of relevant priors is C = co
{

(1
2
, 1

2
, 0), (0, 1

2
, 1

2
), (1

2
, 0, 1

2
)
}
.

• The function α(·) is defined, for all f with nonconstant utility profile (u(f1), u(f2), u(f3)),
by

α(f) =
med(u(f))−min(u(f))

max(u(f))−min(u(f))
,

where max(u(f)) = max{u(f1), u(f2), u(f3)}, min(u(f)) = min{u(f1), u(f2), u(f3)},
and med(u(f)) is the median value in {u(f1), u(f2), u(f3)}. For instance, if f satisfies
u(f1) > u(f2) > u(f3), then α(f) = (u(f2)− u(f3))/(u(f1)− u(f3)).

Consider the event E = {1, 2}. The prior-by-prior update of C is CE = co {(1, 0, 0), (0, 1, 0)}.
Thus, the conditional preference %E induced by the above prior-by-prior updating rule for
GMM is represented by the functional

WE(f) = α(f) min{u(f1), u(f2)}+ (1− α(f)) max{u(f1), u(f2)}.

Consider two acts f and g such that u(f1) = u(g1) = 1, u(f2) = 1/2, and u(f3) = u(g2) =

u(g3) = 0. Then α(f) = 1/2 and α(g) = 0. Hence, WE(f) = 3/4 and WE(g) = 1. This
shows that g �E f despite the fact that f(s) %E g(s) for all s ∈ S. Thus, %E violates
monotonicity (Axiom 2) and hence is not an invariant biseparable preference.

Next, consider the same act f as above and some g̃ with g̃1 = f1, g̃2 = f2, and u(g̃3) = 1/2.
We have α(g̃) = 0, and hence WE(g̃) = 1 > WE(f), which implies g̃ �E f . This shows that
%E violates consequentialism (Axiom 13), as f(s) = g̃(s) for all s ∈ E = {1, 2}. N

33Indeed, note that the corresponding utility act functional I(v) = 1
2 mini=1,2,3 vi + 1

2 maxi=1,2,3 vi is
piecewise linear with three slopes given by µ ∈

{
( 1

2 ,
1
2 , 0), (0, 1

2 ,
1
2 ), ( 1

2 , 0,
1
2 )
}
, so C is the convex hull of these

three beliefs. Given this, α(·) is determined by setting α(f) minC µ·u(f)+(1−α(f)) maxC µ·u(f) = I(u(f)).
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An alternative approach to extend prior-by-prior updating to GMM’s representation is to
impose C-dynamic consistency on (%,%E). This uniquely pins down a conditional preference
%E, which is invariant biseparable (as can be seen from Theorem 2). Thus, the conditional
preference %E induced in this manner must admit some GMM representation (αE(·), CE, u).
However, we note that obtaining the conditional parameters αE(·) and CE directly from
the parameters α(·) and C of the ex-ante representation can be difficult, as αE(·) and CE

can each depend jointly on both α(·) and C (in a way that involves solving a fixed-point
problem).34 Notably, the following example illustrates that when α(·) 6≡ 0, 1, the set CE,
i.e., the set of relevant priors of the conditional preference %E, need not be equal to the
prior-by-prior update CE of the ex-ante set of relevant priors C:

Example 4. As in Example 3, let S = {1, 2, 3} and suppose the ex-ante preference % is an
α-MEU preference with α = 1/2, nonconstant utility u, and belief-set P = ∆(S). As noted,
the set of relevant priors of % is C = co

{
(1

2
, 1

2
, 0), (0, 1

2
, 1

2
), (1

2
, 0, 1

2
)
}
.

Again, consider event E = {1, 2}, but now suppose the conditional preference %E is
pinned down from % by C-dynamic consistency. Note that, for any act f with utility profile
(u(f1), u(f2), u(f3)), the condition fEp ∼ p is equivalent to

1

2
min{u(f1), u(f2), u(p)}+

1

2
max{u(f1), u(f2), u(p)} = u(p),

i.e., to
1

2
u(f1) +

1

2
u(f2) = u(p).

Thus, by C-dynamic consistency, the conditional preference %E is the SEU preference with
belief (1/2, 1/2, 0). Hence, the set of relevant priors of %E is CE = {(1/2, 1/2, 0)}, which is
a strict subset of the prior-by-prior update CE = co {(1, 0, 0), (0, 1, 0)} of C. N

S.2.2.2 Amarante

We first restate an example from Frick, Iijima, and Le Yaouanq (2020), which illustrates
that, under the α-MEU model, if belief-sets are updated prior-by-prior, then conditional
preferences are not uniquely pinned down from the ex-ante preference and instead depend
on the choice of ex-ante representation:

Example 5. Suppose S = {1, 2, 3}. Fix any nonconstant affine utility u, and consider the
34Specifically, to obtain (αE(·), CE) directly from (α(·), C), one must first obtain %E from % via C-

dynamic consistency. For each act f , this involves finding a constant act pf that solves the fixed point
problem fEpf ∼ pf , and then defining f %E g ⇔ pf %E pg.
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two α-MEU representations (α, P, u) and (α′, P ′, u), where

α =
3

4
, P = co

{
(
5

6
,

1

12
,

1

12
), (

1

6
,

5

12
,

5

12
)

}
,

α′ = 1, P ′ = co

{
(
2

3
,
1

6
,
1

6
), (

1

3
,
1

3
,
1

3
)

}
.

The two representations represent the same ex-ante preference %, since for all f ,

3

4
min

µ∈co{( 5
6
, 1
12
, 1
12

),( 1
6
, 5
12
, 5
12

)}
Eµ[u(f)] +

1

4
max

µ∈co{( 5
6
, 1
12
, 1
12

),( 1
6
, 5
12
, 5
12

)}
Eµ[u(f)]

= min
µ∈co{( 2

3
, 1
6
, 1
6

),( 1
3
, 1
3
, 1
3

)}
Eµ[u(f)].

Now, consider the event E = {1, 2}. The prior-by-prior Bayesian updates of P and P ′ are

PE = co

{
(
10

11
,

1

11
, 0), (

2

7
,
5

7
, 0)

}
, P ′E = co

{
(
4

5
,
1

5
, 0), (

1

2
,
1

2
, 0)

}
.

Consider an act f with utility profile u(f) = (1, 0, 0). The value of this act under the updated
model (α, PE, u) equals

3

4
min{10

11
,
2

7
}+

1

4
max{10

11
,
2

7
} =

34

77
,

and therefore the DM is ex-post indifferent between f and the constant act p with utility
34/77. However, under the updated model (α′, P ′E, u), the value of f equals 1/2, and thus
the DM strictly prefers p to f ex post under this model. This shows that (α, PE, u) and
(α′, P ′E, u) do not represent the same conditional preference. N

Now, consider an Amarante representation (2) with utility u and capacity ν defined on
some P ⊆ ∆(S). Natural updating rules for this representation seem less apparent: The
literature has considered several updating rules for the special case of Choquet expected
utility (see the survey by Gilboa and Marinacci, 2016), but directly applying these rules
to Amarante’s model would require one to observe ex-post preferences %Q conditional on
subsets Q ⊆ P of beliefs, rather than conditional on subsets E of states.

One potential extension of prior-by-prior updating might be to hold fixed the utility u
and consider the updated capacity νE, which is defined on the set PE by νE(Q) := ν({µ ∈
P : µE ∈ Q}) for each Q ⊆ PE; that is, νE transfers all weight that ν assigns to any prior
belief to its posterior. However, this rule gives rise to the same issue as in Example 5, i.e.,
conditional preferences are not uniquely pinned down from the ex-ante preference. To see

10



this, we use the observation from Amarante (2009) that any α-MEU representation (α, P, u)

is equal to the Amarante representation with utility u and capacity ν defined on P by
ν(Q) = α for all ∅ 6= Q ( P , ν(∅) = 0, and ν(P ) = 1. This induces an updated capacity
νE that is defined on PE and satisfies νE(Q) = α for all ∅ 6= Q ( PE, νE(∅) = 0, and
νE(PE) = 1. Thus, the induced conditional Amarante representation is equal to the α-MEU
representation (α, PE, u). Given this, the multiplicity of conditional preferences in Example 5
also applies to this updating rule for the Amarante model.

S.3 Minmax DSEU representation

While DSEU assumes that Optimism plays first and Pessimism plays second, this is equiv-
alent to a model with the opposite order of moves. We omit all proofs for this section, as
they can be obtained as minor modifications of the original proofs for DSEU.

Theorem S.3.1. Preference % satisfies Axioms 1–5 if and only if % admits a minmax
DSEU representation, i.e., there exists a belief-set collection Q and a nonconstant affine
utility u : ∆(Z)→ R such that

W (f) = min
Q∈Q

max
µ∈Q

Eµ[u(f)]

represents %.

Our construction of the maxmin DSEU representation in the proof of Theorem 1 uses
the belief-set collection P∗ = cl{P ∗φ : φ ∈ RS} with P ∗φ := {µ ∈ ∂I(0) : µ · φ ≥ I(φ)}.
Analogously, it can be shown that the belief-set collection Q∗ := cl{Q∗φ : φ ∈ RS} with
Q∗φ := {µ ∈ ∂I(0) : µ · φ ≤ I(φ)} yields a minmax DSEU representation. Paralleling
Section 2.3, it is straightforward to show that C := ∂I(0) again corresponds to the smallest
set of priors that is contained in co

⋃
Q∈QQ for all minmax DSEU representations Q of %,

with equality for representation Q∗.
While the different shades of ambiguity aversion in Section 3.1.1 are most conveniently

characterized using the maxmin DSEU representation, the minmax DSEU representation
is useful for characterizing ambiguity-seeking attitudes. Indeed, one can derive analogs of
Propositions 2 and 3 that characterize the ambiguity-seeking counterparts of Axioms 6, 7,
and 8 in terms of the intersection of belief-sets in Q.
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S.4 Source dependence and the smooth model

Recall that under Klibanoff, Marinacci, and Mukerji’s (2005) (henceforth, KMM’s) smooth
model, % is represented by the functional

W (f) =

ˆ
φ(u(f) · µ) dν(µ), (30)

for some Borel probability measure ν ∈ ∆(∆(S)) over beliefs, nonconstant affine u : ∆(Z)→
R, and strictly increasing φ : u(Z)→ R. For expositional simplicity, we consider Z = [0, 1].
Assume that u is strictly increasing and continuous on Z with u(0) = 0, and that φ is twice
continuously differentiable with φ′(0), φ′′(0) 6= 0.

Analogous to Corollary 4 for the α-MEU model, the following claim establishes a sense
in which the smooth model is incompatible with source-dependent negative and positive
ambiguity attitudes:

Claim 1. Suppose that % admits a representation (30). Then there do not exist events
E,F,G ⊆ S such that for all x > 0,

xE0 � xF0 � xG0 and xEc0 � xF c0 � xGc0 (31)

and such that µ(F ) is constant across all µ in the support of ν.35

Proof. Suppose toward a contradiction that such events E,F,G exist. For each event A ⊆ S

and ∆ ∈ [0, u(1)], let

WA(∆) :=

ˆ
φ(µ(A)∆) dν(µ).

Then W (xA0) = WA(u(x)) for all x > 0. Thus, (31) implies that, for all ∆ ∈ [0, u(1)],

WE(∆) > WF (∆) > WG(∆) and WEc(∆) > WF c(∆) > WGc(∆). (32)

Observe that, for each A, we have WA(0) = φ(0), and

∂

∂∆
WA(∆) =

ˆ
φ′(µ(A)∆)µ(A) dν(µ)

= φ′(0)

ˆ
µ(A) dν(µ) at ∆ = 0,

35See Theorem 3 in KMM for a behavioral characterization of such unambiguous events F .
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∂2

∂∆2
WA(∆) =

ˆ
φ′′(µ(A)∆)µ(A)2 dν(µ)

= φ′′(0)

ˆ
µ(A)2 dν(µ) at ∆ = 0.

Let α be the constant such that α = µ(F ) for all µ in the support of ν. Then, performing
a first-order Taylor approximation, the first inequalities in (32) imply

´
µ(E) dν(µ) ≥ α ≥´

µ(G) dν(µ). Likewise, the second inequalities in (32) imply
´
µ(Ec) dν(µ) ≥ 1 − α ≥´

µ(Gc) dν(µ). Thus, ˆ
µ(E) dν(µ) = α =

ˆ
µ(G) dν(µ). (33)

Note that it is not the case that µ(E) = α for ν-almost every µ, as this would imply
WE(∆) = WF (∆), contradicting WE(∆) > WF (∆). Likewise, it is not the case that µ(G) =

α for ν-almost every µ, as this would contradict WF (∆) > WG(∆). Thus, by Jensen’s
inequality ˆ

µ(E)2 dν(µ),

ˆ
µ(G)2 dν(µ) > α2.

Hence, performing a second-order Taylor approximation, WE(∆) > WF (∆) and (33) implies
that φ′′(0) > 0. Likewise, WF (∆) > WG(∆) and (33) implies that φ′′(0) < 0. This is a
contradiction.
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