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Abstract

This paper examines regression-adjusted estimation and inference of unconditional quantile

treatment effects (QTEs) under covariate-adaptive randomizations (CARs). Datasets from field

experiments usually contain extra baseline covariates in addition to the strata indicators. We

propose to incorporate these extra covariates via auxiliary regressions in the estimation and

inference of unconditional QTEs. We establish the consistency, limit distribution, and valid-

ity of the multiplier bootstrap of the QTE estimator under CARs. The auxiliary regression

may be estimated parametrically, nonparametrically, or via regularization when the data are

high-dimensional. Even when the auxiliary regression is misspecified, the proposed bootstrap

inferential procedure still achieves the nominal rejection probability in the limit under the null.

When the auxiliary regression is correctly specified, the regression-adjusted estimator achieves

the minimum asymptotic variance. We also derive the optimal pseudo true values for the poten-

tially misspecified parametric model that minimize the asymptotic variance of the corresponding

QTE estimator. Our estimation and inferential methods can be implemented without tuning

parameters and they allow for common choices of auxiliary regressions such as linear, probit

and logit regressions despite the fact that these regressions may be misspecified. Finite-sample

performance of the new estimation and inferential methods is assessed in simulations and an

empirical application studying the impact of child health and nutrition on educational outcomes

is included.
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1 Introduction

Covariate-adaptive randomizations (CARs) have recently seen growing use in a wide variety of

randomized experiments in economic research. In CAR modeling, units are first stratified using

some baseline covariates, and then, within each stratum, the treatment status is assigned (inde-

pendent of covariates) to achieve the balance between the numbers of treated and control units.

Researchers often use the randomized experiments to estimate quantile treatment effects (QTEs).

The QTE has a useful role as a robustness check for the average treatment effect (ATE) and char-

acterizes any heterogeneity that may be present in the sign and magnitude of the treatment effects

according to their position within the distribution of outcomes. See, for example, Bitler, Gelbach,

and Hoynes (2006), Muralidharan and Sundararaman (2011), Duflo, Greenstone, Pande, and Ryan

(2013), Banerjee, Duflo, Glennerster, and Kinnan (2015), Crépon, Devoto, Duflo, and Parienté

(2015), and Campos, Frese, Goldstein, Iacovone, Johnson, McKenzie, and Mensmann (2017).

Two practical issues arise in estimation and inference concerning QTEs under CARs. First,

other covariates in addition to the strata indicators are collected during the experiment. In the

estimation of ATE, the usual practice is to run a simple linear OLS regression of the outcome on

treatment status, strata indicators, additional covariates, and interaction terms, as in the analysis

of covariance (ANCOVA). However, because the quantile function is a nonlinear operator, even

when the treatment status is completely randomly assigned, a similar linear quantile regression

is unable to consistently estimate the unconditional QTE. Second, in order to achieve balance in

the respective number of treated and control units within each stratum, treatment statuses under

CARs usually exhibit a (negative) cross-sectional dependence. Standard inference procedures that

rely on cross-sectional independence are therefore conservative and lack power. These two issues

raise questions of how to use the additional covariates in the estimation of QTE and how to conduct

valid statistical procedures that mitigate conservatism in inference.

The present paper addresses these issues by including additional covariates via auxiliary re-

gressions, deriving the limit theory, and establishing the validity of multiplier bootstrap inference

for the corresponding regression-adjusted QTE estimator under CARs. Even under potential mis-

specification of the auxiliary regressions, the QTE estimator is shown to maintain consistency and

the multiplier bootstrap procedure to have asymptotic size equal to the nominal level under the

null. When the auxiliary regression is correctly specified, the QTE estimator achieves minimum

asymptotic variance. These results are built on high-level conditions concerning the estimates of

the auxiliary regressions. The conditions are then verified for auxiliary regressions that are es-

timated (1) parametrically, (2) nonparametrically, or (3) via regularization in high dimensional

cases. Specifically, for (1) we derive the pseudo true values of the parameters that minimize the

2



asymptotic variance of the QTE estimator and verify the validity of quasi maximum likelihood

estimation of the auxiliary regressions. For (2) and (3), we consider logistic sieve regression and

logistic regression under `1 penalization when the additional covariates are high-dimensional. The

limit theory holds uniformly over a compact set of quantile indexes, implying that our multiplier

bootstrap procedure can be used to conduct inference on QTEs involving single, multiple, or a

continuum of quantile indexes.

From a practical perspective, our estimation and inferential methods have four advantages.

First, they allow for common choices of auxiliary regressions such as linear probability, logit, and

probit regressions, even though these regressions may be misspecified. Second, the methods can be

implemented without tuning parameters. Third, our (bootstrap) estimator can be directly com-

puted via the subgradient condition, and the auxiliary regressions need not be re-estimated in the

bootstrap procedure, both of which save considerable computation time. Last, our estimation and

inference methods can be implemented without the knowledge of the exact treatment assignment

rule used in the experiment. Such information may not be available when researchers are using

an experiment that was run in the past and the randomization procedure may not have been fully

described. It also occurs in subsample analysis, where sub-groups are defined using variables that

may have not been used to form the strata and the treatment assignment rule for each sub-group

becomes unknown.

The contributions in the present paper relate to two strands of the present literature. The first

is causal inference under CARs. Shao, Yu, and Zhong (2010) showed that the usual two-sample

t-test for the ATE is conservative under CARs and proposed a covariate-adaptive bootstrap to

conduct inference. Bugni, Canay, and Shaikh (2018) extended the framework to the nonparametric

setup, proposed an adjusted standard error for the ATE estimator, and considered a permutation

test. Zhang and Zheng (2020) showed that, under CARs, the standard bootstrap inference for the

QTE is conservative under the null and lacks power under the alternative. Instead, they suggested

multiplier bootstrapping the inverse propensity score weighted (IPW) estimator of the QTE and

showed that the distribution of the bootstrap estimator can mimic the original one under CARs.

Additional studies in this literature include Hu and Hu (2012); Shao and Yu (2013); Ma, Hu, and

Zhang (2015); Ma, Qin, Li, and Hu (2018); Ye (2018); Bugni, Canay, and Shaikh (2019); Ye and

Shao (2020); Bugni and Gao (2021); Olivares (2021). Our work complements these studies by

considering estimation and bootstrap inference of the QTE with regression adjustments.

A second strand of research deals with regression adjustment of treatment effect estimation in

randomized experiments. Freedman (2008a,b) pointed out that ordinary least squares regression

adjustment in randomized experiments can degrade the precision of the ATE estimator. Lin (2013)

reexamined Freedman’s critique and pointed out that linear regression adjustment does not lead
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to loss of precision when a full set of interactions between the treatment status and covariates

is included. Lei and Ding (2021) extended Lin (2013) to situations where the dimension of the

covariates can grow with the sample size at a certain rate. Bloniarz, Liu, Zhang, Sekhon, and

Yu (2016) provided a further extension to cases where the dimension of the covariates exceeds the

sample size, proposing the use of Lasso in the auxiliary regression. Ye, Yi, and Shao (2020) and

Ma, Tu, and Liu (2020) studied regression adjustment of ATE estimates under CARs. Liu, Tu,

and Ma (2020) established a general theory for regression-adjusted ATE estimation under CARs,

incorporating OLS and Lasso estimation as special cases. The other works in this branch include,

but are limited to, Lu (2016), Fogarty (2018), Li and Ding (2020), Liu and Yang (2020), Negi

and Wooldridge (2020), and Zhao and Ding (2020). All of these papers focus on ATE. Zhang,

Tsiatis, and Davidian (2008) considered the regression-adjustment for a semiparametric model and

linked the estimation method with the theory of semiparametric efficiency. The present paper

complements the above work by studying QTE regression, which is nonparametrically specified,

with both linear (linear probability model) and nonlinear (logit and probit models) regression

adjustments. Similar to Liu et al. (2020), we establish a general theory for regression adjustment

that allows for parametric, nonparametric, and regularized estimation of the auxiliary regressions. A

further contribution to the literature is to establish the validity of a multiplier bootstrap inferential

procedure that does not suffer from conservatism under CARs.

The present paper also comes under the umbrella of a growing literature that studies estimation

and inference in randomized experiments. In this connection, we mention the work of Hahn, Hirano,

and Karlan (2011); Athey and Imbens (2017); Abadie, Chingos, and West (2018); Tabord-Meehan

(2018); Bai, Shaikh, and Romano (2019); Bai (2019); Jiang, Liu, Phillips, and Zhang (2021) among

many others.

The remainder of the paper is organized as follows. Section 2 describes the model setup and

notation. Section 3 develops the asymptotic properties of our regression-adjusted QTE estimator.

Section 4 studies the validity of the multiplier bootstrap inference. Section 5 considers parametric,

nonparametric, and regularized estimation of the auxiliary regressions. Section 6 provides compu-

tational details and recommendations for practitioners. Section 7 reports simulation results, and

an empirical application of our methods to the impact of child health and nutrition on educational

outcomes is provided in Section 8. Section 9 concludes. Proofs of all results and some additional

simulations are given in the Online Supplement.
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2 Setup and Notation

Potential outcomes for treated and control groups are denoted by Y (1) and Y (0), respectively.

Treatment status is denoted by A, with A = 1 indicating treated and A = 0 untreated. The

stratum indicator is denoted by S and is based on how the researcher implements the covariate-

adaptive randomization. The support of S is denoted by S, a finite set. After randomization,

the researcher can observe the data {Yi, Si, Ai, Xi}ni=1 where Yi = Yi(1)Ai + Yi(0)(1 − Ai) is the

observed outcome and Xi contains extra covariates besides Si in the dataset. The support of X

is denoted Supp(X). In this paper, we allow Xi and Si to be dependent. For 1 ≤ i ≤ n and

[n] = {1, 2, ...n}, let p(s) = P(Si = s), n(s) =
∑

i∈[n] 1{Si = s}, n1(s) =
∑

i∈[n]Ai1{Si = s}, and

n0(s) = n(s) − n1(s). We make the following assumptions on the data generating process (DGP)

and the treatment assignment rule.

Assumption 1. (i) {Yi(1), Yi(0), Si, Xi}ni=1 is i.i.d.

(ii) {Yi(1), Yi(0), Xi}ni=1 ⊥⊥ {Ai}ni=1|{Si}ni=1.

(iii) Suppose p(s) is fixed w.r.t. n and is positive for every s ∈ S.

(iv) Let π(s) denote the target fraction of treated units in stratum s. Then, c < mins∈S π(s) ≤
maxs∈S π(s) < 1 − c for some constant c ∈ (0, 0.5) and Dn(s)

n(s) = op(1) for s ∈ S, where

Dn(s) =
∑n

i=1(Ai − π(s))1{Si = s}.

Several remarks are in order. First, Assumption 1(i) allows for the cross-sectional dependence

among treatment statuses ({Ai}i∈[n]), thereby accommodating many covariate-adaptive random-

ization schemes as discussed below. Second, although treatment statuses are cross-sectionally de-

pendent, they are independent of the potential outcomes and additional covariates conditional on

the stratum indicator S. Therefore, data are still experimental rather than observational. Third,

Assumption 1(iii) requires the size of each stratum to be proportional to the sample size. Fourth,

we call π(s) the target fraction of treated units in stratum s. Similar to Bugni et al. (2019), we

allow the target fractions to differ across strata. Just as for the overlapping support condition in

an observational study, the target fractions are assumed to be bounded away from zero and one. In

randomized experiments, this condition usually holds becaise investigators can determine π(s) in

the design stage. In fact, in most CARs, π(s) = 0.5 for s ∈ S. Fifth, Dn(s) represents the degree

of imbalance between the real and target factions of treated units in the sth stratum. Bugni et al.

(2018) show that Assumption 1(iv) holds under several covariate-adaptive treatment assignment

rules such as simple random sampling (SRS), biased-coin design (BCD), adaptive biased-coin de-

sign (WEI), and stratified block randomization (SBR). For completeness, we briefly repeat their

descriptions below. Note we only require Dn(s)/n(s) = op(1), which is weaker than the assumption

5



imposed by Bugni et al. (2018) but the same as that imposed by Bugni et al. (2019) and Zhang

and Zheng (2020).

Example 1 (SRS). Let {Ai}ni=1 be drawn independently across i and of {Si}ni=1 as Bernoulli

random variables with success rate π, i.e., for k = 1, · · · , n,

P
(
Ak = 1

∣∣{Si}ni=1, {Aj}k−1
j=1

)
= P(Ak = 1) = π(Si).

Then, Assumption 1(iv) holds.

Example 2 (WEI). This design was first proposed by Wei (1978). Let nk−1(Sk) =
∑k−1

i=1 1{Si =

Sk}, Dk−1(s) =
∑k−1

i=1

(
Ai − 1

2

)
1{Si = s}, and

P
(
Ak = 1

∣∣{Si}ki=1, {Ai}k−1
i=1

)
= φ

(
Dk−1(Sk)

nk−1(Sk)

)
,

where φ(·) : [−1, 1] 7→ [0, 1] is a pre-specified non-increasing function satisfying φ(−x) = 1− φ(x).

Here, D0(S1)
0 is understood to be zero. Then, Bugni et al. (2018) show that Assumption 1(iv) holds

with π(s) = 1
2 . Recently, Hu (2016) generalized the adaptive biased-coin design to multiple treatment

values and unequal target factions.

Example 3 (BCD). The treatment status is determined sequentially for 1 ≤ k ≤ n as

P
(
Ak = 1|{Si}ki=1, {Ai}k−1

i=1

)
=


1
2 if Dk−1(Sk) = 0

λ if Dk−1(Sk) < 0

1− λ if Dk−1(Sk) > 0,

where Dk−1(s) is defined as above and 1
2 < λ ≤ 1. Then, Bugni et al. (2018) show that Assumption

1(iv) holds with π = 1
2 .

Example 4 (SBR). For each stratum, bπ(s)n(s)c units are assigned to treatment and the rest are

assigned to control. Then obviously Assumption 1(iv) holds as n(s)→∞.

Denote the τth quantile of Y (a) by qa(τ) for a = 0, 1. We are interested in estimating and

inferring the τth quantile treatment effect defined as q(τ) = q1(τ)− q0(τ). The testing problems of

interest involve single, multiple, or even a continuum of quantile indexes, as in the following null

hypotheses

H0 : q(τ) = q versus q(τ) 6= q,

H0 : q(τ1)− q(τ2) = q versus q(τ1)− q(τ2) 6= q, and

H0 : q(τ) = q(τ) ∀τ ∈ Υ versus q(τ) 6= q(τ) for some τ ∈ Υ,

for some pre-specified value q or function q(τ), where Υ is some compact subset of (0, 1).
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3 Estimation

Our estimator is based on the doubly robust moments for the quantiles of Y (1) and Y (0). Define

ma(τ, s, x) = τ−P(Yi(a) ≤ qa(τ)|Si = s,Xi = x). Firpo (2007), Belloni, Chernozhukov, Fernández-

Val, and Hansen (2017), and Kallus, Mao, and Uehara (2019) showed that the doubly robust

moment for q1(τ) is

E
[
Ai(τ − 1{Yi(1) ≤ q})

π(Si)
− Ai − π(Si)

π(Si)
m1(τ, Si, Xi)

]
= 0, (3.1)

where π(s) and m1(τ, s, x) are the working models for the propensity score (π(s)) and conditional

probability (m1(τ, s, x)), respectively. In CAR, the propensity score is usually known or can be

consistently estimated by π̂(s) = n1(s)/n(s). Therefore, π(s) is correctly specified as π(s). Then,

due to the double robustness, even though the working model m1(τ, s, x) is misspecified, (3.1) still

identifies the true unconditional quantile q1(τ). Therefore, it is expected that the estimator of q1(τ)

based on the sample analogue of (3.1) is still consistent. In addition, (3.1) also satisfies the Neyman

orthogonality condition w.r.t. the working models π(·) and m1(·). This implies our QTE estimator

still has the usual parametric rate of convergence even when the estimators of the working models

converge at a nonparametric rate.

To proceed, we note that (3.1) is the first-order condition of the optimization problem

min
q

E
[
Ai
π(Si)

ρτ (Yi − q) +
Ai − π(Si)

π(Si)
m1(τ, Si, Xi)q

]
, (3.2)

where ρτ (u) = u(τ − 1{u ≤ 0}) is the usual check function. Denote m̂1(·) as a consistent estimator

of m1(·) obtained via an auxiliary regression. By the sample analog of (3.2), our regression-adjusted

estimator of q1(τ), denoted as q̂adj1 (τ), can be defined as

q̂adj1 (τ) = arg min
q

∑
i∈[n]

[
Ai
π̂(Si)

ρτ (Yi − q) +
(Ai − π̂(Si))

π̂(Si)
m̂1(τ, Si, Xi)q

]
. (3.3)

Here, we emphasize that m̂1(·) may not consistently estimate the true specification m1(·). Similarly,

we can define

q̂adj0 (τ) = arg min
q

∑
i∈[n]

[
1−Ai

1− π̂(Si)
ρτ (Yi − q)−

(Ai − π̂(Si))

1− π̂(Si)
m̂0(τ, Si, Xi)q

]
, (3.4)

where m̂0(·) is a consistent estimator of m0(·). Then, our regression adjusted QTE estimator is

q̂adj(τ) = q̂adj1 (τ)− q̂adj0 (τ). (3.5)
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We use the estimated propensity score π̂(s) even when π(s) is known. Consider the special case

of our setup for which there is no regression adjustment (m̂a(·) = 0) and π(s) = 1/2 for s ∈ S.

In the design stage, researchers can use simple random sampling (SRS) or CAR. In the analysis

stage, researchers can choose the difference in quantile estimator (DIQ) which is just the difference

of the τth quantiles of the treated and control groups or the IPW estimator with π̂(s) defined in

(3.3)–(3.5). Note when π(s) = 1/2, the DIQ estimator can be viewed as an IPW estimator in

which π̂(s) is replaced by the true propensity score π(s) = 1/2. In this simplified setting, Zhang

and Zheng (2020) derived the asymptotic variances of two estimators under SRS and CAR, which

can be summarized below.

Table 1: Asymptotic Variance of DIQ and IPW estimators
DIQ IPW

SRS Σ(1/4) Σ(0)
CAR(δ) Σ(δ) Σ(0)

In Table 1, the asymptotic variance Σ(δ) is a monotone increasing function of δ and δ ∈
[0, 1/4] indicates the balance level achieved by the CAR scheme. When δ = 0, the CAR achieves

the strong balance. For the four examples of CARs mentioned earlier, we have δ(SRS) = 1
4 ,

δ(WEI) = 1
4(1 − φ′(0))−1, δ(BCD) = 0, and δ(SBR) = 0. From Table 1, we can make two

observations. First, the asymptotic variance of the QTE estimator with π̂(s) (i.e., IPW) is no

larger than that with π(s) (i.e., DIQ). Second, when we conduct multiplier bootstrap inference,

the bootstrap weights are independent cross-sectionally. Therefore, conditionally on the data, the

observations in the bootstrap sample mimic the SRS scheme. The bootstrap variance for the

DIQ estimator is conservative because Σ(1/4) ≥ Σ(δ) while it is not for the IPW estimator. This

motivates us to use the IPW estimator with the estimated propensity score π̂(s) for both estimation

and bootstrap inference, even when π(s) is known.

In this and the next sections, we establish the limit distribution and validity of bootstrap

inference for q̂adj(τ) under high-level conditions on (ma(·), m̂a(·))a=0,1. In Section 5, we verify these

conditions when (ma(·))a=0,1 are correctly or incorrectly specified and (m̂a(·))a=0,1 are computed

parametrically, nonparametrically, or via regularization when the covariate X is high-dimensional.

Assumption 2. For a = 0, 1, denote fa(·), fa(·|s), and fa(·|x, s) as the PDFs of Yi(a), Yi(a)|Si = s,

and Yi(a)|Si = s,Xi = x, respectively.

(i) fa(qa(τ)) and fa(qa(τ)|s) are bounded and bounded away from zero uniformly over τ ∈ Υ and

s ∈ S, where Υ is a compact subset of (0, 1).

(ii) fa(·) and fa(·|s) are Lipschitz over {qj(τ) : τ ∈ Υ}.

(iii) supy∈<,x∈Supp(X),s∈S fa(y|x, s) <∞.

8



Assumption 3. (i) For a = 0, 1, there exists a function ma(τ, x, s) such that for ∆a(τ, s,Xi) =

m̂a(τ, s,Xi)−ma(τ, s,Xi), we have

sup
τ∈Υ,s∈S

∣∣∣∣
∑

i∈I1(s) ∆a(τ, s,Xi)

n1(s)
−
∑

i∈I0(s) ∆a(τ, s,Xi)

n0(s)

∣∣∣∣ = op(n
−1/2),

where Ia(s) = {i ∈ [n] : Ai = a, Si = s}.

(ii) For a = 0, 1, let Fa = {ma(τ, Si, Xi) : τ ∈ Υ} with an envelope Fa,i. Then, maxs∈S E(|Fa,i|q|Si =

s) <∞ for q > 2 and there exist fixed constants (α, v) > 0 such that

sup
Q
N(Fa, eQ, ε||Fa||Q,2) ≤

(α
ε

)v
, ∀ε ∈ (0, 1],

where N(·) denotes the covering number, eQ(f, g) = ||f − g||Q,2, and the supremum is taken

over all finitely discrete probability measures Q.

(iii) For any τ1, τ2 ∈ Υ, there exists a constant C > 0 such that E((ma(τ2, Si, Xi)−ma(τ1, Si, Xi))
2|Si =

s) ≤ C|τ2 − τ1|.

Several remarks are in order. First, Assumption 2 is standard in the quantile regression lit-

erature. We do not need fa(y|x, s) to be bounded away from zero because we are interested in

the unconditional quantile qa(τ), which is uniquely defined as long as the unconditional density

fa(qa(τ)) is positive. Second, Assumption 3(i) is high-level. If we consider a linear probability

model such that ma(τ, s,Xi) = τ −X>i θa,s(τ) and m̂a(τ, s,Xi) = τ −X>i θ̂a,s(τ), then Assumption

3(i) is equivalent to

sup
τ∈Υ,a=0,1,s∈S

∣∣∣∣∣∣
(∑

i∈I1(s)Xi

n1(s)
−
∑

i∈I0(s)Xi

n0(s)

)> (
θ̂a,s(τ)− θa,s(τ)

)∣∣∣∣∣∣ = op(n
−1/2),

which is similar to Liu et al. (2020, Assumption 3) and holds intuitively if θ̂a,s(τ) is a consistent es-

timator of the pseudo true value θa,s(τ). Third, Assumptions 3(ii) and 3(iii) impose mild regularity

conditions on ma(·). They hold if

sup
a=0,1,s∈S,x∈Supp(X)

|ma(τ2, s, x)−ma(τ1, s, x)| ≤ L|τ2 − τ1|.

for some constant L > 0. Such Lipschitz continuity holds for the true specification (ma(·) = ma(·))
under Assumption 2. Fourth, we provide primitive sufficient conditions for Assumption 3 in Section

5.

Theorem 3.1. Suppose Assumptions 1–3 hold. Then, uniformly over τ ∈ Υ,

√
n(q̂adj(τ)− q(τ)) B(τ),
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where B(τ) is a tight Gaussian process with covariance kernel Σ(τ, τ ′) defined in Section F of the

Online Supplement. In addition, for any finite set of quantile indexes (τ1, · · · , τK), the asymp-

totic covariance matrix of (q̂adj(τ1), · · · , q̂adj(τK)) is denoted as [Σ(τk, τl)]k,l∈[K], where we use

[Akl]k,l∈[K] to denote a K × K matrix whose (k, l)th entry is Akl. Then, [Σ(τk, τl)]k,l∈[K] is min-

imized in the matrix sense1 when the auxiliary regressions are correctly specified at (τ1, · · · , τK),

i.e., ma(τk, s, x) = ma(τk, s, x) for a = 0, 1, k ∈ [K], and all (s, x) in the joint support of (Si, Xi).

Two remarks are in order. First, the expression for the asymptotic variance of q̂adj(τ) can be

found in the proof of Theorem 3.1. It is the same whether the randomization scheme achieves

strong balance or not. This robustness is due to the use of the estimated propensity score (π̂(s)).

The same phenomenon was discovered in the simplified setting by Zhang and Zheng (2020) as

shown in the (2, 2) entry of Table 1. Second, the asymptotic variance of q̂adj(τ) depends on

(fa(qa(τ)),ma(τ, s, x))a=0,1, which are infinite-dimensional nuisance parameters. To conduct an-

alytic inference, it is necessary to nonparametrically estimate these nuisance parameters, which

requires tuning parameters. Nonparametric estimation can be sensitive to the choice of tuning

parameters and rule-of-thumb tuning parameter selection may not be appropriate for every data

generating process (DGP) or every quantile. Use of cross-validation in selecting the tuning param-

eters is possible in principle but in practice time-consuming. These practical difficulties of analytic

methods of inference provide strong motivation to investigate bootstrap inference procedures that

are much less reliant on tuning parameters.

4 Multiplier Bootstrap Inference

We approximate the asymptotic distributions of q̂adj(τ) via the multiplier bootstrap. Let {ξi}ni=1 be

a sequence of bootstrap weights which will be specified later. Define nw1 (s) =
∑n

i=1 ξiAi1{Si = s},
nw1 (s) =

∑n
i=1 ξi(1 − Ai)1{Si = s}, nw(s) =

∑n
i=1 ξi1{Si = s} = nw1 (s) + nw0 (s), and π̂w(s) =

nw1 (s)/nw(s). The multiplier bootstrap counterpart of q̂adj(τ) is denoted by q̂w(τ) and defined as

q̂w(τ) = q̂w1 (τ)− q̂w0 (τ),

where

q̂w1 (τ) = arg min
q

∑
i∈[n]

ξi

[
Ai

π̂w(Si)
ρτ (Yi − q) +

(Ai − π̂w(Si))

π̂w(Si)
m̂1(τ, Si, Xi)q

]
, (4.1)

and

q̂w0 (τ) = arg min
q

∑
i∈[n]

ξi

[
1−Ai

1− π̂w(Si)
ρτ (Yi − q)−

(Ai − π̂w(Si))

1− π̂w(Si)
m̂0(τ, Si, Xi)q

]
. (4.2)

1For two symmetric matrices A and B, we say A is greater than or equal to B if A−B is positive semidefinite.
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Two comments on implementation are noted here: (i) we do not re-estimate m̂a(·) in the bootstrap

sample, which is similar to the multiplier bootstrap procedure proposed by Belloni et al. (2017);

and (ii) in Section 6 we propose a way to directly compute (q̂wa (τ))a=0,1 from the subgradient

conditions of (4.1) and (4.2), thereby avoiding the optimization. Both features considerably reduce

computation time of our bootstrap procedure.

Next, we specify the bootstrap weights.

Assumption 4. Suppose {ξi}ni=1 is a sequence of nonnegative i.i.d. random variables with unit

expectation and variance and a sub-exponential upper tail.

Assumption 5. Recall ∆a(τ, s, x) defined in Assumption 3. We have, for a = 0, 1,

sup
τ∈Υ,s∈S

∣∣∣∣
∑

i∈I1(s) ξi∆a(τ, s,Xi)

nw1 (s)
−
∑

i∈I0(s) ξi∆a(τ, s,Xi)

nw0 (s)

∣∣∣∣ = op(n
−1/2).

We require the bootstrap weights to be nonnegative so that the objective functions in (4.1)

and (4.2) are convex. In practice, we generate ξi independently from the standard exponential

distribution. Assumption 5 is the bootstrap counterpart of Assumption 3. Continuing with the

linear model example considered after Assumption 3, Assumption 5 requires

sup
τ∈Υ,a=0,1,s∈S

∣∣∣∣∣∣
(∑

i∈I1(s) ξiXi

n1(s)
−
∑

i∈I0(s) ξiXi

n0(s)

)> (
θ̂a,s(τ)− θa,s(τ)

)∣∣∣∣∣∣ = op(n
−1/2),

which holds if θ̂a,s(τ) is a uniformly consistent estimator of θa,s(τ).

Theorem 4.1. Suppose Assumptions 1–5 hold. Then, uniformly over τ ∈ Υ and conditionally on

data,

√
n(q̂w(τ)− q̂adj(τ)) B(τ),

where B(τ) is the same Gaussian process defined in Theorem 3.1.2

Theorem 4.1 shows the limit distribution of the bootstrap estimator conditional on data can

approximate that of the original estimator uniformly over τ ∈ Υ. This provides the theoretical foun-

dation for our bootstrap confidence intervals and bands described in Section 6. We also emphasize

2We view
√
n(q̂w(τ) − q̂adj(τ)) and B(τ) as two processes indexed by τ ∈ Υ and denote them as Gn and G,

respectively. Then, following van der Vaart and Wellner (1996, Chapter 2.9), we say Gn weakly converges to G
conditionally on data and uniformly over τ ∈ Υ if

sup
h∈BL1

|Eξh(Gn)− Eh(G)| p−→ 0,

where BL1 is the set of all functions h : `∞(Υ) 7→ [0, 1] such that |h(z1)− h(z2)| ≤ |z1 − z2| for every z1, z2 ∈ `∞(Υ),
and Eξ denotes expectation with respect to the bootstrap weights {ξ}ni=1.
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that the distribution of the bootstrap estimator conditional on data can consistently approximate

that of the original estimator under CAR because the estimated propensity score, i.e., π̂(s), is used

in (4.1) and (4.2).

5 Auxiliary Regressions

In this section, we consider three approaches to estimation for the auxiliary regressions: (1) a para-

metric method, (2) a nonparametric method, and (3) a regularization method. For the parametric

method, we do not require the model to be correctly specified. We propose ways to estimate the

pseudo true value of the auxiliary regression. For the other two methods, we (nonparametrically)

estimate the true model so that the asymptotic variance of q̂adj(τ) achieves its minimum based on

Theorem 3.1. For all three methods, we verify Assumptions 3 and 5.

5.1 Parametric Method

In this section, we consider the case where Xi is finite-dimensional. Recall ma(τ, Si, Xi) ≡ τ −
P (Yi(a) ≤ qa(τ)|Xi, Si) for a = 0, 1. We propose to model P (Yi(a) ≤ qa(τ)|Xi, Si = s) as Λa,s(Xi, θa,s(τ))

so that our model for ma(τ, Si, Xi) is

ma(τ, Si, Xi) = τ −
∑
s∈S

1{Si = s}Λa,s(Xi, θa,s(τ)) (5.1)

We propose to estimate θa,s(τ) by θ̂a,s(τ). The corresponding m̂(τ, Si, Xi) can be written as

m̂a(τ, Si, Xi) = τ −
∑
s∈S

1{Si = s}Λa,s(Xi, θ̂a,s(τ)) (5.2)

Assumption 6. (i) Suppose there exist a positive random variable Li and a positive constant

C > 0 such that

sup
τ∈Υ,a=0,1,s∈S

||∂θΛa,s(Xi, θa,s(τ))||2 ≤Li,

sup
τ∈Υ,a=0,1,s∈S

|Λa,s(Xi, θa,s(τ))| ≤Li,

and E(Lqi |Si = s) <∞.

(ii) Suppose supτ1,τ2∈Υ,a=0,1,s∈S |θa,s(τ1)− θa,s(τ2)| ≤ C|τ1 − τ2|.

(iii) There exists θ̂a,s(τ) such that supτ∈Υ,a=0,1,s∈S ||θ̂a,s(τ)− θa,s(τ)||2
p−→ 0.

Theorem 5.1. Denote q̂par(τ) and q̂par,w(τ) as the τ th QTE estimator and its multiplier bootstrap

counterpart defined in Sections 3 and 4, respectively, with ma(τ, Si, Xi) and m̂a(τ, Si, Xi) defined

in (5.1) and (5.2), respectively. Suppose Assumptions 1, 2, 4, and 6 hold. Then, Assumptions 3

12



and 5 hold, which further implies Theorems 3.1 and 4.1 hold for q̂par(τ) and q̂par,w(τ), respectively.

Several remarks are in order. First, common choices for auxiliary regressions are linear probabil-

ity, logistic, and probit regressions, corresponding to Λa,s(Xi, θa,s(τ)) = X>i θa,s(τ), λ( ~X>i θa,s(τ)),

and Φ( ~X>i θa,s(τ)), respectively, where λ(·) and Φ(·) are the logistic and standard normal CDFs,

respectively, and ~Xi = (1, X>i )>. For the linear regression case, we do not include the intercept

because our regression adjusted estimators ((3.3) and (3.4)) and their bootstrap counterparts ((4.1)

and (4.2)) are numerically invariant to location shift of the auxiliary models. Second, Theorem 5.1

shows that, as long as the estimator of the pseudo true value (θ̂a,s(τ)) is uniformly consistent, under

mild regularity conditions, all the general estimation and bootstrap inference results established

in Sections 3 and 4 hold. Third, it is still in question what pseudo true value one should target.

We note that the asymptotic variance (denoted as σ2) of the q̂adj(τ) is a function of the working

model (ma(τ, s, ·)), which is further indexed by its parameters (denoted as {ta,s(τ)}a=0,1,s∈S), i.e.,

σ2 = σ2({ma(τ, s, ·; ta,s)}a=0,1,s∈S). One option is to target the pseudo true value that minimizes

σ2({ma(τ, s, ·; ta,s)}a=0,1,s∈S), i.e.,

{θa,s(τ)}a=0,1,s∈S ∈ arg min
ta,s:a=0,1,s∈S

σ2({ma(τ, s, ·; ta,s)}a=0,1,s∈S).

Theorem 5.2 below characterizes such {θa,s(τ)}a=0,1,s∈S . We then consider the consistent estimator

of these pseudo true values for linear and logistic models in Propositions 5.1 and 5.2, respec-

tively. Fourth, as the working model may be misspecified, the pseudo true value that minimizes

σ2({ma(τ, s, ·; ta,s)}a=0,1,s∈S) may not be the best parameter value that fits the data. On the other

hand, the minimum of σ2({ma(τ, s, ·; ta,s)}a=0,1,s∈S) w.r.t. {ta,s}a=0,1,s∈S is still no smaller than the

one attained by minimizing the whole working model, i.e., minma(τ,s,·),a=0,1,s∈S σ
2({ma(τ, s, ·)}a=0,1,s∈S).

The latter minimum is attained if ma(τ, s, x) = ma(τ, s, x) for a = 0, 1 and (s, x) in the joint sup-

port of (Si, Xi), as shown in Theorem 3.1. Therefore, it is still meaningful to pursue a working

model that can closely approximate the true model. In Proposition 5.3, we propose to estimate

a parametric but flexible distribution regression model via quasi maximum likelihood estimation

(QMLE). We give our practical recommendation after that.

Theorem 5.2. Suppose Assumptions 1, 2, 4, 6 hold, and Λa,s(Xi, θa,s(τ)) is differentiable in

θa,s(τ). Then, the asymptotic variance of q̂par(τ) is minimized at (θ1,s(τ), θ0,s(τ)) ∈ Θs(τ), where

for s ∈ S and τ ∈ Υ,

Θs(τ) = arg min
θ1,θ0

Q(s, τ, θ1, θ0), where

Q(s, τ, θ1, θ0) =E
{(

g1,s(Xi, θ1)

f1(q1(τ))
+

π(s)

1− π(s)

g0,s(Xi, θ0)

f0(q0(τ))

)2
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− 2

(
g1,s(Xi, θ1)

f1(q1(τ))
+

π(s)

1− π(s)

g0,s(Xi, θ0)

f0(q0(τ))

)(
m1(τ, s,Xi)−m1(τ, s)

f1(q1(τ))

)
− 2π(s)

1− π(s)

(
g1,s(Xi, θ1)

f1(q1(τ))
+

π(s)

1− π(s)

g0,s(Xi, θ0)

f0(q0(τ))

)(
m0(τ, s,Xi)−m0(τ, s)

f0(q0(τ))

)∣∣∣∣Si = s

}
,

(5.3)

and ga,s(Xi, θa) = E(Λa,s(Xi, θa)|Si = s) − Λa,s(Xi, θa). If we further assume a linear proba-

bility model, i.e., Λa,s(Xi, θa,s(τ)) = X>i θa,s(τ), and denote the asymptotic covariance matrix of

(q̂par(τ1), · · · , q̂par(τK)) for any finite set of quantile indexes (τ1, · · · , τK) as [ΣLP (τk, τl)]k,l∈[K].

Then, [ΣLP (τk, τl)]k,l∈[K] is minimized in the matrix sense when the pseudo true values (θ1,s(τk), θ0,s(τk))k∈[K]

satisfy

θ1,s(τk)

f1(q1(τk))
+

π(s)θ0,s(τk)

(1− π(s))f0(q0(τk))
=

θLP1,s (τk)

f1(q1(τk))
+

π(s)θLP0,s (τk)

(1− π(s))f0(q0(τk))
, k ∈ [K],

where [K] = {1, 2, ...,K} and

θLP1,s (τk) =
[
E(X̃i,sX̃

>
i,s|Si = s,Ai = 1)

]−1
E
[
X̃i,s1{Yi ≤ q1(τk)}|Si = s,Ai = 1

]
,

θLP0,s (τk) =
[
E(X̃i,sX̃

>
i,s|Si = s,Ai = 0)

]−1
E
[
X̃i,s1{Yi ≤ q0(τk)}|Si = s,Ai = 0

]
,

and X̃i,s = Xi − E(Xi|Si = s) = Xi − E(Xi|Si = s,Ai = 1) = Xi − E(Xi|Si = s,Ai = 0).

Two remarks are in order. First, we propose consistent estimators of θa,s(τ) for linear probability

and logistic models below. The corresponding results for the probit model are similar to those of

the logistic model and are therefore omitted. Second, when E(||Xi||q2|Si = s) <∞ for some q > 2,

Assumption 6(i) holds for these two models. We maintain Assumption 6(ii) as it usually holds

under the regularity conditions imposed in Assumption 2. In the following, we aim to establish

Assumption 6(iii).

5.1.1 Linear Probability Model

Consider the linear probability model Λa,s(Xi, θa) = X>i θa. From Theorem 5.2, we see that Θs(τ)

is not a singleton. In order to achieve the minimal variance, we only need to consistently estimate

one point in the set Θs(τ). We choose

(θ1,s(τ), θ0,s(τ)) = (θLP1,s (τ), θLP0,s (τ)), s ∈ S,

as this choice avoids estimation of the densities f1(q1(τ)) and f0(q0(τ)).

Note θLPa,s (τ) is the projection coefficient of 1{Yi ≤ qa(τ)} on X̃i,s for the sub-population with

Si = s and Ai = a. We estimate them by the sample analog. The parameter qa(τ) is unknown,

and thus, is replaced by some
√
n-consistent estimator denoted as q̂a(τ).
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Assumption 7. Assume that supτ∈Υ,a=0,1 |q̂a(τ)− qa(τ)| = Op(n
−1/2).

In practice, we compute {q̂a(τ)}a=0,1 based on (3.3) and (3.4) by setting m̂a(τ, Si, Xi) ≡ 0.

Then, Assumption 7 holds automatically by Theorem 3.1 with m̂a(τ, Si, Xi) = ma(τ, Si, Xi) = 0.

Next, we can define the estimator of θLPa,s (τ). Let

ma(τ, Si, Xi) = τ −
∑
s∈S

1{Si = s}X>i θLPa,s (τ), (5.4)

m̂a(τ, Si, Xi) = τ −
∑
s∈S

1{Si = s}X>i θ̂LPa,s (τ), (5.5)

X̂i,a,s = Xi −
1

na(s)

∑
i∈Ia(s)

Xi, (5.6)

and

θ̂LPa,s (τ) =

 1

na(s)

∑
i∈Ia(s)

X̂i,a,sX̂
>
i,a,s

−1  1

na(s)

∑
i∈Ia(s)

X̂i,a,s1{Yi ≤ q̂a(τ)}

 . (5.7)

Assumption 8. There exist constants 0 < c < C <∞ such that

c < min
s∈S

λmin(EX̃i,sX̃
>
i,s|Si = s) ≤ max

s∈S
λmax(EX̃i,sX̃

>
i,s|Si = s) ≤ C

and E(||X̃i,s||q2|Si = s) ≤ C for some q > 2, where for a generic symmetric matrix A, λmin(A) and

λmax(A) denote the minimal and maximal eigenvalues of A, respectively.

Proposition 5.1. Suppose Assumptions 1, 2, 7, and 8 hold. Then Assumptions 6(ii) and 6(iii)

hold for (θa,s(τ), θ̂a,s(τ)) = (θLPa,s (τ), θ̂LPa,s (τ)), a = 0, 1, s ∈ S, τ ∈ Υ.

5.1.2 Logistic Model

Next consider the logistic model. Set λ(u) = exp(u)/(1 + exp(u)) to be the logistic CDF and then

Λa,s(Xi, θa,s(τ)) = λ( ~X>i θa,s(τ)) and

m̂a(τ, Si, Xi) = τ −
∑
s∈S

1{Si = s}λ( ~X>i θ̂
LG
a,s (τ)), (5.8)

where θ̂LGa,s (τ) is computed as the minimizer of the sample analogue of the objective function in (5.3)

and ~Xi = (1, X>i )>. Specifically, let I(s) = I1(s) ∪ I0(s), ĝa,s(Xi, θa) = 1
na(s)

∑
i∈Ia(s) λ( ~X>i θa) −

λ( ~X>i θa), and let f̂a(·) be an estimator of the density of Y (a) (i.e., fa(·)). Define Θ = Θ1 × Θ0,

where Θa is a compact set in <dx for a = 0, 1, and then

(θ̂LG1,s (τ), θ̂LG0,s (τ)) ∈ arg min
(θ1,θ0)∈Θ

Qn(s, τ, θ1, θ0), with
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Qn(s, τ, θ1, θ0) =
1

n(s)

∑
i∈I(s)

(
ĝ1,s(Xi, θ1)

f̂1(q̂1(τ))
+

π̂(s)

1− π̂(s)

ĝ0,s(Xi, θ0)

f̂0(q̂0(τ))

)2

+
2

n1(s)

∑
i∈I1(s)

(
ĝ1,s(Xi, θ1)

f̂1(q̂1(τ))
+

π̂(s)

1− π̂(s)

ĝ0,s(Xi, θ0)

f̂0(q̂0(τ))

)
1{Yi ≤ q̂1(τ)}
f̂1(q̂1(τ))

+
2π̂(s)

n0(s)(1− π̂(s))

∑
i∈I0(s)

(
ĝ1,s(Xi, θ1)

f̂1(q̂1(τ))
+

π̂(s)

1− π̂(s)

ĝ0,s(Xi, θ0)

f̂0(q̂0(τ))

)
1{Yi ≤ q̂0(τ)}
f̂0(q̂0(τ))

. (5.9)

Assumption 9. Suppose Θs(τ) ∩Θ is a singleton, denoted as (θLG1,s (τ), θLG0,s (τ)), and

sup
τ∈Υ
|f̂a(q̂a(τ))− fa(qa(τ))| p−→ 0.

Proposition 5.2. Suppose Assumptions 1, 2, 7–9 hold. Then Assumption 6(iii) holds for (θa,s(τ), θ̂a,s(τ)) =

(θLGa,s (τ), θ̂LGa,s (τ)), a = 0, 1, s ∈ S, τ ∈ Υ.

In Section D of the Online Supplement, we propose a way to consistently estimate one point in

Θs(τ) ∩Θ when it is not a singleton.

5.1.3 Quasi Maximum Likelihood Estimation

It is also common to estimate the logistic regression by maximum likelihood. The main goal for

the working model is to approximate the true model as closely as possible. It is therefore useful

to include additional technical regressors such as interactions in the logistic regression. The set of

regressors used is defined as Hi = H(Xi). Let θ̂ML
a,s (τ) and θML

a,s (τ) be the quasi-ML estimator and

its corresponding pseudo true value, respectively, i.e.,

θ̂ML
a,s (τ) = arg max

θa

1

na(s)

∑
i∈Ia(s)

[1{Yi ≤ q̂a(τ)} log(λ(H>i θa)) + 1{Yi > q̂a(τ)} log(1− λ(H>i θa))]

(5.10)

and

θML
a,s (τ) = arg max

θa

E[1{Yi(a) ≤ qa(τ)} log(λ(H>i θa)) + 1{Yi(a) > qa(τ)} log(1− λ(H>i θa))|Si = s].

(5.11)

We then define

m̂a(τ, Si, Xi) = τ −
∑
s∈S

1{Si = s}λ(H>i θ̂
ML
a,s (τ)). (5.12)
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In addition to the inclusion of technical regressors we allow the pseudo true value to vary across

quantiles τ , giving another layer of flexibility of the model. Such a model is called distribution re-

gression and was first proposed by Chernozhukov, Fernández-Val, and Melly (2013). We emphasize

here that, although we aim to make the regression model as flexible as possible, our theoretical

results do not require the model to be correctly specified.

Assumption 10. Suppose θML
a,s (τ) is the unique minimizer defined in (5.11) for a = 0, 1.

Theorem 5.3. Suppose Assumptions 1, 2, 7, 8, 10 hold, then Assumption 6(iii) holds for (θa,s(τ), θ̂a,s(τ)) =

(θML
a,s (τ), θ̂ML

a,s (τ)), a = 0, 1, s ∈ S, τ ∈ Υ.

5.1.4 Remarks

From a practical perspective we prefer the linear probability (LP) and quasi maximum likelihood

(ML) estimators to the logistic model estimator that minimizes the asymptotic variance of q̂adj(τ)

(LG) for two reasons. First, the LP and ML estimators are free of tuning parameters whereas es-

timator LG requires nonparametric estimation of the densities, which involves tuning parameters.

Second, the estimators LP and ML are easy to compute: the LP estimator has a closed-form expres-

sion and the ML estimator is just simple logistic regression which can be implemented in standard

statistical softwares. On the other hand, the LG estimator requires non-convex optimization and

is therefore computationally costly.

From a theory perspective, we continue to prefer the LP and ML estimators. The LP estimator

minimizes (over the class of linear models) not only the asymptotic variance of q̂par(τ) but also the

variance matrix of (q̂par(τ1), · · · , q̂par(τK)) for any finite-dimension quantile indexes (τ1, · · · , τK).

This implies we can use the same LP estimator for hypothesis testing involving single, multiple,

or even a continuum of quantile indexes. In contrast, the LG estimator only aims to minimize

the asymptotic variance for a single quantile index, and may not be optimal for tests that involve

multiple quantile indexes.3 Although the ML estimator is not guaranteed to be optimal, it is near

optimal if the logistic model is close to the true model ma(τ, Si, Xi). To achieve this benefit we

suggest including additional technical terms in the regression and allowing the regression coefficients

to vary across τ . The next section justifies the use of the ML estimator with a flexible logistic model

by letting the number of technical terms (or equivalently, the dimension of Hi) diverge to infinity,

showing by this means that the ML estimator can indeed consistently estimate the true model and

thereby achieve the minimum covariance matrix of the adjusted QTE estimator, as in Theorem 5.1.

3Section C of the supplement derives the logistic model estimator that minimizes the asymptotic variance of
q̂par(τ1)− q̂par(τ2).
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5.2 Nonparametric Method

This section considers nonparametric estimation of ma(τ, s,Xi) when the dimension of Xi is fixed

as dx. For ease of notation we assume all coordinates of Xi are continuously distributed. If in an

application some elements of X are discrete the dimension dx is interpreted as the dimension of the

continuous covariates. All results in this section can then be extended in a conceptually straight-

forward manner by using the continuous covariates only within samples that are homogeneous in

discrete covariates.

As ma(τ, s,Xi) is nonparametrically estimated, we have ma(τ, s,Xi) = ma(τ, s,Xi) = τ −
P(Yi(a) ≤ qa(τ)|Si = s,Xi). We estimate P(Yi(a) ≤ qa(τ)|Si = s,Xi) by the sieve method of fitting

a logistic model, as studied in Hirano, Imbens, and Ridder (2003). Specifically, recall λ(·) is the

logistic CDF and denote the number of sieve bases by hn, which depends on the sample size n and

can grow to infinity as n→∞. Let Hhn(x) = (b1n(x), · · · , bhnn(x))> where {bhn(x)}h∈[hn] is an hn

dimensional basis of a linear sieve space. We provide more details on the sieve space in Section 6.

Denote

m̂a(τ, s,Xi) = λ(H>hn(Xi)θ̂
NP
a,s (τ)) and (5.13)

θ̂NPa,s (τ) = arg max
θa

1

na(s)

∑
i∈Ia(s)

[
1{Yi ≤ q̂a(τ)} log(λ(H>hn(Xi)θa))

+ 1{Yi > q̂a(τ)} log(1− λ(H>hn(Xi)θa))

]
(5.14)

Assumption 11. (i) There exist constants 0 < κ1 < κ2 < ∞ such that with probability ap-

proaching one,

κ1 ≤ λmin

 1

na(s)

∑
i∈Ia(s)

Hhn(Xi)H
>
hn(Xi)

 ≤ λmax

 1

na(s)

∑
i∈Ia(s)

Hhn(Xi)H
>
hn(Xi)

 ≤ κ2

and

κ1 ≤ λmin

(
E(Hhn(Xi)H

>
hn(Xi)|Si = s)

)
≤ λmax

(
E(Hhn(Xi)H

>
hn(Xi)|Si = s)

)
≤ κ2.

(ii) There exists an hn× 1 vector θNPa,s (τ) such that for Ra(τ, s, x) = P(Yi(a) ≤ qa(τ)|Si = s,Xi =

x)− λ(H>hn(x)θNPa,s (τ)), we have supa=0,1,s∈S,τ∈Υ,x∈Supp(X) |Ra(τ, s, x)| = o(1),

sup
a=0,1,τ∈Υ,s∈S

1

na(s)

∑
i∈Ia(s)

R2
a(τ, s,Xi) = Op

(
hn log(n)

n

)
,
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and

sup
a=0,1,τ∈Υ,s∈S

E(R2
a(τ, s,Xi)|Si = s) = O

(
hn log(n)

n

)
.

(iii) There exists a constant c ∈ (0, 0.5) such that

c ≤ inf
a=0,1,s∈S,τ∈Υ,x∈Supp(X)

P(Yi(a) ≤ qa(τ)|Si = s,Xi = x)

≤ sup
a=0,1,s∈S,τ∈Υ,x∈Supp(X)

P(Yi(a) ≤ qa(τ)|Si = s,Xi = x) ≤ 1− c.

(iv) Suppose E(H2
hn,h

(Xi)|Si = s) ≤ C <∞ for some constant C > 0, supx∈Supp(X) ||Hhn(x)||2 ≤
ζ(hn), ζ2(hn)hn log(n) = o(n), and h2

n log2(n) = o(n), where Hhn,h(Xi) denotes the hth

coordinate of Hhn(Xi).

Theorem 5.4. Denote q̂NP (τ) and q̂NP,w(τ) as the τ th QTE estimator and its multiplier boot-

strap counterpart defined in Sections 3 and 4, respectively, with ma(τ, Si, Xi) = ma(τ, Si, Xi) and

m̂a(τ, Si, Xi) defined in (5.13). Further suppose Assumptions 1, 2, 4, 7, and 11 hold. Then, As-

sumptions 3 and 5 hold, which further implies that Theorems 3.1 and 4.1 hold for q̂NP (τ) and

q̂NP,w(τ), respectively. In addition, for any finite-dimensional quantile indexes (τ1, · · · , τK), the

covariance matrix of (q̂NP (τ1), · · · , q̂NP (τK)) achieves the minimum (in the matrix sense) as char-

acterized in Theorem 3.1.

5.3 Regularization Method

This section considers estimation of ma(τ, s,X) in a high-dimensional environment. Let Hpn(Xi)

be the regressors with dimension pn, which may exceed the sample size. When the number of

raw controls is comparable to or exceeds the sample size, we can just let Hpn(Xi) = Xi. On

the other hand, Hpn(Xi) may be composed of a large dictionary of sieve bases derived from a

fixed dimensional vector Xi through suitable transformations such as powers and interactions.

Thus, high dimensionality in Hpn(Xi) can arise from a desire flexibly approximate nuisance func-

tions. In our approach we follow Belloni et al. (2017) and implement a logistic regression with

`1-penalization. In their notation we view ma(τ, s, x) as a function of qa(τ), i.e,. ma(τ, s, x) =

τ −Ma(qa(τ), s, x), where Ma(q, s, x) = P(Yi(a) ≤ q|Si = s,Xi = x). We estimate Ma(qa(τ), s, x)

as λ(Hpn(Xi)
>θ̂HDa,s (q̂a(τ))), where

θ̂HDa,s (q) = arg min
θa

−1

na(s)

∑
i∈Ia(s)

[
1{Yi ≤ q} log(λ(Hpn(Xi)

>θa))

+ 1{Yi > q} log(1− λ(Hpn(Xi)
>θa))

]
+
%n,a(s)

na(s)
||Ω̂θa||1,
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%n,a(s) is a tuning parameter, and Ω̂ = diag(ω̂1, · · · , ω̂pn) is a diagonal matrix of data-dependent

penalty loadings. We specify %n,a(s) and Ω̂ in Section 6. Post-Lasso estimation is also considered.

Let Ŝa,s(q) be the support of θ̂HDa,s (q) = {h ∈ [pn] : θ̂HDa,s,h(q) 6= 0}, where θ̂HDa,s,h(q) is the hth coor-

dinate of θ̂HDa,s (q). We can complement Ŝa,s(q) with additional variables in Ŝ+
a,s(q) that researchers

want to control for and define the enlarged set of variables as S̃a,s(q) = Ŝa,s(q)∪Ŝ+
a,s(q). We compute

the post-Lasso estimator θ̂posta,s (q) as

θ̂posta,s (q) = arg min
θa∈S̃a,s(q)

−1

na(s)

∑
i∈Ia(s)

[
1{Yi ≤ q} log(λ(Hpn(Xi)

>θa))

+ 1{Yi > q} log(1− λ(Hpn(Xi)
>θa))

]
. (5.15)

Finally, we compute the auxiliary model as

m̂a(τ, s,Xi) = λ(H>pn(Xi)θ̂
HD
a,s (τ)) or m̂a(τ, s,Xi) = λ(H>pn(Xi)θ̂

post
a,s (τ)). (5.16)

Assumption 12. (i) Let Qεa = {q : infτ∈Υ |q − qa(τ)| ≤ ε}. Suppose P(Yi(a) ≤ q|X,Si = s) =

λ(Hpn(Xi)
>θHDa,s (q)) + ra(q, s,X) such that supa=0,1,q∈Qεa,s∈S ||θ

HD
a,s (q)||0 ≤ hn.

(ii) Suppose supi∈[n] ||Hpn(Xi)||∞ ≤ ζn and suph∈[pn] E(Hq
pn,h

(Xi)|Si = s) <∞ for q > 2.

(iii) Suppose

sup
a=0,1,q∈Qεa,s∈S

1

na(s)

∑
i∈Ia(s)

r2
a(q, s,Xi) = Op(hn log(pn)/n),

sup
a=0,1,q∈Qεa,s∈S

E(r2
a(q, s,Xi)|Si = s) = O(hn log(pn)/n),

and

sup
a=0,1,q∈Qεa,s∈S,x∈X

|ra(q, s,X)| = O(
√
ξ2
nh

2
n log(pn)/n).

(iv) log(pn)ξ2nh
2
n

n → 0, log2(pn) log2(n)h2n
n → 0, supa=0,1,q∈Qεa,s∈S |Ŝ

+
a,s(q)| = Op(hn), where |Ŝ+

a,s(q)|
denotes the number of elements in Ŝ+

a,s(q).

(v) There exists a constant c ∈ (0, 0.5) such that

c ≤ inf
a=0,1,s∈S,τ∈Υ,x∈Supp(X)

P(Yi(a) ≤ qa(τ)|Si = s,Xi = x)

≤ sup
a=0,1,s∈S,τ∈Υ,x∈Supp(X)

P(Yi(a) ≤ qa(τ)|Si = s,Xi = x) ≤ 1− c.

(vi) Let `n be a sequence that diverges to infinity. Then, there exist two constants κ1 and κ2 such

that with probability approaching one,

0 < κ1 ≤ inf
a=0,1,s∈S,|v|0≤hn`n

vT
(

1
na(s)

∑
i∈Ia(s)Hpn(Xi)Hpn(Xi)

>
)
v

||v||22
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≤ sup
a=0,1,s∈S,|v|0≤hn`n

vT
(

1
na(s)

∑
i∈Ia(s)Hpn(Xi)Hpn(Xi)

>
)
v

||v||22
≤ κ2 <∞,

and

0 < κ1 ≤ inf
a=0,1,s∈S,|v|0≤hn`n

vTE(Hpn(Xi)Hpn(Xi)
>|Si = s)v

||v||22

≤ sup
a=0,1,s∈S,|v|0≤hn`n

vTE(Hpn(Xi)Hpn(Xi)
>|Si = s)v

||v||22
≤ κ2 <∞,

where |v|0 denotes the number of nonzero components in v.

(vii) %n,a(s) = c
√
na(s)Φ

−1(1− 0.1/(log(na(s))4pn)) where Φ(·) is the standard normal CDF and

c > 0 is a constant.

Assumption 12 is standard in the literature and we refer interested readers to Belloni et al.

(2017) for more discussion. Assumption 12(i) implies the logistic model is approximately correctly

specified. As the approximation is assumed to be sparse, the condition is not innocuous in the

high-dimensional setting. As our method is valid even when the auxiliary model is misspecified, we

conjecture that Assumption 12(i) can be relaxed, which links to the recent literature on the study

of regularized estimation in the high-dimensional setting under misspecification: see, for example,

Bradic, Wager, and Zhu (2019) and Tan (2020) and the references therein. An interesting topic

for future work is to study misspecification-robust high-dimensional estimators of the conditional

probability model and their use to adjust the QTE estimator under CAR based on (3.3) and (3.4).

Theorem 5.5. Denote q̂HD(τ) and q̂HD,w(τ) as the τ th QTE estimator and its multiplier boot-

strap counterpart defined in Sections 3 and 4, respectively, with ma(τ, Si, Xi) = ma(τ, Si, Xi) and

m̂a(τ, Si, Xi) defined in (5.16). Further suppose Assumptions 1, 2, 4, 7, and 12 hold. Then, As-

sumptions 3 and 5 hold, which further imply Theorems 3.1 and 4.1 hold for q̂HD(τ) and q̂HD,w(τ),

respectively. In addition, for any finite-dimensional quantile indexes (τ1, · · · , τK), the covariance

matrix of (q̂HD(τ1), · · · , q̂HD(τK)) achieves the minimum (in the matrix sense) as characterized in

Theorem 3.1.

6 Practical Guidance and Computation

6.1 Procedures for Estimation and Bootstrap Inference

We can compute (q̂adj1 , q̂adj0 ) by solving the subgradient conditions of (3.3) and (3.4), respectively.

Specifically, we have (q̂adj1 , q̂adj0 ) = (Yi1 , Yi0) such that Ai1 = 1, Ai0 = 0,

τ

∑
i∈[n]

Ai
π̂(Si)

−∑
i∈[n]

(
(Ai − π̂(Si))

π̂(Si)
m̂1(τ, Si, Xi)

)
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≥
∑
i∈[n]

Ai
π̂(Si)

1{Yi < Yi1}

≥τ

∑
i∈[n]

Ai
π̂(Si)

− 1

π̂(Si1)
−
∑
i∈[n]

(
(Ai − π̂(Si))

π̂(Si)
m̂1(τ, Si, Xi)

)
, (6.1)

and

τ

∑
i∈[n]

1−Ai
1− π̂(Si)

+
∑
i∈[n]

(
(Ai − π̂(Si))

1− π̂(Si)
m̂0(τ, Si, Xi)

)

≥
∑
i∈[n]

1−Ai
1− π̂(Si)

1{Yi < Yi0}

≥τ

∑
i∈[n]

1−Ai
1− π̂(Si)

− 1

1− π̂(Si0)
+
∑
i∈[n]

(
(Ai − π̂(Si))

1− π̂(Si)
m̂0(τ, Si, Xi)

)
. (6.2)

We note (i1, i0) are uniquely defined as long as all the inequalities in (6.1) and (6.2) are strict,

which is usually the case. If we have

τ

∑
i∈[n]

Ai
π̂(Si)

−∑
i∈[n]

(
(Ai − π̂(Si))

π̂(Si)
m̂1(τ, Si, Xi)

)
=
∑
i∈[n]

Ai
π̂(Si)

1{Yi ≤ Yi1},

then both i1 and i′1 satisfy (6.1), where i′1 is the index such that Ai′1 = 1 and Yi′1 is the smallest

observation in the treatment group that is larger than Yi1 . In this case, we let q̂adj1 = Yi1 . Similarly,

by solving the subgradient conditions of (4.1) and (4.2), we have (q̂w1 , q̂
w
0 ) = (Yiw1 , Yiw0 ) such that

Aiw1 = 1, Aiw0 = 0,

τ

∑
i∈[n]

ξiAi
π̂w(Si)

−∑
i∈[n]

(
ξi(Ai − π̂w(Si))

π̂w(Si)
m̂1(τ, Si, Xi)

)

≥
∑
i∈[n]

ξiAi
π̂w(Si)

1{Yi < Yiw1 }

≥τ

∑
i∈[n]

ξiAi
π̂w(Si)

− ξiw1
π̂w(Siw1 )

−
∑
i∈[n]

(
ξi(Ai − π̂w(Si))

π̂w(Si)
m̂1(τ, Si, Xi)

)
(6.3)

and

τ

∑
i∈[n]

ξi(1−Ai)
1− π̂w(Si)

+
∑
i∈[n]

(
ξi(Ai − π̂(Si))

1− π̂w(Si)
m̂0(τ, Si, Xi)

)

≥
∑
i∈[n]

ξi(1−Ai)
1− π̂w(Si)

1{Yi < Yiw0 }
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≥τ

∑
i∈[n]

ξi(1−Ai)
1− π̂w(Si)

− ξiw0
1− π̂w(Si0)

+
∑
i∈[n]

(
ξi(Ai − π̂w(Si))

1− π̂w(Si)
m̂0(τ, Si, Xi)

)
. (6.4)

The inequalities in (4.1) and (4.2) are strict with probability one if ξi is continuously distributed.

In this case, (q̂w1 , q̂
w
0 ) is uniquely defined with probability one.

We summarize the steps in the bootstrap procedure as follows.

1. Let G be a set of quantile indexes. For τ ∈ G, compute q̂1(τ) and q̂0(τ) following (6.1) and

(6.2) with m̂1(τ, Si, Xi) and m̂0(τ, Si, Xi) replaced by zero.

2. Compute m̂a(τ, Si, Xi) for a = 0, 1 and τ ∈ G using q̂1(τ) and q̂0(τ).

3. Compute the original estimator q̂adj(τ) = q̂adj1 (τ)− q̂adj0 (τ), following (6.1) and (6.2) for τ ∈ G.

4. Let B be the number of bootstrap replications. For b ∈ [B], generate {ξi}i∈[n]. Compute

q̂w,b(τ) = q̂w,b1 (τ)− q̂w,b0 (τ) for τ ∈ G following (6.3) and (6.4). Obtain {q̂w,b(τ)}τ∈G .

5. Repeat the above step for b ∈ [B] and obtain B bootstrap estimators of the QTE, denoted

as {q̂w,b(τ)}b∈[B],τ∈G .

6.2 Bootstrap Confidence Intervals

Given the bootstrap estimates, we discuss how to conduct bootstrap inference for the null hypothe-

ses with single, multiple, and a continuum of quantile indexes.

Case (1). We test the single null hypothesis that H0 : q(τ) = q vs. q(τ) 6= q. Set G = {τ}
in the procedures described above and let Ĉ(ν) and C(ν) be the νth empirical quantile of the

sequence {q̂w,b(τ)}b∈[B] and the νth standard normal critical value, respectively. Let α ∈ (0, 1) be

the significance level. We suggest using the bootstrap estimator to construct the standard error of

q̂adj(τ) as σ̂ = Ĉ(0.975)−Ĉ(0.025)
C(0.975)−C(0.025) . Then the valid confidence interval and Wald test using this standard

error are

CI(α) = (q̂adj(τ) + C(α/2)σ̂, q̂adj(τ) + C(1− α/2)σ̂),

and 1{
∣∣∣∣ q̂adj(τ)−q

σ̂

∣∣∣∣ ≥ C(1− α/2)}, respectively.4

Case (2). We test the null hypothesis that H0 : q(τ1)− q(τ2) = q vs. q(τ1)− q(τ2) 6= q. In this

case, we have G = {τ1, τ2} in the procedure described in Section 6.1. Further, let Ĉ(ν) be the νth

empirical quantile of the sequence {q̂w,b(τ1) − q̂w,b(τ2)}b∈[B], and let α ∈ (0, 1) be the significance

4It is asymptotically valid to use standard and percentile bootstrap confidence intervals. In simulations we found
that the confidence interval proposed in the paper has better finite-sample performance.
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level. We suggest using the bootstrap standard error to construct the valid confidence interval and

Wald test as

CI(α) = (q̂adj(τ1)− q̂adj(τ2) + C(α/2)σ̂, q̂adj(τ1)− q̂adj(τ2) + C(1− α/2)σ̂),

and 1{
∣∣∣∣ q̂adj(τ1)−q̂adj(τ2)−q

σ̂

∣∣∣∣ ≥ C(1− α/2)}, respectively, where σ̂ = Ĉ(0.975)−Ĉ(0.025)
C(0.975)−C(0.025) .

Case (3). We test the null hypothesis that

H0 : q(τ) = q(τ) ∀τ ∈ Υ vs. q(τ) 6= q(τ) ∃τ ∈ Υ.

In theory, we should let G = Υ. In practice, we let G = {τ1, · · · , τG} be a fine grid of Υ where G

should be as large as computationally possible. Further, let Ĉτ (ν) denote the νth empirical quantile

of the sequence {q̂w,b(τ)}b∈[B] for τ ∈ G. Compute the standard error of q̂adj(τ) as

σ̂τ =
Ĉτ (0.975)− Ĉτ (0.025)

C(0.975)− C(0.025)
.

The uniform confidence band with an α significance level is constructed as

CB(α) = {q̂adj(τ)− C̃ασ̂τ , q̂adj(τ) + C̃ασ̂τ : τ ∈ G},

where the critical value C̃α is computed as

C̃α = inf

{
z :

1

B

B∑
b=1

1

{
sup
τ∈G

∣∣∣∣ q̂w,b(τ)− q̃(τ)

σ̂τ

∣∣∣∣ ≤ z} ≥ 1− α

}
,

and q̃(τ) is first-order equivalent to q̂adj(τ) in the sense that supτ∈Υ |q̃(τ) − q̂adj(τ)| = op(1/
√
n).

We suggest choosing q̃(τ) = Ĉτ (0.5) over other choices such as q̃(τ) = q̂adj(τ) due to its better

finite-sample performance. We reject H0 at significance level α if q(·) /∈ CB(α).

6.3 Computation of Auxiliary Regressions

Parametric Regressions. For the linear probability model, we compute the LP estimator via

(5.7). For the logistic model, we consider both LG and ML estimators. First, we compute the LG

estimator θ̂LGa,s (τ) as in (5.9), which minimizes the sample variance of our adjusted QTE estimator

q̂adj(τ).5 Second, we propose to compute the ML estimator θ̂ML
a,s (τ) as in (5.11), which is the quasi

maximum likelihood estimator of a flexible distribution regression.

5When the null hypothesis in Case (2) is tested, the optimal pseudo true value is defined to minimize the asymptotic
variance of q̂par(τ1)− q̂par(τ2), which is not necessarily equal to the pseudo true values that minimize the asymptotic
variances of q̂par(τ1) and q̂par(τ2), i.e., (θLGa,s (τ1), θLGa,s (τ2)). We propose a way to compute the new pseudo true value
in Section C.
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Sieve Logistic Regressions. We provide more details on the sieve basis. Recall Hhn(x) ≡
(b1n(x), · · · , bhnn(x))>, where {bhn(·)}h∈[hn] are hn basis functions of a linear sieve space, denoted

as B. Given that all dx elements of X are continuously distributed, the sieve space B can be

constructed as follows.

1. For each element X(l) of X, l = 1, · · · , dx, let Bl be the univariate sieve space of dimension

Jn. One example of Bl is the linear span of the Jn dimensional polynomials given by

Bl =

{ Jn∑
k=0

αkx
k, x ∈ Supp(X(l)), αk ∈ <

}
;

Another is the linear span of r-order splines with Jn nodes given by

Bl =

{r−1∑
k=0

αkx
k +

Jn∑
j=1

bj [max(x− tj , 0)]r−1, x ∈ Supp(X(l)), αk, bj ∈ <
}
,

where the grid −∞ = t0 ≤ t1 ≤ · · · ≤ tJn ≤ tJn+1 = ∞ partitions Supp(X(l)) into Jn + 1

subsets Ij = [tj , tj+1) ∩ Supp(X(l)), j = 1, · · · , Jn − 1, I0 = (t0, t1) ∩ Supp(X(l)), and IJn =

(tJn , tJn+1) ∩ Supp(X(l)).

2. Let B be the tensor product of {Bl}dxl=1, which is defined as a linear space spanned by the

functions
∏dx
l=1 gl, where gl ∈ Bl. The dimension of B is then K ≡ dxJn.

We refer interested readers to Hirano et al. (2003) and Chen (2007) for more details about

the implementation of sieve estimation. Given the sieve basis, we can compute the m̂a(τ, s,Xi)

following (5.13) and (5.14).

Logistic Regressions with an `1 Penalization. We follow the estimation procedure and the

choice of tuning parameter proposed by Belloni et al. (2017). We provide details below for com-

pleteness. Recall %n,a(s) = c
√
na(s)Φ

−1(1 − 1/(pn log(na(s)))). We set c = 1.1 following Belloni

et al. (2017). We then implement the following algorithm to estimate θ̂HDa,s (τ) for τ ∈ Υ:

(i) Let σ̂
(0)
h = 1

na(s)

∑
i∈Ia(s)(1{Yi ≤ q̂a(τ)} − Ȳa,s(τ))2H2

pn,h
for h ∈ [pn], where Ȳa,s(τ) =

1
na(s)

∑
i∈Ia(s) 1{Yi ≤ q̂a(τ)}. Estimate

θ̂HD,0a,s (τ) = arg min
θa

−1

na(s)

∑
i∈Ia(s)

[
1{Yi ≤ q} log(λ(Hpn(Xi)

>θa))

+ 1{Yi > q} log(1− λ(Hpn(Xi)
>θa))

]
+
%n,a(s)

na(s)

∑
h∈[pn]

σ̂
(0)
h |θa,h|.

(ii) For k = 1, · · · ,K, obtain σ̂
(k)
h =

√
1
n

∑
i∈[n](Hpn,hε̂

(k)
i )2, where ε̂

(k)
i = 1{Yi ≤ q̂a(τ)} −
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λ(HT
pn θ̂

HD,k−1
a,s (τ)). Estimate

θ̂HD,ka,s (τ) = arg min
θa

−1

na(s)

∑
i∈Ia(s)

[
1{Yi ≤ q} log(λ(Hpn(Xi)

>θa))

+ 1{Yi > q} log(1− λ(Hpn(Xi)
>θa))

]
+
%n,a(s)

na(s)

∑
h∈[pn]

σ̂
(k)
h |θa,h|.

(iii) Let θ̂HDa,s (τ) = θ̂HD,Ka,s (τ).

(iv) Repeat the above procedure for τ ∈ G.

7 Simulation

7.1 Data Generating Processes

Three data generating processes (DGPs) are used to assess the finite-sample performance of the

estimation and inference methods introduced in the paper. We consider the outcomes equation

Yi = α(Xi) + γZi + µ(Xi)Ai + ηi, (7.1)

where γ = 4 for all cases while α(Xi), µ(Xi), and ηi are separately specified as follows.

(i) Let Z be standardized Beta(2, 2) distributed, Si =
∑4

j=1 1{Zi ≤ gj}, and (g1, · · · , g4) =

(−0.25
√

20, 0, 0.25
√

20, 0.5
√

20). Xi contains two covariates (X1i, X2i)
>, where X1i follows

a uniform distribution on [−2, 2], X2i follows a standard normal distribution, and X1i and

X2i are independent. Further define α(Xi) = 1 + X2i, µ(Xi) = 1 + X>i β, β = (3, 3)>, and

ηi = (0.25 +X2
1i)Aiε1i + (1−Ai)ε2i, where (ε1i, ε2i) are jointly standard normal.

(ii) Let Z be uniformly distributed on [−2, 2], Si =
∑4

j=1 1{Zi ≤ gj}, and (g1, · · · , g4) =

(−1, 0, 1, 2). Let Xi = (X1i, X2i)
> be the same as defined in DGP (i). Further define

α(Xi) = 1 + X1i + X2i, µ(Xi) = 1 + X1i + X2i + 1
4(X>i β)2 with β = (2, 2)>, and ηi =

2(1 + Z2
i )Aiε1i + (1 + Z2

i )(1 − Ai)ε2i, where (ε1i, ε2i) are mutually independently T (5)/
√

5

distributed.

(iii) Let Z be standardized Beta(2, 2) distributed, Si =
∑4

j=1 1{Zi ≤ gj}, and (g1, · · · , g4) =

(−0.25
√

20, 0, 0.25
√

20, 0.5
√

20). Further suppose thatXi contains twenty covariates (X1i, · · · , X20,i)
>,

where X = Φ(Z) with Z ∼ N(020×1,Ω) and the variance-covariance matrix Ω is the Toeplitz
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matrix

Ω =


0.5 0.52 0.53 · · · 0.519

0.52 0.5 0.52 · · · 0.518

...
...

...
. . .

...

0.519 0.518 0.517 · · · 0.5


Further define α(Xi) = 1, µ(Xi) = 1 +

∑20
k=1Xkiβk with βk = 4/k2, and ηi = 2Aiε1i + (1 −

Ai)ε2i, where (ε1i, ε2i) are jointly standard normal.

For each data generating process, we consider the following four randomization schemes as in

Zhang and Zheng (2020) with π(s) = 0.5 for s ∈ S:

(i) SRS: Treatment assignment is generated as in Example 1.

(ii) WEI: Treatment assignment is generated as in Example 2 with φ(x) = (1− x)/2.

(iii) BCD: Treatment assignment is generated as in Example 3 with λ = 0.75.

(iv) SBR: Treatment assignment is generated as in Example 4.

We assess the empirical size and power of the tests for n = 200 and n = 400. All simulations are

replicated 10,000 times with bootstrap sample size being 1,000. We compute the true QTEs or

QTE differences by simulations with 10,000 sample size and 1,000 replications. To compute power,

we perturb the true values by 1.5 for DGPs (i) and (ii) and 2 for DGP (iii). As discussed in Section

6, we examine three null hypotheses:

(i) Pointwise test

H0 : q(τ) = truth v.s. H1 : q(τ) = truth + perturbation, τ = 0.25, 0.5, 0.75;

(ii) Test for the difference

H0 : q(0.75)− q(0.25) = truth v.s. H1 : q(0.75)− q(0.25) = truth + perturbation;

(iii) Uniform test

H0 : q(τ) = truth(τ) v.s. H1 : q(τ) = truth(τ) + perturbation, τ ∈ [0.25, 0.75].

For the pointwise test, we report the results for the median (τ = 0.5) in the main text and give the

cases τ = 0.25 and τ = 0.75 to the Online Supplement.
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7.2 Estimation Methods

For DGPs (i) and (ii), we consider the following estimation methods of the auxiliary regression.

(i) NA: the estimator without any adjustments, i.e., setting m̂a(·) = ma(·) = 0.

(ii) LP: the linear probability model with regressors Xi and the pseudo true value is estimated

by θ̂LPa,s (τ) defined in (5.7).

(iii) LG: the logistic model with regressors (1, X1i, X2i) and the pseudo true value is estimated by

θ̂LGa,s (τ) defined in (5.9).

(iv) ML: the logistic model with regressor Hi = (1, X1i, X2i, X1iX2i)
> and the pseudo true value

is estimated by θ̂ML
a,s (τ) defined in (5.10).

(v) NP: the logistic model with regressorHhn(Xi) = (1, X1i, X2i, X1iX2i, X1i1{X1i > t1}X2i1{X2i >

t2})> where t1 and t2 are the sample medians of {X1i}i∈[n] and {X2i}i∈[n], respectively. The

pseudo true value is estimated by θ̂NPa,s (τ) defined in (5.14).

For DGP (iii), we consider the post-Lasso estimator θ̂posta.s (τ) as defined in (5.15) with Hpn(Xi) =

(1, X>i )> and Ŝ+
a,s(q) = {2}. The choice of tuning parameter and the estimation procedure are

detailed in Section 6.3.

7.3 Simulation Results

Table 2 presents the empirical size and power for the pointwise test with τ = 0.5 under DGPs (i)

and (ii). We make five observations. First, none of the auxiliary models is correctly specified but

test sizes are all close to the nominal level 5%, confirming that estimation and inference are robust

to misspecification. Second, the inclusion of auxiliary regressions improves efficiency of the QTE

estimator as the powers for method “NA” are the smallest among all the methods for both DGPs

and all randomization schemes. This finding is consistent with theory because methods “LP”,

“LG”, “NP” are guaranteed to be weakly more efficient than “NA”. Method “ML” fits a flexible

distribution regression which can approximate the true DGP well. Therefore, its performance is

close to the method “NP” and, thus, better than “NA”. Third, the powers of method “NP” are

better than those for “LP”, “LG”, and “ML” because this method estimates the true specification

and achieves the minimum asymptotic variance of q̂adj(τ) as shown in Theorem 5.1. Fourth, from a

theory perspective the performance of methods “LP” and “LG” is not comparable as both are mis-

specified. In simulations the powers of method “LG” are worse for two reasons. First, computation

of the objective function requires nonparametric estimation of the densities, which requires tuning
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parameters6 and has a slow convergence rate. Second, since the objective function is not convex,

the computation of the optimal values θ̂LGa,s (τ) is sometimes unstable.7 Fifth, when the sample size

is 200, the method “NP” slightly overrejects but size becomes closer to nominal when the sample

size increases to 400.

Table 2: Pointwise Test (τ = 0.5)

N = 200 N = 400

Methods SRS WEI BCD SBR SRS WEI BCD SBR

Panel A: DGP (i)
A.1: Size
NA 0.051 0.052 0.050 0.054 0.055 0.055 0.051 0.054
LP 0.050 0.047 0.055 0.053 0.050 0.052 0.053 0.054
LG 0.060 0.063 0.061 0.057 0.058 0.058 0.060 0.058
ML 0.060 0.058 0.060 0.055 0.051 0.055 0.050 0.052
NP 0.059 0.061 0.063 0.066 0.053 0.055 0.055 0.054

A.2: Power
NA 0.403 0.402 0.405 0.402 0.681 0.675 0.679 0.681
LP 0.495 0.495 0.499 0.494 0.791 0.791 0.788 0.782
LG 0.466 0.478 0.462 0.466 0.760 0.757 0.769 0.756
ML 0.508 0.511 0.533 0.511 0.808 0.813 0.810 0.809
NP 0.526 0.537 0.535 0.530 0.813 0.815 0.813 0.809

Panel B: DGP (ii)
B.1: Size
NA 0.049 0.049 0.044 0.045 0.051 0.047 0.047 0.046
LP 0.049 0.049 0.048 0.049 0.053 0.052 0.051 0.045
LG 0.055 0.056 0.055 0.058 0.054 0.054 0.054 0.057
ML 0.062 0.062 0.057 0.058 0.055 0.053 0.055 0.056
NP 0.070 0.063 0.059 0.066 0.059 0.057 0.055 0.057

B.2: Power
NA 0.490 0.494 0.497 0.485 0.779 0.772 0.768 0.762
LP 0.579 0.567 0.569 0.573 0.851 0.850 0.852 0.852
LG 0.524 0.526 0.524 0.521 0.819 0.823 0.821 0.819
ML 0.612 0.601 0.609 0.623 0.868 0.875 0.877 0.871
NP 0.612 0.618 0.612 0.618 0.878 0.876 0.880 0.876

Tables 3 and 4 present sizes and powers of inference on q(0.75)− q(0.25) and on q(τ) uniformly

over τ ∈ [0.25, 0.75], respectively, for DGPs (i) and (ii) and four randomization schemes. All the

observations made above apply to these results.

6We use the Gaussian kernel and bandwidth 1.06σ̂a,s(na(s))1/5 where σ̂a,s and na(s) are the standard error and
sample size of the observations {Yi}i∈Ia(s), respectively, for a = 0, 1 and s ∈ S.

7In simulations we added a ridge penalty log−1(n(s))||θ||22 to the objective function to stabilize the solution. Such
a penalty term does not affect the proof of consistency of θ̂LGa,s (τ) because it will vanish as n→∞.
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Table 3: Test for Differences (τ1 = 0.25, τ2 = 0.75)

N = 200 N = 400

Methods SRS WEI BCD SBR SRS WEI BCD SBR

Panel A: DGP (i)
A.1: Size
NA 0.039 0.039 0.041 0.043 0.043 0.045 0.042 0.045
LP 0.046 0.045 0.045 0.047 0.045 0.047 0.046 0.047
LG 0.047 0.052 0.042 0.046 0.045 0.050 0.046 0.046
ML 0.048 0.047 0.048 0.047 0.048 0.047 0.047 0.048
NP 0.050 0.048 0.049 0.050 0.050 0.049 0.046 0.053

A.2: Power
NA 0.193 0.194 0.201 0.218 0.369 0.376 0.377 0.397
LP 0.211 0.201 0.207 0.207 0.400 0.395 0.401 0.398
LG 0.227 0.235 0.237 0.236 0.462 0.468 0.457 0.453
ML 0.245 0.242 0.242 0.241 0.464 0.454 0.455 0.455
NP 0.240 0.239 0.246 0.240 0.455 0.464 0.462 0.464

Panel B: DGP (ii)
B.1: Size
NA 0.040 0.038 0.040 0.042 0.042 0.043 0.044 0.043
LP 0.042 0.044 0.041 0.048 0.045 0.047 0.043 0.041
LG 0.047 0.046 0.046 0.048 0.050 0.046 0.052 0.052
ML 0.051 0.052 0.049 0.051 0.051 0.049 0.048 0.049
NP 0.060 0.057 0.053 0.050 0.050 0.053 0.056 0.051

B.2: Power
NA 0.207 0.208 0.212 0.237 0.403 0.401 0.397 0.423
LP 0.236 0.241 0.244 0.233 0.444 0.444 0.443 0.433
LG 0.236 0.241 0.244 0.233 0.444 0.444 0.443 0.433
ML 0.255 0.261 0.267 0.252 0.471 0.475 0.467 0.475
NP 0.266 0.265 0.267 0.267 0.465 0.480 0.467 0.477
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Table 4: Uniform Test (τ ∈ [0.25, 0.75])

N = 200 N = 400

Methods SRS WEI BCD SBR SRS WEI BCD SBR

Panel A: DGP (i)
A.1: Size
NA 0.044 0.047 0.043 0.048 0.047 0.047 0.046 0.046
LP 0.047 0.047 0.047 0.044 0.048 0.045 0.046 0.047
LG 0.049 0.048 0.051 0.051 0.053 0.056 0.053 0.053
ML 0.050 0.051 0.051 0.050 0.051 0.055 0.050 0.049
NP 0.059 0.054 0.058 0.052 0.052 0.053 0.053 0.054

A.2: Power
NA 0.448 0.459 0.456 0.448 0.771 0.769 0.774 0.772
LP 0.594 0.580 0.599 0.596 0.895 0.897 0.904 0.899
LG 0.567 0.559 0.582 0.568 0.883 0.887 0.882 0.883
ML 0.614 0.621 0.616 0.613 0.918 0.916 0.923 0.918
NP 0.630 0.630 0.634 0.639 0.920 0.919 0.921 0.917

Panel B: DGP (ii)
B.1: Size
NA 0.035 0.039 0.039 0.038 0.044 0.044 0.042 0.044
LP 0.040 0.046 0.041 0.040 0.042 0.044 0.045 0.042
LG 0.050 0.049 0.047 0.044 0.051 0.056 0.050 0.055
ML 0.055 0.053 0.055 0.052 0.052 0.053 0.049 0.054
NP 0.066 0.061 0.055 0.062 0.053 0.056 0.053 0.055

B.2: Power
NA 0.560 0.572 0.570 0.582 0.876 0.878 0.874 0.880
LP 0.700 0.705 0.707 0.707 0.948 0.955 0.954 0.951
LG 0.647 0.654 0.654 0.650 0.936 0.939 0.936 0.935
ML 0.765 0.770 0.770 0.771 0.973 0.974 0.974 0.977
NP 0.771 0.770 0.769 0.778 0.971 0.972 0.975 0.976
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Next, we assess the empirical size and power of all three testing scenarios under the high-

dimensional setting. In Table 5, we compare the methods “NA” and our post-Lasso estimator. In

general, all sizes for both methods approach the nominal level as the sample size increases. The

post-Lasso method dominates “NA” in all tests with superior power performance. This result is

consistent with theory given in Theorem 5.5.

Table 5: Empirical Size and Power for High-dimensional Covariates (DGP 3)

N = 200 N = 400

SRS WEI BCD SBR SRS WEI BCD SBR

Panel A: Size
A.1. NA
τ = 0.25 0.043 0.044 0.043 0.043 0.041 0.047 0.044 0.046
τ = 0.5 0.045 0.046 0.049 0.046 0.051 0.043 0.046 0.045
τ = 0.75 0.046 0.047 0.049 0.049 0.049 0.046 0.046 0.052
Diff(0.25-0.75) 0.042 0.041 0.038 0.042 0.043 0.045 0.043 0.041
Uniform 0.045 0.044 0.048 0.043 0.049 0.055 0.050 0.052

A.2. Post-Lasso
τ = 0.25 0.055 0.057 0.058 0.057 0.049 0.048 0.055 0.055
τ = 0.5 0.061 0.056 0.060 0.058 0.057 0.047 0.050 0.051
τ = 0.75 0.056 0.062 0.058 0.052 0.053 0.052 0.051 0.053
Diff(0.25-0.75) 0.055 0.051 0.052 0.053 0.051 0.047 0.045 0.048
Uniform 0.070 0.066 0.066 0.070 0.060 0.064 0.058 0.055

Panel B: Power
B.1. NA
τ = 0.25 0.399 0.403 0.409 0.410 0.689 0.690 0.698 0.696
τ = 0.5 0.342 0.342 0.363 0.367 0.601 0.602 0.599 0.622
τ = 0.75 0.336 0.338 0.342 0.328 0.596 0.593 0.604 0.589
Diff(0.25-0.75) 0.183 0.186 0.183 0.207 0.340 0.347 0.349 0.365
Uniform 0.529 0.533 0.521 0.536 0.846 0.846 0.845 0.843

B.2. Post-Lasso
τ = 0.25 0.430 0.428 0.428 0.425 0.718 0.709 0.722 0.713
τ = 0.5 0.375 0.359 0.370 0.359 0.619 0.621 0.626 0.635
τ = 0.75 0.355 0.366 0.364 0.363 0.606 0.617 0.618 0.604
Diff(0.25-0.75) 0.210 0.207 0.211 0.202 0.365 0.363 0.364 0.368
Uniform 0.580 0.585 0.586 0.582 0.870 0.870 0.878 0.870

Last, Table 6 reports the size and power of our regression-adjusted estimator for the median

QTE when we set π̂(s) as the true propensity score 1/2. Comparing it with Table 2, we see that

using the true, instead of the estimated, propensity score, the multiplier bootstrap inference is

conservative for randomization schemes “WEI”, “BCD”, and “SBR”. Specifically, the sizes are

much smaller than the nominal rate (5%) while the powers are smaller than their counterparts in
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Table 2. This is consistent with the findings in Bugni et al. (2018) and Zhang and Zheng (2020) that

the naive inference methods under CARs are conservative. Similar results for τ = 0.25, τ = 0.75,

the difference of the 0.25 and 0.75 QTEs, and QTEs uniformly over τ ∈ [0.25, 0.75] are reported in

Section B in the Online Supplement. All the remarks here still apply.

Table 6: Pointwise Test with Näıve Estimator (τ = 0.5, π̂(s) = 0.5)

N = 200 N = 400

Methods SRS WEI BCD SBR SRS WEI BCD SBR

Panel A: DGP (i)
A.1: Size
NA 0.049 0.025 0.014 0.017 0.047 0.028 0.015 0.016
LP 0.046 0.008 0.000 0.000 0.050 0.008 0.000 0.000
LG 0.053 0.017 0.008 0.006 0.051 0.019 0.008 0.006
ML 0.052 0.015 0.009 0.004 0.050 0.015 0.006 0.006
NP 0.053 0.020 0.007 0.006 0.056 0.018 0.006 0.006

A.2: Power
NA 0.287 0.257 0.249 0.245 0.495 0.495 0.511 0.496
LP 0.180 0.103 0.057 0.036 0.307 0.253 0.194 0.150
LG 0.260 0.212 0.185 0.151 0.476 0.446 0.433 0.414
ML 0.267 0.242 0.213 0.183 0.511 0.504 0.509 0.485
NP 0.293 0.254 0.219 0.191 0.502 0.505 0.507 0.486

Panel B: DGP (ii)
B.1: Size
NA 0.050 0.017 0.006 0.005 0.050 0.017 0.006 0.006
LP 0.050 0.005 0.000 0.000 0.048 0.006 0.000 0.000
LG 0.055 0.012 0.005 0.006 0.059 0.016 0.005 0.005
ML 0.050 0.021 0.013 0.016 0.046 0.025 0.022 0.020
NP 0.060 0.022 0.019 0.018 0.055 0.029 0.027 0.024

B.2: Power
NA 0.290 0.245 0.220 0.221 0.491 0.496 0.494 0.501
LP 0.170 0.093 0.041 0.019 0.301 0.234 0.154 0.118
LG 0.260 0.181 0.137 0.125 0.476 0.446 0.413 0.399
ML 0.350 0.279 0.241 0.218 0.625 0.607 0.575 0.559
NP 0.365 0.300 0.263 0.244 0.645 0.621 0.599 0.577

7.4 Practical Recommendations

When X is finite-dimensional, we suggest using the ML estimator to construct the fitted auxiliary

model when the logistic model includes additional technical terms and the regression coefficients

are allowed to depend on (τ, a, s). When X is high-dimensional, we suggest using the logistic

post-Lasso estimation of the auxiliary model.
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8 Empirical Application

Evaluating the impact of child health and nutrition on educational outcomes has been found to

provide a key to understanding the links between health and economic development in less developed

countries (Glewwe and Miguel, 2007; Dupas and Miguel, 2017). In particular, Chong, Cohen, Field,

Nakasone, and Torero (2016) conducted a randomized experiment in Peru with a CAR to study the

impact of an iron supplement encouragement program on schooling attainment. In their paper, the

authors focused on the estimating the ATEs of that program. This section reports an application

of our methods to the same dataset to examine the QTEs of the program on student academic

achievement – a central outcome of interest in their study.

The sample consists of 215 students from a rural secondary school in Peru during the 2009

academic year. Within each of 5 secondary school grade levels, one-third of students were ran-

domly assigned to each of three groups: two treatment arms and one control group. This is a

block stratified randomization design with 5 strata, which satisfies Assumption 1 in Section 2.8

Students in the first treatment arm were shown a video in which a popular soccer player encour-

aged iron supplements; students in the second treatment arm were shown a video in which a doctor

encouraged iron supplements; students in the control group were shown a video without mention-

ing iron supplements at all. In this section, we focus on the impact of iron supplements on the

academic achievement measured by a standardized average of a student’s grades from five subjects

(See Chong et al., 2016 for a detailed description). Throughout the analysis, students in the two

treatment arms are grouped into the treatment group as in Chong et al. (2016).

One of the key findings in Chong et al. (2016) is that iron supplements have a significant positive

impact on grades for anemic students, which is shown in Table 7 where we repeat their ATE

estimates for easier comparison between ATEs and QTEs.9 The columns “Full 1x” and “Anemic

1x” refer to the ATE estimates obtained from the regressions on the full sample and the anemic

subsample respectively, controlling for only one additional baseline variable (male) besides strata

indicators. The columns “Full 4x” and “Anemic 4x” refer to the ATE estimates obtained from

similar regressions while controlling for four additional baseline variables (male, monthly income,

electricity in home, and mother’s years of schooling).

Tables 8 and 9 present the QTE estimates and their standard errors (in parentheses) estimated

by different methods at quantile indexes 0.25, 0.5, and 0.75. The description of these estimators is

8It is trivial to see that statements (i), (ii), and (iii) in Assumption 1 are satisfied. Because sups∈S |Dn(s)| ≈ 0.03
in both the full sample and the anemic subsample, it is plausible to claim that Assumption 1(iv) is also satisfied in
our analysis.

9The ATE results on the anemic subsample are directly retrieved from Table 5 in Chong et al. (2016). The ATE
results on the full sample are obtained by applying the same Stata code provided by them to the full sample.
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similar to that in Section 7.10 Following the lead of Chong et al. (2016), throughout the analysis,

we focus on two sets of additional baseline variables: male only (one auxiliary regressor) and male,

monthly income, electricity in home, and mother’s years of schooling (four auxiliary regressors).

Table 8 reports the results with only one auxiliary regressor and Table 9 reports the results with

four auxiliary regressors.

Table 7: ATEs of Iron Supplement Encouragement on Grades in Chong et al. (2016)

Full 1x Full 4x Anemic 1x Anemic 4x

ATE 0.091 0.081 0.455 0.434
(0.140) (0.140) (0.218) (0.215)

Notes: The table repeats the ATE estimates of the effect of the iron supplement encouragement
program on grades reported in Chong et al. (2016). Standard errors are in parentheses.

The results in Tables 8-9 lead to two observations. First, consistent with the theoretical and

simulation results, the standard errors for the regression-adjusted QTEs are mostly lower than

those for the QTE estimate without adjustment. This observation holds generally, irrespective of

the specification and estimation methods of the auxiliary regressions. For example in Table 8, in the

anemic subsample, the standard errors for the “ML” QTE estimates are 14.1% and 3.5% less than

those for the QTE estimate without adjustment at the median and the 75th percentile, respectively.

For another example in Table 9, at the 25th percentile, the standard errors for the “Lasso” QTE

estimates are 24.8% and 14.1% less than those for the QTE estimate without adjustment in the

full sample and the anemic subsample, respectively.

Second, there seems to be heterogeneity in the impact of the iron supplement encouragement.

10Specifically,

(i) NA: the estimator without any adjustments.

(ii) LP: linear probability model.

(iii) LG: logistic probability model with regressors (1, X>i )> and coefficient estimator θ̂LGa,s (τ). In line with the
simulation, we add an ridge penalty log−1(n(s))||θ||22 to the objective function to stabilize the solution.

(iv) ML: logistic probability model with regressor H and coefficient estimator θ̂ML
a,s (τ). When there is

only one auxiliary regressor, Hi = (1, X1i)
>, and when there are four auxiliary regressors, Hi =

(1, X1i, X2i, X3i, X4i, X3iX4i)
>, whereX1i, X2i, X3i, X4i, represent these variables for student i: male, monthly

income, electricity in home, and mother’s years of schooling, respectively.

(v) NP: logistic probability model with regressor Hhn and coefficient estimator θ̂NPa,s (τ). NP is only applied to the
case when there are four auxiliary regressors with Hhn = (1, X1i, X2i, X3i, X4i, X2i1{X2i > t1}X4i1{X4i >
t2})> where t1 and t2 are the sample medians of {X2i}i∈[n] and {X4i}i∈[n], respectively.

(vi) Lasso: logistic probability model with regressor Hpn and post-Lasso coefficient estimator θ̂posta,s (τ). Lasso is

only applied to the case when there are four auxiliary regressors with Hpn(Xi) = (1, X>i )> and Ŝ+
a,s(q) = {2}.

The post-Lasso estimator θ̂posta.s (τ) is defined in (5.15). The choice of tuning parameter and the estimation
procedure are detailed in Section 6.3.
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Table 8: QTEs of Iron Supplement Encouragement on Grades (one auxiliary regressor)

NA LP LG ML

Panel A. full sample
25% 0.317 0.317 0.238 0.317

(0.121) (0.142) (0.121) (0.121)
50% 0.079 0.000 0.000 0.000

(0.182) (0.162) (0.162) (0.162)
75% 0.159 -0.079 0.000 -0.079

(0.243) (0.223) (0.223) (0.223)

Panel B. anemic subsample
25% 0.381 0.381 0.381 0.381

(0.170) (0.146) (0.158) (0.146)
50% 0.761 0.761 0.666 0.761

(0.243) (0.243) (0.243) (0.243)
75% 0.666 0.666 0.666 0.666

(0.340) (0.316) (0.340) (0.328)

Notes: The table presents the QTE estimates of the effect of the iron supplement encouragement
program across the distribution of grade when only one auxiliary regressor (male) is used in the
regression adjustment models. Standard errors are in parentheses.

Table 9: QTEs of Iron Supplement Encouragement on Grades (four auxiliary regressors)

NA LP LG ML NP Lasso

Panel A. full sample
25% 0.317 0.317 0.317 0.317 0.317 0.317

(0.121) (0.142) (0.121) (0.101) (0.101) (0.091)
50% 0.079 -0.079 0.000 -0.079 0.000 0.000

(0.182) (0.182) (0.162) (0.142) (0.162) (0.142)
75% 0.159 -0.159 0.079 -0.079 -0.079 -0.079

(0.243) (0.233) (0.223) (0.223) (0.243) (0.223)

Panel B. anemic subsample
25% 0.381 0.476 0.381 0.381 0.381 0.381

(0.170) (0.381) (0.146) (0.146) (0.146) (0.146)
50% 0.761 0.666 0.666 0.761 0.666 0.666

(0.243) (0.267) (0.243) (0.219) (0.194) (0.219)
75% 0.666 0.571 0.571 0.666 0.666 0.857

(0.340) (0.303) (0.340) (0.316) (0.291) (0.291)

Notes: The table presents the QTE estimates of the effect of the iron supplement encouragement
program on academic grades at quantiles 25%, 50%, and 75% when four auxiliary regressor (male,
monthly income, electricity in home, and mother’s years of schooling) are used in the regression
adjustment models. Standard errors are in parentheses.

36



Figure 1: Quantile Treatment Effects on the Distribution of Grades (Anemic subsample)

Notes: The figure plots the QTE estimates of the effect of the iron supplement encouragement
program on the distribution of grades in the anemic subsample when there are four auxiliary re-
gressors: male, monthly income, electricity at home, mother education. The shadow areas represent
the bounds of 95% confidence intervals.

Specifically, in the full sample, only the treatment effects at the 25th percentile are significantly

positive; in the anemic subsample, the treatment effects increase by about 50% from the 25th

percentile to the median and seem to stay constant afterwards.

How does the variation in the impact of the iron supplement encouragement appear across

the distribution of grades? The QTEs on the distribution of grades for the anemic subsample are

plotted in Fig 1, where the shaded areas represent the 95% confidence region. The figure shows that

the QTEs seem insignificantly different from zero below about the 20% percentile. At higher levels

to around 80% percentile the treatment group grades exceed the control group grades, yielding

significant positive QTEs. Beyond the 80% percentile, the QTEs again become insignificantly

different from zero. These findings point to notable heterogeneity in the QTEs of the impact of the

iron supplement encouragement program on the distribution of grades.

9 Conclusion

This paper proposes the use of auxiliary regression to incorporate additional covariates into es-

timation and inference relating to unconditional QTEs under CARs. The auxiliary regression
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model may be estimated parametrically, nonparametrically, or via regularization if there are high-

dimensional covariates. Both estimation and bootstrap inference methods are robust to potential

misspecification of the auxiliary model and do not suffer from the conservatism due to the CAR. It

is shown that efficiency can be improved when including extra covariates and when the auxiliary

regression is correctly specified the regression-adjusted estimator achieves the minimum asymptotic

variance. In both the simulations and the empirical application, the proposed regression-adjusted

QTE estimator performs well. These results and the robustness of the methods to auxiliary model

misspecification reflect the aphorism widespread in scientific modeling that all models may be

wrong, but some are useful.11

11The aphorism “all models are wrong but some are useful” is often attributed to the statistician George Box
(1976). But the notion has many antecedents, including a particularly apposite remark made in 1947 by John von
Neumann (2019) in an essay on the empirical origins of mathematical ideas to the effect that “truth ... is much too
complicated to allow anything but approximations”.
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Crépon, B., F. Devoto, E. Duflo, and W. Parienté (2015). Estimating the impact of microcredit on

those who take it up: Evidence from a randomized experiment in Morocco. American Economic

Journal: Applied Economics 7 (1), 123–50.

Duflo, E., M. Greenstone, R. Pande, and N. Ryan (2013). Truth-telling by third-party auditors

and the response of polluting firms: Experimental evidence from India. The Quarterly Journal

of Economics 128 (4), 1499–1545.

Dupas, P. and E. Miguel (2017). Impacts and Determinants of Health Levels in Low-Income

Countries. In Handbook of Economic Field Experiments, Volume 2, pp. 3–93. Elsevier.

Firpo, S. (2007). Efficient semiparametric estimation of quantile treatment effects. Economet-

rica 75 (1), 259–276.

Fogarty, C. B. (2018). Regression-assisted inference for the average treatment effect in paired

experiments. Biometrika 105 (4), 994–1000.

Freedman, D. A. (2008a). On regression adjustments in experiments with several treatments.

Annals of Applied Statistics 2 (1), 176–196.

Freedman, D. A. (2008b). On regression adjustments to experimental data. Advances in Applied

Mathematics 40 (2), 180–193.

Glewwe, P. and E. A. Miguel (2007). Chapter 56 The Impact of Child Health and Nutrition on

Education in Less Developed Countries. In Handbook of Development Economics, Volume 4, pp.

3561–3606. Elsevier.

40



Hahn, J., K. Hirano, and D. Karlan (2011). Adaptive experimental design using the propensity

score. Journal of Business & Economic Statistics 29 (1), 96–108.

Hirano, K., G. W. Imbens, and G. Ridder (2003). Efficient estimation of average treatment effects

using the estimated propensity score. Econometrica 71 (4), 1161–1189.

Hu, Y. (2016). Generalized Efron’s biased coin design and its theoretical properties. Journal of

Applied Probability 53 (2), 327–340.

Hu, Y. and F. Hu (2012). Asymptotic properties of covariate-adaptive randomization. The Annals

of Statistics 40 (3), 1794–1815.

Jiang, L., X. Liu, P. C. Phillips, and Y. Zhang (forthcoming 2021). Bootstrap inference for quantile

treatment effects in randomized experiments with matched pairs. Review of Economics and

Statistics.

Kallus, N., X. Mao, and M. Uehara (2019). Localized debiased machine learning: Efficient inference

on quantile treatment effects and beyond. arXiv preprint arXiv:1912.12945 .

Lei, L. and P. Ding (2021+). Regression adjustment in completely randomized experiments with a

diverging number of covariates. Biometrika. forthcoming.

Li, X. and P. Ding (2020). Rerandomization and regression adjustment. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 82 (1), 241–268.

Lin, W. (2013). Agnostic notes on regression adjustments to experimental data: Reexamining

freedman’s critique. Annals of Applied Statistics 7 (1), 295–318.

Liu, H., F. Tu, and W. Ma (2020). A general theory of regression adjustment for covariate-adaptive

randomization: Ols, lasso, and beyond. arXiv preprint arXiv:2011.09734 .

Liu, H. and Y. Yang (2020). Regression-adjusted average treatment effect estimates in stratified

randomized experiments. Biometrika 107 (4), 935–948.

Lu, J. (2016). Covariate adjustment in randomization-based causal inference for 2k factorial designs.

Statistics & Probability Letters 119, 11–20.

Ma, W., F. Hu, and L. Zhang (2015). Testing hypotheses of covariate-adaptive randomized clinical

trials. Journal of the American Statistical Association 110 (510), 669–680.

Ma, W., Y. Qin, Y. Li, and F. Hu (2018). Statistical inference of covariate-adjusted randomized

experiments. arXiv preprint arXiv:1807.09678 .

41



Ma, W., F. Tu, and H. Liu (2020). Regression analysis for covariate-adaptive randomization: A

robust and efficient inference perspective. arXiv preprint arXiv:2009.02287 .

Muralidharan, K. and V. Sundararaman (2011). Teacher performance pay: Experimental evidence

from India. Journal of Political Economy 119 (1), 39–77.

Negi, A. and J. M. Wooldridge (2020). Revisiting regression adjustment in experiments with

heterogeneous treatment effects. Econometric Reviews, 1–31.

Olivares, M. (2021). Robust permutation test for equality of distributions under covariate-adaptive

randomization.

Shao, J. and X. Yu (2013). Validity of tests under covariate-adaptive biased coin randomization

and generalized linear models. Biometrics 69 (4), 960–969.

Shao, J., X. Yu, and B. Zhong (2010). A theory for testing hypotheses under covariate-adaptive

randomization. Biometrika 97 (2), 347–360.

Tabord-Meehan, M. (2018). Stratification trees for adaptive randomization in randomized con-

trolled trials. arXiv preprint arXiv:1806.05127 .

Tan, Z. (2020). Model-assisted inference for treatment effects using regularized calibrated estimation

with high-dimensional data. Annals of Statistics 48 (2), 811–837.

van der Vaart, A. and J. A. Wellner (1996). Weak Convergence and Empirical Processes. Springer,

New York.

von Neumann, J. (2019). The mathematician. Chapman and Hall/CRC.

Wei, L. (1978). An application of an urn model to the design of sequential controlled clinical trials.

Journal of the American Statistical Association 73 (363), 559–563.

Ye, T. (2018). Testing hypotheses under covariate-adaptive randomisation and additive models.

Statistical Theory and Related Fields 2 (1), 96–101.

Ye, T. and J. Shao (2020). Robust tests for treatment effect in survival analysis under covariate-

adaptive randomization. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology) 82 (5), 1301–1323.

Ye, T., Y. Yi, and J. Shao (2020). Inference on average treatment effect under minimization and

other covariate-adaptive randomization methods. arXiv preprint arXiv:2007.09576 .

42



Zhang, M., A. A. Tsiatis, and M. Davidian (2008). Improving efficiency of inferences in randomized

clinical trials using auxiliary covariates. Biometrics 64 (3), 707–715.

Zhang, Y. and X. Zheng (2020). Quantile treatment effects and bootstrap inference under covariate-

adaptive randomization. Quantitative Economics 11 (3), 957–982.

Zhao, A. and P. Ding (2020). Covariate-adjusted fisher randomization tests for the average treat-

ment effect. arXiv preprint arXiv:2010.14555 .

43


	Regression-Adjusted Estimation of Quantile Treatment Effects under Covariate-Adaptive Randomizations
	Recommended Citation


