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Abstract

Reclassification risk is a major concern in health insurance where contracts are typi-

cally one year in length but health shocks often persist for much longer. While most

health systems with private insurers emphasize short-run contracts paired with sub-

stantial pricing regulations to reduce reclassification risk, long-term contracts with

one-sided insurer commitment have significant potential to reduce reclassification risk

without the negative side effects of price regulation, such as adverse selection. In this

paper, we theoretically characterize optimal long-term insurance contracts with one-

sided commitment, extending prior models of this form in several key directions that

are important for studying health insurance markets. We leverage this characterization

to provide a simple algorithm for computing optimal contracts from primitives. We

estimate key market fundamentals using data on all under-65 privately insured con-

sumers in Utah and pair these estimates with our model to study comparative statics

related to contract design and welfare. We find that the welfare value of a system that

effectively implements these long-term contracts depends crucially on (i) the degree of

public insurance pre-system health risk (ii) the distribution of expected lifetime income

gradients in the population (iii) the stochastic process governing life-cycle health shocks

(iv) the extent of consumer switching costs and (v) the degree of consumer myopia.
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1 Introduction

Consumers face substantial health risks over their lifetimes. Much of this risk involves

conditions, such as diabetes, heart disease, and cancer, that lead to high expected medical

expenses over significant periods of time. These conditions can expose individuals who buy

short-term insurance coverage to substantial premium increases – so-called “reclassification

risk” – greatly reducing the extent to which their health risks are insured.

Concerns over reclassification risk have received a great deal of public and academic

attention in recent years. Markets characterized by managed competition, such as the Af-

fordable Care Act (ACA) exchanges in the U.S. and nationwide exchanges in the Netherlands

and Switzerland, emphasize short-run (one year) insurance contracts and contend with the

problem of reclassification risk through community rating and guaranteed issuance, thereby

prohibiting discrimination against consumers who have developed pre-existing conditions.

Unfortunately, while requiring identical pricing for consumers with different health can

eliminate reclassification risk, it can create adverse selection, leading to under-provision

of insurance or a need for a byzantine web of regulations to combat that selection [Handel,

Hendel and Whinston (2015), Patel and Pauly (2002)].

This paper moves away from the premise that insurance markets should utilize annual

contracts by investigating the potential welfare gains from longer-term insurance contracts.

By specifying long-term obligations, such contracts can mitigate reclassification risk without

the pricing regulation that leads to adverse selection when contracts are short term. Long-

term contracts are common in other less regulated markets, such as life insurance [Hendel

and Lizzeri (2003)], and exist in some health insurance markets such as Germany and Chile

[Browne and Hoffman (2013), Atal (2016), Atal et al. (2020)]. Further, in the U.S. prior

to the ACA, state-level guaranteed renewability regulations introduced some elements of

dynamic contracting to health insurance contracts, albeit of a restricted form [Patel and

Pauly (2002), Marquis and Buntin (2006)]. While there are some practical impediments to

long-term contracts in health, which we outline in Section 8, many of those impediments

could be overcome with technological or regulatory changes were long-term contracts seen

to be sufficiently beneficial.

We make three primary contributions toward understanding the performance of long-term

contracts. First, we extend prior work on long-term contracts with one-sided commitment

[e.g. Harris and Holmstrom (1982), Hendel and Lizzeri (2003), Pauly, Kunreuther and Hirth

(1995), Krueger and Uhlig (2006)] and develop a dynamic model of health insurance con-

tracting that allows for flexible stochastic health processes and long contract durations.1 We

1Other prior related work in macro-finance includes Farhi and Werning (2013) and Golosov, Troshkin,
and Tsyvinski (2016).
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characterize the form of optimal long-term contracts in a series of theorems, and extend the

framework to allow for relevant frictions such as consumer switching costs, consumer my-

opia, and some forms of consumer self-selection. Second, we use our theorems to establish

a simple algorithm for computing optimal long-term contracts as a function of key market

fundamentals such as the stochastic health process and the life-cycle path of a consumer’s

income. This algorithm allows the literature on dynamic contracts with one-sided commit-

ment, which has so far been only theoretical, to expand into empirics. Third, we estimate

these market fundamentals using data on all under-65 privately insured individuals from the

state of Utah and use our estimates to quantify the potential benefits (or costs) of long-

term contracts for this policy-relevant sample. In addition to quantifying the benefits and

costs of such contracts, we study positive and normative comparative statics with respect

to these fundamentals and also study the welfare impacts of complementary public policies,

e.g., public insurance for those entering the insurance system with significant health risks.

We begin our analysis in Section 2 by characterizing optimal long-term health insurance

contracts theoretically. If both consumers and firms could commit to long-term contracts ex

ante, prior to information revelation, then the efficient (first-best) allocation of full long-run

insurance is possible. Since it is generally acknowledged that consumers cannot be bound

to long-term insurance contracts, we focus instead on contracts with one-sided commitment,

in which firms but not consumers can make long-term contractual promises.2 In the model,

consumers seek to insure against negative health shocks over their lifetimes. Consumers

and insurers learn about these shocks symmetrically over time. We assume that capital

market imperfections prevent consumers from borrowing sufficient funds to pay for a first-

best lifetime insurance contract up front, something which seems quite sensible given the

substantial amount of money that would be required to fund such a contract.3

In this setting, the competitive equilibrium in markets with one-sided commitment only

partially insures reclassification risk. We show that optimal contracts offer consumers a

minimum guaranteed consumption level. Dynamically, this minimal guarantee is bumped

up to “match the market” when a consumer has unexpectedly good health realizations

(which can involve remaining healthy longer than expected as the consumer ages), in order

to ensure that consumers won’t lapse. The optimal contracts involve “front-loading” (early-

year premiums in excess of expected medical costs) to lock consumers partially into the

contract, offering insurance against reclassification risk.

2See, for example, the discussions in Diamond (1992), Cochrane (1995), and Pauly, Kunreuther, and
Hirth (1995).

3A large literature documents credit constraints faced by consumers (Brunnermeier et al. (2012)). In
practice, some of these capital market imperfections likely stem from similar factors to those that prevent
consumers from committing to make large ex post payments to an insurer.
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The optimal consumption guarantee depends on the stochastic health process, the con-

sumer’s income path over time (i.e., how much income rises with age), and the interest

rate, but somewhat surprisingly, we show that it does not depend on the consumer’s level

of risk aversion. Importantly, we show that these optimal contracts equivalently can be

offered as simple guaranteed premium path contracts. When offered in this form, contracts

are self-selective in the sense that consumers with different lifetime income profiles and risk

preferences will choose the contracts designed for them from a menu of optimal contracts,

even if firms do not observe such information about individuals. We also extend our model

to incorporate consumer switching costs, which have been shown to be important in con-

sumer health insurance choices [Handel (2013)], and consumer myopia, which may reduce

consumers’ willingness to front-load premiums to insure against reclassification risk in the

long run.

We develop a parsimonious computational method to find optimal dynamic contracts

given a consumer’s stochastic health process, income path, and the interest rate, which is

critical for our aim of evaluating the welfare gains from long term contracting. In principle,

an optimal dynamic contract could be extremely complicated, specifying consumption levels

along any possible health history. However, as we discuss in Section 2, our theoretical

analysis yields two useful properties of optimal contracts that enables a simple computational

procedure.

Our results generalize work on optimal dynamic contracts by Harris and Holmstrom

(1983) and Hendel and Lizzeri (2003). Harris and Holmstrom (1983) study optimal dynamic

labor contracts when risk-averse workers and risk-neutral firms symmetrically learn workers’

productivity over time. Aside from the difference in setting from labor markets to health

insurance markets, our model allows for a more general stochastic process, which is essential

for studying health insurance.4 While Hendel and Lizzeri (2003) do allow for general health

state transitions in their theoretical characterization, it is for a two-period problem, while our

framework applies to contracts of arbitrary (finite) durations, which is crucial for studying

long-run contracts in health insurance. Moreover, these earlier papers do not have results

on (i) consumer self-selection into contracts (ii) consumer inertia or (iii) consumer myopia,

nor do they provide methods for computing optimal dynamic contracts and assessing their

welfare implications.5

4Our model’s more general stochastic process, and our computational methods, could also enable study
of implicit labor contracts insuring very general forms of productivity shocks.

5Our model of long-term health insurance contracting also relates closely to work by Pauly, Kunreuther,
and Hirth (1995) and Cochrane (1995). Pauly, Kunreuther, and Hirth (1995) focus on contracts that ensure
that an insured can renew future coverage at the same rates that the healthiest possible type would pay
(which they term “guaranteed renewable”), while Cochrane (1995) proposes the use of “premium insurance”
as a means of insuring against long-term negative shocks to health. In Section 2 and Appendix C, we discuss
in depth the theoretical relation of our optimal contracts to those proposed in these two papers and describe
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Section 3 estimates the primitives needed to implement our model empirically. We use

granular data from the Utah all-payer claims database, which contains diagnostic and spend-

ing information on all privately insured consumers in the state of Utah (about 2 million

consumers). For each consumer, and each year they are in the data, we use their medical

diagnostic codes and spending data to predict their medical spending for the upcoming year.

We also estimate a second-order Markov process that captures the empirical evolution of

consumer health. We estimate this Markov process as a function of age and use these esti-

mates to study the evolution of health risk over the life-cycle, a key ingredient for assessing

the welfare implications of dynamic insurance contracts.

In Section 4, we combine the estimated primitives with our model to compute optimal

dynamic contracts for representative male consumers in Utah.6 We show empirically that

the extent of optimal contract front-loading, for a 25 year-old consumer entering the private

market, is inverted U-shaped in health status: it is highest for individuals in medium health

states and lower for the healthiest and sickest consumers. For example, a healthy 25 year-

old with a flat income profile (net of health spending) pays a premium of $2,294 despite

expected costs of only $837 in that year. This front-loading accrues year after year while the

consumer is healthy at young ages, enabling insurers not to raise premiums for consumers

who transition into poor health and yet still earn non-negative profits.

We show that consumers’ expected income profiles are critical in shaping optimal dynamic

contracts. When consumers have steeper increasing income profiles, they are asked to front-

load less in the optimal contract because their marginal value of incremental income is

relatively higher when they are younger. Thus, their income growth over time limits their

desire to insure future health risks with relatively more valuable current income. (As we

discuss in Section 2 and study in an extension, a flatter income profile in our model may

also represent a consumer with greater ability to borrow against future income.)

In Section 5 we study the welfare these optimal dynamic contracts generate relative to

alternative insurance system designs. To quantify the baseline level of potential reclassifica-

tion risk in our environment, we first investigate the welfare loss from a market with only

year-to-year spot contracts (and no community rating), relative to full insurance against

the contributions we make relative to these papers. In addition, in those sections we assess the welfare these
alternative contracts provide compared to our optimal dynamic contracts.

6Relative to the current insurance environment in Utah, our analysis is stylized on a variety of dimensions
including (i) we do not allow for a competing employer insurance sector (ii) we do not allow for medical
expense reductions through uncompensated care or bankruptcy (iii) we presume that insurers do not face
some of the potential long-term contract implementation frictions that we discuss in Section 8 and (iv) we
conduct our analysis for several typical income paths rather than the actual distribution of life-cycle incomes
for Utah residents. Our analysis also abstracts from issues of moral hazard. Incorporating moral hazard
is an important, but challenging, direction for future research on dynamic health insurance contracts, but
beyond the scope of the current paper.
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reclassification risk. We call this benchmark “No Borrowing / No Savings Full Insurance.”7

Across a range of lifetime income profiles varying in steepness, spot contracts result in a

lifetime welfare loss between 9.3% and 17.8% for consumers who start their adult lives in

good health. This represents the loss from not being able to insure reclassification risk.

Turning to dynamic contracts, we first investigate their implications for consumers con-

ditional on their age-25 health state. We find that, for men in Utah who start their adult

lives in good health, optimal dynamic contracts close 95-99% of the welfare gap between

spot contracts and the “No Borrowing / No Savings Full Insurance” benchmark. However,

individuals who start in the poorest health state at age-25 gain much less from dynamic

contracts, capturing only 5-29% of the welfare gap. We then assess the ex ante performance

of dynamic contracts by computing the welfare of unborn individuals who face uncertainty

about their age-25 health state. The welfare impact of dynamic contracts on unborn indi-

viduals is heavily influenced by risk aversion about landing in the worst possible health state

at age-25. As a result, for those with flat net income, dynamic contracts close only 43.3% of

the welfare gap, while for those with our steepest income profile only 4.6% of the at-birth

ex ante welfare gap.

These results suggest that insurance for this pre-age-25 health risk would be a desirable

complementary public policy in a regime that relied on dynamic health insurance contracts.

We find that with a balanced budget insurance scheme for pre-age-25 health risk, dynamic

contracts close between 79-93% of the ex ante welfare gap between spot contracts and our

“No Borrowing / No Saving” benchmark.8

In Section 6, we compare the welfare of dynamic contracts to a managed competition-style

exchange, similar in spirit to an exchange set up under the Affordable Care Act (ACA) or to

Medicare Part D. We find that whether the exchange is preferred from a welfare perspective

depends on the income profiles we consider and whether the government insures pre-age-

25 risk under dynamic contracts. If pre-age-25 risk is insured, the managed competition

environment does better than dynamic contracts for rising income profiles, but for consumers

with flat net income profiles, dynamic contracts are preferred. Intuitively, the exchange

environment is better for individuals who find front-loading costly. If age-25 health risk

is not insured under dynamic contracts, then consumers prefer the managed competition

environment for all income paths.

7Since, for some income paths, the welfare loss induced by spot contracts comes in part from their inability
to smooth consumption over time, we consider this benchmark more relevant than the first best. In this
benchmark there is full insurance but consumers pay premiums equal to the average medical expenses of
their age group.

8One can think of this kind of policy to insure age-25 risk as similar in spirit to the risk-adjustment,
risk-corridor, and reinsurance regulations present in the ACA (and many other current environments) but
applied to age-25 consumers choosing dynamic contracts instead of consumers of all ages choosing year-to-
year contracts.
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In Section 7, we explore four extensions. First, we consider the effects of switching

costs, which have been estimated to be quite large in health insurance markets Handel

(2013). Our theory in Section 2 shows that switching costs can raise the benefits of dynamic

contracts by increasing consumer commitment to contracts. We find, e.g., that, for consumers

with flat net income paths, dynamic contracts have higher welfare than an exchange-like

environment when switching costs are greater than $1,970 (even without complementary

age-25 insurance).

Our second extension studies the implications of myopia, which reduces the ability of

long-term contracts with one-sided commitment to help consumers. As myopia increases,

consumers are less willing to invest via front-loading to insure against future health reclassifi-

cation. We show that, as consumers become more myopic, (i) contracts are less front-loaded

(ii) lapsation rates are higher (for the guaranteed premium path version of our contracts)

and (iii) myopia affects those with steeper income paths more than those with flatter income

paths. But, we also find that, except for when myopia is very strong, it can have relatively

small impacts on the welfare implications of dynamic contracts.

In our third extension we consider the possibility that, absent a long-term contract,

consumers may engage in precautionary savings to reduce the risk they face. We find that

such precautionary savings only closes a small amount of the gap (2.6% to 27.1%) from spot

contracts to the no borrowing / no saving benchmark.

Our fourth extension addresses the concern that estimated levels of risk aversion in the

health insurance literature may overstate consumers’ aversion to the much larger risks asso-

ciated with reclassification risk. We study different levels of risk aversion estimated in the

literature and find that while with lower levels of risk aversion the losses from reclassification

risk decline, with lower risk aversion dynamic contracts close a larger share of the welfare

gap between spot contracts and full insurance.

In addition to the theoretical papers highlighted above, there are a number of related

papers that study long-term health insurance empirically. Herring and Pauly (2006) conduct

a calibration of guaranteed renewable contracts following the Pauly, Kunreuther and Hirth

(1995) model, using data from the Medical Expenditure Panel Survey (MEPS). Browne and

Hoffmann (2013) study the long-term contracts present in the German private health insur-

ance (PHI) market and demonstrate that (i) front-loading of premiums generates consumer

lock-in, (ii) more front-loading is associated with lower lapsation, and (iii) consumers that

lapse are healthier than those who do not. Perhaps most relevant for this paper, Atal et

al. (2020) apply our theoretical and computational results to study the welfare implications

of the long-term insurance contracts offered in Germany. They find that, in the German

context, long-term contracts lead to significant welfare gains above and beyond short-term

community-rated contracts. Moreover, these contracts are very simple and are similar in
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structure to those in our model for flat net income paths. Finally, our analysis also relates

to Fleitas et al. (2021), who use our analysis to support their study of the small group

health insurance market in the US, where they document limited pass-through of health risk

reclassification onto small group premiums.9,10

We conclude in Section 8, where we discuss some of the current practical impediments

to use of long-term health insurance contracts in the US, and possible approaches to remove

them.

In sum, we develop theoretical and computational results that enable us to empirically

characterize the positive and normative implications of a health insurance system focused

on long-term contracts for the under-65 private Utah health insurance market. Our em-

pirical results illustrate the key predictions of our framework and provide insights into the

potential benefits of long-term health insurance, providing a useful benchmark for longer-run

policy discussions of health insurance design. Our theoretical and computational results also

provide a basis for other empirical work on these issues [as in Atal et al. (2020)].

2 Theory

We consider a dynamic insurance problem T periods long, with periods indexed t = 1, ...T .

In our empirical analysis, periods represent years, with t = 1 corresponding to a 25-year old,

and T = 40 corresponding to a 65-year old, when Medicare coverage would begin in the U.S.

The consumer may incur medical expenses mt ∈ R in each period t, which are uncertain

and motivate the desire for insurance. The consumer enters each period t characterized

by his health status λt ∈ H, which determines the distribution of that period’s medical

expenses. We take H to be a finite set. In our empirical work, greater λt will indicate sicker

individuals, so that expected medical expenses E[mt|λt] are strictly increasing in λt.

The evolution of the consumer’s health status is stochastic, with the probability of health

status λt+1 given previous health history Λ1
t ≡ (λ1, ..., λt) given by f(λt+1|Λ1

t ). (Conditional

on Λ1
t , the realization of λt+1 may be correlated with the realization of mt.) We refer to Λ1

t as

the consumer’s health state at the start of period t, and denote the consumer’s initial health

9Other related health insurance papers include Atal (2016), which studies the impact of lock-in to an
insurance plan on the matching between individuals and health care providers in Chile, and Bundorf, Levin,
and Mahoney (2012), who investigate the implications of reclassification risk in a large-employer context in
a short-run environment.

10There are also a number of papers that empirically study long-term insurance in other insurance markets.
Hendel and Lizzeri (2003) examine the structure of life insurance contracts and conclude that these contracts
they display the features of optimal contracts with one-sided commitment. Finkelstein, McGarry and Sufi
(2005) study positive implications of dynamic contracting in the context of long-term care markets, and
show evidence of adverse retention, namely that healthier consumers lapse from contracts over time, leading
to high average costs from those consumers that remain. See Hendel (2016) for a survey of the literature on
long-term contracts and reclassification risk.
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state by Λ1
1. The probabilities f(·) give rise to the probability f(Λt+1

t′ |Λ1
t ) that any given

continuation path Λt+1
t′ ≡ (λt+1, ..., λt′) of health statuses will follow period t starting from

health state Λ1
t . In our empirical work, we will suppose that health status transitions are

governed by a second-order Markov process, so that f(·) can be written as f(λt+1|λt−1, λt),

but the results in this section hold more generally.

An individual’s health state Λ1
t at the start of period t is observed by both the individual

and all insurance firms, namely, there is symmetric information and symmetric learning.11

We assume that the insurance market is perfectly competitive, with risk-neutral firms who

discount future cash flows using the discount factor δ ∈ (0, 1). A consumer’s risk preferences

are described by u(·), the consumer’s Bernoulli utility function, while the consumer’s long-run

expected utility is E[
∑

t δ
tu(ct)], where ct ∈ R is the consumer’s period t consumption level.

Throughout, we assume that u′(·) > 0 and that u′′(·) < 0, which motivates the consumer’s

desire for insurance. The consumer’s income in period t is yt, and evolves deterministically.12

Throughout we assume that consumers are unable to borrow to fund premium payments or

other expenses. However, as we discuss in Appendix E, in interpreting our later empirical

exercise one can view the income path y = {yt}T1 as post-borrowing income; so a consumer

with a slower growth in yt over time may be a consumer who is more able to borrow.

In what follows, we will sometimes refer to a consumer’s income profile y ≡ (y1, ..., yT )

and risk preferences u(·) as the consumer’s “type” θ ≡ (y, u).

2.1 Three Benchmarks

We will compare optimal dynamic contracts with one-sided commitment against three natu-

ral benchmarks.13 The first is the efficient, first-best allocation. In this setting, this outcome

involves a constant consumption in all states and periods, equal to the annualized present

discounted value of the consumer’s “net income” from periods t = 1 to T (where the “net

income” in period t equals period t income, yt, less the expectation of period t medical

expenses conditional on the consumer’s health state Λ1
1 at the first period of contracting,

E[mt|Λ1
1]). That is, it involves the constant consumption level

C∗ =

(
1− δ

1− δT

) T∑
t=1

δt−1(yt − E[mt|Λ1
1]). (1)

11Our assumption that all insurers have access to the same information assumes that insurers can properly
underwrite new customers. If, instead, an individual’s current insurer had better information than other firms,
prospective insurers would face an adverse selection problem when attempting to attract lapsing consumers.
For the consequences of this type of adverse selection, see, for example, DeGaridel-Thoron (2005).

12The model readily generalizes to stochastic income, possibly dependent on the consumer’s health status.
In this case, the optimal contract would insure both health and income risk.

13We also compare the outcome of optimal dynamic contracts with one-sided commitment to a managed
competition-style exchange.
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As is well known, if consumers and insurance firms could both commit to a long-term contract

given Λ1
1, the competitive equilibrium would yield this outcome.

At the opposite extreme, long-term contracts may be impossible, leading to single-period

“spot” insurance contracts. In a competitive market, in each period t such contracts will fully

insure the consumer’s within-period medical expense risks at a premium equal to E[mt|λt],
the consumer’s expected medical expense given his period t health status λt. This results in

the period t consumption level yt−E[mt|λt]. Because the consumer’s period t health status λt

is ex ante uncertain, this outcome faces the consumer with risk from an ex ante perspective.

Given Λ1
1, the consumer’s constant certainty equivalent of this uncertain consumption path

is the constant consumption level CESPOT such that

u(CESPOT ) =

(
1− δ

1− δT

)
E[

T∑
t=1

δt−1u(yt − E[mt|λt])|Λ1
1] (2)

Finally, in this dynamic setting both insurance and consumption smoothing over time

are needed to achieve the first best. Since we will focus on settings in which income yt is

increasing over time and (additional) borrowing is impossible, another natural benchmark is

the outcome that would result if the consumer was fully insured within each period (elimi-

nating all ex ante risk) but resources could not be transferred over time. This certain but

time-varying consumption path results in the same welfare as the constant consumption level

C∗NBNS (“NBNS” = “No Borrowing/No Savings”) such that

u(C∗NBNS) =

(
1− δ

1− δT

) T∑
t=1

δt−1u(yt − E[mt|Λ1
1])). (3)

Compared to spot contracting, this benchmark eliminates reclassification risk without im-

proving intertemporal allocation.

In our empirical work, we will consider both the expected utility that dynamic contracting

and these benchmarks generate at age 25 at the start of contracting (conditional on Λ1
1),

and also the expected utilities that are implied at birth, factoring in the randomness of the

consumer’s age-25 health state (Λ1
1).14

14When we examine at-birth welfare levels, we compute C∗ and C∗NBNS from an at-birth perspective,
replacing E[mt|Λ1

1] with E[mt] in (1) and (3). For spot contracting, we calculate the certainty equivalent
annual consumption that generates the same age 25 to 65 welfare as the spot contracting regime, taking
account of any risk aversion losses arising because of uncertainty over the consumer’s age-25 health state, Λ1

1.
Similarly for the dynamic contracts we discuss in the next subsection, and the managed competition-style
exchange which we examine in Section 6.
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2.2 Optimal Dynamic Contracts with One-Sided Commitment:

Structure

We now turn to the setting in which competitive insurers can offer long-term contracts that

they, but not consumers, are committed to. We assume that contracting begins in period 1

(in our empirical setting, at age 25) after Λ1
1 has been realized. We can view a long-term

contract as specifying the consumer’s consumption in each period t, ct, as a function of the

consumer’s publicly-observed health and medical expense history up to through period t

including period t’s realization of mt and λt+1, [Λ1
t+1, (m1, ...,mt)].

15 The insurer’s profit in

the period then equals the consumer’s income yt less the sum of period t medical expenses

and period t consumption. The lack of commitment by the consumer, however, means that

the consumer is free in each period to change to another insurer who is offering the consumer

better terms.

As in Harris and Holmstrom (1982), without loss of generality we can restrict attention

when solving for the optimal contract to contracts in which the consumer never has an

incentive to “lapse” in this way: since the new contract the consumer signs following any

history must give his new insurer a non-negative expected discounted continuation profit, the

consumer’s initial insurer could include the same contract continuation in the initial insurance

contract and weakly increase its expected discounted profit (lapsation would instead yield the

initial insurer a continuation profit of zero). As a result, we can look for an optimal contract

by imposing “lapsation constraints” that require that after no history is it possible to offer

the consumer an alternative continuation contract that (i) itself prevents future lapsation,

(ii) breaks even in expectation, and (iii) gives the consumer a higher continuation utility

than in the original contract.

We take a recursive approach to solving this optimal contracting problem. At each date

t, we can think of the state as a pair (Λ1
t , St) where Λ1

t is the consumer’s current health

state (which determines future expected medical expenses), and St is the absolute value of

the loss that the insurer is allowed to sustain going forward (i.e., St is the subsidy for future

insurance).16 This is a useful formulation for two reasons. First, after any history Λ1
t leading

up to period t, continuation of the original contract generates some expected utility to the

consumer and some expected loss St to the insurer. A necessary condition for an optimal

contract, given the consumer’s current health state, is that it is not possible to increase

the consumers’ continuation utility while keeping the insurer’s loss equal to St. So, the

15This formulation assumes, for convenience, that the consumer cannot engage in hidden savings. While
we will make this assumption initially, in the end we show that under the optimal contract the consumer
has no desire to save. We could also allow consumption to be stochastic conditional on [Λ1

t+1, (m1, ...,mt)],
but this will not be optimal.

16Note that because only the health state Λ1
t matters for the distribution of future medical expenses, an

optimal contract will not depend on previous medical expense realizations.
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continuation of the contract must itself solve an optimal contracting problem for an insurer

who can sustain the loss St starting in health state Λ1
t . Second, the constraint that the

contract prevents lapsation can be viewed as saying that the consumer’s continuation utility

starting in any period t when in health state Λ1
t cannot be less than in an optimal contract

offered by an insurer who must break even, i.e., who has St = 0. We denote a contract

starting in period t for a consumer in health state Λ1
t by cΛ1

t
(·) and the optimal contract for

such a consumer whose type is θ when a subsidy St is available by cθ∗
Λ1
t
(·|St).

More formally, consider the problem that arises if a firm faces a consumer of type θ in

health state Λ1
t and can sustain, going forward, a (discounted expected) absolute loss of

St. Let BSt(Λ1
t ) denote the set of period t contracts in health state Λ1

t that break even in

expectation with a subsidy of St if no lapsation occurs, and let V θ
Λ1
t
(cΛ1

t
(·)) be the consumer’s

discounted expected utility from contract cΛ1
t
(·) starting in period t with health state Λ1

t . In

addition, let cΛ1
t |Λ

t+1
t′

(·) denote the continuation of contract cΛ1
t
(·) starting in period t′ > t if

the health status realizations between period t+ 1 and t′ are Λt+1
t′ ≡ (λt+1, ..., λt′), resulting

in a period t health state of
〈
Λ1
t ,Λ

t+1
t′

〉
≡ (λ1, ..., λt, λt+1, ..., λt′). The optimal contract for a

consumer of type θ is then described as follows:

Definition 1 cθ∗
Λ1
t
(·|St) is an optimal contract for a consumer of type θ signed in period t at

health state Λ1
t with subsidy St if it solves the following maximization problem:

max
c
Λ1
t
(·)∈BSt (Λ1

t )
V θ

Λ1
t
(cΛ1

t
(·)) (4)

s.t. V θ

〈Λ1
t ,Λ

t+1
t′ 〉

(cΛ1
t |Λ

t+1
t′

(·)) ≥ V θ

〈Λ1
t ,Λ

t+1
t′ 〉

(cθ∗〈Λ1
t ,Λ

t+1
t′ 〉

(·|0)) for all Λt+1
t′ with t′ > t

Note that problem (4) provides a recursive definition of the optimal contract. The con-

straint in this definition makes sure that at no continuation health history Λt+1
t′ does the

customer prefer to lapse to cθ∗〈Λ1
t ,Λ

t+1
t′ 〉

(·|0), the optimal contract starting at health state〈
Λ1
t ,Λ

t+1
t′

〉
with no subsidy. The constraint ensures us that, following the realization of

continuation health history Λt+1
t′ , the consumer does not prefer to lapse to any other con-

tract c(Λ1
t ,Λ

t+1
t′ )(·) that would at least break even and that also satisfies no-lapsation.

Our main characterization result, which we establish in Appendix A, is:

Proposition 1 The optimal contract for a consumer of type θ starting in period t at health

state Λ1
t , denoted by cθ∗

Λ1
1
(·), is fully characterized by the zero-profit condition and, for all t′ > t

and Λt+1
t′ such that f(Λt+1

t′ |Λ1
t ) > 0, the condition that the consumer receives the following

12



certain consumption level:

cθ∗Λ1
t
(
〈
Λ1
t ,Λ

t+1
t′

〉
) = max{cθ∗Λ1

t
(Λ1

t ), max
τ∈{t+1,...,t′}

cθ∗〈Λ1
t ,Λ

t+1
τ 〉(

〈
Λ1
t ,Λ

t+1
τ

〉
)}. (5)

Under this contract, the consumer does not wish to secretly save.

In words, the optimal contract cθ∗
Λ1
t
(·) signed in period t at health state Λ1

t offers in each

period t′ > t after history Λ1
t′ =

〈
Λ1
t ,Λ

t+1
t′

〉
the maximum among the first-period consumption

levels offered by all the equilibrium contracts available along the way on continuation health

history Λt+1
t′ . Thus, applying this result to the initial contracting in period 1, the optimal

contract starting in period 1 offers an initial consumption floor, which is then bumped up

to “match the market” in later periods t > 1 each time the consumer reaches a state in

which the market would offer a higher initial consumption floor. The equilibrium contract

provides full within-period insurance for the consumer (i.e., consumption in each period is

independent of mt), and partial insurance against reclassification risk, as consumers who

have experienced sufficiently bad health states leading up through a given period t [i.e., such

that cθ∗Λ1
τ
(Λ1

τ ) ≤ cθ∗
Λ1

1
(Λ1

1) for all τ ≤ t] all enjoy the same level of consumption regardless of

differences in their period t health states. Since the consumer’s consumption level is always

weakly rising over time, the consumer never wishes to save.17

To understand the forces leading to Proposition 1, consider the two-period example (with

T = 2) shown in Figure 1. The consumer starts period 1 in health state λ1, and can transition

to one of two possible period 2 health states, Λ1′′
2 = (λ1, λ

′′
2) or Λ1′

2 = (λ1, λ
′
2), where λ′′2 < λ′2.

In the figure, it is supposed that contrary to Proposition 1, the no-lapsation constraint binds

in the less healthy second-period state Λ1′
2 , but not in the more healthy state λ′′2, despite the

consumption level offered in the outside option being larger in the healthier state (each of

these relations is indicated by a > or = in the figure). We will argue that this cannot be —the

no-lapsation constraint must also bind in the healthier state Λ1′′
2 . Moreover, the reasoning

will make clear why consumption remains constant whenever the lapsation constraint does

not bind, and bumps up when it does bind.

Observe, first, that if the no-lapsation constraint did not bind in state Λ1′′
2 , an optimal

contract must equate the marginal utilities of consumption, and hence consumption levels,

in period 1 and state Λ1′′
2 . In contrast, because the no-lapsation constraint binds in state Λ1′

2 ,

it is not possible to reduce the consumption in that state without violating the constraint,

and thus an optimal contract can result in the marginal utility of consumption in period 1

exceeding that in state Λ1′
2 , and correspondingly consumption in period 1 can be less than

consumption in state Λ1′
2 . However, this would imply that consumption in state Λ1′

2 exceeds

17For a formal derivation, which requires specifying what happens if a consumer with hidden savings seeks
to buy insurance from a new firm, see Appendix B.
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Figure 1: A two-period illustration of the economic forces leading to Proposition 1

that in state Λ1′′
2 , contradicting the assumption that the no-lapsation constraint does not

bind in state Λ1′′
2 (since the offers by rival insurers will be better in the healthier state).

Thus, in an optimal contract, any state at which the no-lapsation constraint binds must

have greater consumption than any state in which it does not bind. Moreover, if we had

more than two period-2 states, every state in which the constraint does not bind must have

the same consumption, which must also equal the consumption level in period 1. With many

periods, this same structure exists across all periods: consumption remains constant until

the no-lapsation constraint binds, at which point it jumps up, and then stays constant again

until the next time the no-lapsation constraint binds.

In the illustration in Figure 1, the insurer either sustains a loss or breaks even in expec-

tation in period 2. Thus, for it to also break even in expectation overall, it has to make a

positive expected profit in period 1. That is, the consumer initially pays more than his ex-

pected healthcare expenses. This “front-loaded” amount funds the consumption guarantees

the consumer will enjoy in the future. This is key in incentivizing the consumer–who cannot

commit to the contract–to stay with the insurer. Indeed as we show in the empirical analysis,

a steeply rising income over time would hurt the performance of dynamic contracts through

creating a tension between front-loading and inter-temporal consumption smoothing.

The guaranteed consumption levels in Proposition 1 are the counterpart for dynamic

health insurance contracts of the downwardly-rigid wages in Harris and Holmstrom (1983)’s

study of implicit labor contracts, where worker and firm are both learning about the worker’s

productivity parameter over time from observations of the worker’s Normally-distributed

output. Relative to their result, aside from the difference in setting, Proposition 1 allows for

a much more general stochastic process than the learning process in Harris and Holmstrom’s

analysis, which is necessary for the study of health insurance.
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The optimal contract in Proposition 1 specifies the consumer’s consumption levels for each

possible health history and prevents lapsation. Importantly, however, the same outcome can

alternatively be achieved by means of a much simpler guaranteed premium path contract

from which the consumer may lapse. Specifically, the consumer is given the option to

renew, if he has not yet lapsed, at the guaranteed premium path pθ∗(Λ1
1) ≡ (pθ∗1 , ..., p

θ∗
T )

where pθ∗t = yt − cθ∗Λ1
1
(Λ1

1) for t = 1, ...T , provided that he has always renewed in the past.18

That is, the guaranteed premium path keeps consumption constant over time, equal to

cθ∗
Λ1

1
(Λ1

1), as long as the consumer sticks with the contract. But if the consumer arrives in

a period t with a sufficiently good health state Λ1
t , he may choose not to renew, instead

signing a contract with a new insurer (or renegotiating a contract with the current insurer)

that offers guaranteed premium path pθ∗(Λ1
t ) ≡ {yτ − cθ∗Λ1

t
(Λ1

t )}τ≥t where cθ∗
Λ1
t
(Λ1

t ) > cθ∗
Λ1

1
(Λ1

1).

Such lapses have no effect on the profit of the consumer’s initial insurer as that firm was

indifferent about whether to match the outside offer.19

2.3 Optimal Consumption Guarantees: Characterization and Com-

putation

Proposition 1 describes the structure of an optimal dynamic contract as involving evolving

consumption guarantees. The level of these guarantees is then determined by the condition

that the insurers offering them must break even. Determining the guarantees that break

even, however, is a recursive problem, because at each point in time and health state the

profit an insurer earns by offering a guarantee depends on the guarantees that competitive

insurers may be willing to offer the consumer in the future. In this section, we describe

this recursive condition and note a striking implication of it: the optimal contract does not

depend on the consumer’s risk preferences, u(·), as long as the consumer is risk averse. This

condition also serves as the basis for computing optimal contracts in our empirical analysis.

18This form of contract is the counterpart to the “Annual Renewable Term” life insurance contracts studied
in Hendel and Lizzeri (2003).

19The recursive formulation also makes clear that this equilibrium outcome can be achieved instead with
single-period contracts. A consumer in period 1 with health state Λ1

1 could purchase a contract that covers
all period 1 medical expenses, and that in addition pays the consumer at the start of period 2 the amount that
the optimal contract implicitly subsidizes the realized continuation state Λ1

2. This amount would allow the
consumer to buy the long-term continuation contract on the open market. Upon reaching period 2, however,
the consumer could instead again buy a one-period policy of this type, and could continue in this manner
until period T . [This approach to replicating a long-term contract with a series of short-term contracts is
reminiscent of Fudenberg et al. (1990), although our setting is not captured in their model because of the
presence of lapsation constraints and the consumer’s inability to borrow.]

As noted in Cochrane (1995), such short-term contracts avoid the consumer being locked into an insurer,
perhaps resulting in better insurer performance as well as better matching of insurers and consumers when
health care networks are bundled with insurance provision. However, such contracts may require that courts
can verify the consumer’s health state Λ1

t , while guaranteed premium path contracts do not.
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For ease of notation, in this section we denote the initial consumption guarantee offered to

a consumer signing a contract in period t with health state Λt by cθ∗t (Λt). For concreteness,

and also anticipating our empirical analysis, we assume in our discussion a second-order

Markov process where Λt = (λt−1,λt), although our observations here fully generalize.

Intuitively, for a consumer of type θ, we can first derive, for each possible last period state

ΛT = (λT−1,λT ), the last period consumption levels cθ∗T (ΛT ) = yT − E[mT |λT ] that would

be offered to a consumer in state ΛT by competitive firms. We then look at each possible

state ΛT−1 = (λT−2,λT−1) in period T − 1. We find cθ∗T−1(ΛT−1) by doing a binary search

over possible values for the consumption guarantee cT−1, looking for the largest cT−1 that

generates non-negative profits for the insurer, taking account of the fact that the consumer

will yield the insurer continuation profits of zero in those states ΛT in which cθ∗T (ΛT ) > cT−1

since the guarantee is either bumped up to match the market or the consumer lapses. We

then continue backward in this fashion, with the transitions f(·) being used to generate

probabilities that the consumer is in each possible state at each future date (which also

generates the probability that the consumer will have lapsed by that date).

More formally, enumerate the 49 possible combinations of (λt−1,λt) for each period t by

{∆s = (λst−1,λ
s
t)}49

s=1. For each period t, we denote by Cθ
t the (T − t+ 1)×49 matrix of first-

period consumption guarantees whose (τ, s) element for τ ≥ t and s ∈ {1, ..., 49} is cθ∗τ (Λs),

a consumption guarantee that breaks even for a contract starting in period τ with health

state Λτ = Λs, given the future guarantees described in Proposition 1 (which are, themselves,

contained in Cθ
t+1). We start at t = T where, as noted above, cθ∗T (ΛT = Λs) = yT −E[mT |λst ].

This gives us Cθ
T . We then proceed iteratively backwards, deriving Cθ

t given Cθ
t+1 and

the transition probabilities. Specifically, Cθ
t adds an additional row to Cθ

t+1; each element

(t, s) of this row is the consumption guarantee cθ∗t (Λt = Λs). We derive this guarantee by

doing a binary search to find the (unique) value c that sets the insurer’s expected profit to

zero. A key observation that dramatically simplifies computation of the insurer’s expected

profit given a value of c is that, whenever the guarantee is bumped up, the insurer earns an

expected continuation profit of zero from that point on. This fact leads to the following

lemma characterizing the insurer’s expected discounted profit from a consumption guarantee:

Lemma 1 If consumption guarantee c is offered at health state Λs, then the expected dis-

counted profit to the insurer will be given by:

{yt − E(mt|λt = λst)− c}+

{
T∑

τ=t+1

δτ−t
49∑
z=1

[yτ − E(mτ |λτ = λzt )− c] · Pτ (z|Λt = Λs, Cθ
t+1, c)

}
,

(6)
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where Pτ (z|Λt = Λs, Cθ
t+1, c) is the probability that, starting in health state Λt = Λs in

period t, the health state transitions (Λt+1, ...,Λτ ) from period t to period τ are such that

Λτ = Λz and cθ∗t′ (Λt′) ≤ c for all t′ ∈ {t+ 1, ..., τ}.20

Proof of Lemma 1. The first term in curly brackets in (6) is the expected profit in

period t given the initial consumption guarantee c, while the second term in curly brackets

is the expected continuation profit from future periods at which the consumption level is

still equal to c. Note that at any health state Λτ such that cθ∗τ (Λτ ) > c (i.e., the lapsation

constraint binds), the insurer’s continuation payoff is zero. This is because at any health

state where the lapsation constraint binds, the insurer is offering the optimal contract for that

state, which we know is zero-profit. Therefore, Equation (6) fully captures the continuation

profit to the insurer by taking account of all future health states Λt′ at which cθ∗t′ (Λt′) ≤ c.

�

Once we compute cθ∗t (Λt = Λs) for all 49 values of Λt, we continue in this iterative manner

until we have derived Cθ
1 , whose first row gives the initial consumption guarantees offered in

period 1 to consumers in each of the 49 possible period-1 health states.

A striking, and perhaps surprising, feature of condition (6) is that it does not depend

on the degree of the consumer’s risk aversion embodied in u(·) That is, the fact that the

consumer is risk averse matters – and is used to prove Proposition 1 – but the optimal

contract is the same for any two risk averse consumers who have the same stochastic health

process and income path.

Finally, note that, in general, an optimal dynamic contract could be an extremely compli-

cated object, specifying consumption levels along any possible health history (of which there

are ΣT
τ=17τ ones), potentially making the computation of an optimal contract an intractable

problem. However, our theoretical analysis has yielded two extremely useful properties for

computation: first, the characterization in Proposition 1 of optimal contracts in terms of

consumption guarantees and, second, the fact that the continuation profit of the consumer

is zero whenever the consumption guarantee is bumped up to match the market (or, equiv-

alently, if the consumer lapses).

20These probabilities are computed using Cθt+1 and the transitions f(·).
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2.4 Comparison to Pauly, Kunreuther, and Hirth (1995) guaran-

teed renewable contracts

In an early analysis of the potential for dynamic health insurance contracts, Pauly, Kun-

reuther, and Hirth (1995) (PKH) proposed what they called “guaranteed renewable con-

tracts” as a solution to prevent reclassification risk.21 In contrast to the optimal long-term

contracts described in Proposition 1, PKH aimed to design a policy that provides full in-

surance in each period and guarantees that the consumer can renew in the future at the

same premium as would be offered to the healthiest consumer type at that age. The idea is

that a consumer with such a policy never wishes to lapse and faces no uncertainty in their

consumption (i.e, no reclassification risk).

To understand these contracts, consider the simplest case in which T = 2 for a consumer

who starts off in the healthiest possible state. For simplicity, we also assume that Ωt =

(λt−1, λt). (We consider the general case in Appendix C.) In period 2 (the last period), the

consumer pays a premium equal to p2 = E[m2|Λ2 = (1, 1)], the expected medical expenses

of the healthiest possible period-2 consumer. In period 1, the consumer pays a premium of

p1 = E[m1|Λ1 = (1, 1)] + δ{E[m2|Λ1 = (1, 1)]− E[m2|Λ2 = (1, 1)]}
= E[m1|Λ1 = (1, 1)] + δ Pr(Λ2 6= (1, 1)|Λ1 = (1, 1)){E[m2|Λ2 6= (1, 1)]− E[m2|Λ2 = (1, 1)]}

The first term is the consumer’s expected period-1 medical costs (since he starts with Λ1 =

(1, 1)), while the second term is the prepayment of the expected period-2 discount being

offered to the consumer (which he enjoys when it turns out that Λ2 6= (1, 1)). This prepayment

is necessarily (weakly) greater than the prepayment arising in the optimal contract, which

promises lower period-2 consumption than the PKH contract in all but the healthiest period-

2 state and therefore needs less front loading to enable the insurer to break even.

Unlike the optimal contracts described in Proposition 1, the PKH contracts do not opti-

mally balance the benefits of reducing reclassification risk against the costs of front-loading;

for example, as formula (48) makes clear, the PKH contract is unaffected by a consumer’s

income profile. The PKH contracts go to the extreme of completely preventing reclassifi-

cation risk, resulting in a fully deterministic consumption profile but excessively low initial

consumption.22

21Pauly, Kunreuther, and Hirth (1995) refer to their policies as guaranteed renewable contracts, but (as
they note) effectively treat them as guaranteed premium path contracts. Actual “guaranteed renewable”
contracts often instead merely state that the consumer has a right to renew at a rate at the insurer’s
discretion, but that must be the same as what the insurer offers to all other consumers in the same policy.

22Cochrane (1995) proposes a different insurance scheme to protect consumers from reclassification risk:
premium insurance. We discuss this scheme in Appendix C.

18



2.5 Unobserved Types and Self-Selection

The analysis above assumed that a consumer’s lifetime income profile y = (y1, ..., yT ) and

risk aversion, captured in the Bernoulli utility function, were known by both the consumer

and all insurers. In reality, this is unlikely to be the case, which could, in principle, pose

an important obstacle to these contracts’ practical use. In this subsection we show that

insurers’ failure to possess this information poses no such problem. Specifically, we show

that if offered the collection of optimal contracts for all types derived above, presented as

guaranteed premium path contracts, consumers will self-select, choosing the optimal contract

for their type.23,24

Specifically, suppose that there is a set Θ of types in the market where, to recall, a

consumer’s type θ = (y, u) includes his income path and risk preferences.25 As above, a

guaranteed premium path contract is a p = (p1, ..., pT ) that allows the consumer to continue

coverage in period t paying premium pt provided that he has not previously lapsed. As

described above, the optimal guaranteed premium path contract for a known type θ starting

in period t when the consumer’s health state is Λ1
t is denoted by the path pθ∗(Λ1

t ) ≡ {yτ −
cθ∗

Λ1
t
(Λ1

t )}τ≥t, a path that keeps consumption constant [equal to cθ∗
Λ1
t
(Λ1

t )] as income changes

from year to year.

Our result is:

Proposition 2 Suppose that, in each period t = 1, ..., T , the menu of optimal guaranteed

premium path contracts {pθ∗(Λ1
t )}θ∈Θ is offered to a consumer in health state Λ1

t , where

pθ∗(Λ1
t ) ≡ {yτ − cθ∗Λ1

t
(Λ1

t )}Tτ=t. Then in each period the menu is self-selective and induces no

secret savings: that is, if a consumer of type θ agrees to a new contract he chooses that type’s

optimal contract pθ∗(Λ1
t ) and does not secretly save.

Proof. In Appendix B.

Since insurers cannot offer any type of consumer a greater value than in the optimal

contract and still break even, Proposition 2 implies that it is an equilibrium for this menu

23Our discussion above showed that the optimal contract does not depend on the consumer’s level of risk
aversion embodied in u(·). However, it is still possible that consumers’ misrepresentations could depend on
u(·), and so we suppose here that both y and u are private information of the consumer.

24Note that contracts that instead present the optimal contracts as guaranteed consumption levels (as in
Proposition 1), would clearly not induce self-selection as consumers with low lifetime incomes would choose
contracts intended for consumers with high lifetime incomes.

25Formally, we allow Θ to include all possible income paths y ∈ RT+ to allow for the possibility of secret
savings (see footnote 56 in Appendix B). Also, while our discussion above showed that the optimal contract
does not depend on the consumer’s level of risk aversion embodied in u(·), it is still possible that consumers’
misrepresentations could depend on u(·). Thus, we suppose here that both y and u are private information
of the consumer.
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of contracts to be offered, which results in the same allocation as if consumer types were

perfectly observable.26

2.6 Consumer Inertia and Myopia

The theory developed above assumed that consumers evaluate long-term insurance contracts

according to a canonical rational forward-looking framework. In this section, we extend our

results to consider two forms of imperfect assessment by consumers. First, recent evidence

suggests that consumers may exhibit substantial inertia in their health insurance choices [see,

e.g., Handel (2013)]. We can extend our analysis to consider the effects of consumer inertia,

which we model by introducing a switching cost that creates a consumption loss of σ > 0 if the

consumer lapses and switches insurers. The key change this introduces is that the inequality

in the lapsation constraint in the period t problem (4) becomes V θ

〈Λ1
t ,Λ

t+1
t′ 〉

(cΛ1
t |Λ

t+1
t′

(·)) ≥
V θ

〈Λ1
t ,Λ

t+1
t′ 〉

(cθ∗〈Λ1
t ,Λ

t+1
t′ 〉

(·| − σ)); an insurer seeking to induce the consumer to lapse must now

incur the cost σ to compensate the consumer for his switching cost.

Second, consumers may exhibit myopia when evaluating insurance contracts that span

many years into the future. Myopia has been oft-studied in life-cycle models and can be

modeled in myriad ways. We follow the myopia model used in most relevant papers (see,

e.g., Aguiar et al. (2020)) and assume that consumers making decisions apply a lower

discount factor β than the true (welfare-relevant) discount factor δ modeled earlier in this

section. This simple specification means that consumers overweight current utility relative

to future utility relative to what their non-myopic selves would want.27

To extend our result to incorporate this possibility, we introduce the following definition:

Definition 2 The “t-period myopic consumption transformation function” is

ψt(·) ≡ u′−1[(
β

δ
)t × u′(·)]

where u(·) is the customer’s utility function.

26The asymmetric information analysis conducted in this section differs from that in part of the macroe-
conomics literature on dynamic contracting with two-sided commitment. For example, Atkeson and Lucas
Jr (1992) examines efficiency in an environment where there is asymmetric information about “endowment,”
the equivalent of “health state” in our model. We, on the other hand, assume symmetric information on
health states. The equivalent of “income paths” in our model, which is the object of asymmetric information
in this section, does not exist in Atkeson and Lucas Jr (1992).

27An oft-used alternative specification for myopia is present-bias (also called present-focus) where con-
sumers have traditional discounting between all future periods but overweight current utility relative to all
future utility (O’Donoghue and Rabin, 2015). Gottlieb and Zhang (2021) study present-bias and dynamic
inconsistency in a stylized model of long-term contracting and show that, with one-sided commitment, as the
time-horizon of contracting grows the inefficiency generated from present-bias goes to 0. We have computed
the Gottlieb-Zhang optimal contracts for our setting and find almost no welfare differences from our baseline
fully rational model.
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Note that ψt(·) is an increasing function, that ψt(c) ≥ c, and that ψt collapses to the

identity function if β = δ. With this definition, we can extend Proposition 1 as follows:

Proposition 3 The optimal contract for a consumer of type θ starting in period t at health

state Λ1
t , denoted by cθ∗

Λ1
1
(·), is fully characterized by the zero-profit condition and, for all t′ > t

and Λt+1
t′ such that f(Λt+1

t′ |Λ1
t ) > 0, the condition that the consumer receives the following

certain consumption level:

ψt′
(
cθ∗Λ1

t
(
〈
Λ1
t ,Λ

t+1
t′

〉
)
)

= max{ψt
(
cθ∗Λ1

t
(Λ1

t )
)
, max
τ∈{t+1,...,t′}

ψτ

(
cθ∗〈Λ1

t ,Λ
t+1
τ 〉(

〈
Λ1
t ,Λ

t+1
τ

〉
| −σ)

)
}. (7)

Under this contract, the consumer does not wish to secretly save.

To understand the changes from Proposition 1, consider first inertia. As noted above,

inertia makes it less attractive to lapse, as the consumer now incurs cost σ. Firms seeking

to induce consumers to switch, must effectively cover this cost, so that a new lapsation-

inducing contract is effectively starting with the negative subsidy −σ. This negative subsidy

appears in the last term in expression (7). Nonetheless, Proposition 3 shows that the basic

structure of an optimal contract is unchanged when inertia is present and continues to include

consumption guarantees. Switching costs simply allow those guarantees to be greater because

healthy consumers are less likely to need to receive a premium reduction (consumption

increase) to prevent lapsation, enabling a greater shift of resources from healthy to unhealthy

states. They also allow for better consumption smoothing over time, as less front-loading is

needed to prevent lapsation. In Section 7.1 we analyze inertia empirically, and show that

they indeed increase consumer welfare from dynamic contracts, achieving first best if the

switching cost is large enough.

Myopia introduces the transformation functions in expression (7), which can equivalently

be written as:

ψt′−t

(
cθ∗Λ1

t
(
〈
Λ1
t ,Λ

t+1
t′

〉
)
)

= max{cθ∗Λ1
t
(Λ1

t ), max
τ∈{t+1,...,t′}

ψτ−t

(
cθ∗〈Λ1

t ,Λ
t+1
τ 〉(

〈
Λ1
t ,Λ

t+1
τ

〉
| − σ)

)
}. (8)

To understand how myopia changes the optimal contract, consider again the two-period

case we examined in Figure 1. Now, when the lapsation constraint does not bind in a

period 2 state (λ1, λ
′
2), equalizing marginal utility across periods 1 and 2 no longer in-

volves equal consumption levels: instead consumption should be lower in period 2 than in

period 1, satisfying the condition that (γ/β)u′(c∗
Λ1

1
(λ1, λ2)) = u′(cθ∗

Λ1
1
(λ1)), or equivalently,
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ψ1(c∗
Λ1

1
(λ1, λ2)) = c∗

Λ1
1
(λ1). However, the same conclusion continues to hold that the con-

tract depicted in Figure 1 cannot be optimal: in the optimal contract states in which the

no-lapsation constraint binds must have greater consumption than states in which it does

not bind. Two differences, though, are that myopia (i) leads to optimal guaranteed premium

path contracts with premiums that rise faster than the rate of income growth and (ii) leads to

increased lapsation rates. In our empirical analysis in Section 7.2 we will show that myopia

indeed reduces the performance of dynamic contracts although they still lead to a non-trivial

boost consumer welfare even under significant myopia (i.e., small β).

3 Data and Parameter Estimates

We investigate positive and normative outcomes for each type of contracting situation. To

predict equilibrium contracts and welfare under each regime we need four basic ingredients:

(i) expected medical costs conditional on an individual’s health status, (ii) the transitions

across health states as individuals age, (iii) preferences towards risk, and (iv) income profiles.

We focus on the sample of men that appear in the all-payer claims data from the State

of Utah for the years 2013-2015.28 This dataset includes detailed medical claims for each

individual in the state of Utah except for those individuals enrolled in traditional Medicare

or those who are uninsured. Our analysis studies all men in the data who (i) are 25-64

years old throughout the three-year sample period and (ii) appear in the data each month

throughout the sample period (e.g., they have no spells of non-insurance). We make the

latter restriction in order to ensure that we can cleanly capture health status transitions, as

described in more detail later. We focus on men here for simplicity, since men and women

have distinct stochastic health processes. We have also performed our analysis for women,

finding broadly similar results for contract structure and welfare.

Table 1 describes our final sample of Utah men, with key descriptive statistics broken

down by age. Our sample has 212,265 men who averaged $4,650 in total medical spending

in 2015. Not surprisingly, average total medical spending is increasing with age.

3.1 Health States

The most essential part of the data is the available information on the diagnostics (ICD-9

codes) of each individual in the sample. We feed the diagnostic codes as well as other de-

mographics into the ACG software developed at Johns Hopkins Medical School to create

28These data are utilized as well in Lavetti et al. (2018), which contains a more complete description of
the data.
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Sample and Total Health Expenditure

Ages Population Mean
All 212,265 4,650

25-29 14,872 2,302
30-34 26,412 2,520
35-39 31,414 2,871
40-44 29,864 3,424
45-49 27,424 4,259
50-54 31,082 5,659
55-59 31,574 7,339
60-64 17,131 8,964

Table 1: Sample statistics for (i) the entire sample of men aged 25-64 used in our equilibrium
analysis and (ii) 5-year age buckets within that sample. For each relevant group, “Popu-
lation” column reports the number of individuals, and “Mean” column reports the average
medical cost in 2015.

individual-level measures of predicted expected medical expenses for the upcoming year rel-

ative to the mean of the population.29 The output is an index that represents the health

status of each individual in the population. Since the ACG is used by insurers in their

underwriting processes, our empirics are based on similar information about risks that mar-

ket participants (insurers) have.30 We denote the ACG index by λ and we refer to λit as

individual i’s “health status” at time t.

To ensure meaningful support when we estimate transition matrices, we partition the

health statuses into seven mutually exclusive and exhaustive bins that each contain one-

seventh of the final sample. Table 2 shows the proportion of individuals in each age group

in each of these seven health categories, with bin 1 being the healthiest, and bin 7 being the

sickest. In its last row it also shows the expected expenses corresponding to each bin: an

individual in the healthiest bin has expected annual medical expenses of $837, while someone

in the sickest bin has expected annual medical expenses of $20,507.

3.2 Health State Transitions

The second key input into our empirical analysis is health transitions over time. We model

transitions in health status as a second-order Markov process in which the distribution of an

29We use the Johns Hopkins ACG (Adjusted Clinical Groups) Case-Mix System. It is one of the most
widely used and respected risk adjustment and predictive modeling packages in the health care sector,
specifically designed to use diagnostic claims data to predict future medical expenditures.

30This is one of the main advantages of our empirical strategy. Most of the literature on health insurance
estimates the distribution of risks from observed insurance choices and realized total medical expenditures.
Instead our measure of risk is based on diagnosis codes and professional diagnostics (the ACG index).
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Health Status by Age

Age 1 (Healthy) 2 3 4 5 6 7 (Sick)
25-29 0.55 0.15 0.11 0.07 0.05 0.04 0.05
30-34 0.44 0.17 0.14 0.08 0.06 0.06 0.05
35-39 0.37 0.17 0.14 0.10 0.08 0.07 0.07
40-44 0.31 0.16 0.15 0.12 0.10 0.08 0.08
45-49 0.17 0.12 0.18 0.16 0.14 0.12 0.11
50-54 0.11 0.10 0.15 0.17 0.17 0.15 0.15
55-59 0 0.11 0.10 0.18 0.19 0.21 0.20
60-64 0 0.08 0.08 0.17 0.19 0.23 0.25

Actuarial costs 837 1,376 1,973 3,052 4,356 6,840 20,507

Table 2: Health status by age in 2015 for our sample, where consumers are divided into 7
bins of their predicted medical spending (determined by their Johns Hopkins ACG predictive
score) for the year ahead. The “Actuarial costs” row reports how expected expenses in the
upcoming year vary across the consumer health status bins.

individual i’s period t+ 1 status λi,t+1 is conditional on his health status in the previous two

years, Λt ≡ (λi,t−1, λit).
31 Specifically, once we have λit for every individual and year in the

sample, we estimate year-to-year transition probabilities f(λi,t+1|λi,t−1, λit) for individuals

in five-year age groups (e.g., transitions within cohort 25-30) using the actual transitions

of consumers within each age range. (Again, the five-year grouping helps ensure adequate

populations in each cell.) The advantage of computing transitions of ACG scores as opposed

to medical expense transitions is that the ACG is based on persistent diagnostics. A broken

arm probably does not affect significantly future medical expense realizations while asthma

does. In other words, the ACG eliminates temporary expenses from the forecast of future

expenses.32 From the estimated probabilities f(λi,t+1|λi,t−1, λit) we construct the 49-by-49

health state transition matrices [giving the mapping from (λi,t−1, λi,t ) to (λi,t, λi,t+1 )] for

the five-year age bins from ages 25-65 as the foundation for modeling health state persistence

and transitions over time.

Tables 3 and 4 present the estimates of f(λi,t+1|λi,t−1, λit) for ages 30-35 and 40-45 re-

spectively (rounded to the nearest 0.01). Panel A shows transitions from states in which an

individual’s health statuses were the same in each of the two previous years (i.e., states in

which λi,t−1 = λit). Entries along the diagonal of each matrix reflect health state persistence,

while off-diagonal elements reflect health state changes. For example, 73% of consumers aged

31We are limited by our data to modeling the dependency of transitions based only on the last two years.
Atal et al. (2019) also focus on a second-order Markov process for health state transitions.

32Admittedly, by defining transitions over ACGs we may miss potential information on what condition
led to the current ACG index that could entail different persistence beyond two years. However, we believe
that with the combination of using ACG scores rather than medical expenses, and two-year health states,
we capture the health transition process reasonably well.
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30-35 who are in the healthiest possible state (λi,t+1 = λit = 1) are estimated to stay in the

healthiest health status for the following year. Only 6% of these consumers begin the fol-

lowing year in one of the four sickest bins (λi,t+1 ∈ {4, 5, 6, 7}). On the other hand, 89% of

consumers who are in the worst possible health state (λi,t−1 = λit = 7) begin the following

year in one of the two sickest bins (λi,t+1 ∈ {6, 7}). The next two panels (B and C) show the

probabilities f(λi,t+1|λi,t−1, λit) when the consumer has had the best (panel B) and worst

(panel C) possible health states two years ago. Comparing the case where (λi,t−1, λit) = (1, 7)

to the case in which (λi,t−1, λit) = (7, 1), we see that the previous year’s health status has

greater importance than health status two years prior. Though the distributions of health

are different for 40-45 year olds, health states show similar persistence.33

The persistence embodied in these health state transitions is illustrated in Tables 5 and

6. Table 5 shows the net present value of expected medical expenses for different future

periods conditional on the consumer’s age-30 health state, focusing on health states in which

the consumer’s health status was the same at ages 29 and 30. Table 6 shows the same

kind of calculation for consumers starting at age 45. The tables show that while there is

significant persistence, much (but not all) of it dissipates after 10 years.34,35

3.3 Risk Preferences

The third ingredient is a consumer’s risk aversion, i.e., the degree to which consumption

smoothing over different states of the world is valued by consumers. In our main analysis,

we use the risk preferences estimated in Handel, Hendel, and Whinston (2015). There

we estimate a panel discrete choice model where risk aversion is identified by the choices

that households make conditional on their household-specific health expenditure risk for the

upcoming year. Consumers have constant absolute risk aversion (CARA) preferences:

u(c) = −1

γ
e−γc (9)

where c = y − p − o is consumption (which equals income y less premium payments p and

out-of-pocket medical expenses o) and γ is the risk aversion parameter. The mean estimated

risk-aversion level is 0.0004, which falls within the range reported in the literature. We

33Lavetti et al. (2018) presents transition matrix estimates that are similar in spirit to those used here,
and has the matrices we use here available upon request.

34The fact that expected costs depend relatively little on the health state 10 years prior is consistent
with actuarial mortality tables. There are two kinds of tables: “ultimate” tables are based on attained age
only, while “select and ultimate” tables report the death rate not only by attained age, but by years since
underwriting (namely, conditional on being in good health at that time). The tables converge as the years
since underwriting increase; 10 years after underwriting the rates are quite similar.

35Note that complete persistence would eliminate the benefit of dynamic contracts as there would be no
reclassification risk to insure once a consumer’s age-25 health state is realized.
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λt+1

λt−1 λt 1 2 3 4 5 6 7
1 1 0.73 0.13 0.07 0.02 0.02 0.01 0.01
2 2 0.41 0.27 0.16 0.07 0.04 0.03 0.02
3 3 0.20 0.21 0.28 0.17 0.08 0.05 0.02
4 4 0.08 0.09 0.19 0.32 0.15 0.11 0.05
5 5 0.07 0.06 0.09 0.15 0.37 0.21 0.06
6 6 0.04 0 0.04 0.03 0.15 0.51 0.23
7 7 0.02 0 0.02 0.02 0.05 0.12 0.77

Panel A: Health-state transition probabilities for λt−1 = λt health states

λt+1

λt−1 λt 1 2 3 4 5 6 7
1 1 0.73 0.13 0.07 0.02 0.02 0.01 0.01
1 2 0.52 0.23 0.12 0.05 0.04 0.03 0.02
1 3 0.42 0.21 0.18 0.07 0.04 0.04 0.02
1 4 0.34 0.19 0.15 0.13 0.09 0.07 0.03
1 5 0.27 0.22 0.15 0.11 0.09 0.09 0.06
1 6 0.39 0.18 0.15 0.07 0.07 0.09 0.05
1 7 0.30 0.18 0.19 0.06 0.06 0.09 0.12

Panel B: Health-state transition probabilities for λt−1 = 1 health states

λt+1

λt−1 λt 1 2 3 4 5 6 7
7 1 0.63 0.25 0.12 0 0 0 0
7 2 0.52 0.26 0.22 0 0 0 0
7 3 0.16 0.18 0.29 0.14 0.13 0.10 0
7 4 0.15 0.16 0.21 0.20 0.14 0.13 0
7 5 0 0 0.11 0.22 0.26 0.30 0.12
7 6 0 0 0.08 0.08 0.13 0.37 0.34
7 7 0.02 0 0.02 0.02 0.05 0.12 0.77

Panel C: Health-state transition probabilities for λt−1 = 7 health states

Table 3: Health status transitions from one year to the next, for 30-35 year old men.
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λt+1

λt−1 λt 1 2 3 4 5 6 7
1 1 0.66 0.15 0.09 0.04 0.02 0.02 0.01
2 2 0.29 0.29 0.20 0.11 0.05 0.03 0.03
3 3 0.12 0.16 0.32 0.20 0.10 0.05 0.03
4 4 0.05 0.08 0.15 0.35 0.20 0.11 0.07
5 5 0.03 0.05 0.07 0.17 0.35 0.23 0.10
6 6 0.03 0.03 0.03 0.05 0.14 0.49 0.23
7 7 0.01 0.01 0.02 0.04 0.05 0.13 0.74

Panel A: Health-state transition probabilities for λt−1 = λt health states

λt+1

λt−1 λt 1 2 3 4 5 6 7
1 1 0.66 0.15 0.09 0.04 0.02 0.02 0.01
1 2 0.40 0.25 0.18 0.08 0.05 0.03 0.02
1 3 0.30 0.23 0.23 0.12 0.07 0.03 0.03
1 4 0.22 0.18 0.22 0.18 0.09 0.07 0.05
1 5 0.23 0.16 0.17 0.17 0.13 0.09 0.04
1 6 0.28 0.16 0.17 0.11 0.13 0.10 0.06
1 7 0.28 0.13 0.16 0.11 0.09 0.10 0.13

Panel B: Health-state transition probabilities for λt−1 = 1 health states

λt+1

λt−1 λt 1 2 3 4 5 6 7
7 1 0.59 0.18 0.23 0 0 0 0
7 2 0.30 0.34 0.36 0 0 0 0
7 3 0.12 0.13 0.31 0.26 0.11 0 0.07
7 4 0 0.10 0.19 0.24 0.22 0.13 0.12
7 5 0 0 0.11 0.23 0.27 0.25 0.14
7 6 0 0 0 0.07 0.18 0.41 0.33
7 7 0.01 0.01 0.02 0.04 0.05 0.13 0.74

Panel C: Health-state transition probabilities for λt−1 = 7 health states

Table 4: Health status transitions from one year to the next, for 40-45 year old men.
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Health status Ages
(age 29 and 30) 30 31-35 36-40 41-64

1 0.84 1.83 2.39 4.2
2 1.37 2.22 2.58 4.24
3 1.97 2.83 2.87 4.28
4 3.05 3.98 3.41 4.37
5 4.36 4.77 3.81 4.43
6 6.84 8.35 5.26 4.65
7 20.51 13.05 6.31 4.78

Table 5: This table reports, for various age ranges, the constant annual medical expenses
(in thousands of dollars) such that the present discounted value of these constant annual
expenses equals the expected present discounted value of expenses over the age range in
question for a Utah man in various age-30 health states.

Health status Ages
(age 44 and 45) 45 46-50 51-55 56-64

1 0.84 2.27 4.07 5.35
2 1.37 3.17 4.54 5.51
3 1.97 3.62 4.77 5.58
4 3.05 4.51 5.19 5.70
5 4.36 5.74 5.73 5.85
6 6.84 8.22 6.59 6.07
7 20.51 13.05 7.90 6.38

Table 6: This table reports, for various age ranges, the constant annual medical expenses
(in thousands of dollars) such that the present discounted value of these constant annual
expenses equals the expected present discounted value of expenses over the age range in
question for a Utah man in various age-45 health states.
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also consider the robustness of our conclusions with respect to the degree of risk aversion in

Section 7.4.

3.4 Income profiles

The shape of the optimal contract depends on a consumer’s income profile. Insurers offer

different contracts to consumers with different income profiles to maximize their lifetime

expected utilities conditional on breaking even and the lapsation constraint. We study this

effect by computing optimal contracts and welfare for several different income profiles that

vary in how steeply income rises with age. The least steep is a flat net income profile, in

which the change in income each year equals the change in the population’s average medical

expenses. With this income profile, there are no intertemporal consumption smoothing

motives (for an individual who would pay a premium in each period equal to the population

average medical costs), as individuals with flat net income do not want to use the contract

as a mechanism to borrow or save, unlike consumers with increasing or decreasing income

profiles over time.36 We also examine several more steeply rising income profiles, based on the

income profiles we observed in Handel, Hendel, and Whinston (2015) for managers and non-

managers in the firm studied there. Income profiles of managers at the firm were steepest,

while those of non-managers were flatter but still steeper than a flat net income profile.

Figure 2 shows the manager income profile as the highest dashed curve, while non-managers’

income profile is represented by the flatter curve comprised of long and short dashes. The

bold dashed curve in the figure is a proportionally scaled-down managers’ income profile that

makes the present value of lifetime income equal to that of a non-manager (which facilitates

certain comparative statics we present). The solid curve is a flat net income profile with the

same net present value as the non-manager and downscaled-manager profiles. Recall that

the income path in our model can be interpreted as net of any borrowing the consumer can

do. Thus, we use of these various income paths to illustrate how the expected growth of

available resources over time impacts the optimal contract.

4 Results: Optimal Contracts

Using the data and computational approach described above, in the remainder of the paper

we find the consumptions and premiums for empirically-based optimal dynamic contracts

with one-sided commitment, and then compare their outcome to those in various benchmarks.

Although our analysis is necessarily stylized given the institutional intricacies of insurance

36The population average medical costs over time are close to the expected medical costs over time of a
consumer conditional on being in the healthiest state at age 25. Thus, such a consumer has little incentive
to borrow or save if they have a flat net income profile.
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Figure 2: Income Profiles

provision in the U.S. (e.g., we conduct our analysis for several typical income paths, don’t

consider movement between an employer insurance sector and the long-term contract, and

don’t consider possibilities for medical expense reductions through uncompensated charitable

care or bankruptcy), relative to prior work it provides empirical insights into the structure

and potential benefits of long-term health insurance contracts.

In this section, we first study the structure of these contracts, examining the extent to

which they are front-loaded, the degree of reclassification risk they insure, and how these

contract characteristics depend on a consumer’s income profile. We then turn in Sections 5

and 6 to welfare analysis: In Section 5 we analyze the extent to which these optimal dynamic

contracts eliminate the welfare losses from reclassification risk, and how this depends on

consumers’ income profiles, and in Section 6 we compare the welfare achieved by these

contracts to that in a managed competition-style exchange.

4.1 Front-loading and Reclassification Risk

We begin by considering the optimal contract for a consumer with flat net income (cor-

responding to the solid curve in Figure 2, an income profile that creates no borrowing or

savings motive when a consumer faces the at-birth ex ante expected medical expenses at

each age).

In our context, a contract specifies a premium, or equivalently, a consumption level for

each possible history of states at each age from 25 to 65. There are too many histories and

concurrent premiums/consumption levels to present: instead we focus on select attributes of

the contract. First, we look in detail at the early contract periods, which provide intuition for
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First-Year Equilibrium Contract Terms: Flat Net Income

λ24 = λ25

1 2 3 4 5 6 7
Premium 2.294 3.472 4.156 6.255 11.444 13.733 20.511

First-Year Costs 0.837 1.375 1.973 3.054 4.358 6.842 20.511
Front-Loading 1.457 2.098 2.182 3.201 7.086 6.891 0
Consumption 54.765 53.586 52.903 50.803 45.615 43.326 36.548

Table 7: First-year contract terms in the equilibrium long-run contract for men with a flat
net income path, showing first-year premiums, expected costs, the extent of front-loading,
and consumption levels (thousands of dollars).

the form of the equilibrium contract over longer time horizons. The first-period premiums,

consumption levels, actuarial costs, and front-loading are presented in Table 7 for consumers

whose health status at ages 24 and 25 were the same (i.e., with λ24 = λ25). In all but the

worst state (Λ25 = (7, 7)), premiums are larger than actuarial costs: consumers front-load

premiums to transfer utility to future states with negative health shocks. For example, for

the healthiest consumer at the beginning of the year (Λ25 = (1, 1)), the premium is $2,294

despite average costs of only $837.

The extent of front-loading rises as the consumer’s health state worsens to bin 5 out of

7, and then declines to zero for the sickest bin of consumers (7 out of 7). The extent of

front-loading depends on both the current state and also on the implications of the current

state for future health. While the healthiest type can afford the most front-loading, he

might benefit the least. This is why maximum front-loading occurs for consumers in the

middle of the ex ante health range, rather than for the healthiest consumers. The least

healthy, on the other hand, have very high current costs (and, hence, high marginal utility

of consumption) compared to their expected future costs (recall Table 5); for them, front-

loading isn’t worthwhile.

Tables 8 and 9 present second-period premiums and consumptions, respectively, for the

seven possible age-26 health statuses that can follow the seven age-25 health states considered

in Table 7. (These age-26 health status realizations λ26 give rise to the age-26 health state

Λ26 = (λ25, λ26).) Certain patterns are indicative of the longer-run structure of the contract.

First, second-period premiums and consumptions display extensive pooling which takes place

in states for which the lapsation constraint is not binding. For example, if a consumer was

in the healthiest possible state at age 25, Λ25 = (1, 1), all second-year states Λ26 = (1, λ26)

with λ26 > 1 have the same consumption of $54,765, an amount equal to his first-year

consumption. The lapsation constraint does not bind for this consumer when λ26 > 1 because

the first period front-loaded amount suffices to make outside offers less attractive than the
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Second-Year Equilibrium Premiums: Flat Net Income First-Year

λ26 Premium
λ24 = λ25 1 2 3 4 5 6 7

1 2.403 2.429 2.429 2.429 2.429 2.429 2.429 2.294
2 2.864 3.445 3.607 3.607 3.607 3.607 3.607 3.472
3 2.941 3.716 4.088 4.291 4.291 4.291 4.291 4.156
4 2.470 3.063 4.454 6.004 6.390 6.390 6.390 6.255
5 2.397 2.891 3.850 6.224 11.240 11.578 11.578 11.444
6 2.349 2.667 3.184 5.669 11.385 13.599 13.867 13.733
7 2.385 2.470 2.650 4.975 15.809 14.798 20.511 20.511

Table 8: First- and second-year premiums in the equilibrium long-run contract for men with
a flat net income path, as a function of the period 1 health state and period 2 health status
(thousands of dollars).

Second-Year Equilibrium Consumptions: Flat Net Income First-Year

λ26 Consumption
λ24 = λ25 1 2 3 4 5 6 7

1 54.791 54.765 54.765 54.765 54.765 54.765 54.765 54.765
2 54.330 53.749 53.586 53.586 53.586 53.586 53.586 53.586
3 54.253 53.478 53.106 52.903 52.903 52.903 52.903 52.903
4 54.724 54.13 52.739 51.189 50.803 50.803 50.803 50.803
5 54.796 54.303 53.343 50.970 45.954 45.615 45.615 45.615
6 54.845 54.527 54.010 51.524 45.809 43.595 43.326 43.326
7 54.809 54.724 54.544 52.219 41.384 42.396 36.683 36.548

Table 9: First- and second-year consumptions in the equilibrium long-run contract for men
with a flat net income path, as a function of the period 1 health state and period 2 health
status (thousands of dollars).

current consumption guarantee. Only when λ26 = 1 does the lapsation constraint bind

for this consumer, resulting in an increase in consumption to $54,791 (and a corresponding

reduction in the premium).

The lapsation constraint binds for more and more second-year states the sicker the con-

sumer was at the start of the contract. For consumers initially in the sickest health state,

Λ25 = (7, 7), all age-26 health states involve different consumption levels that also differ from

the first-period consumption level: long-run contracts cannot provide any insurance against

reclassification risk in year 2 for this consumer as his first-year needs were so great as to

preclude any front loading. For this consumer, the long-run contract continuation at age 26

simply matches the best contract he could get on the market given his age-26 health state.
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First-Year Equilibrium Contract Term: Downscaled Managers

λ24 = λ25

1 2 3 4 5 6 7
Premium 1.165 2.196 2.740 3.487 8.089 10.887 20.511

First-Year Costs 0.837 1.375 1.973 3.054 4.358 6.842 20.511
Front-Loading 0.328 0.821 0.767 0.433 3.732 4.046 0
Consumption 32.520 31.490 30.945 30.199 25.596 22.799 13.175

Table 10: First-year contract terms in the equilibrium long-run contract for men with a
downscaled manager income path, showing first-year premiums, expected costs, the extent
of front-loading, and consumption levels (thousands of dollars).

4.2 Effects of Income profiles

The equilibrium contracts offered depend crucially on a consumer’s rate of income growth

over his lifetime. When income is relatively low early in life, and hence the marginal utility

of consumption is relatively high, front-loading is quite costly for utility.

Table 10 presents first-period (age-25) contract characteristics for “downscaled man-

agers,” and is the analog to Table 7 for flat net income. Recall that, as shown in Figure 2,

a downscaled manager income profile proportionally scales down the income of a manager

to match the net present value of a non-manager’s lifetime income profile. The table makes

clear that for downscaled managers, the extent of front-loading is much more limited than

in the flat net income case, which translates into less generous consumption guarantees later

in life. For example, a downscaled manager who is in the healthiest state (Λ25 = (1, 1))

at age 25 front-loads only $328, compared to $1,457 for a consumer with flat net income.

Essentially, the rapidly rising income makes paying extra early in life for long-term insurance

quite costly, as marginal utility is high early compared to what is expected later in life.

Tables 11 and 12 show second-year (age-26) premiums and consumption levels for down-

scaled managers as a function of different health histories. Though front-loading is much

more limited, the age-26 health states in which the lapsation constraint binds, conditional on

the initial age-25 health state, are quite similar to those of consumers with flat net income

profiles.

5 Results: Welfare

We now turn to the welfare analysis of these dynamic contracts. We measure and compare

the welfare they achieve to several alternatives. For each market setup and potential income

profile considered, we compute a lifetime certainty equivalent. The certainly equivalent
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Second-Year Equilibrium Premiums: Downscaled Managers First-Year

λ26 Premium
λ24 = λ25 1 2 3 4 5 6 7

1 1.160 1.873 2.605 3.012 3.012 3.012 3.012 1.165
2 1.542 2.190 2.356 3.414 4.042 4.042 4.042 2.196
3 1.636 2.077 2.755 4.587 4.587 4.587 4.587 2.740
4 0.884 1.405 2.548 3.490 5.334 5.334 5.334 3.487
5 0.841 1.375 2.249 3.608 8.066 9.936 9.936 8.089
6 0.837 1.375 1.973 3.320 8.219 10.882 12.734 10.887
7 0.843 1.375 1.973 3.054 11.895 11.851 20.511 20.511

Table 11: First- and second-year premiums in the equilibrium long-run contract for men with
a downscaled manager income path, as a function of the period 1 health state and period 2
health status (thousands of dollars).

Second-Year Equilibrium Consumption: Downscaled Managers First-Year

λ26 Consumption
λ24 = λ25 1 2 3 4 5 6 7

1 34.372 33.659 32.927 32.520 32.520 32.520 32.520 32.520
2 33.990 33.342 33.176 32.118 31.490 31.490 31.490 31.490
3 33.896 33.455 32.777 30.945 30.945 30.945 30.945 30.945
4 34.648 34.127 32.984 32.042 30.199 30.199 30.199 30.199
5 34.691 34.158 33.283 31.925 27.466 25.596 25.596 25.596
6 34.695 34.158 33.559 32.212 27.314 24.651 22.799 22.799
7 34.689 34.158 33.559 32.478 23.637 23.681 15.021 13.175

Table 12: First- and second-year consumptions in the equilibrium long-run contract for men
with a downscaled manager income path, as a function of the period 1 health state and
period 2 health status (thousands of dollars).
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represents the constant consumption for the forty years of life from age 25 to 65 that makes

the consumer as well off as in a given market setup. Specifically, we compare the certainty

equivalent of optimal dynamic contracts with one-sided commitment, denoted by CED, to

the three benchmarks we have described previously (see Section 2.1 for formal definitions):37

(i) The first-best, fully-smoothed consumption C∗, which equates the marginal utility of

consumption across periods and states. This is the welfare achievable were long-term

contracts with two-sided commitment feasible;

(ii) The certainty equivalent from spot contracts that fully insure event risk in every period

and state, but leave reclassification risk across periods fully uninsured, denoted by

CESPOT ;

(iii) The constant consumption equivalent of the No Borrowing/No Saving constrained first

best, in which risk is fully insured in each period but neither borrowing nor saving is

possible, denoted C∗NBNS.

5.1 Welfare Effects Conditional on a Consumer’s Age-25 Health

State

Table 13 shows welfare outcomes for Utah men with a flat net income profile who arrive

at age 25 in each of the seven health states Λ25 in which their age-24 and age-25 health

status is the same (i.e., in which λ24 = λ25. For each age-25 health state, column (1) reports

the annual consumption level C∗ in a first-best contract that starts at age 25 given the

income profile and expected future medical expenses the consumer faces given his age-25

health state.38 It ranges from $54,960 for the healthiest consumer state Λ25 = (1, 1) to

$49,330 for a consumer in the worst state Λ25 = (7, 7). Column (2) shows C∗NBNS, the

constant consumption equivalent of the constrained first-best outcome that does not allow

for intertemporal consumption smoothing.

For consumers with rising net income, C∗NBNS may be a more relevant benchmark of

the losses from spot contracting and of how well optimal dynamic contracts with one-sided

commitment do at eliminating reclassification risk, since saving and borrowing on their own

can greatly improve utility for steep net income profiles. (For a healthy consumer with flat

net income, however, this certainty equivalent is very close to C∗.) Column (3) shows welfare

37In Section 6 we compare dynamic contracts as well to an ACA-style insurance exchange.
38In this and the other three tables in this subsection, “ex ante” certainty equivalents are calculated from

the perspective of a consumer who arrives at age 25 in a particular health state. Thus, for example, the
first-best consumption of a consumer with flat net income will differ across consumers with different health
states Λ25 because of their differing expected medical costs.
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Initial health (1) (2) (3) (4) (5) (6) (7)

λ24 λ25 C∗ C∗NBNS CESPOT CED
C∗NBNS−CESPOT

C∗NBNS

CED−CESPOT
C∗NBNS−CESPOT

CED−CESPOT
C∗−CESPOT

1 1 55.14 55.10 45.31 55.03 0.178 0.994 0.989
2 2 54.96 54.94 45.03 54.80 0.180 0.986 0.984
3 3 54.84 54.83 44.92 54.62 0.181 0.979 0.978
4 4 54.36 54.34 44.45 53.69 0.182 0.934 0.933
5 5 52.86 52.14 42.47 49.62 0.185 0.739 0.688
6 6 51.51 49.42 41.53 47.08 0.160 0.703 0.556
7 7 49.33 42.61 39.94 40.72 0.063 0.291 0.083

Table 13: Long-run welfare results showing the certainty equivalent annual consumption of
different insurance institutions under various initial health states, the flat net income profile,
a discount factor of 0.975, and constant absolute risk aversion equal to 0.0004. Units in
columns (1)-(4) are 1000s of dollars.

under spot contracts for each of these consumers, while Column (5) shows the welfare loss

from reclassification risk under spot contracting relative to this benchmark,
C∗NBNS−CESPOT

C∗NBNS
,

a measure that captures solely the loss under spot contracting arising from reclassification

risk. This welfare loss is very large: many of these consumers lose roughly 18% of their

lifetime (age 25-65) certainty equivalent because of reclassification risk.

Column (4) presents the certainty equivalent for dynamic contracts with one-sided com-

mitment, CED. As expected CED lies between C∗NBNS and CESPOT . Column (6) shows

the fraction of the welfare gap between the No-borrowing/No-saving constrained first-best

and spot contracts that these dynamic contracts close, CED−CESPOT
C∗NBNS−CESPOT

. Overall, dynamic

contracts are extremely effective at reducing reclassification risk for consumers who arrive

at age 25 in excellent health: for a consumer in age-25 health state Λ25 = (1, 1), dynamic

contracts close 99.4% of the gap between C∗NBNS and CSPOT . But they are very ineffective

for consumers who arrive at age 25 in poor health. At the extreme, a consumer who arrives

at age 25 in the worst health state, Λ25 = (1, 1), dynamic contracts recover only 29.1% of the

welfare loss due to reclassification risk under spot contracting. The reason for this pattern

is that consumers who arrive at age 25 in poor health have a high level of current medical

expenses, which makes front-loading very costly and therefore greatly limits the effective-

ness of dynamic contracts. For completeness, column (7) reports CED−CESPOT
C∗−CESPOT

, which shows

the proportion of the gap between spot contracting and the first-best closed by dynamic

contracts.

Tables 14–16 report the same welfare statistics but for consumers with non-manager,

manager, and downscaled manager income profiles. Welfare losses from reclassification risk

(shown, again, in column (5)) are similarly large for consumers with rising income profiles.

Comparing column (6) for the cases with rising income profiles to the flat net income profile
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Initial health (1) (2) (3) (4) (5) (6) (7)

λ24 λ25 C∗ C∗NBNS CESPOT CED
C∗NBNS−CESPOT

C∗NBNS

CED−CESPOT
C∗NBNS−CESPOT

CED−CESPOT
C∗−CESPOT

1 1 55.14 48.68 41.39 48.26 0.150 0.943 0.500
2 2 54.96 48.11 39.78 47.41 0.173 0.915 0.502
3 3 54.84 47.64 39.31 46.84 0.175 0.903 0.485
4 4 54.36 46.77 40.23 45.42 0.140 0.794 0.367
5 5 52.86 43.63 34.91 40.41 0.200 0.631 0.307
6 6 51.51 40.21 33.42 37.69 0.169 0.629 0.236
7 7 49.33 30.71 29.78 29.88 0.030 0.105 0.005

Table 14: Long-run welfare results showing the certainty equivalent annual consumption of
different insurance institutions under various initial health states, the non-manager income
profile, a discount factor of 0.975, and constant absolute risk aversion equal to 0.0004. Units
in columns (1)-(4) are 1000s of dollars.

Initial health (1) (2) (3) (4) (5) (6) (7)

λ24 λ25 C∗ C∗NBNS CESPOT CED
C∗NBNS−CESPOT

C∗NBNS

CED−CESPOT
C∗NBNS−CESPOT

CED−CESPOT
C∗−CESPOT

1 1 85.47 57.12 51.81 56.87 0.093 0.954 0.150
2 2 85.28 56.51 49.60 55.97 0.122 0.922 0.179
3 3 85.17 55.95 48.96 55.36 0.125 0.917 0.177
4 4 84.68 55.04 52.53 54.54 0.046 0.801 0.063
5 5 83.18 52.68 44.97 50.05 0.146 0.658 0.133
6 6 81.83 49.40 43.21 47.10 0.125 0.629 0.101
7 7 79.66 38.16 37.75 37.77 0.011 0.051 0.001

Table 15: Long-run welfare results showing the certainty equivalent annual consumption
of different insurance institutions under various initial health states, the manager income
profile, a discount factor of 0.975, and constant absolute risk aversion equal to 0.0004. Units
in columns (1)-(4) are 1000s of dollars.

case shows that rising income profiles reduce the effectiveness of dynamic contracts by making

front-loading more costly, since with a rising income profile the marginal utility of a current

dollar is larger than the marginal utility of future dollars. The effect is particularly dramatic

for consumers in poor health states: for example, for a consumer in state Λ25 = (7, 7),

dynamic contracts reduce the loss from reclassification risk by 29.1% if the consumer has a

flat net income profile, but by only 7.6% if he has a downscaled manager income profile.

5.2 Welfare Effects from the Perspective of an Unborn Consumer

We now turn to evaluating the welfare effects of dynamic contracts from the perspective of

an unborn consumer who does not know what his age-25 health state will be. We compute
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Initial health (1) (2) (3) (4) (5) (6) (7)

λ24 λ25 C∗ C∗NBNS CESPOT CED
C∗NBNS−CESPOT

C∗NBNS

CED−CESPOT
C∗NBNS−CESPOT

CED−CESPOT
C∗−CESPOT

1 1 55.14 39.07 32.73 38.76 0.162 0.951 0.269
2 2 54.96 38.47 30.75 37.87 0.201 0.922 0.294
3 3 54.84 37.94 30.19 37.26 0.204 0.912 0.287
4 4 54.36 37.07 32.40 36.13 0.126 0.799 0.170
5 5 52.86 34.23 25.87 31.31 0.244 0.651 0.202
6 6 51.51 30.82 24.26 28.47 0.213 0.642 0.155
7 7 49.33 20.56 19.89 19.94 0.032 0.076 0.002

Table 16: Long-run welfare results showing the certainty equivalent annual consumption of
different insurance institutions under various initial health states, the downscaled manager
income profile, a discount factor of 0.975, and constant absolute risk aversion equal to 0.0004.
Units in columns (1)-(4) are 1000s of dollars.

(1) (2) (3) (4) (5) (6) (7)

Income profile C∗ C∗NBNS CESPOT CED
C∗NBNS−CESPOT

C∗NBNS

CED−CESPOT
C∗NBNS−CESPOT

CED−CESPOT
C∗−CESPOT

Flat net 54.67 54.67 44.35 48.83 0.189 0.434 0.434
Non-mngr 54.67 47.37 36.96 38.08 0.220 0.108 0.063
Manager 85.00 55.67 45.44 45.91 0.184 0.046 0.012
Downs Mngr 54.67 37.68 27.35 28.13 0.274 0.075 0.028

Table 17: Unborn consumer welfare results showing the certainty equivalent annual con-
sumption of different insurance institutions under various income profiles, a discount factor
of 0.975, and constant absolute risk aversion equal to 0.0004. Units in columns (1)-(4) are
1000s of dollars.

these welfare measures using the distribution of age-25 health states that we see empirically

among our age-25 Utah men. Table 17 shows the results.

Recall that, to ease comparisons across different income profiles, all profiles we consider

have the same net present value of income, except for the manager’s profile when it is not

downscaled. Column (1) of Table 17 shows the first-best consumption (reflecting the present

value of income minus expected medical expenses, now calculated from the perspective of a

consumer who does not yet know their age-25 health state), which are $54,670 for the flat-

net, non-manager, and downscaled manager income profiles, and $85,000 for the manager

income profile. Column (2) gives the certainty equivalent of the No-Borrowing/No-Saving full

insurance regime, again based on expected medical expenses calculated from the perspective

of a consumer who does not yet know their age-25 health state.

Column (3) shows welfare outcomes under spot contracts, with no protection for reclassi-

fication risk, while column (4) shows the certainty equivalent of the optimal dynamic contract
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regime, both from the perspective of an unborn consumer.39 The welfare loss from reclas-

sification risk, shown in column (5), ranges between 18.4% and 27.4% of lifetime certainty

equivalent (relative to the no-borrowing/no-savings benchmark).40 For a flat net income

profile, column (6) shows that 43.4% of this gap is recovered by dynamic contracts. In con-

trast, since consumers with steeper income profiles dislike front-loading, dynamic contracts

recover a very small portion of this welfare loss for these consumers (7.5% for downscaled

managers).

In summary, from the perspective of an unborn Utah male with a flat net income profile,

optimal dynamic contracts would be moderately effective at reducing the reclassification risk

they face. However, from the perspective of an unborn Utah male with a rising net income

profile, these contracts would not be very effective. The moderate effectiveness with a flat net

income reflects the fact that dynamic contracts poor performance for consumers who arrive

at age 25 in poor health, and thus with high immediate consumption needs, has a substantial

effect on the value of dynamic contracts from the ex ante perspective of an unborn consumer.

Once coupled with more steeply rising income paths, which further accentuate the value of

net income when young, dynamic contracts prove rather ineffective from an ex ante welfare

perspective.

5.3 Insurance of Pre-age-25 Health Risk

The results in Tables 13-16 indicate that in a regime in which consumers sign long-term

dynamic contracts upon reaching age 25, their post-age-25 welfare is greatly affected by the

realization of their age-25 health state. In Table 18 we examine how welfare would be affected

if the government insured consumers’ pre-age-25 health realizations. We consider this in

two ways. First, we ask what the expected per capita cost would be for the government to

ensure that each consumer’s continuation certainty equivalent starting at age 25 is the same

as if he had reached age 25 in the healthiest state, Λ25 = (1, 1). Second, we derive the set of

break-even subsidies that most efficiently insure the age-25 health risk these consumers face.

This involves finding the subsidy or tax for consumers in each of the 49 age-25 health states

such that (i) the government breaks even in expectation, and (ii) the welfare of an unborn

consumer is maximized.41

39C∗NBNS in Table 17 equals the expectation of the C∗NBNS values for consumers in the various age-25
health states, evaluated using the empirical distribution of age-25 health states. In contrast, because of risk
aversion, CED in Table 17 is less than the expectation of the CED values for consumers in the various age-25
health states.

40In Section 7.3 we extend this analysis to allow precautionary savings in the spot contracting regime
and find similar results. This is not surprising as the main loss with a rising income path from a lack of
interporal smoothing comes from the inability to borrow.

41Note that this does not generally yield equal certainty equivalents for the 49 health states because the
marginal utility of a dollar subsidy is state-dependent.
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(1) (2) (3) (4) (5) (6) (7)

Income profile C∗ C∗NBNS CESPOT CED Required subsidy CED+
CED+−CESPOT
C∗NBNS−CESPOT

Flat net 54.67 54.67 44.35 48.83 12.05 53.91 0.926
Non-mngr 54.67 47.37 36.96 38.08 8.81 45.24 0.795
Manager 85.00 55.67 45.44 45.91 5.47 54.05 0.842
Downs Mngr 54.67 37.68 27.35 28.13 7.07 35.79 0.817

Table 18: Unborn consumer welfare results showing the certainty equivalent annual con-
sumption of different insurance institutions under various income profiles, a discount factor
of 0.975, and constant absolute risk aversion equal to 0.0004. Column (5) shows the expected
one-time subsidy required at age 25 for the consumer to have in all age-25 states the same
level of welfare as if he had been in the healthiest possible age-25 health state. Column
(6) shows the certainty equivalent welfare level resulting from a balanced budget scheme
that optimally insures the consumer’s pre-age-25 health risk prior to the start of dynamic
contracting at age 25. Units in columns (1)-(6) are 1000s of dollars.

Column (5) reports the (one-time) expected per capita cost of subsidies that insure that,

under a regime of optimal dynamic contracts that begin at age 25, every consumer has

the same certainty equivalent as if he had arrived at age 25 in health state Λ25 = (1, 1).

This cost ranges from $5,470 for a manager income profile to $12,050 for a flat net income

profile. Column (6) reports the certainty equivalent achieved instead when optimal dynamic

contracts starting at age 25 are coupled with a break-even government insurance scheme that

insures against consumers’ pre-age-25 health risks, which we label as CED+, while column

(7) shows what fraction of the reclassification risk losses are recovered through a combination

of this kind of government policy and optimal dynamic contracts starting at age 25. When

combined with this pre-age-25 insurance, dynamic contracts eliminate roughly 80-90% of

reclassification risk. One can think of these policies to insure age-25 risk as similar in

spirit to the risk-adjustment, risk-corridor, and reinsurance regulations present in the ACA

(and many other current environments) but applied to age-25 consumers choosing dynamic

contracts instead of consumers of all ages choosing year-to-year contracts. The results show

that long-term dynamic contracts can be rather effective at eliminating reclassification risk

in combination with government insurance of consumers’ health risks that occur before they

reach the insurance market at age 25.
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6 Comparison to a managed-competition insurance ex-

change

One of the most significant features of the health insurance exchanges created by the ACA

was their ban on the pricing of pre-existing conditions. In this section, we examine how

dynamic contracts do at eliminating reclassification risk compared to a managed competition-

style insurance exchange. As discussed in Handel, Hendel, and Whinston (2015), while the

ACA fully eliminated reclassification risk, it created adverse selection, as consumers with

differing health could not be differentially priced. This adverse selection led to significant

unraveling in the exchange model studied in Handel, Hendel, and Whinston (2015), so that

in most cases all consumers ended up obtaining insurance contracts covering only 60% of

their expenses.

In this section we compare the welfare achievable with optimal dynamic contracts, both

with and without government insurance of pre-age-25 health risk, to the level of welfare

that would arise in a managed competition-style insurance exchange.42 Because consumers

end up only partly insured in such an exchange, computing welfare requires as an input the

full distribution of health expenses conditional on an individual’s health state, rather than

just its mean. We have previously estimated this full distribution for the consumers in the

Handel, Hendel, and Whinston (2015) sample and we make use of this information here.

Specifically, we examine how dynamic contracts would perform for the Handel, Hendel, and

Whinston (2015) consumers if they had the transitions that we have estimated for Utah men,

and compare it to what the ACA would achieve.43

Specifically, we compute welfare under a managed competition-style insurance exchange

by imposing (i) one-year contracts, (ii) community rating (no health-state based pricing

allowed), (iii) age-based pricing, (iv) a fully enforced mandate, requiring insurance purchase,

and (v) insurers that offer plans covering specific actuarial values, with a minimum plan

covering 60% of an average individual’s spending that the market unravels to. For simplicity,

we will refer to this outcome in the rest of this section as the “ACA outcome” and denote

its certainty equivalent by CEACA.

42The ACA insured pre-age-25 risk through its ban on pre-existing conditions, so a natural comparison is
to dynamic contracts combined with insurance of pre-age-25 risk.

43The sample in Handel, Hendel, and Whinston (2015) is too small to estimate second-order Markov
transitions, while for the Utah sample we have only mean health costs conditional on health states, not
the full distributions. For these reasons we combine the data in the two samples for this analysis. We
have examined the effect of dynamic contracts in both the Utah and Handel, Hendel, and Whinston (2015)
samples with first-order Markov processes and found similar results. By way of comparison to the male Utah
sample, in the Handel, Hendel, and Whinston (2015) sample, the expected costs conditional on each of the
seven health statuses (going from healthiest to sickest) are $1,131, $2,290, $3,780, $3,975, $5,850, $10,655,
and $18,554. Comparing to Table 2, Utah expenses were lower in bins 1-6, but higher for consumers with
the worst health status.
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(1) (2) (3) (4) (5) (6) (7)

Income profile C∗ C∗NBNS CED CED+ CEACA
CED+−CESPOT
C∗NBNS−CESPOT

CEACA−CESPOT
C∗NBNS−CESPOT

Flat net 54.62 54.62 52.70 54.12 52.90 0.890 0.622
Non-mngr 54.62 47.25 43.19 45.90 46.44 0.710 0.826
Manager 84.95 55.52 51.25 54.52 54.77 0.777 0.833
Downs Mngr 54.62 37.55 33.37 36.36 36.78 0.740 0.832

Table 19: Long-run welfare results showing the certainty equivalent annual consumption of
different insurance institutions, including a managed competition-style insurance exchange
(labeled “ACA”), for the large employer sample of Handel, Hendel, and Whinston (2015).
Assumes a discount factor of 0.975 for consumers with median estimated constant absolute
risk aversion equal to 0.0004. Units in columns (1)-(5) are 1000s of dollars.

Columns (1)-(4) of Table 19 give the (unborn) certainty equivalents for institutions that

were in Table 1744, while column (5) gives the corresponding certainty equivalent under the

ACA. Comparing columns (3) and (5), dynamic contracts without government insurance of

pre-age-25 health risk are worse than the ACA outcome for all income profiles. A primary

reason for this difference is that community rating implicitly insures consumers’ pre-age-25

health risk.

Column (4), on the other hand, shows the welfare level achievable for this sample when

dynamic contracts are coupled with insurance of pre-age-25 health risk. Columns (6) and

(7) show how much of the gap between spot contracting and the No-Borrowing/No-Savings

benchmark is closed by dynamic contracts with insurance of pre-age-25 health risk and the

ACA outcome, respectively.45 Comparing columns (6) and (7) in Table 19 reveals that

the managed competition-style insurance exchange environment is preferred to the dynamic

contracting environment even with insurance of pre-age-25 health risk for non-managers,

managers, and downscaled managers, whose incomes rise over time. For these individuals,

the desire to front-load when young and income is relatively low is limited, which reduces the

benefits from dynamic contracts. In contrast, individuals with flat net income profiles prefer

dynamic contracts with insurance of pre-age-25 health risks to the managed competition-style

insurance exchange environment.

44Note that the welfare levels for C∗ and C∗NBNS here differ from those in Table 17 because mean health
expenses in our sample of Utah men differ from those in the Handel, Hendel, and Whinston (2015) sample,
as noted in the previous footnote.

45The No-Borrowing/No-Savings outcome is the same as the ACA outcome except that it provides 100%
coverage rather than unraveling to 60%; the difference between C∗NBNS and CEACA therefore reflects the
cost of adverse selection under the managed competition-style insurance exchange. Table 19 shows that
the cost of adverse selection ranges from roughly $750 per year for managers, downscaled managers, and
non-managers to roughly $1700 per year for consumer with flat net income profiles.
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Second-year consumption
λ26 First-year

λ24 λ25 1 2 3 4 5 6 7 consumption
1 1 54.816 54.816 54.816 54.816 54.816 54.816 54.816 54.816
2 2 54.305 53.986 53.986 53.986 53.986 53.986 53.986 53.986
3 3 54.227 53.453 53.340 53.340 53.340 53.340 53.340 53.340
4 4 54.698 54.105 52.714 51.214 51.214 51.214 51.214 51.214
5 5 54.770 54.277 53.318 50.945 45.947 45.947 45.947 45.947
6 6 54.819 54.502 53.985 51.499 45.784 43.661 43.661 43.661
7 7 54.783 54.699 54.519 52.194 41.359 42.371 36.996 36.996

Table 20: First and second-year consumptions (in $1,000s) for Utah men with switching
costs of $1,000, flat net income, and a constant absolute risk aversion coefficient equal to
0.0004.

7 Extensions

In this section we consider several extensions. First, we consider how the presence of switch-

ing costs would affect the gains from dynamic contracts. Second, we examine how consumer

myopia impacts our results. Third, we study how the ability to engage in precautionary sav-

ings would affect our conclusions. Fourth, motivated by the concern that risk aversion could

differ from typical estimates in the health insurance literature for the large losses created by

reclassification risk, we examine the welfare effects of dynamic contracts for lower levels of

risk aversion than the level we have considered above.

7.1 Inertia

Recent evidence from health insurance markets [Handel (2013), Ho et al. (2016)] points to

substantial inertia in insurance choice. Switching costs have the potential to improve how

dynamic contracts perform. Our basic model assumes that consumers lapse whenever they

get a better offer. As discussed in Section 2.6, switching costs relax the lapsation constraints,

which can enhance commitment and the welfare achievable with optimal dynamic contracts.

Table 20 shows first and second-year consumption levels for a flat net income profile and

switching costs of $1,000 in the Utah male data. Comparing to Table 8, it is interesting to

note that for all second-year states without a binding lapsation constraint consumption is

higher with a higher switching cost, while consumption is lower for second-year states with a

binding lapsation constraint. Namely, conditional on a history, higher switching costs enable

transferring resources from the good to the bad states.
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Switching cost Flat net Non-manager Manager Downs mngr
0 48.83 38.08 45.91 28.13
0.1 48.85 38.13 45.98 28.19
1 49.02 38.54 46.60 28.69
5 49.67 39.89 48.63 30.31
10 50.37 41.13 50.46 31.79
50 53.37 47.06 58.95 38.92
100 54.15 51.47 65.58 44.57
500 54.19 54.19 84.51 54.19
C∗ 54.67 54.67 85.00 54.67
C∗NBNS 54.67 47.37 55.67 37.68

Table 21: At-birth welfare (in $1,000s) for Utah men from optimal dynamic contracts (CED)
under discount factor of 0.975 and risk aversion of 0.0004 for different levels of switching costs
and four income profiles.

Table 21 shows the ex ante (at-birth) welfare achieved by dynamic contracts for different

levels of switching costs and our four income profiles in the male Utah sample. As expected,

welfare is monotonic in the switching cost. Qualitatively, as switching costs increase from zero

to infinity, welfare in the optimal dynamic contract with one-sided commitment approaches

the first-best (two-sided commitment) level.

Notice that it takes extremely large switching costs to achieve welfare close to first best for

consumers with steeply rising manager and downscaled-manager income profiles. The reason

is that consumption smoothing requires a lot of commitment, especially when the income

profile is steep. Thus, an extremely large switching cost is necessary to achieve the first best.

Somewhat more moderate switching costs deliver welfare close to the no-borrowing/no-saving

benchmark.

Using the same hybrid sample as in Section 6, Table 22 reports for each income profile the

switching cost that is needed to achieve the same level of welfare as the managed competition-

style insurance exchange we consider there. For a flat net income profile, switching costs of

$1,970 suffice, while for rising income profiles switching costs between $7,680-$10,470 make

dynamic contracts (without any pre-age-25 insurance) as good as the managed competition-

style insurance exchange. Handel (2013) estimates a mean switching cost of $2,032 in a

static model of choice for the same population as in our Handel, Hendel, and Whinston

(2015) sample. Since the dynamic gain from switching likely extends over multiple periods,

the comparable value for our model is likely significantly higher than this $2,032, and so

switching costs may well be in the range that make dynamic contracts (without insurance
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Income profile Switching costs
Flat net 1.97
Non-mngr 13.59
Manager 7.68
Downs Mngr 10.47

Table 22: Switching costs required to equalize certainty equivalents from optimal dynamic
contracts and the ACA insurance regime (in thousands of dollars). Computed using the
hybrid sample of Section 6, constant absolute risk aversion equal to 0.0004, and a discount
factor of 0.975.

of pre-age-25 health risk and with our baseline risk aversion) preferable to the managed

competition-style insurance exchange for some income profiles.46,47

7.2 Myopia

Section 2.6 sets up our framework for studying the implications of consumer myopia for

guaranteed-renewable insurance contracts with one-sided commitment. There are several

key takeaways from Proposition 3. First, the crucial qualitative feature of optimal dynamic

contract with one sided commitment is preserved under myopia: the contracts involve front-

loading in exchange for future consumption guarantees. Second, unlike the baseline (i.e.,

non-myopic) case, under myopia the optimal contract will involve consumption guarantees

that diminish over time. Third, given that optimal contracts under myopia turn out to be

similar in structure to the no-myopia baseline case, our computation method can be used

with slight modifications to numerically analyze equilibria under myopia.

In this section we analyze the performance of optimal contracts under myopia using

simulations based on the Utah all-payer claims dataset. To capture the idea that myopia

is behavioral, we assume, as is typical in the literature, that the market discount factor δ

(instead of the customers’ β) is relevant for assessing their welfare. This allows us to capture

the fact that customers act according to the “wrong” discount factor and, consequently,

suffer a welfare loss from their myopia.48

Table 23 presents the analog to table 7 and shows some key features of the initial year of

dynamic contracts, but now as a function of the myopia parameter β. The Table illustrates

46Illanes (2017), for example, estimates a lower bound switching cost of $1200 in a dynamic model of choice
for the Chilean pension market; he shows that the estimate from a static model of choice in his sample is
$117.

47Note, however, that our ACA model assumes that there are no switching costs; modeling insurance
exchange competition with switching costs remains an open issue.

48Of course, in practice, the welfare-relevant discount factor for consumers could be different than the
insurer’s discount factor, which would be straightforward to incorporate here.
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Myopia and First-Year Equilibrium Contract Terms: Flat Net Income

β
0.975 0.8 0.6 0.4 0.2 0.1

Premium 2.288 1.528 1.258 1.107 1.004 0.957
First-Year Costs 0.837 0.837 0.837 0.837 0.837 0.837
Front-Loading 1.451 0.691 0.420 0.270 0.167 0.119
Consumption 54.6 55.361 55.631 55.782 55.885 55.933

Table 23: First-year contract terms in the equilibrium long-run contract for men with a flat
net income path, showing first-year premiums, expected costs, the extent of front-loading,
and consumption levels (thousands of dollars). This table is for health status λ24 = λ25 = 1
and covers range of myopia parameter β from 0.1 to 0.975. This table is the analog to Table
7 but for one health state and the range of myopia parameters.

the contract features for a young individual in good health and shows how those features

change with β. The table shows several key impacts of myopia. First, the first-year premium

and the extent of contract front-loading decrease substantially as myopia increases. For

example, a non-myopic individual who is healthy and young has a contract with a premium

of $2,288 in year one, of which $1,451 is front-loading. An individual with some myopia

(β = 0.8) has a much lower premium ($1,528) and much lower front-loading ($691) while an

individual with significant myopia (β = 0.2) has a premium of $1,004 and minimal front-

loading ($167). Thus, as myopia increases, the extent of front-loading decreases and the

dynamic contracts we study insure less against reclassification risk.

Figure 3 shows the extent of annual lapsation from equilibrium guaranteed renewable

contracts as a function of myopia and lifetime income paths (recall from section 2.2 that

there is a guaranteed premium path interpretation of our optimal contracts that does involve

lapsation in the equilibrium). The left side of the figure presents annual contract lapsation

rates as a function of age and the extent of myopia, for downscaled manager income paths.

Lapsation rates always increase, conditional on age, as a function of myopia. But, lapsation

rates are fairly high for young individuals even with no myopia, so the extent of lapsation

only increases a little for them. However, older individuals who have low lapsation rates with

no myopia have much higher lapsation rates as myopia increases since contracts are no longer

able to front-load enough to provide the consumption guarantees that keep consumers from

lapsing. The right panel in the figure shows lapsation rates, averaged over age, for different

income paths as a function of myopia. The annual lapsation rate is similar and high (≈ 0.9)

for all income paths when myopia is high. As myopia decreases, lapsation decreases, for

all income paths. But, for flatter income paths this is a big decrease in lapsation while for

steeper income paths, who are less likely to front-load to begin with, the decrease in lapsation

as myopia decreases is smaller.
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Figure 3: Annual lapsation rates for equilibrium dynamic contracts as a function of myopia
(β) and lifetime income paths. The chart on the left shows lapsation rates for different ages
for downscaled manager income paths while the chart on the right shows mean lapsation
rates over all ages, for each income path.

Figure 4 presents our welfare results for the cases when the insurer’s discount factor δ

is equal to 0.975 and consumer’s discount factor β varies between 0.1 and 0.975.49 The

figure considers the welfare impact of dynamic contracts relative to the “no borrowing / no

savings” benchmark. We plot the welfare results as a function of (i) myopia and (ii) the

steepness of a consumer’s income path.

Several results are evident in the figure. First, as expected, the welfare generated by

dynamic contracts is decreasing as myopia increases. As consumers become more present-

focused, front-loading to ensure continued contract participation is less viable and contracts

are less able to insure reclassification risk.

Second, the negative derivative of welfare with respect to myopia is larger in magnitude

with flatter income paths. Absent myopia dynamic contracts generate higher value for flatter

income paths because front-loading is then more appealing. As myopia increases. consumers

with flat net income care increasingly more about the costs of front-loading and increasing

less about the consumption guarantees that front-loading allows for. Thus, even though

consumers with flat net income paths are better able to insure against reclassification risk

with dynamic contracts for any level of myopia relative to consumers with increasing income,

a lot of the welfare gain they could achieve is eroded by myopia.

Third, even when myopia is strong (e.g. β = 0.1) dynamic contracts still provide non-

trivial protection against reclassification risk. This is due primarily to the fact that consumers

derive most of their utility from dynamic contracts by insuring against the worst future

health risk realizations. Even with some myopia, this desire for risk protection against these

49Note that as β moves towards 0, our optimal dynamic contract approaches spot contracts since consumers
only consider the current period.
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Figure 4: The performance of dynamic contracts, measured by CED−CESPOT
CENBNS−CESPOT

, for different
values of customer discount factor β when insurer discount factor δ is 0.975. The vertical
axis is on log scale.

catastrophic outcomes is still strong and, for our parameterizations, outweighs the effects

of myopia when myopia is reasonably limited. Essentially, the eroded front-loading from

myopia hurts consumer insurance against health risks in the middle of the risk distribution

but still provides significant protection against the worst health risks, which is where most

of the welfare gains from insurance come from in our setting.

7.3 Precautionary Savings

So far we have not allowed for savings in our welfare calculations. From Proposition 1

we know that this is without loss of generality for the case of optimal contracts with one-

sided commitment. Consumers also would not want to engage in savings in the first best.

However, with spot contracting consumers may want to engage in precautionary savings to

lower the costs of reclassification risk. Individuals can save in good states to weather periods

of bad health.

To study the impact of precautionary savings we solve a finite-horizon savings problem,

with the same underlying fundamentals as in our main analysis, namely, the same income

profiles, risk preferences, and transition matrices. We find optimal savings starting at age

25 given an income profile and the actuarially fair health insurance premiums associated

with the different health states.50 Once we find optimal savings for each age and state, we

50For each income profile, we solve a finite-horizon dynamic programming problem, from ages 25 to 65.
Starting at age 64, for a grid of saving values entering that period, the individual finds the optimal saving level
going into the last period that maximizes the sum of current utility from consumption and the discounted
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(1) (2) (3) (4) (5) (6) (7)

Income profile C∗NBNS CESPOT CESPOTwS CED
C∗
NBNS−CESPOTwS

C∗
NBNS

CESPOTwS−CESPOT
C∗
NBNS

−CESPOT

CED−CESPOTwS
C∗
NBNS

−CESPOTwS

Flat net 54.50 44.18 46.98 48.66 0.138 0.271 0.223
Non-mngr 47.37 36.96 37.64 38.08 0.205 0.065 0.046
Manager 55.67 45.44 45.71 45.91 0.179 0.026 0.020
Downs Mngr 37.68 27.35 27.83 28.13 0.262 0.046 0.031

Table 24: Long-run welfare of Utah men allowing for precautionary savings under spot
contracts, with a constant absolute risk aversion coefficient of 0.0004. Welfare measures
in columns (1)–(4) are reported in thousands of dollars. The certainty equivalent of spot
contracting with precautionary savings is denoted by CESPOTwS.

compute the certainty equivalent, which we denote by CESPOTwS (SPOTwS = “Spot with

Savings”).

Table 24 shows the welfare effect of precautionary savings in the Utah male sample. As

the spot contracting with precautionary savings outcome is feasible in our dynamic problem

with one-sided commitment, CESPOTwS naturally lies between CESPOT and CED. Savings

enable the consumer to transfer resources to future periods, to be consumed in periods of

high marginal utility from consumption. While these precautionary savings reduce the losses

from reclassification risk, these losses remain very high, ranging between 13.8% and 26.2%

of lifetime certainty equivalent (see column (5)). Optimal dynamic contracts do better than

precautionary savings, as they allow for state-specific savings. By charging state-contingent

premiums the optimal contract enables equating consumption across all states in which the

lapsation does not bind.

Column (6) shows that precautionary savings closes a relatively small share – between

2.6% and 27.1% – of the welfare gap between spot contracts without savings and the no-

borrowing/no-saving benchmark. Column (7) shows the fraction of the welfare gap between

the no-borrowing/no-saving constrained first-best outcome and the spot contracting with

precautionary savings outcome that is closed by optimal dynamic contracts; this ranges

from 22.3% for flat net income profiles to 2.0% for managers.

value of the expected utility in the last period, where the expectation is taken for each state given the
transition matrices. Once we obtain the value function at age 64 for each possible health state and incoming
saving level, we proceed backwards all the way to age 25, where we obtain the discounted expected utility
starting in each possible health state. The ex-ante certainty equivalent is the certain consumption level that
makes the consumer indifferent to the expected utility of entering the dynamic problem before observing the
health realization at age 25.
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7.4 Risk Aversion

So far our analysis has used the risk preferences estimated in Handel, Hendel, and Whin-

ston (2015). We now consider the robustness of the analysis with respect to the degree of

risk aversion. We are particularly interested in lower risk aversion. The reason is that we

are afraid our estimate of risk preferences, estimated from choices among health insurance

contracts with out-of-pocket caps, might not reflect consumers’ risk tolerance for the larger

stakes associated with reclassification risk.51

Table 25 presents the welfare comparisons for risk aversion of 0.00008, five times lower

than that in our main analysis. For a consumer with $50,000 of consumption, this corre-

sponds to a CRRA risk aversion coefficient of 4, roughly the level suggested in the macro

literature on consumption disasters (e.g., Barro (2006)). To put the coefficients in per-

spective, consider a lottery that assigns the costs associated with each of the seven health

statuses, with each having equal probability. For the costs we used in Section 6, our 0.0004

risk aversion coefficient estimate implies a willingness to pay of $7,222 to avoid the uncer-

tainty associated with this risky prospect. Instead, the lower risk aversion coefficient leads

to a willingness to pay of $1,491.

Lowering risk aversion substantially reduces the loss associated with reclassification risk

(captured by the gap between C∗NBNS and CESPOT ). The loss is between 1.8% and 3.1%,

depending on the income profile. For the higher 0.0004 risk aversion, the loss was between

18.4% and 27.4%. Still, a loss of 1-4% of age 25-65 certainty equivalent is not insubstantial.

While the loss from reclassification risk is lower, the reductions in reclassification risk from

long-term contracting, as captured in column (6) by how much of the gap between the welfare

under optimal dynamic contracts and that under the No-Borrowing/No-Saving benchmark,

are much larger, ranging between 25.6% for the manager income profile and 82.7% for the flat

net income profile. Still, with rising income profiles, dynamic contracts without insurance

of pre-age-25 health risk leave consumers facing a high share of the reclassification risk.

8 Conclusion

In this paper, we have provided a theoretical characterization of optimal dynamic health

insurance contracts, shown how to compute these contracts given estimates of primitives

(the stochastic health process, consumer income paths, and interest rate), and examined

the structure and welfare levels of empirically relevant dynamic contracts using granular

all-payers data from Utah.

51See Rabin (2000) for a discussion of issues with CARA and scaling of gambles, and Collier et al (2017)
for evidence of differing risk aversion for small versus large stakes decisions.
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(1) (2) (3) (4) (5) (6) (7)

Income profile C∗ CESPOT CED C∗NBNS
C∗NBNS−CESPOT

C∗NBNS

CED−CESPOT
C∗NBNS−CESPOT

CED−CESPOT
C∗−CESPOT

Flat net 54.67 52.99 54.38 54.67 0.031 0.827 0.827
Non-mngr 54.67 51.22 52.05 52.72 0.028 0.550 0.239
Manager 85.00 68.45 68.78 69.73 0.018 0.256 0.020
Downs Mngr 54.67 46.44 46.95 47.81 0.029 0.372 0.062

Table 25: Long-run welfare results for Utah men showing the certainty equivalent consump-
tion of different insurance institutions for a discount factor of 0.975 and constant absolute
risk aversion equal to 0.00008.

Among our findings, we show that the welfare that optimal dynamic health insurance

contracts could offer for men in Utah depends crucially on (i) whether there is government

insurance of pre-age-25 health risk and (ii) the steepness of consumer income profiles. A

lack of pre-age-25 risk insurance greatly reduces the appeal of dynamic contracts, while,

whether or not such insurance is in place, the appeal of these contracts is greater if lifetime

income profiles (given available borrowing opportunities) are flatter. With pre-age-25 health

risk insurance in place, consumers with flat net income prefer dynamic contracts to the

managed competition-style exchange environment we study, but consumers with steeper

income profiles prefer the managed competition exchange environment. When we allow for

meaningful switching cost (as empirical work has shown are relevant in practice) or lower risk

aversion levels dynamic contracts become more attractive, while consumer myopia attenuates

their benefits.

While our model is stylized in various ways (see footnote 6), these results illustrate that

there are certain plausible scenarios where dynamic contracts could improve welfare relative

to an ACA-like managed competition-style insurance exchange. However, in practice, unlike

in auto insurance or life insurance, explicitly dynamic contracts have been very rare in US

health insurance markets.52 There are some potential practical impediments that are outside

the scope of our model that could limit the viability of such contracts, which we now discuss.

One concern is that firms may have difficulty forecasting future medical cost levels, an

issue that does not arise to the same degree in markets such as life insurance in which long-

term contracts are prevalent. This risk is not fully diversifiable.53 This issue could be solved

52However, as we noted in the Introduction, in most states, prior to the ACA insurers faced guaranteed
renewability regulations that prevented them from re-pricing a policy to continuing customers on an indi-
vidual basis [Patel and Pauly (2002)], and such regulations did limit the reclassification risk that consumers
faced once enrolled in a policy [Marquis and Buntin (2006), Herring and Pauly (2006), Herring, Song, and
Pauly (2008)]. Fleitas, Gowrisannkaran, and Losasso (2018) document a similar fact for the small group
insurance market.

53The need to forecast could also introduce “winner’s curse” type concerns, as firms who attract a lot of
business would tend to be those whose forecasts of future medical cost inflation are unreasonably low.
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(alleviated), by indexing future guaranteed premiums to medical cost inflation indices in

a granular manner, something that, e.g., is currently done in the German private health

insurance market.

Another potential problem is that consumer lock-in might lead to quality degradation

by insurers. This is something that was a major concern in the pre-ACA individual market

for insured consumers with pre-existing conditions. While there are a number of ways to

regulate product quality (on financial and non-financial dimensions) this is a concern that

is potentially difficult to fully resolve. Cutting against this concern is the possibility that

insurers’ quality incentives would actually be enhanced on some dimensions, as they would

have increased incentives to promote long-term health. Lock-in could also reduce a con-

sumer’s ability to re-match with firms if firm-specific preferences change (Atal (2015)). This

problem would be greatly reduced if health insurance products were purely financial.

The most serious limitation on the use and benefits of dynamic contracts in the U.S. is the

short durations of insurance need in the individual market. Given the current tax-advantage

for employer-based insurance, consumers may arrive only when old, or in between jobs. For

example, in the pre-ACA world, while some consumers purchased individual insurance over

long periods of time, many others used it as a short-term solution between employment

spells, leading median duration in the individual market in one study to be less than two

years [Marquis et al. (2006); see also Herring, Song, and Pauly (2008)].54 The same is

currently true of the ACA individual market exchanges. Short durations greatly reduce the

benefits of a long-term contract.55 In addition, those older consumers newly arriving to the

individual market with pre-existing conditions (perhaps because of a job loss) would still

face reclassification risk, much as in our discussion of unhealthy 25 year-old consumers in

Section 5.1, perhaps necessitating some sort of government insurance (such as high-risk pool

subsidies). Removing the employer tax exemption for health insurance is one oft-discussed

policy that would help promote the robustness of the individual market, whether in the ACA

exchanges or in an individual market for dynamic contracts like we consider here.

In summary, our analysis shows scenarios under which long-term dynamic contracts may

be welfare improving relative to a range of alternatives. In practice, several complementary

regulations are likely important to help such contracts flourish. One key factor in our analysis

that helps dynamic contracts, which was not present pre-ACA, is government insurance of

pre-age-25 health risk. Such insurance is crucial to prevent consumers from facing significant

54These short durations may partly explain the apparent absence in the US of explictly dynamic contracts
in the pre-ACA world.

55Introducing an exogenous probability of break up into our model is equivalent to lowering the discount
rate, provided that separation payments upon break up cannot be made. With a discount factor of 0.5
(which generates an expected duration of 2 years), optimal dynamic contracts close only 8.4% of the gap
between spot contracts and the no-borrowing/no-savings benchmark for a consumer with flat net income.
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pre-age-25 reclassification risk. Outside of our model, it is clear that, as for the ACA

exchanges, removing the employer tax exemption will improve robustness of the individual

market and meaningfully increase the length of consumer spells in that market. As this

suggests, extending our analysis to allow for multiple market layers (e.g. employer markets,

Medicare, Medicaid) that exist alongside an individual market with dynamic contracts is an

important avenue for future work.
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9 Appendix A: Characterization of Equilibrium Con-

tracts with One-Sided Commitment

To recount some basics from the main text: We suppose that there are a total of T periods,

t = 1, ..., T . The consumer’s within-period utility function is u(·). It is strictly increasing

and strictly concave. Health expenses in period t are denoted mt. The consumer’s health

status in period t is λt, which determines his period-t expected medical expenses, E(mt|λt).
The consumer’s income in period t is yt. We assume that the consumer’s utility function u(·)
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and income path (y1, ..., yT ) are known. The consumer also has a switching cost incurred

whenever he changes insurers, equal to σ ≥ 0. (We will establish our proposition for the

general case of a nonnegative switching cost; Proposition 1 will follow as the special case of

σ = 0.)

We denote by Λt
t′ the consumer’s history of health statuses from period t to period t′, Λt

t′ ≡
(λt, ..., λt′). Similarly, the consumer’s history of medical expense realizations from period t

to period t′ is M t
t′ ≡ (mt, ...,mt′). We will refer to Λt

t′ as the consumer’s “continuation health

history” starting at period t. At the start of period t, the probability of the continuation

health history Λt
t′ being reached depends only on the consumer’s health history at period t,

Λ1
t , which we refer to as the consumer’s period-t “health state,” and is given by f(Λt

t′|Λ1
t ).

56

Finally, we denote by
〈

Λt
t′ ,Λ

t′+1
t′′

〉
a health history constructed by putting together Λt

t′ and

Λt′+1
t′′ .

9.1 Contracts

We are concerned with identifying optimal contracts that may be signed at each date and

history. Since at the start of a period t the future depends only on the consumer’s health

state Λ1
t , an optimal contract will depend only this, and not on previous medical expense

realizations. We therefore denote a contract signed with the consumer at health history

Λ1
t by cΛ1

t
(·).57 The contract cΛ1

t
(·) is a function that specifies the consumer’s consumption

level in each future period t′ ≥ t for each possible continuation history (Λt+1
t′+1,M

t
t′).

58 Thus,

the consumption level specified by cΛ1
t
(·) in period t′ ≥ t can in general be written as

cΛ1
t
(Λt+1

t′+1,M
t
t′).

It will be useful in what follows to consider contracts that would break even if subsidized

by some amount. To this effect, we say that contract cΛ1
t
(·) breaks even with subsidy S ∈ R

if

ΣT
τ=tδ

τ−t ([yτ − E[mτ |Λ1
t ]− E[cΛ1

t
(Λt+1

τ+1,M
t
τ )|Λ1

t ]
)

= −S (10)

We say that the contract is a “zero profit contract” if it breaks even with subsidy S = 0, and

we denote the set of all contracts signed at Λ1
t that break even with subsidy S by BS(Λ1

t ).

56In our empirical work we suppose that f(·|·) is a second-order Markov process, generated by a transition

process f̂(λt+1|λt−1, λt). As such, we will then refer to Λt = (λt−1, λt) as the consumer’s period-t health
state.

57In this appendix, we suppress the dependence of the contract on the consumer’s type θ, consisting of his
utility function u(·) and income path y = (y 1..., yT ).

58Recall that λt+1 and mt are realized during period t and the consumption specified for period t can
depend on them.
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The value to the consumer of contract cΛ1
t
(·) starting at health state Λ1

t is denoted

VΛ1
t
(cΛ1

t
(·)) and is defined as follows:

VΛ1
t
(cΛ1

t
(·)) = ΣT

τ=tδ
τ−t[E[u(cΛ1

t
(Λt+1

τ+1,M
t
τ ))|Λ1

t ] (11)

For t′ > t, we denote by cΛ1
t |Λ

t+1
t′

(·) a “sub-contract” of cΛ1
t
(·) that is given by looking at

the consumption levels implied by cΛ1
t
(·) (weakly) after the realization of continuation health

history Λt+1
t′ . Mathematically, cΛ1

t |Λ
t+1
t′

(·) could also be looked at as a stand-alone contract

signed at the beginning of year t′ given health state
〈
Λ1
t ,Λ

t+1
t′

〉
. Obviously, cΛ1

t |Λ
t+1
t′

(·) being

zero-profit neither implies nor is implied by cΛ1
t
(·) being zero-profit.

Definition 1, repeated here, then describes an optimal contract given an initial subsidy

level S:

Definition 3 c∗
Λ1
t
(·|St) is an optimal contract signed in period t at health state Λ1

t with

subsidy St if it solves the following maximization problem:

max
c
Λ1
t
(·)∈BSt (Λ1

t )
VΛ1

t
(cΛ1

t
(·)) (12)

s.t. V〈Λ1
t ,Λ

t+1
t′ 〉(cΛ1

t |Λ
t+1
t′

(·)) ≥ V〈Λ1
t ,Λ

t+1
t′ 〉(c

∗
〈Λ1

t ,Λ
t+1
t′ 〉

(·| − σ)) for all Λt+1
t′ with t′ > t

In what follows, we will denote the special case of c∗
Λ1
t
(·|0) (the optimal zero-profit con-

tract) by c∗
Λ1
t
(·) for simplicity. Also, c∗

Λ1
t |Λ

t+1
t′

(·|S) is the subcontract of optimal contract

c∗
Λ1
t
(·|S) that starts in period t′ at history

〈
Λ1
t ,Λ

t+1
t′

〉
; c∗

Λ1
t |Λ

t+1
t′

(·) is the special case of a

subcontract of zero-profit optimal contract c∗
Λ1
t
(·).

Note that equation (12) provides a recursive definition of the optimal contract. The

constraint in this definition makes sure that at no continuation health history Λt+1
t′ does the

customer prefer to lapse to c∗〈Λ1
t ,Λ

t+1
t′ 〉

(·| − σ), the optimal contract starting at health state〈
Λ1
t ,Λ

t+1
t′

〉
with non-positive subsidy −σ ≤ 0. The non-positive subsidy comes from the fact

that an insurer seeking to lure the consumer away from the contract c∗
Λ1
t
(·|S) must effectively

compensate the consumer for the fact that he incurs the switching cost σ.59 The constraint

ensures us that, following the realization of continuation health history Λt
t′ , the consumer

does not prefer to lapse to any other contract c(Λ1
t ,Λ

t+1
t′ )(·) that would at least break even

given the need to compensate the consumer for his switching cost, and that also satisfies

no-lapsation.

59The consumption level specified in the contract offered by the new insurer is net of the consumer’s
switching cost.
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To begin, we first prove a lemma demonstrating that an optimal contract signed in a

period t always specifies at each period t′ ≥ t and continuation health history Λt
t′ a deter-

ministic consumption level; that is, consumption that does not depend upon the realization

during period t′ of the consumer’s period t′+1 health status, nor the consumer’s continuation

medical expenses from period t to t′,M t
t′ . In particular, upon arriving at any period t′ and

continuation health history Λt
t′ , the contract offers the consumer full within-period insurance

against his period t′ medical expenses.

Lemma 2 For any t′ ≥ t and (Λ1
t ,Λ

t+1
t′+1,M

t
t′ , S), we have:

c∗Λ1
t
(Λt+1

t′+1,M
t
t′ |S) = c∗Λ1

t
(Λt+1

t′ |S).

Proof of Lemma 2. Consider a period t′ and two continuation histories (Λ
t+1

t′+1,M
t

t′) 6=
(Λ̂t+1

t′+1, M̂
t
t′) with Λ

t+1

t′ = Λ̂t+1
t′ ≡ Λt+1

t′ that can both happen with positive probability condi-

tional on Λ1
t , and suppose that, contrary to the statement of the lemma,

c∗Λ1
t
(Λ

t+1

t′+1,M
t

t′ |S) 6= c∗Λ1
t
(Λ̂t+1

t′+1, M̂
t
t′|S).

We show that one could then construct a contract that is strictly preferred by the cus-

tomer to c∗
Λ1
t
(·|S) and does not violate no-lapsation or the budget constraint. To do this, we

consider contract cΛ1
t
(·) such that for (Λt+1

t′+1,M
t
t′) ∈ {(Λ

t+1

t′+1,M
t

t′), (Λ̂
t+1
t′+1, M̂

t
t′)} we have

cΛ1
t
(Λt+1

t′+1,M
t
t′ |S) = E[c∗Λ1

t
(Λt+1

t′+1,M
t
t′|S)| (

〈
Λ1
t ,Λ

t+1
t′+1

〉
,M t

t′) ∈ {(
〈

Λ1
t ,Λ

t+1

t′+1

〉
,M

t

t′), (
〈

Λ1
t , Λ̂

t+1
t′+1

〉
, M̂ t

t′)}]

and otherwise,

cΛ1
t
(Λt+1

t′+1,M
t
t′ |S) = c∗Λ1

t
(Λt+1

t′+1,M
t
t′|S).

Given that the utility function u(·) is strictly concave, this consumption-smoothing

modification will imply that the customer strictly prefers cΛ1
t
(·) over c∗

Λ1
t
(·|S). Also, this mod-

ification does not change the contract’s expected profit. Finally, this modification weakly

improves the expected utility of the contract at all possible super-histories of Λ1
t . Thus,

contract cΛ1
t
(·) also satisfies no-lapsation. But this contradicts the optimality of c∗

Λ1
t
(·|S).�

Given lemma (2), we can simplify notation and write contracts in the form of cΛ1
t
(Λt+1

t′ |S).

However, in what follows it will actually be more convenient and clearer (despite some

redundancy in the notation) to write the contract as a function of the full health history

Λ1
t′ =

〈
Λ1
t ,Λ

t+1
t′

〉
that has been reached at date t′ ≥ t; hence in the form of cΛ1

t
(Λ1

t′ |S).

We introduce two more notations on comparing contracts to one another before we turn

to the proposition and its proof. First, for two contracts cΛ1
t
(·) and ĉΛ1

t
(·) offered at the same
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health state Λ1
t , we say the former is “preferred” to the latter, and write cΛ1

t
(·) � ĉΛ1

t
(·) if

VΛ1
t
(cΛ1

t
(·)) ≥ VΛ1

t
(ĉΛ1

t
(·)).

Second, for two contracts signed at the same health state Λ1
t , we say cΛ1

t
(·) “dominates”

ĉΛ1
t
(·), and write cΛ1

t
(·) ≥ ĉΛ1

t
(·), if the former offers a weakly higher consumption level than

the latter at any possible future health history, including period t. That is, for every t′ ≥ t

and history Λ1
t′ =

〈
Λ1
t ,Λ

t+1
t′

〉
with f(Λt+1

t′ |Λ1
t ) > 0, we have cΛ1

t
(Λ1

t′) ≥ ĉΛ1
t
(Λ1

t′). Note that if

cΛ1
t
(·) ≥ ĉΛ1

t
(·), then for any t′ > t and Λt+1

t′ we have cΛ1
t |Λ

t+1
t′

(·) ≥ ĉΛ1
t |Λ

t+1
t′

(·).60

The strict versions of the above two relationships (i.e. � and >) are defined in the natural

way.

9.2 Proposition and Proof

We establish the following result, from which Proposition 1 follows as the special case where

the switching cost σ equals zero.61

Proposition 4 The optimal contract c∗
Λ1
t
(·) is fully characterized by the zero-profit condition

and, for all t′ > t and Λt
t′ such that f(Λt

t′|Λ1
t ) > 0, the condition that the consumer receives

the following certain consumption level:

c∗Λ1
t
(Λ1

t′) = max{c∗Λ1
t
(Λ1

t ), max
τ∈{t+1,...,t′}

c∗〈Λ1
t ,Λ

t+1
τ 〉(

〈
Λ1
t ,Λ

t+1
τ

〉
)| − σ)}. (13)

In words, the optimal contract c∗
Λ1
t
(·) offers in each period t′ > t at history Λ1

t′ =
〈
Λ1
t ,Λ

t+1
t′

〉
the maximum among the first-period consumption levels offered by all the equilibrium con-

tracts available along the way on continuation health history Λt+1
t′ .

The proof strategy is based on strong induction: We assume the proposition is true for

the optimal contracts c∗
Λ1
t′

(·) at all Λ1
t′ with t′ > t, and then show it is also true for the period-t

optimal contracts c∗
Λ1
t
(·) for any Λ1

t . To establish the result, we show that if for some Λ1
t ,

optimal contract c∗
Λ1
t
(·) does not satisfy (13), then there is a “modification of” c∗

Λ1
t
(·) that (i)

is strictly preferred to c∗
Λ1
t
(·) by the consumer; and (ii) satisfies no-lapsation and zero-profit.

Before we get to the proof itself, we introduce a notation on how to “modify” a contract.

Definition 4 Let min{t′, t′′} ≥ t. We say contract ĉΛ1
t
(·) is an ε-transfer, from Λ1

t′ to Λ1
t′′,

on contract cΛ1
t
(·), and write ĉΛ1

t
(·) = tr[cΛ1

t
(·), ε,Λ1

t′ ,Λ
1
t′′ ] if:

1. ĉΛ1
t
(Λ1

t′) = cΛ1
t
(Λ1

t′)− ε
60The same need not be true for �.
61The proof in this subsection assumes the consumer does not engage in secret savings; we establish this

fact formally in Appendix B.
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2. ĉΛ1
t
(Λ1

t′′) = cΛ1
t
(Λ1

t′′) +
[
ε× f(Λt+1

t′ |Λ
1
t )

f(Λt+1
t′′ |Λ

1
t )
× δt′−t′′

]
3. For all τ ≥ t and Λt

τ /∈ {Λt
t′ ,Λ

t
t′′}, we have ĉΛ1

t
(Λt

τ ) = cΛ1
t
(Λt

τ )

In words, this ε-transfer just transfers some consumption between health histories Λ1
t′ and

Λ1
t′′ after applying a multiplier to the transfer to keep the discounted expected consumption

unchanged. Our improvements on c∗
Λ1
t
(·) in the counter-positive strategy will be constructed

using ε-transfers. We record two facts about such transfers:

Remark 1 ε-transfers preserve the expected discounted profit: If c∗
Λ1
t
(·) ∈ BS(Λ1

t ) for some

S ∈ R, then tr[cΛ1
t
(·), ε,Λ1

t′ ,Λ
1
t′′ ] ∈ BS(Λ1

t ).

Remark 2 For every Λt
t′ and Λt

t′′ with cΛ1
t
(Λ1

t′) > cΛ1
t
(Λ1

t′′) there exists an ε0 > 0 such that

for all ε ≤ ε0 we have tr[cΛ1
t
(·), ε,Λt

t′ ,Λ
t
t′′ ] � cΛ1

t
(·).

Remark 3 follows immediately from the fact that the ε-transfer does not change the

expected discounted consumption in the contract, while Remark 4 follows because of the

consumer is strictly risk averse [u(·) is strictly concave].

Before proceeding to the proof of the proposition, we observe that in any optimal contract,

the continuation contract specified at every future health history must itself be an optimal

contract starting at that history for some subsidy:

Claim 1 For t′ > t, define St′ as the expected loss sustained by the insurer under contract

c∗
Λ1
t
(·|St) after the realization of health history Λ1

t′ =
〈
Λ1
t ,Λ

t+1
t′

〉
. Formally:

St′ = ΣT
τ=t′δ

τ−t′
(
E[c∗Λ1

t
(
〈
Λ1
t ,Λ

t+1
τ

〉
|St)− yτ −mτ |Λ1

t′ ]
)
.

Then, the following is true:

c∗
Λ1
t |Λ

t+1
t′

(·|St) = c∗〈Λ1
t ,Λ

t+1
t′ 〉

(·|St′), (14)

where

In words, Claim 2 states that any continuation contract c∗
Λ1
t |Λ

t+1
t′

(·|St) of c∗
Λ1
t
(·|St) is in fact

the optimal solution to the generalized problem outlined in Definition 1 for history
〈
Λ1
t ,Λ

t+1
t′

〉
when the subsidy available to the consumer is exactly the amount St′ .

Proof of Claim 2. If at any continuation history Λt
t′ the condition in the claim did

not hold we could replace the continuation contract c∗
Λ1
t |Λ

t+1
t′

(·|St) by c∗〈Λ1
t ,Λ

t+1
t′ 〉

(·|St′) and

do strictly better for the consumer without violating no-lapsation or changing the required

subsidy St for contract c∗
Λ1
t
(·|St), a contradiction to the optimality of c∗

Λ1
t
(·|St). �
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We now turn to proving the proposition. To do so, we will actually prove a more

general statement than the proposition, using strong induction on the number of periods.

The following lemma is the general result that implies our proposition:

Lemma 3 Consider optimal contract c∗
Λ1
t
(·|St). There exists a unique c̄ ∈ R such that

c∗
Λ1
t
(Λ1

t |St) = c̄, and for any t′ > t and Λt+1
t′ such that f(Λt+1

t′ |Λ1
t ) > 0, we have

c∗Λ1
t
(
〈
Λ1
t ,Λ

t+1
t′

〉
|St) = max{c̄, c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t ,Λ

t+1
t′

〉
| − σ)}. (15)

In words, Lemma 7 says that at any subsequent period t′ and history
〈
Λ1
t ,Λ

t+1
t′

〉
, contract

c∗
Λ1
t
(·|St) gives the larger value between (i) consumption that it immediately gives, and (ii) the

consumption that the optimal, break-even contract with subsidy −σ signed in the beginning

of period t+ 1 at history 〈Λ1
t , λt+1〉 would offer.

Note that condition (31) of the lemma implies that any two optimal contracts signed

at time t and health history Λ1
t , but with differing subsidies S ′′t > S ′t, are ordered by the

dominance relation according to the level of the inital consumptions they specify, which

by the break-even condition are ordered according to the size of the subsidies; that is,

c∗
Λ1
t
(·|S ′′t ) > c∗

Λ1
t
(·|S ′t).

Proof of Lemma 7. The proof goes by induction. For t = T , the result is straightfor-

ward, given that there is no period after t = T ; at that point, cΛ1
T
(Λ1

T |S) = yT−E[mT |λT ]+S.

We now turn to the proof for t < T , assuming, by way of induction, that the result holds

for any τ > t and any Sτ . We begin by showing that (31) holds for any period t+ 1 history

〈Λ1
t , λt+1〉; i.e., that

c∗Λ1
t |λt+1

(
〈
Λ1
t , λt+1

〉
|St) = max{c∗Λ1

t
(Λ1

t |St), c∗〈Λ1
t ,λt+1〉(

〈
Λ1
t , λt+1

〉
| − σ)}. (16)

To this end, we consider two cases regarding history nodes ending at period t+ 1.

Case 1. At history 〈Λ1
t , λt+1〉, the no-lapsation condition is binding for contract c∗

Λ1
t
(·|St).

Formally:

VΛ1
t
(c∗Λ1

t |λt+1
(·|St)) = VΛ1

t
(c∗〈Λ1

t ,λt+1〉(·| − σ)). (17)

Note that by Claim 2, the continuation contract c∗
Λ1
t |Λ

t+1
t′

(·|St) is itself the optimal contract

c∗〈Λ1
t ,λt+1〉(·|St+1) for some St+1. Thus, (33) implies that

c∗Λ1
t |λt+1

(·|St) = c∗〈Λ1
t ,λt+1〉(·| − σ). (18)

62



Next, note that the immediate consumption c∗
Λ1
t
(Λ1

t |St) in contract c∗
Λ1
t
(·|St) must satisfy

c∗Λ1
t
(Λ1

t |St) ≤ c∗Λ1
t
(
〈
Λ1
t , λt+1

〉
|St) = c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
| − σ), (19)

otherwise an ε-transfer from the immediate consumption at history Λ1
t to history 〈Λ1

t , λt+1〉
would strictly improve the contract c∗

Λ1
t
(·|St) from the perspective of the consumer, without

changing the expected profit. This transfer would also satisfy no-lapsation, given that it

weakly increases the consumption given by c∗
Λ1
t
(·|St) at any history that happens strictly

after time t. Thus, (32) holds at all period-(t+ 1) histories at which lapsation binds.

Case 2. At history 〈Λ1
t , λt+1〉, the no-lapsation condition is not binding for contract

c∗
Λ1
t
(·|St). That is,

VΛ1
t
(c∗Λ1

t |λt+1
(·|St)) > VΛ1

t
(c∗〈Λ1

t ,λt+1〉(·| − σ)). (20)

As in the previous case, given Claim 2, the continuation contract c∗
Λ1
t |λt+1

(·|St) is itself the

optimal contract c∗〈Λ1
t ,λt+1〉(·|St+1) for some St+1. Therefore, by our induction assumption,

there is some c̄ such that (i) c̄ = c∗
Λ1
t |λt+1

(〈Λ1
t , λt+1〉 |St) and (ii) for any history

〈
∆1
t , λt+1,Λ

t+2
t′

〉
with t′ ≥ t+ 2 we have:

c∗Λ1
t |λt+1

(
〈
∆1
t , λt+1,Λ

t+2
t′

〉
|St) = max{c̄, c∗〈Λ1

t ,λt+1〉(
〈
∆1
t , λt+1,Λ

t+2
t′

〉
| − σ)}. (21)

But this, combined with inequality (37), tells us it must be that

c̄ > c∗〈Λ1
t ,λt+1〉(

〈
Λ1
t , λt+1

〉
| − σ). (22)

We now claim that

c̄ = c∗Λ1
t
(Λ1

t |St). (23)

That is, c̄ is equal to the immediate consumption offered by contract c∗
Λ1
t
(·|St). To see this,

note that if c̄ > c∗
Λ1
t
(Λ1

t |St), then an ε-transfer from the history (Λ1
t , λt+1) to the immediate

history Λ1
t will increase the consumer’s expected utility, will not change the expected profit

from the contracts, and will preserve no-lapsation if ε is small enough, given (37). This con-

tradicts the assumption that c∗
Λ1
t
(·|St) is the optimal contract. Conversely, if c̄ < c∗

Λ1
t
(Λ1

t |St),
the reverse ε-transfer will strictly increase the consumer’s expected utility and preserve the

insurer’s expected profit. It also preserves no-lapsation since it weakly increases consumption

at any history strictly after Λ1
t . Thus, (32) also holds at all period-(t+ 1) histories at which

lapsation does not bind.
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To sum up, cases 1 and 2 show that for any history λt+1, no matter whether no-lapsation

is binding or not, (32) holds. Next, we combine (32) with the induction assumption to extend

the argument, which currently applies only to period-(t+ 1) histories 〈Λ1
t , λt+1〉, also to any

history
〈
Λ1
t ,Λ

t+1
t′

〉
with t′ > t+ 1. By Claim 2, we know that for some appropriate St+1, we

have:

c∗Λ1
t
(
〈
Λ1
t , λt+1

〉
|St) = c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
|St+1) (24)

and

c∗Λ1
t
(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St) = c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St+1) (25)

By induction, we know that

c∗(Λ1
t ,λt+1)(

〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St+1) = max{c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
|St+1), c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|−σ)}

(26)

Replacing into equation (43) from (41) and (42), we get:

c∗Λ1
t
(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St) = max{c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St), c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
| − σ)}

(27)

Now, substituting for c∗
Λ1
t
(〈Λ1

t , λt+1〉 |St) from (32), we get:

c∗Λ1
t
(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St) (28)

= max{max{c∗Λ1
t
(Λ1

t |St), c∗(Λ1
t ,λt+1)(

〈
Λ1
t , λt+1

〉
| − σ)}, c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
| − σ)}

= max{c∗Λ1
t
(Λ1

t |St),max{c∗(Λ1
t ,λt+1)(

〈
Λ1
t , λt+1

〉
| − σ), c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
| − σ)}}

But by our induction assumption, the inner maximum equals c∗〈Λ1
t ,λt+1〉(

〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|−

σ); substituting this into (45) tells us that (31) holds for contracts signed in period t. Ap-

plying induction establishes the lemma.�

Proof of Proposition 4. Applying Lemma 7 to the special case of St = 0, we get that

for any Λ1
t and Λt+1

t′ such that f(Λt+1
t′ |Λ1

t ) > 0, we have that

c∗Λ1
t
(
〈
Λ1
t ,Λ

t+1
t′

〉
) = max{c∗Λ1

t
(Λ1

t ), c
∗
〈Λ1

t ,λt+1〉(
〈
Λ1
t ,Λ

t+1
t′

〉
| − σ)}
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Since Lemma 7 holds for c∗〈Λ1
t ,λt+1〉(·|−σ) as well, we can expand c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t ,Λ

t+1
t′

〉
|−σ)

in the same way as above. Then we can do this again and again, until we get that for all

t′ > t and Λt
t′ such that f(Λt

t′ |Λ1
t ) > 0,

c∗Λ1
t
(Λ1

t′) = max{c∗Λ1
t
(Λ1

t ), max
τ∈{t+1,...,t′}

c∗〈Λ1
t ,Λ

t+1
τ 〉(Λ

1
τ )| − σ)}, (29)

which is exactly the statement made in the proposition.�

10 Appendix B: Self-Selection

In this appendix we prove Proposition 2. We first establish the following Lemma:

Lemma 4 Let p = (pτ , ..., pT ) and p̂ = (p̂τ , ..., p̂T ) be guaranteed premium paths (that start

in period τ) such that p̂ ≥ p and consider a type θ consumer who is in health state Λ1
τ in

period τ . Suppose that (i) the insurer earns a non-negative expected payoff when guaranteed

premium path p is chosen by the consumer (given the consumer’s subsequent optimal lapsation

behavior), (ii) under premium path p, in every period t > τ and health state Λ1
t in which

the consumer optimally does not lapse, the insurer’s expected continuation payoff is non-

positive, and (iii) the consumer never secretly saves when facing either of these premium

paths. Then the insurer’s expected continuation payoff is non-negative if premium path p̂ is

chosen in period τ by the consumer.

Proof. Let U(t,Λ1
t ) and Û(t,Λ1

t ) denote the type θ consumer’s continuation payoff in

period t at health state Λ1
t given optimal lapsation behavior under p and p̂ respectively. Let

HL(t) and ĤL(t) denote the sets of health states at which the consumer optimally lapses

in period t, under p and p̂ respectively; HNL(t) and ĤNL(t) are the complementary sets of

health states at which the consumer does not lapse. Finally, let Π(t,Λ1
t ) and Π̂(t,Λ1

t ) denote

the insurer’s expected continuation payoff at (t,Λ1
t ) given the consumer’s optimal lapsation

behavior under p and p̂ respectively. Assumption (i) therefore says that Π(τ, λτ ) ≥ 0, while

assumption (ii) says that Π(t,Λ1
t ) ≤ 0 if t > τ and Λ1

t ∈ HNL(t) [of course, Π(t,Λ1
t ) = 0 for

all Λ1
t ∈ HL(t)].

Note, first, that U(t,Λ1
t ) ≥ Û(t,Λ1

t ) for all (t,Λ1
t ): starting in period t, the consumer who

faces p could adopt the same lapsation behavior as when facing p̂ and receive a weakly higher

continuation payoff since under p he would be facing lower premia, and his optimal lapsation

behavior under p yields a still higher payoff.62 Next, the fact that U(t,Λ1
t ) ≥ Û(t,Λ1

t ) for

62Note that the consumer who lapses in a period t when in some health state Λ1
t would receive the same

new contract regardless of whether he was lapsing from p or from p̂.
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all (t,Λ1
t ) implies that HL(t) ⊆ ĤL(t): in any health state in which the consumer lapses in

period t when facing p, he also lapses when facing p̂. Finally, consider the expected payoff of

the insurer starting at (τ,Λ1
τ ) under p. This is the probability weighted average of the payoffs

achieved along the various possible sequences of health states (Λ1
τ , ...,Λ

1
T ). For each sequence

the insurer earns premiums and incurs costs until the consumer lapses. Since HL(t) ⊆ ĤL(t),

each such sequence hits lapsation weakly earlier under p̂ than under p. Since, under path

p, Π(t,Λ1
t ) ≤ 0 if t > τ and Λ1

t ∈ HNL(t), the earlier termination behavior under ĤL (but

earning the same premiums p prior to lapsation) would weakly raise the expected payoff

earned by the insurer for the sequence by changing a non-positive expected continuation

payoff into a continuation payoff of zero. Moreover, the fact that the premiums earned until

lapsation are higher under p̂ than under p, while the expected costs are the same, means

that a change from premium path p to path p̂, holding lapsation behavior fixed at ĤL, would

further raise the insurer’s expected payoff earned from this health state sequence. As a

result, Π(τ,Λ1
τ ) ≤ Π̂(τ,Λ1

τ ).

We next establish the following Lemma:

Lemma 5 Suppose that in each period t ≥ τ the menu of contracts offered to a consumer

who is in health state Λ1
t and wishes to sign a new contract is the set of optimal guaranteed

premium path contracts for that consumer, {pθ∗t (Λ1
t )}θ∈Θ, and that moreover, in each period

t > τ this menu is self-selective and induces no secret savings. Then a type θ consumer in

health state Λ1
τ will not secretly save when facing guaranteed premium path pθ∗τ (Λ1

τ ).

Proof. Observe first that, under the assumptions of this lemma, if the consumer does

not secretly save and then lapses in period t > τ when in health state Λ1
t his new insurance

contract will have guaranteed premium path pθ∗t (Λ1
t ) = pθ∗τ (Λ1

τ )−∆(t,Λ1
t ) for some ∆(t,Λ1

t ) ∈
R.63 Thus, he will optimally lapse in that period and state if and only if ∆(t,Λ1

t ) > 0; that

is, he lapses if and only if he gets a cheaper guaranteed premium path.

Next, we argue that if the consumer instead secretly saves under contract pθ∗τ (Λ1
τ ), then

he will optimally lapse whenever he would have if he did not secretly save (and possibly

in additional states as well). To see this point, suppose that the consumer has secretly

saved prior to arriving in period t in health state Λ1
t and he chooses not to lapse when he

would have if he had not secretly saved. Then he would be better off instead lapsing and

choosing the same new contract choice as if he had not secretly saved (choosing the cheaper

guranteed premium contract that he would have lapsed to if he had not secretly saved), while

keeping his future lapsation and savings behavior unchanged: doing so would only change

63That is, the new guaranteed premium path will differ from the old one by the same amount in each
period (starting in period t).
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his realized utility until the next lapsation, and would raise his payoff until that point in

time by lowering his premiums.

Next, since in an optimal contract the insurer’s continuation profits are always non-

positive, by hastening lapsation secret savings can only raise the profit of the insurer offering

the consumer contract pθ∗τ (Λ1
τ ). Moreover, the assumptions of the lemma imply that (be-

cause of self-selection and no future secret savings) all insurers providing the consumer with

insurance after lapsation from contract pθ∗τ (Λ1
τ ) will earn zero.64 Thus, the total profit of

insurers is non-negative with secret savings.

Finally, since total insurer profit is non-negative (and continuation profits are never

strictly positive), the consumption path that results from secret savings was feasible in the

no-secret savings problem. Hence, secret savings cannot raise the consumer’s discounted

expected utility and therefore the consumer will not prefer to secretly save.

We next establish the following Lemma:

Lemma 6 Suppose that in each period t ≥ τ the menu of contracts offered to a consumer

who is in health state Λ1
t and wishes to sign a new contract is the set of optimal guaranteed

premium path contracts, {pθ∗t (Λ1
t )}θ∈Θ, and that moreover, in each period t > τ this menu is

self-selective and induces no secret savings. Then an insurer earns a non-negative continu-

ation expected discounted profit if in period τ type θ′ consumer in health state Λ1
τ chooses the

guaranteed premium path pθ∗τ (Λ1
τ ) that is intended for a type θ consumer in health state Λ1

τ .

Proof. The proof is by induction. Consider the following induction hypothesis:

Induction Hypothesis: Under contract pθ∗τ (Λ1
τ ), if starting in period t > τ the consumer

has not yet lapsed, lapsation behavior of type θ′ starting in period t is either (A) the

same as for type θ (meaning, it is the same after any history of health states between

periods τ and t and sequence of decisions not to lapse), or (B) different and raises the

continuation expected discounted profit of the insurer starting in period t compared to

the continuation payoff the insurer receives when facing a type θ consumer.

Observe that the Induction Hypothesis holds if t = T , since then lapsation behavior is

the same for type θ′ as for type θ – both types lapse if and only if E[mT |λT ] < pθT , where pθT
is the last period price in guaranteed premium path pθ∗τ (Λ1

τ ) ≡ (pθτ , ..., p
θ
T ).

Now suppose that the Induction Hypothesis holds for periods t, ..., T , and consider period

t − 1 (≥ τ + 1) after some previous history of health states and a sequence of decisions in

64Note that a consumer with utility function u who arrives in period t in health state Λ1
t with savings

S and who has remaining income path y = (yt, ..., yT ) is equivalent to a consumer who has income path
yS ≡ (yt + S, ..., yT ) ∈ Θ and will self-select the policy intended for type θ = (yS , u).
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which the consumer has not yet lapsed. Recall that by Lemma 5 the type θ consumer does

not secretly save; however, the type θ′ consumer may.

Suppose first that, under pθ∗τ (Λ1
τ ), period t− 1 lapsation behavior is different for type θ′

than for type θ in a health state Λ1
t−1 in which type θ would not lapse. Then lapsation by

type θ′ in state Λ1
t−1 would remove a continuation that had a weakly negative continuation

payoff for the insurer when facing type θ and replace it with a zero continuation payoff when

facing type θ′.

Suppose, instead, that state Λ1
t−1 is one in which type θ would lapse in period t − 1,

choosing a contract with premium path p̂, while type θ′ does not lapse. We will show

that this changes what would have been a zero payoff continuation for the insurer into a

continuation with a non-negative expected payoff when facing type θ′. By the self-selection

assumption, we know that the contract p̂ that type θ chooses is pθ∗t−1(Λ1
t−1), the optimal

guaranteed premium path contract for that consumer, so the insurer offering that contract

breaks even. Note now that since that contract induces the type θ consumer to lapse there

is a ∆ > 0 such that p̂k = pθk − ∆ for all periods k ≥ t − 1 (this is true because the two

guaranteed premium paths differ only in offering different initial premiums and then the

premium change each period equals the change in the type θ’s income). Hence, by Lemma

4, if the type θ consumer were instead not to lapse from path pθ∗τ (Λ1
τ ) ≡ (pθτ , ..., p

θ
T ) in this

state, the insurer’s expected continuation payoff would be non-negative. But the Induction

Hypothesis then implies that it is also non-negative when the type θ′ consumer does not

lapse in this state: the insurer’s payoffs in period t− 1 from the two types are the same as

both the premium paid and the expected medical costs are the same for the two types. The

transitions to the period t state Λ1
t are also the same. But, by the Induction Hypothesis,

the insurer’s expected continuation payoff under contract pθ∗τ (Λ1
τ ) is weakly higher starting

in period t when facing the type θ′ consumer than when facing a type θ consumer. So the

Induction Hypothesis holds in period t−1, and hence – applying induction – in period τ +1.

Finally, consider period τ . The argument is similar to that above: If a type θ′ consumer

in health state Λ1
τ chooses the premium path pθ∗τ (Λ1

τ ) intended for a type θ consumer in

health state Λ1
τ , the insurer’s first period costs are the same as if a type θ consumer in health

state Λ1
τ had chosen that contract, and the transitions to health states in the next period are

the same as well. If the lapsation behavior starting in period τ+1 were the same, the insurer

would break even. But, we have just concluded that if the lapsation behavior is different,

the insurer’s expected continuation payoff must be weakly higher. Thus, the insurer must

have a non-negative expected payoff when a type θ′ consumer in health state Λ1
τ chooses

contract pθ∗τ (Λ1
τ ) in period τ .

We now prove Proposition 2:
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Proof. of Proposition 2: We suppose that, in each period t = 1, ..., T , the menu of

optimal guaranteed premium path contracts {pθ∗t (Λ1
t )}θ∈Θ,Λ1

t∈Ht is offered, where pθ∗t (Λ1
t ) ≡

{yt − cθ∗t (Λ1
t )}Tt=1. The proof is by induction. Consider the following induction hypothesis.

Induction Hypothesis: In each period t > τ the menu is self-selective and induces no

secret savings: that is, if a consumer of type θ agrees to a new contract he chooses that

type’s optimal contract pθt (λt) and engages in no secret savings.

The hypothesis is clearly true for τ = T − 1, as given any previous history the menu

{pθT (Λ1
T )} is a singleton with pT = E[mT |λT ], and hence necessarily self-selective, while there

is no possibility of secret savings as period T is the last period. Now suppose it is true

for some τ ; we argue that it is then also true for τ − 1. Lemma 5 implies that a type θ

consumer in health state Λ1
τ−1 choosing pθ∗τ−1(Λ1

τ−1) in period τ − 1 will not secretly save.

From Lemma 6 we know that if a type θ consumer chooses in period τ − 1 when in health

state Λ1
τ−1 the contract intended for him then insurers break even, but if he chooses instead

the contract intended for type θ′ then insurers earn non-negative profits (all future insurers

break even in both cases). But the policy intended for the type θ consumer maximizes the

type θ consumer’s discounted expected utility subject to the constraint that insurers at least

break-even (and the constraint that continuation profits can never be strictly positive). The

policy intended for type θ′ was therefore feasible for type θ, which implies that it cannot be

preferred by type θ.

Applying induction, the menu {pθ∗t (Λ1
1)}θ∈Θ,Λ1

1∈H1
is self-selective and induces no secret

savings.

11 Appendix C: Proof of Proposition 3 (Consumer In-

ertia and Myopia)

The proof of Proposition 3 follows closely the proof of Proposition 1. Recall that we model

inertia as a cost σ > 0 incurred by the consumer upon switching firms, which is equivalent

to supposing that any new lapsation-inducing contract starts with subsidy −σ. To model

myopia, we suppose that the consumer applies a discount factor β < γ to future consumption,

where γ is the discount factor of the insurers (and planner, when we conduct welfare analysis).

The proof strategy is based on induction: The result holds vacuously for t = T . Then, for

t < T , we assume the proposition is true for the optimal contracts c∗
Λ1
t′

(·) at all Λ1
t′ with t′ > t,

and show it is also true for the period-t optimal contracts c∗
Λ1
t
(·) for any Λ1

t . To establish the

result, we show that if for some Λ1
t , the optimal contract c∗

Λ1
t
(·) does not satisfy (7), then
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there is a modification of c∗
Λ1
t
(·) that (i) is strictly preferred to c∗

Λ1
t
(·) by the consumer; and

(ii) satisfies no-lapsation and zero-profit.

Before we get to the proof itself, we introduce notation on how to modify a contract.

Definition 5 Let min{t′, t′′} ≥ t. We say contract ĉΛ1
t
(·) is an ε-transfer, from history Λ1

t′

to history Λ1
t′′, on contract cΛ1

t
(·), and write ĉΛ1

t
(·) = tr[cΛ1

t
(·), ε,Λ1

t′ ,Λ
1
t′′ ] if:

1. ĉΛ1
t
(Λ1

t′) = cΛ1
t
(Λ1

t′)− ε

2. ĉΛ1
t
(Λ1

t′′) = cΛ1
t
(Λ1

t′′) +
[
ε× f(Λt+1

t′ |Λ
1
t )

f(Λt+1
t′′ |Λ

1
t )
× δt′−t′′

]
3. For all τ ≥ t and Λt

τ /∈ {Λt
t′ ,Λ

t
t′′}, we have ĉΛ1

t
(Λt

τ ) = cΛ1
t
(Λt

τ )

In words, this ε-transfer just transfers some consumption between health histories Λ1
t′ and

Λ1
t′′ after applying a multiplier to the transfer to keep the discounted expected consumption,

and hence insurer cost, unchanged. Our improvements on c∗
Λ1
t
(·) will be constructed using

ε-transfers. We record two facts about such transfers:

Remark 3 ε-transfers preserve the expected discounted profit: If c∗
Λ1
t
(·) ∈ BS(Λ1

t ) for some

S ∈ R, then tr[cΛ1
t
(·), ε,Λ1

t′ ,Λ
1
t′′ ] ∈ BS(Λ1

t ).

Remark 4 For every Λt
t′ and Λt

t′′ with ψt′
(
cΛ1

t
(Λ1

t′)
)
> ψt′′

(
cΛ1

t
(Λ1

t′′)
)

there exists an ε0 > 0

such that for all ε ≤ ε0 we have tr[cΛ1
t
(·), ε,Λt

t′ ,Λ
t
t′′ ] � cΛ1

t
(·).

Remark 3 follows immediately from the fact that, using the insurers’ discount factor δ,

the ε-transfer does not change the expected discounted consumption in the contract, while

Remark 4 follows because the consumer is strictly risk averse [u(·) is strictly concave].

Before proceeding to the proof of the proposition, we observe that in any optimal contract,

the continuation contract specified at every future health history must itself be an optimal

contract starting at that history for some subsidy:

Claim 2 For t′ > t, define St′ as the expected loss sustained by the insurer under contract

c∗
Λ1
t
(·|St) after the realization of health history Λ1

t′ =
〈
Λ1
t ,Λ

t+1
t′

〉
. Formally:

St′ = ΣT
τ=t′δ

τ−t′
(
E[c∗Λ1

t
(
〈
Λ1
t ,Λ

t+1
τ

〉
|St)− yτ −mτ |Λ1

t′ ]
)
.

Then, the following is true:

c∗
Λ1
t |Λ

t+1
t′

(·|St) = c∗〈Λ1
t ,Λ

t+1
t′ 〉

(·|St′), (30)
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In words, Claim 2 states that any continuation contract c∗
Λ1
t |Λ

t+1
t′

(·|St) of c∗
Λ1
t
(·|St) is in fact

the optimal solution to the generalized problem outlined in Definition 1 for history
〈
Λ1
t ,Λ

t+1
t′

〉
when the subsidy available to the consumer is exactly the amount St′ .

Proof of Claim 2. If at any continuation history Λt
t′ the condition in the claim did

not hold we could replace the continuation contract c∗
Λ1
t |Λ

t+1
t′

(·|St) by c∗〈Λ1
t ,Λ

t+1
t′ 〉

(·|St′) and

do strictly better for the consumer without violating no-lapsation or changing the required

subsidy St for contract c∗
Λ1
t
(·|St), a contradiction to the optimality of c∗

Λ1
t
(·|St). �

We now turn to proving Proposition 3. To do so, we will actually prove a more general

statement than the proposition, using induction on the number of periods:

Lemma 7 Consider optimal contract c∗
Λ1
t
(·|St). There exists a unique c̄ ∈ R such that

c∗
Λ1
t
(Λ1

t |St) = c̄, and for any t′ > t and Λt+1
t′ such that f(Λt+1

t′ |Λ1
t ) > 0, we have

ψt′
(
c∗Λ1

t
(
〈
Λ1
t ,Λ

t+1
t′

〉
|St)
)

= max{ψt(c̄), ψt′
(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t ,Λ

t+1
t′

〉
| − σ)

)
}. (31)

In words, Lemma 7 says that at any subsequent period t′ and history
〈
Λ1
t ,Λ

t+1
t′

〉
, contract

c∗
Λ1
t
(·|St) gives –after applying the myopic transformation– the larger value between (i) con-

sumption that it immediately gives, and (ii) the consumption that the optimal, break-even

contract with subsidy −σ signed in the beginning of period t+ 1 at history 〈Λ1
t , λt+1〉 would

offer.

Remark 5 Note that condition (31) of Lemma 7 implies that any two optimal contracts

signed at time t and health history Λ1
t , but with differing subsidies S ′′t > S ′t, are ordered

by the dominance relation according to the level of the initial consumptions they specify,

which by the break-even condition are ordered according to the size of the subsidies; that is,

c∗
Λ1
t
(·|S ′′t ) ≥ c∗

Λ1
t
(·|S ′t), with strict inequality at the initial history Λ1

t .

Proof of Lemma 7. The proof goes by induction. For t = T the result is immediate:

given that there is no period after t = T , condition (31) holds vacuously, and at that point

cΛ1
T
(Λ1

T |S) = yT − E[mT |λT ] + S. We now turn to the proof for t < T , assuming, by way of

induction, that the result holds for any τ > t and any Sτ . We begin by showing that (31)

holds for any period t+ 1 history 〈Λ1
t , λt+1〉; i.e., that

ψt+1

(
c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St)
)

= max{ψt
(
c∗Λ1

t
(Λ1

t |St)
)
, ψt+1

(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
| − σ)

)
}. (32)
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To this end, we consider two cases regarding history nodes ending at period t+ 1.

Case 1. At history 〈Λ1
t , λt+1〉, the no-lapsation condition is binding for contract c∗

Λ1
t
(·|St).

Formally:

VΛ1
t
(c∗Λ1

t |λt+1
(·|St)) = VΛ1

t
(c∗〈Λ1

t ,λt+1〉(·| − σ)). (33)

Note that by Claim 2, the continuation contract c∗
Λ1
t |λt+1

(·|St) is itself the optimal contract

c∗〈Λ1
t ,λt+1〉(·|St+1) for some St+1. By Remark 5, (33) implies that this St+1 = −σ; i.e., that

c∗Λ1
t |λt+1

(·|St) = c∗〈Λ1
t ,λt+1〉(·| − σ), (34)

which implies that

ψt+1

(
c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St)
)

= ψt+1

(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
| − σ)

)
. (35)

Next, note that the immediate consumption c∗
Λ1
t
(Λ1

t |St) in contract c∗
Λ1
t
(·|St) must satisfy

ψt

(
c∗Λ1

t
(Λ1

t |St)
)
≤ ψt+1

(
c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St)
)
, (36)

for otherwise an ε-transfer from the immediate consumption at history Λ1
t to history 〈Λ1

t , λt+1〉
would strictly improve the contract c∗

Λ1
t
(·|St) from the perspective of the consumer, without

changing the expected profit. This transfer would also satisfy no-lapsation, given that it

weakly increases the consumption given by c∗
Λ1
t
(·|St) at any history that happens strictly

after time t. Thus, (32) holds at all period-(t+ 1) histories at which lapsation binds.

Case 2. At history 〈Λ1
t , λt+1〉, the no-lapsation condition is not binding for contract

c∗
Λ1
t
(·|St). That is,

VΛ1
t
(c∗Λ1

t |λt+1
(·|St)) > VΛ1

t
(c∗〈Λ1

t ,λt+1〉(·| − σ)). (37)

As in the previous case, given Claim 2, the continuation contract c∗
Λ1
t |λt+1

(·|St) is itself

the optimal contract c∗〈Λ1
t ,λt+1〉(·|St+1) for some St+1. By Remark 5, inequality (37) implies

that:

c∗Λ1
t |λt+1

(
〈
Λ1
t , λt+1

〉
|St) > c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
| − σ). (38)

or, equivalently, that

ψt+1

(
c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St)
)
> ψt+1

(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
| − σ)

)
(39)

We now claim that
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ψt

(
c∗Λ1

t
(Λ1

t |St)
)

= ψt+1

(
c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St)
)
. (40)

To see this, note that if ψt

(
c∗

Λ1
t
(Λ1

t |St)
)
< ψt+1(c∗

Λ1
t
(〈Λ1

t , λt+1〉 |St)), then an ε-transfer from

the history (Λ1
t , λt+1) to the immediate history Λ1

t will increase the consumer’s expected

utility, will not change the expected profit from the contracts, and will preserve no-lapsation

if ε is small enough, given (37). This contradicts the assumption that c∗
Λ1
t
(·|St) is the optimal

contract. Conversely, if ψt

(
c∗

Λ1
t
(Λ1

t |St)
)
> ψt+1(c∗

Λ1
t
(〈Λ1

t , λt+1〉 |St)), the reverse ε-transfer will

strictly increase the consumer’s expected utility and preserve the insurer’s expected profit.

It also preserves no-lapsation since it weakly increases consumption at any history strictly

after Λ1
t . Conditions (39) and (40) imply that (32) also holds at all period-(t + 1) histories

at which lapsation does not bind.

To sum up, cases 1 and 2 show that for any history λt+1, no matter whether no-lapsation

is binding or not, (32) holds. Next, we combine (32) with the induction assumption to extend

the argument, which currently applies only to period-(t+ 1) histories 〈Λ1
t , λt+1〉, also to any

history
〈
Λ1
t ,Λ

t+1
t′

〉
with t′ > t+ 1. By Claim 2, we know that for some appropriate St+1, and

any (Λ1
t , λt+1,Λ

t+2
t′ ), we have:

c∗Λ1
t
(
〈
Λ1
t , λt+1

〉
|St) = c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
|St+1) (41)

and

c∗Λ1
t
(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St) = c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St+1) (42)

By induction, we know that

ψt′
(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St+1)

)
=

max{ψt+1

(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1

〉
|St+1)

)
, ψt′

(
c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
| − σ)

)
} (43)

Replacing into equation (43) from (41) and (42), we get:

ψt′
(
c∗Λ1

t
(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St)
)

=

max{ψt+1

(
c∗Λ1

t
(
〈
Λ1
t , λt+1

〉
|St)
)
, ψt′

(
c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
| − σ)

)
} (44)

Now, substituting for c∗
Λ1
t
(〈Λ1

t , λt+1〉 |St) from (32), we get:
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ψt′
(
c∗Λ1

t
(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|St)
)

(45)

= max{max{ψt
(
c∗Λ1

t
(Λ1

t |St)
)
, ψt+1

(
c∗(Λ1

t ,λt+1)(
〈
Λ1
t , λt+1

〉
|−σ)

)
}, ψt′

(
c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|−σ)

)
}

= max{ψt
(
c∗Λ1

t
(Λ1

t |St)
)
,max{ψt+1

(
c∗(Λ1

t ,λt+1)(
〈
Λ1
t , λt+1

〉
|−σ)

)
, ψt′

(
c∗〈Λ1

t ,λt+1,λt+2〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|−σ)

)
}}

But by our induction assumption, the inner maximum equals ψt′
(
c∗〈Λ1

t ,λt+1〉(
〈
Λ1
t , λt+1,Λ

t+2
t′

〉
|−

σ)
)

; substituting this into (45) tells us that (31) holds for contracts signed in period t. Ap-

plying induction establishes the lemma.�

Applying Lemma 7 to the special case of St = 0, we get that for any Λ1
t and Λt+1

t′ such

that f(Λt+1
t′ |Λ1

t ) > 0, we have

ψt′
(
c∗Λ1

t
(
〈
Λ1
t ,Λ

t+1
t′

〉
)
)

= max{ψt
(
c∗Λ1

t
(Λ1

t )
)
, ψt′

(
c∗Λ1

t+1
(
〈
Λ1
t ,Λ

t+1
t′

〉
| − σ)

)
}

Since Lemma 7 holds for c∗
Λ1
t+1

(·| − σ) as well, we can expand c∗
Λ1
t+1

(
〈
Λ1
t ,Λ

t+1
t′

〉
| − σ) in

the same way as above, substituting into (11

ψt′
(
c∗Λ1

t+1
(
〈
Λ1
t ,Λ

t+1
t′

〉
|−σ)

)
= max{ψt+1(c∗Λ1

t+1
(Λ1

t+1|−σ)), ψt′
(
c∗Λ1

t+2
(
〈
Λ1
t ,Λ

t+1
t′

〉
|−σ)

)
}. (46)

Then we can do this again and again, until we get that for all t′ > t and Λt
t′ such that

f(Λt
t′ |Λ1

t ) > 0,

ψt′
(
c∗Λ1

t
(Λ1

t′)
)

= max{ψt′
(
c∗Λ1

t
(Λ1

t )
)
, max
τ∈{t+1,...,t′}

ψτ

(
c∗Λ1

τ
(Λ1

τ )| − σ)
)
}, (47)

which is exactly the statement made in the proposition.�

12 Appendix D: PKH premiums and Cochrane con-

tracts

In this appendix we discuss further PKH guaranteed renewable contracts, and also Cochrane

(1995)’s premuium insurance scheme. We end by discussing the empirical difference in initial

premia and welfare between these contracts and our optimal contracts.
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To begin, we first derive a general formula (for arbitrary T ) for the premia in a PKH

guaranteed renewable contract. We show that, in the context of our model, these policies

provide a consumer who starts at age 25 in the healthiest possible state with the guaranteed

consumption path {yt − pt}Tt=1, where the period t premium pt is (in anticipation of our

empirical analysis where the health process is second-order Markov, we denote by Λt =

(λt−1, λt) = (1, 1) the healthiest possible state in period t):65

pt = E[mt|Λt = (1, 1)] +
∑
τ>t

δτ−t{E[mτ |Λt = (1, 1)]− E[mτ |Λt+1 = (1, 1)]} for t = 1, ..., T

(48)

To this end, consider one-period contracts signed in each period t in return for the

premium pt(Λt) paid at signing that does the following:

• fully insures period t health expenses

• if t < T , pays in addition the amount pt+1(Λt+1) − pt+1(1, 1) [where pt+1(1, 1) is the

period t+ 1 premium for the healthiest period t+ 1 health state, Λt+1 = (1, 1), at the

start of the next period t+ 1].

These contracts pay an amount that guarantees that the insured’s outlays for the next

period contract (net of the insurance payout from the previous period) always equal the

amount that the healthiest type would pay.

The premiums for these contracts will in equilibrium be:

pT (ΛT ) = E[mT |ΛT ]

and for t < T ,

pt(Λt) = E[mt|Λt] + δE{pt+1(Λt+1)− pt+1(1, 1)|Λt}

Lemma 8 For all t, pt(Λt) = E[mt|Λt]+
∑

τ>t δ
τ−t{E[mτ (Λτ )|Λt]−E[mτ (Λτ )|Λt+1 = (1, 1)]}

65PKH focus on the case in which the consumer starts in the healthiest possible state.
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Proof. Clearly true in period T . Suppose it is true for all periods τ > t. To see it is

true in period t , we substitute and use the Law of Iterated Expectations:

pt(Λt) = E[mt|Λt] + δ{E[pt+1(Λt+1)|Λt]− pt+1(1, 1)}
= E[mt|Λt] + δE{E[mt+1|Λt+1] +

∑
τ>t+1

δτ−(t+1){E[mτ (Λτ )|Λt+1]− E[mτ (Λτ )|Λt+2 = (1, 1)]|Λt}

−δ{E[mt+1|Λt+1 = (1, 1)] +
∑
τ>t+1

δτ−(t+1){E[mτ (Λτ )|Λt+1 = (1, 1)]− E[mτ (Λτ )|Λt+2 = (1, 1)]}

= E[mt|Λt] + δ{E[mt+1|Λt] +
∑
τ>t+1

δτ−(t+1)E[mτ (Λτ )|Λt]

−δ{E[mt+1|Λt+1 = (1, 1)] +
∑
τ>t+1

δτ−(t+1){E[mτ (Λτ )|Λt+1 = (1, 1)]}

= E[mt|Λt] +
∑
τ>t

δτ−t{E[mτ (Λτ )|Λt]− E[mτ (Λτ )|Λt+1 = (1, 1)]}

Cochrane (1995) proposes a different scheme to protect consumers from reclassification

risk: premium insurance purchased in each period t that pays the consumer the change in the

present discounted value of his future medical expenses at the start of the following period,

equal to ∑
τ>t

δτ−(t+1){E[mτ |Λt+1]− E[mτ |Λt]},

which can potentially yield first-best insurance. In principle, in this manner, first-best

insurance could be provided to the consumer. As Cochrane notes, however, this policy

has the problem that the consumer would have to pay the insurer when the evolution of

his expected future health expenses is better than expected, which may be impossible to

enforce. Cochrane (1995) proposes to solve this problem via health savings accounts that

can be used to receive and make these premium insurance payments. Unfortunately, such

an account can hit a zero balance because a consumer who starts healthy (Λ25 = (1, 1)) and

remains healthy (Λt = (1, 1) for all t > 1) would need to make payments in every period.

(That is, remaining healthy is a better than expected outcome that requires the consumer to

pay the insurance company.)

An alternative approach that one might consider to avoid the need for consumer end-

of-period repayments in the premium insurance scheme would have the consumer pre-pay

the maximal possible repayment at the start of the period as part of his premium. That

is, in each period t, the consumer would pay a total premium, including for both medical
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insurance and premium insurance, equal to

E[mt|Λt] +
∑
τ>t

δτ−t{E[mτ |Λt]− E[mτ |Λt+1 = (1, 1)]} (49)

and, in addition to coverage of period t medical claims, in each period t+ 1 (for t < T ) the

insurer would pay the consumer the non-negative amount

Payment =
∑
τ>t

δτ−(t+1){E[mτ |Λt+1]− E[mτ |Λt]}+
∑
τ>t

δτ−(t+1){E[mτ |Λt]− E[mτ |Λt+1 = (1, 1)]}

=
∑
τ>t

δτ−(t+1){E[mτ |Λt+1]− E[mτ |Λt+1 = (1, 1)]} ≥ 0, (50)

equal to the change in expected medical expenses plus the repayment (with interest) of the

second term in (49). Subtracting the period t payment [given by expression (50) modified

to be for period t rather than t + 1] from the period t premium (49), we see that the net

premium payment in each period t for a consumer who begins with Λ25 = (1, 1) is exactly

the PKH premium (48). Thus, this approach to premium insurance is exactly equivalent to

a PKH guaranteed renewable contract, and hence would give the insured lower discounted

expected utility than our optimal dynamic contract.

12.1 Empirical Comparison of PKH and Optimal Dynamic Con-

tracts

Using formula (48), we calculate that for our Utah male sample the initial PKH premium

paid by a healthy 25 year old [i.e., a consumer with Λ25 = (1, 1)] is about 3.2% higher than

the initial premium paid by a healthy 25 year old individual with flat net income in the

optimal dynamic contract.66 For a consumer who arrives at age 25 in the healthiest state

and who has a flat net income profile, the excessively low initial consumption required to

eliminate all reclassification risk translates into a lower welfare: CEPKH = $54, 834, which

is 0.4% lower than the certainty equivalent that this consumer would have with an optimal

dynamic contract. As a result, the PKH contract eliminates 97.2% of the welfare loss from

reclassification, compared to the 99.4% from an optimal dynamic contract. The welfare loss

from the PKH contract relative to an optimal contract increases with rising income profiles:

For example, for a healthy 25 year old downscaled manager we find that CEPKH = $37, 819,

resulting in a loss of 2.4% compared to an optimal dynamic contract; the PKH contract

66At age 25 the value of the second term in equation (48), representing the premium pre-payment that
is required in the PKH contract, is $1,530. This amount divided by δ (= 0.975) is also the end-of-period
amount that the consumer would need to pay out in the event that she remained healthy (with Λ26 = (1, 1))
to achieve the first best in the reclassification-risk insurance scheme proposed by Cochrane (1995).

77



therefore eliminates only 84.2% of the welfare loss due to reclassification risk, compared

to the 94.3% from an optimal dynamic contract. For a non-manager CEPKH = $47, 525,

which represents a 1.5% welfare loss and an elimination of 80.1% of the welfare loss from

reclassifcation risk, compared to 95.1% from an optimal contract.67

13 Appendix E: Extending the model to capture par-

tial access to credit markets

Our original submission focused on the benchmark with no external borrowing (outside of

the dynamic insurance contract). This appendix adds a framework that allows partial access

to credit markets to allow for the realistic scenario where consumers can have some limited

independent borrowing. This allows them to smooth income over time under increasing

income paths and, in turn, may unlock the benefits of dynamic contracts by allowing for

increased front-loading and, thus, increased insurance of reclassification risk.

13.1 Theory

We extend the model in the following way to capture the possibility of borrowing: In the

beginning of each period history Λ1
t , the customer makes two simultaneous decisions. First,

whether to stay with her current insurance contracts or lapse to a new one offered by the

market; second, how much to borrow. To formalize the borrowing decisions, we provide two

more definitions.

Definition 6 We denote a “borrowing portfolio” by a function b(·), from the set of all

possible pairs histories Λ1
t and future periods t′ > t to the set of non-negative numbers.

Therefore, b(Λ1
t , t
′) is the amount the individual decides to borrow in the beginning of health

history Λ1
t , which she returns with interest to the lending institution at the beginning of period

t′ > t. That is, she returns
b(Λ1

t ,t
′)

δt
′−t

Definition 7 The “Maximum available borrowing portfolio” is denoted by b̄(·). For each

(Λ1
t , t
′) with t′ > t, the value b̄(Λ1

t , t
′) is the highest possible value for b(Λ1

t , t
′).

This latter definition allows us to capture the idea that access to credit markets is “lim-

ited.”

67While the PKH contract assumes that the consumer arrives at age 25 in the healthiest state, as we have
seen, not all consumers manage to do so. We expect that the excessive front-loading involved in contracts
that would eliminate al reclassification risk would be more costly for such consumers.
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The main question here is whether the simultaneity and interplay between the “insur-

ance problem” and the “borrowing problem” from the perspective of the consumer leads to

complications that would lead our optimal contract results to not hold anymore. The result

below says the answer is no.

Proposition 5 There is at least one optimal solution to the dual insurance-borrowing dy-

namic problem in which the consumer solves the two problems separately. Specifically:

1. She borrows according to portfolio b∗(·) = b̄(·). That is she borrows as much as she

can.

2. Then she signs up for a different optimal contract cθ,b̄∗
Λ1

1
(·) based on her borrowing port-

folio, rather than cθ∗
Λ1

1
(·).

Multiple optimal solutions may exist but they all lead to the same consumption in each

history Λ1
t that happens with positive probability.

Remark 6 In the special case where b̄(Λ1
t , t
′) can only depend on t and t′ (that is, when bor-

rowing restrictions are health-independent), the optimal borrowing strategy by the consumer

simply leads to a different income profile ȳ. Therefore, in the second step in Proposition 5,

we can write cθ,b̄∗
Λ1

1
(·) = cθ̄∗

Λ1
1
(·) where θ̄ = (ȳ, u). This means from a computational perspec-

tive, we have two steps to compute the equilibrium: first compute ȳ, second use our existing

algorithm to compute the equilibrium for the new state θ̄

Proof Idea for Proposition 5. We skip a formal proof of this proposition but it will

be available upon request. On an intuitive level, the customer borrows as much as she

can because she can always “send the borrowed money back to the future through the

dynamic contract” by front-loading all of the borrowed money. Doing so can never harm

the customer’s welfare and is in fact likely to be strictly preferable to not borrowing. This

is because when borrowing, the customer transfers money from all health states of her

t′ self to time t. But when front-loading the money and sending it back to period t′ as

a consumption guarantee, the healthier t′ selves of the customer receive less than what

was borrowed from them whereas the less healthy ones receive more (by the definition of

consumption guarantees). As such, the customer will optimally combine borrowing and long

term insurance in order to smooth out her period t′ consumption across health states (note

that the customer does not always front-load all of the borrowed amount, especially if her

income profile is steep).
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Borrowing and First-Year Equilibrium Contract Terms: Manager Income

γ
0 0.1 0.2 0.3 0.4 0.5 0.6

Premium 1.072 1.340 1.435 1.496 1.524 1.562 1.591
First-Year Costs 0.837 0.837 0.837 0.837 0.837 0.837 0.837
Front-Loading 0.235 0.503 0.597 0.659 0.687 0.725 0.754
Consumption 49.942 53.644 55.802 57.539 58.928 60.309 61.518

Table 26: First-year contract terms in the equilibrium long-run contract for men with a
manager income path, showing first-year premiums, expected costs, the extent of front-
loading, and consumption levels (thousands of dollars). This table is for health status λ24 =
λ25 = 1 and covers range of credit market access parameter γ from 0 to 0.6.

13.2 Empirical Analysis.

Although our theoretical analysis allows for a much more general model of credit availability,

in our empirical analysis we focus on a more specific model. We assume that “access to credit

markets” is governed by only one parameter γ. Consider an individual with income profile y.

We assume that at the beginning of each year t, the individual can take out a loan as much

as γ × yt, which is to be returned one year after (i.e., in the beginning of year t + 1) with

the interest rate 1
δ
− 1. That is, the individual will have to return γyt

δ
to the lender. As can

be seen from this formulation γ indeed is a measure of access to credit markets. According

to our theoretical result, the individual would always borrow the whole feasible amount of

γyt, effectively constructing a different income path ȳ. She then signs the contract that is

optimal for her “new” type (θ, ȳ).

Table 26 shows what happens to the first year terms of the optimal contract as we move

parameter γ. The better access the customer has to credit markets (i.e., the higher the γ),

the more she consumes and frontloads in the first period. That is, she borrows more and uses

some of the borrowed amount to purchase dynamic contracts that provide better insurance

against reclassification risk.

While Table 26 described the response of the contract terms to γ, Figure 5 presents the

welfare results. As this figure shows, the performance of one-sided commitment contracts,

compared to two-sided commitment ones, improves as γ increases.68 As γ increases and con-

sumers can borrow more, dynamic contracts become closer in performance to the first-best

68Note that in figure 5, welfare under one sided commitment contracts CED is NOT compared to the no-
saving-no-borrowing welfare CENBNS . It is, rather, compared to “limited saving and borrowing” CELBS .
This latter measure allows the individual under two-sided commitment contracts to save as much as she
would like to and combine it with the same borrowing scheme that the one-sided commitment customer is
exposed to. This was done to ensure a fair comparison between one- and two-sided commitment systems.
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Figure 5: The gap between the performances of one-sided and two-sided commitment con-
tracts lowers as access to credit market (measured by γ) increases. This is the case both in
both absolute and relative terms as shown by panels a and b respectively.

contracts with two-sided commitment. The intuition is as follows: borrowing improves the

welfare under two-sided commitment contracts only through aiding inter-temporal consump-

tion smoothing. But it does so with one-sided commitment contracts through helping both

with inter-temporal smoothing and with frontloading. These results give a quantitative sense

of the extent to which borrowing can ease the costs of front-loading and enable more efficient

contracting and improved insurance against reclassification risk with dynamic contracts with

one-sided commitment.
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