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Abstract

We analyze the optimal information design in a click-through auction with xed valuations per

click, but stochastic click-through rates. While the auctioneer takes as given the auction rule of the

click-through auction, namely the generalized second-price auction, the auctioneer can design the

information ow regarding the click-through rates among the bidders. A natural requirement in

this context is to ask for the information structure to be calibrated in the learning sense. With this

constraint, the auction needs to rank the ads by a product of the bid and an unbiased estimator of

the click-through rates, and the task of designing an optimal information structure is thus reduced

to the task of designing an optimal unbiased estimator.

We show that in a symmetric setting with uncertainty about the click-through rates, the optimal

information structure attains both social eciency and surplus extraction. The optimal information

structure requires private (rather than public) signals to the bidders. It also requires correlated (rather

than independent) signals, even when the underlying uncertainty regarding the click-through rates

is independent. Beyond symmetric settings, we show that the optimal information structure requires

partial information disclosure.
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1 Introduction

In the world of digital advertising, whether in display or in search advertising, the allocation mechanism

is commonly an auction. Independent of the details of the auction format, the mechanism typically

elicits from each bidder the willingness-to-pay for the item. Importantly, the auction frequently uses

additional information to determine the ranking in a search auction or the assignment in the display

advertisement. The additional information frequently concerns the quality of the match between the

bidder (the advertiser) and the item (attention of the consumer). Importantly, this additional information,

such as the expected click-through rate or expected transaction rate, is often held by the platform that

manages the auction, or the publisher on whose site the consumer is present. Consequently, the relevant

information for the auction comes from many information sources, some of it provided by the advertiser

(the bidder), some of it provided by the publisher (the seller), or the auction platform.

As the relevant information arises from many sources, the allocation mechanism must determine

how much information to elicit and how to integrate this information into the allocation mechanism. We

pursue this question in a simple, yet prominent setting—namely, the click-through auction as analyzed in

Edelman et al. (2007) and Varian (2007), who refer to this type of auction as the generalized second-price

auction, or position auction, respectively. In this environment, the utility of a bidder is given by the

product of the willingness-to-pay of the bidder per click of the consumer, and the click-through rate of

the consumer. In the following, we shall simply refer to this auction mechanism as the click-through

auction.

Edelman et al. (2007) and Varian (2007) consider a complete information setting where the willingness-

to-pay of each bidder and the click-through rate for each position are assumed to be known by all

auction participants. They showed that there is an equilibrium in the bidding game of the click-through

auction in which the bidder with the highest product of the willingness-to-pay and the click-through

rate wins. Thus, the click-through auction supports the socially ecient outcome, and if the auction

oers several positions or rankings, then the socially ecient outcome extends to all oered positions.

Signicantly, in equilibrium the price for each position reects the marginal contribution of each bidder

to the social surplus. Thus, the resulting payos of the bidders and the auctioneer are as they would be

in the direct Vickrey-Groves-Clarke (VCG) mechanism. The payo equivalence of the click-through

auction with the corresponding VCG mechanism is critical as it suggests that the mechanism is robust

to the introduction of private information about either the willingness-to-pay or the click-through rate.

In the subsequent analysis, we take as given the click-through auction format and the prole of
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willingness-to-pay across bidders. In contrast to the above contributions, we allow for randomness

and uncertainty in the click-through rates. The publisher or auction platform must then decide how

much of the information to share with the auction participants. For the subsequent analysis, we do not

distinguish between the publisher and the auction platform, and simply refer to either (or both of them)

as the seller. The central instrument, and thus the focus of our analysis, is the information policy of the

seller with respect to the true click-through rates generated by any given search event.

We approach the problem of determining the optimal information policy in a number of steps

in increasing generality. We focus on randomness in the click-through rates and maintain complete

information about the willingness-to-pay of each bidder throughout the analysis. Each search event

generates a random click-through rate for each of the participating bidders. The search environment

is therefore described by a joint distribution of the click-through rates across the bidders. The joint

distribution of the click-through rates is common information to all the participants in the auction,

bidders and seller, and is thus given by a common prior distribution. The initial information of the

bidders is given by the common prior distribution. In contrast, the seller is assumed to know the realized

click-through rates of each search event. The information policy of the seller then has to determine how

much information to disclose about the realized click-through rates before bidding begins.

With the randomness of the click-through rates it is natural to constrain the information design of

the platform to be consistent with the prior distribution. We therefore refer to an information policy

that maintains the law of iterated expectation as calibrated (in the sense of Foster and Vohra (1997)).

Among all possible information policies, the complete information policy and the zero information

policy are both leading examples, as well as extremal information policies. Under a complete information

policy, the seller completely discloses all information to the bidders. It is thus as if the bidders were

in a complete information environment. By contrast, in a zero information policy the seller does not

disclose any information about the realized click-through rates. In consequence, each bidder acts as if

the realized click-through rate is always equal to the ex ante expected click-through rate. These two

extremal information policies have dramatically dierent payo implications.

With stochastic click-through rates, social eciency and revenue will depend on which information

about the click-through rates is disclosed. With complete information, the resulting allocation is always

ecient. But as the competitive position of each bidder can vary across the realized click-through

rates, the resulting revenue of the seller can be low due to weak competition. By contrast, with zero

information about the click-through rates, the resulting allocation will typically fail to be socially
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ecient. As the bidding behavior cannot reect any information about the click-through rates, the

socially relevant information fails to be reected in the auction outcome. Yet, as the bidding reects

only the expected click-through rate, and hence only the mean of the click-through rate (and not the

higher moments of the click-through distribution), the resulting bids will have zero variance, and thus

be more competitive.

Our rst result, Proposition 3.1, shows that a statistically independent information structure can

never improve the revenue over the no-disclosure information policy. Our second result, Corollary

3.2, shows that with any level of uncertainty in the click-through rates, the seller strictly prefers no-

disclosure to full-disclosure. Thus, the seller always favors competition over information disclosure. We

then ask whether there exists an improved information policy that can realign social eciency with the

revenue of the seller.

Our main result, Theorem 4.1, establishes that a calibrated and correlated information policy can

completely align social eciency and revenue maximization. In particular, when the common prior

distribution over the click-through rates is symmetric across the bidders, we can then explicitly construct

an information policy such that the socially ecient allocation is always realized and the competition

between the bidder levels the information rent of the bidders to the ex-ante level. Given the symmetry

of the common prior distribution, this implies that the bidders compete their residual surplus down to

zero.

We also provide an explicit construction of the correlated information structure (or signalling

scheme). Interestingly, the optimal information structure is an interior information structure; that is, it

is neither zero nor complete information disclosure. The information structure balances two conditions

that are necessary to attain the socially ecient allocation while maintaining competition: (i) it provides

sucient information to rank the alternative allocations according to social eciency, and (ii) it limits

the variance in the posterior beliefs of the competing bidders so that their equilibrium bids remain

arbitrarily close to support competitive bids.

The optimality of a noisy information structure has some signicant implications in the world of

digital advertising. Since the optimal information structure remains noisy, better click-through-rate

predictions, achieved through improved learning, may not necessarily lead to better auction results.

Thus, there might be limits to the returns of more elaborate machine learning algorithms to inform the

prediction problem. Importantly, the calibration constraint makes sure that the ranking score always

remains an unbiased click-through-rate predictor.
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The optimality of an interior information structure remains even when we move away from the

symmetric stochastic environment. In Proposition 4.5, we show that the socially ecient allocation and

revenue maximization remain perfectly aligned as long as the expected click-through rate is equalized

across bidders, even when the support of the ex-post realized click-through rates can vary across bidders.

Finally, in Theorem 5.1, we show that an interior information structure remains part of the optimal

information design with stochastic click-through rates, even when the expected click-through rates

across the bidders dier, and therefore one bidder is stronger from an ex-ante perspective. In particular,

the optimal information structure releases less information about the winning bidder than about the

losing bidder. This suggests that the optimal information structure in an asymmetric auction seeks to

strengthen the weak bidder with additional information, relative to the strong bidder.

1.1 Related Literature

Bergemann and Pesendorfer (2007) and Eső and Szentes (2007) are among the rst to investigate the

design of optimal information structure in an auction setting. Bergemann and Pesendorfer (2007)

consider an auction environment with 𝑛 bidders and independent private values. In their setting, the

bidders initially have no private information, and the platform can distribute any information. Given the

independent value assumption, Bergemann and Pesendorfer (2007) restrict the auctioneer to transmit

information regarding bidder 𝑖’s valuation only to bidder 𝑖 . Thus, there is a restriction in the signalling

scheme. By contrast, the seller can adapt the selling mechanism to the information structure, and is

thus not restricted to the second-price auction. Consequently, the seller jointly optimizes auction and

information policies. Eső and Szentes (2007) extend the analysis of Bergemann and Pesendorfer (2007) to

permit the bidder to initially have private information, and then allow the seller to propose the optimal

mechanism.

More recently, a number of contributions have analyzed the optimal information structure for a

given mechanism or auction format. Bergemann et al. (2015) consider the optimal information structure

for a seller who uses third-degree price discrimination, and Bergemann et al. (2017) pursue this question

in the context of the rst-price auction. Badanidiyuru et al. (2019) consider a second-price auction where

the information about the valuation of bidder 𝑖 is partially shared between the bidder and the platform.

The limiting cases are that: (𝑖) the bidder has all the private information (the standard setting of auction

theory), and (𝑖𝑖) the platform has all the private information.

Considering the randomness of the click-through rates, earlier literature notices that a modied
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version of the click-through rates may positively impact the revenue of the click-through auction. In this

context, the adjusted click-through rates in Lahaie and Pennock (2007) and Mahdian and Sundararajan

(2015) are not calibrated, as the true click-through rate is "squashed" or "boosted" for the purpose of

ranking. This suggests a natural distinction between the analysis of optimal calibrated and non-calibrated

information structures.

The design of optimal information structures in a strategic setting remains an area with many open

questions. In the current setting, we explicitly allow for private information disclosure, rather than

public information disclosure. By contrast, in most of the preceding literature the information disclosure

was either public, as in Arieli and Babichenko (2019), or independent across bidders, as in Bergemann

and Pesendorfer (2007). Here, we are allowing for, and importantly showing, the optimality of private

and correlated information structures.

In the current setting, the auctioneer can substantially improve the revenue by using correlated

instead of independent signals. The signicance of correlation among the signals for the revenue

maximizing mechanism has been observed earlier in Cremer and McLean (1985, 1988). They establish

that correlation in the private values among bidders can be used in an optimal mechanism to extract

the full surplus. While our results also highlight the increased power of correlated signals relative to

independent signals, the setting and arguments dier substantially. In Cremer and McLean (1985, 1988),

the auctioneer is free to choose the optimal mechanism, while we take the generalized second-price

auction as given. In Cremer and McLean (1985, 1988), the signal of each bidder is the private value of

the bidder, and the values need to be correlated for the full surplus extraction result to be obtained.

In our setting, the values of the bidders are known, and the click-through rates themselves can either

be independent or correlated. We choose the information structure so that the signals are suciently

informative, yet yield competitive interim expectations. By contrast, in Cremer and McLean (1985,

1988), the payments of each bidder depend on the reports of the other bidders, so that the individual

reporting strategy seeks to maximize a scoring function. Thus, the correlation of the signals in these two

settings seeks to achieve very dierent objectives, and accordingly the construction diers signicantly.

In particular, Cremer and McLean (1985, 1988) take as given the signals and then design the optimal

transfer function. We take as given the transfer function, namely the payment rules, and then design
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the signals to maintain competition.
1

2 Model

We will analyze the setting of click-through auctions where bidders are ranked by the product of

their value (expressed as a maximum willingness-to-pay per click) and an unbiased estimator of the

click-through rates. Our main goal will be to study how to engineer such unbiased estimators to achieve

better revenue-eciency trade-os. In the language of information design, we will keep the auction

format xed and vary the information structure.

To allow us to focus on the information structure, we will work in the full information model where

each bidder 𝑖 = 1, . . . , 𝑛 has a xed and known value 𝑣𝑖 ≥ 0 representing their willingness-to-pay for a

click. Our central object of study will be the click-through rates (CTRs): before the auction, a vector

𝑟 = (𝑟1, . . . , 𝑟𝑛) ∈ [0, 1]𝑛 will be drawn from a joint prior distribution 𝐺 , which is a multi-dimensional

distribution that may display correlation across the bidders’ CTRs.

The click-through rates are known by the auctioneer: typically, the platform is the one building

a machine learning model to estimate them. The auctioneer must now decide on a score/signal 𝑠 =

(𝑠1, . . . , 𝑠𝑛) ∈ [0, 1]𝑛 to rank the bidders. The design space will be to design a joint probability distribution

𝜌 on pairs (𝑟, 𝑠) such that the marginal on 𝑟 is 𝐺 :∫
𝑟∈𝑅

𝑑𝐺 (𝑟 ) =
∫
𝑟∈𝑅

∫
𝑠

𝑑𝜌 (𝑠, 𝑟 ), ∀measurable 𝑅 ⊆ [0, 1]𝑛 .

This joint probability distributionwill be referred as the information structure. For notational convenience,

it will be useful to assume that both𝐺 and 𝜌 are discrete distributions with nite support, and hence we

can write 𝑔(𝑟 ) for the probability of a given vector 𝑟 under distribution 𝐺 and 𝑥 (𝑟, 𝑠) as the probability

of a pair (𝑟, 𝑠) under distribution 𝜌 . With that notation, the information structure is a function 𝑥 :

[0, 1]𝑛 × [0, 1]𝑛 → [0, 1] satisfying:∑︁
𝑠

𝑥 (𝑟, 𝑠) = 𝑔(𝑟 ), ∀𝑟 ∈ [0, 1]𝑛 .

Auction Mechanics Again for simplicity, we focus on the single slot setting where the goal of the

auction is to select a single winner 𝑖∗ ∈ [𝑛]. The winner will be selected as the bidder having the largest

1
We should also note that correlation is not always part of an optimal information structure. In the case of weak

competition, that is, when the ecient allocation always assigns the object to the same bidder, then the optimal information

structure will not use correlated signals.
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𝑠𝑖𝑣𝑖 , with a symmetric tie-breaking rule. The winner’s cost per click is then:

𝑝𝑖∗ = max

𝑗≠𝑖∗

𝑣 𝑗𝑠 𝑗

𝑠𝑖∗
.

The winner only pays when there is a click, which happens with probability 𝑟𝑖∗ . Hence, the expected

revenue from this auction is 𝑟𝑖∗𝑝𝑖∗ .

Calibration The auctioneer is restricted to ranking with the unbiased estimator of the click-through

rates. Hence, the information structure will be valid only if it is calibrated in the Foster-Vohra sense

(Foster and Vohra, 1997). An information structure is called calibrated if the posterior, given any signal

realization 𝑠′𝑖 for bidder 𝑖 , matches with the signal itself, i.e.,

E[𝑟𝑖 |𝑠𝑖 = 𝑠′𝑖 ] = 𝑠′𝑖 . (1)

If the CTR and signal space is discrete, then we can write calibration as:∑︁
(𝑟,𝑠);𝑠𝑖=𝑠 ′𝑖

𝑥 (𝑟, 𝑠) · (𝑟𝑖 − 𝑠′𝑖 ) = 0, ∀𝑖, 𝑠′𝑖 .

There are two important examples of calibrated information structures:

• Full-disclosure: where 𝑠𝑖 = 𝑟𝑖 almost surely.

• No-disclosure: where 𝑠𝑖 = E[𝑟𝑖] almost surely.

Since the calibration constraint is imposed on every bidder separately, it is possible to create information

structures that combine disclosure and no-disclosure. For example, given two bidders, we can consider

an information structure where bidder 1 receives only one signal, and the signal is equal to the ex-

ante expectation of the click-through rate, thus 𝑠1 = E[𝑟1]; and bidder 2 receives as many signals as

click-through rates, thus 𝑠2 = 𝑟2. This forms a calibrated information structure.

Whenever 𝑠𝑖 = E[𝑟𝑖] we will say that we fully bundle bidder 𝑖 . Whenever 𝑠𝑖 = 𝑟𝑖 we will say that we

unbundle bidder 𝑖 . If neither is the case we will say that we partially bundle the bidder.

Independence and Correlation A information structure is called independent if signals 𝑠 𝑗 for 𝑗 ≠ 𝑖

do not oer additional information on the expectation of 𝑟𝑖 beyond 𝑠𝑖 . Formally:

E[𝑟𝑖 |𝑠 = 𝑠′] = E[𝑟𝑖 |𝑠𝑖 = 𝑠′𝑖 ], ∀𝑖,∀𝑠 . (2)

Both full-disclosure and no-disclosure information structures are independent.
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Whenever we do not assume independence, we will say that an information structure is correlated.

Below, we give an example of a correlated and calibrated information structure. This will also serve

as an example of how information structures will be illustrated throughout the paper. Consider the

two-bidder setting where CTRs are 𝑟 ∈ {(1/2, 1/2), (1/2, 1), (1, 1/2), (1, 1)}, each with probability 1/4

(hence 𝑟1 and 𝑟2 are independent). We represent an information structure where rows correspond to

pairs of CTRs (𝑟1, 𝑟2) and columns correspond to pairs of signals (𝑠1, 𝑠2). Each entry of the matrix will

correspond to 𝑥 (𝑟, 𝑠) which is the probability of the event that the CTRs are 𝑟 and the signals are 𝑠 . The

following table shows the "ipping the square“ structure, which we will discuss in detail in Section 4.1:

@
@
@
@@

𝑟

𝑠
(3/4 − 𝜖, 3/4 − 𝜖) (3/4 − 𝜖, 3/4 + 𝜖) (3/4 + 𝜖, 3/4 − 𝜖) (3/4 + 𝜖, 3/4 + 𝜖)

(1/2, 1/2) 𝜖 0 0 1/4 − 𝜖

(1/2, 1) 0 1/4 0 0

(1, 1/2) 0 0 1/4 0

(1, 1) 1/4 − 𝜖 0 0 𝜖

One can check that while the calibration constraints (equation (1)) hold, the independence condition

(equation (2)) does not. So, this is a calibrated, correlated information structure.

Symmetric vs Asymmetric Environments Finally, we will say that the environment is symmetric

when random variables 𝑣1𝑟1, . . . , 𝑣𝑛𝑟𝑛 are exchangeable. Whenever symmetry does not hold, we will say

that the environment is asymmetric.

3 Independent Information Structures

A rst step in the analysis of optimal information design is a focus on independent signals. With

independent signals, the signal 𝑠𝑖 of each bidder 𝑖 contains all the information about the CTR 𝑟𝑖 that

the auctioneer releases before the auction. Thus, bidder 𝑖 could not learn anything more about the true

CTR from any other bidder. In turn, the information that bidder 𝑖 receives from the auctioneer is the

maximal information that is available before the auction to place an informed bid.
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3.1 Independent Signals and Two Bidders

We begin the analysis with two bidders and then generalize the insight to many bidders.

Proposition 3.1 (Independent and Calibrated Signalling). In a two-bidder environment, the expected

revenue of an independent and calibrated information structure cannot exceed the one from no-disclosure.

Proof. We start by computing the expected revenue given signals 𝑠1 and 𝑠2. If 𝑣1𝑠1 ≥ 𝑣2𝑠2, then the

revenue can be written as:

E

[
𝑟1 ·

𝑣2𝑠2

𝑠1

����𝑠1, 𝑠2] = E [𝑟1 |𝑠1, 𝑠2] ·
𝑣2𝑠2

𝑠1
= E [𝑟1 |𝑠1] ·

𝑣2𝑠2

𝑠1
= 𝑠1 ·

𝑣2𝑠2

𝑠1
= 𝑣2𝑠2,

where the second equality follows from the independence of the signaling scheme and the third equality

follows from calibration.

Therefore, we can write the expected revenue as:

Rev = E[min(𝑣1𝑠1, 𝑣2𝑠2)] ≤ min(E[𝑣1𝑠1],E[𝑣2𝑠2]) = min(𝑣1 E[𝑠1], 𝑣2 E[𝑠2]) = min(𝑣1 E[𝑟1], 𝑣2 E[𝑟2]),

where the rst inequality follows from Jensen’s inequality and the concavity of the minimum. The

last equality follows from calibration. Finally, note that min(𝑣1 E[𝑟1], 𝑣2 E[𝑟2]) is the revenue from

no-disclosure.

We have thus shown that full-disclosure can never revenue-dominate no-disclosure. We next show

that generically full-disclosure is, in fact, strictly revenue-dominated by zero no-disclosure.

Corollary 3.2 (Zero vs. Complete Information Disclosure). In the two-bidder environment, if both

𝑣1𝑟1 > 𝑣2𝑟2 and 𝑣1𝑟1 < 𝑣2𝑟2 occur with positive probability, then the revenue from no-disclosure strictly

dominates the revenue from full-disclosure.

Proof. If both events 𝑣1𝑟1 > 𝑣2𝑟2 and 𝑣1𝑟1 < 𝑣2𝑟2 occur with positive probability, then Jensen’s inequality

holds with a strict inequality E[min(𝑣1𝑟1, 𝑣2𝑟2)] < min(E[𝑣1𝑟1],E[𝑣2𝑟2]) in the previous proof.

The argument suggests that the revenue dominance result does not extend to more than two bidders.

With more than two bidders, the smaller of the two highest realizations determines the price, and the

expectation of the smaller of the two highest is now larger than the unconditional expectation of the

second highest click-through rate.
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3.2 Independent Signals with Many Bidders

Indeed, the power of independent signalling is much improved in the presence of competition, and

we now consider the case of more than two bidders, 𝑛 > 2. We show by example that an independent

symmetric-calibration signal can improve the revenue, and thus partial revelation is better than no- or

full-disclosure.

Consider a symmetric three-bidder environment with 𝑣1 = 𝑣2 = 𝑣3 = 1. For each bidder 𝑖 let 𝑟𝑖 = 0

with probability 2/3, and 𝑟𝑖 = 1with probability 1/3. Moreover, assume that 𝑟1, 𝑟2 and 𝑟3 are independent.

It is simple to check that full revelation has revenue 7/27 and no-revelation has revenue 9/27. This can

be improved by the following signaling scheme with partial bundling:

@
@

@
@@

𝑟𝑖

𝑠𝑖
𝑠𝑖 = 0 𝑠𝑖 = 4/9

𝑟𝑖 = 0 1/4 5/12

𝑟𝑖 = 1 0 1/3

The revenue of partial disclosure is 4/9 whenever at least two of the bidders have the high signal,

which happens with probability 1 − (1/4)3 − 3(1/4)2(3/4) = 27/32. Hence, the overall revenue of this

partial disclose scheme is 3/8, which dominates both full-disclosure and no-disclosure.

Instead of trying to optimize for the optimal independent information structure, we will move to the

more powerful model of correlated information structures in the next section.

The results here mirror earlier results by Board (2009), who considers an ascending auction in a

private value setting without click-through rates. In his analysis, he restricts attention to independent

signals and establishes that with two bidders, the seller’s revenue is smallerwith thanwithout information

disclosure. He further shows that in a symmetric model, as the number of bidders become arbitrarily

large, complete information disclosure eventually revenue-dominates zero information disclosure.

4 Correlated Structures in Symmetric Environments

We obtain a much stronger result if we allow the information structure to be correlated across bidders.

The information ow allows inuence over the level of competition to some extent. This allows us to

conate auction items and restore some market thickness (see Levin and Milgrom (2010)).
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4.1 A First Example: Flipping the Square

To showcase the power of correlated information structures, we start with an example where the optimal

structure is rather counterintuitive. Consider two bidders with values 𝑣1 = 𝑣2 = 1 and independent

click-through rates distributed uniformly in {1/2, 1}. Or rather: the vector 𝑟 is uniformly distributed in

{(1/2, 1/2), (1/2, 1), (1, 1/2), (1, 1)}. With an independent signaling scheme, the optimal information

structure is no-disclosure, which yields revenue equal to 3/4. With a correlated signaling scheme,

one can obtain arbitrarily close to 7/8 revenue, which is optimal since it corresponds to the welfare

E[max𝑖 𝑣𝑖𝑟𝑖] of the optimal allocation.

The information structure is described in the following table:

@
@
@
@@

𝑟

𝑠
(3/4 − 𝜖, 3/4 − 𝜖) (3/4 − 𝜖, 3/4 + 𝜖) (3/4 + 𝜖, 3/4 − 𝜖) (3/4 + 𝜖, 3/4 + 𝜖)

(1/2, 1/2) 𝜖 0 0 1/4 − 𝜖

(1/2, 1) 0 1/4 0 0

(1, 1/2) 0 0 1/4 0

(1, 1) 1/4 − 𝜖 0 0 𝜖

To see that this information structure is calibrated, observe that 𝑠1 = 3/4 − 𝜖 with probability 1/2.

This probability event can be decomposed in two: with probability 1/4 + 𝜖 we output this signal with

𝑟1 = 1/2, and with the remaining 1/4 − 𝜖 probability we have 𝑟1 = 1. Hence:

E[𝑟1 |𝑠1 = 3/4 − 𝜖] = (1/4 + 𝜖) · 1/2 + (1/4 − 𝜖) · 1
1/2 = 3/4 − 𝜖.

The counterintuitive nature of this mapping can best be seen when depicted as in Figure 1. We map

the CTRs in {1/2, 1} to two values {3/4 − 𝜖, 3/4 + 𝜖} around the mean. The symmetric pairs, (1/2, 1/2)

and (1, 1), are mapped with high probability into symmetric, but order-reversed pairs, (3/4 + 𝜖, 3/4 + 𝜖)

and (3/4 − 𝜖, 3/4 − 𝜖), respectively. The calibration is nonetheless achieved by the o-diagonal pairs

(1/2, 1) and (1, 1/2) that are mapped into order-preserving signals with probability 1, (3/4 − 𝜖, 3/4 + 𝜖)

and (3/4+𝜖, 3/4−𝜖), respectively. The 𝜖 perturbation in the mapping of the diagonal pairs then achieves

the ordering of the signals.

We notice the click-through signals 𝑠𝑖 maintain the ecient ranking of the alternatives, and thus

guarantee an ecient outcome in the auction. The revenue in the auction is given by:

1

4

· 1
2

+ 1

4

·
3

4
− 𝜖

3

4
+ 𝜖

+ 1

4

·
3

4
− 𝜖

3

4
+ 𝜖

+ 1

4

=
21 − 4𝜖

24 + 32𝜖
=
7

8

−𝑂 (𝜖),
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Figure 1: Depiction of the “ipping the square” structure (with 𝜖-ows omitted).

which means that almost the entire surplus is extracted. The auction uses a uniform tie-breaking rule,

thus allocating the object with equal probability if the signals are equal across the bidders.

4.2 A Second Example: Dispersion Along the Diagonal

The second example maintains symmetry across the bidders but has correlated click-through rates. The

resulting information structure is more subtle, reecting the need to balance information necessary to

support an ecient allocation with information to support competition.

We present the construction, which we refer to as “dispersion along the diagonal,” for a small number

of signals. Our main result in this section (Theorem 4.2) builds on a generalization of this construction

to more signals (see Lemma 4.1 and Figure 2).

Consider again two bidders with values 𝑣1 = 𝑣2 = 1 and click-through rates either (1/2, 1) or (1, 1/2),

with probability 1/2 each. The CTRs are thus perfectly negatively correlated and the social surplus

is 1. The revenue under full-disclosure would be 1/2, and under no-disclosure it would be 3/4. With

no-disclosure, the price-per-click is always competitive, as E [𝑟1] /E [𝑟2] = 1, but the auction fails to

lead to the ecient allocation with probability 1/2. With the following information ow, we attain a

revenue of 0.79 > 3/4:

12



@
@
@
@@

𝑟

𝑠
(0.6, 0.6) (0.6, 0.75) (0.75, 0.6) (0.75, 0.9375) (0.9375, 0.75) (0.9375, 0.9375)

(1/2, 1) 2/15 2/5 0 2/5 0 1/15

(1, 1/2) 2/15 0 2/5 0 2/5 1/15

This information ow lowers the probability of an inecient allocation from 1/2 to 1/5 and attains

an equilibrium price closer to 1. In particular,

min

����𝑟𝑖𝑟 𝑗
���� = 1

2

<
4

5

= min

���� 𝑠𝑖𝑠 𝑗
���� .

The information ow in this example generates some symmetric click-through signals in the absence

of symmetric click-through rates. The symmetric signals in the presence of asymmetric rates create

some ineciency in the allocation. But the symmetric click-through rates create the basis for signals

that are adjacent, in the sense that they are nearby, yet signal the correct ranking of the underlying

click-through rates. If we increase the numbers of signals in the construction of the information ow,

we can then reduce the revenue loss and bring it arbitrarily close to zero. This is the following content

of Lemma 4.2.

4.3 Optimal Information Structure

We can now state and establish the rst main result, showing that for any 𝑛-bidder symmetric environ-

ment it is possible to construct an information structure extracting revenue that is arbitrarily close to

the optimal surplus.

Theorem 4.1 (Full Surplus Extraction in Symmetric Environments). For every symmetric 𝑛-bidder

environment, there exists a randomized and calibrated correlated information structure whose revenue is

arbitrarily close to full surplus extraction.

As a building block, we will consider the special case of a symmetric environment of two bidders

where 𝑣1 = 𝑣2 = 𝑣 and

Pr[𝑟 = (𝑙, ℎ)] = Pr[𝑟 = (ℎ, 𝑙)] = 1/2,

for two values 0 ≤ 𝑙 < ℎ ≤ 1. We will then reduce the general symmetric case to a composition of

information structures for pairs (ℎ, 𝑙). The optimal information structure will be to disperse the signals

along the diagonal as depicted in Figure 2.

13



Lemma 4.2 (Dispersion Along the Diagonal). Consider the symmetric setting with two bidders with

values 𝑣1 = 𝑣2 = 𝑣 where the click-through rate vector is either (𝑙, ℎ) or (ℎ, 𝑙), each with probability 1/2.

Then, for every 𝜖 > 0, there is a calibrated, correlated information structure with revenue 𝑣ℎ − 𝜖 .

(𝑙, ℎ)

(ℎ, 𝑙)

Figure 2: Depiction of the “dispersion along the diagonal” structure for Lemma 4.2.

Proof. We assume without loss of generality that 𝑣 = 1. To prove the lemma, we construct an information

structure with a nite set of signals, 𝑆 ⊂ [0, 1]. The key to this construction is to (i) properly select

the signal set 𝑆 , and (ii) come up with a discretized and calibrated information structure 𝑥 (𝑟, 𝑠) for

𝑟 ∈ {(𝑙, ℎ), (ℎ, 𝑙)} and 𝑠 ∈ 𝑆 that achieves almost optimal revenue.

We consider the following construction with parameters 𝛿 > 0 and 𝑥0 > 0 to be determined later

(see Figure 2 for an illustration).

1. Signal set 𝑆 = {𝑠−𝐾 , . . . , 𝑠0, 𝑠1, . . . , 𝑠𝐾 }, where 𝑠0 = (𝑙 + ℎ)/2, 𝑠𝑘 = 𝑠0 · (1 + 𝛿)𝑘 for −𝐾 ≤ 𝑘 ≤ 𝐾 ,

𝐾 =

⌊
log(1+𝛿)

2ℎ

𝑙 + ℎ

⌋
− 1;

2. 𝑥 ((𝑙, ℎ), (𝑠𝑘 , 𝑠𝑘+1)) = 𝑥 ((ℎ, 𝑙), (𝑠𝑘+1, 𝑠𝑘)) = 𝑥𝑘 for −𝐾 ≤ 𝑘 ≤ 𝐾 − 1, where

𝑥𝑘 =
ℎ − 𝑠𝑘
𝑠𝑘 − 𝑙

· 𝑥𝑘−1 = 𝑥0
𝑘∏̂
=1

ℎ − 𝑠^
𝑠^ − 𝑙

, when 1 ≤ 𝑘 ≤ 𝐾 − 1,

𝑥𝑘 =
𝑠𝑘+1 − 𝑙
ℎ − 𝑠𝑘+1

· 𝑥𝑘+1 = 𝑥0
−1∏
^=𝑘

𝑠^+1 − 𝑙
ℎ − 𝑠^+1

, when − 𝐾 ≤ 𝑘 ≤ −1;
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3. 𝑥 ((𝑙, ℎ), (𝑠−𝐾 , 𝑠−𝐾 )) = 𝑥 ((ℎ, 𝑙), (𝑠−𝐾 , 𝑠−𝐾 )) = 𝑦, where

𝑦 =
𝑠−𝐾 − 𝑙

𝑙 + ℎ − 2𝑠−𝐾
· 𝑥−𝐾 ;

4. 𝑥 ((𝑙, ℎ), (𝑠𝐾 , 𝑠𝐾 )) = 𝑥 ((ℎ, 𝑙), (𝑠𝐾 , 𝑠𝐾 )) = 𝑧, where

𝑧 =
ℎ − 𝑠𝐾

2𝑠𝐾 − 𝑙 − ℎ · 𝑥𝐾−1.

In the rest of the proof, we rst verify that the construction is a valid calibrated and correlated informa-

tion structure, then show that by choosing a suciently small 𝛿 , the revenue is at least ℎ − 𝜖 .

Step 1: We verify that the signals in 𝑆 are valid probabilities, i.e., 𝑆 ⊂ [0, 1].

For suciently small
ℎ−𝑙

3(ℎ+𝑙) > 𝛿 > 0, 𝐾 − 1 =
⌊
log(1+𝛿)

2ℎ
𝑙+ℎ

⌋
− 1 ≥ 1. For all −𝐾 ≤ 𝑘 ≤ 𝐾 ,

𝑠𝑘 ≤ 𝑠𝐾 =
𝑙 + ℎ
2

· (1 + 𝛿)𝐾 ≤ 𝑙 + ℎ
2

· 2ℎ

𝑙 + ℎ · 1

1 + 𝛿 =
ℎ

1 + 𝛿 < ℎ ≤ 1;

𝑠𝑘 ≥ 𝑠−𝐾 =
𝑙 + ℎ
2

· (1 + 𝛿)−𝐾 ≥ 𝑙 + ℎ
2

· 𝑙 + ℎ
2ℎ

· (1 + 𝛿) ≥ 4ℎ𝑙

4ℎ
· (1 + 𝛿) > 𝑙 ≥ 0.

Therefore, 𝑆 ⊂ [0, 1] is a valid nite signal space.

Step 2: We verify that the parameters 𝑥𝑘 , 𝑦, 𝑧 are non-negative.

Since 𝑠𝑘 ∈ (𝑙, ℎ), by the construction of 𝑥𝑘 for 𝑘 ≠ 0, 𝑥𝑘/𝑥0 > 0. For 𝑦 and 𝑧, since 𝑠−𝐾 < 𝑠0 =

(𝑙 + ℎ)/2 < 𝑠𝐾 ,

𝑦/𝑥−𝐾 =
𝑠−𝐾 − 𝑙

𝑙 + ℎ − 2𝑠−𝐾
=

(𝑠−𝐾 − 𝑙)/2
(𝑙 + ℎ)/2 − 𝑠−𝐾

> 0, 𝑧/𝑥𝐾−1 =
ℎ − 𝑠𝐾

2𝑠𝐾 − 𝑙 − ℎ =
(ℎ − 𝑠𝐾 )/2

𝑠𝐾 − (𝑙 + ℎ)/2 > 0.

Therefore, as long as 𝑥0 > 0, all probability terms are positive.

Step 3: We verify that we can choose 𝑥0 such that:

∑︁
𝑠

𝑥 ((𝑙, ℎ), 𝑠) =
∑︁
𝑠

𝑥 ((ℎ, 𝑙), 𝑠) = 1/2

As we showed, the coecients, 𝑥𝑘/𝑥0, 𝑦/𝑥0, and 𝑧/𝑥0 are all positive and xed. Then with 𝑥0 dened

below,

𝑥0 =
1

2

· 1

𝑦/𝑥0 + 𝑧/𝑥0 +
∑
𝑘 𝑥𝑘/𝑥0

> 0,
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we have

∑
𝑠 𝑥 ((𝑙, ℎ), 𝑠) =

∑
𝑠 𝑥 ((ℎ, 𝑙), 𝑠) = 𝑦 + 𝑧 +

∑
𝑘 𝑥𝑘 = 1/2.

Step 4: We check that the calibration constraints are satised.

For −𝐾 + 1 ≤ 𝑘 ≤ 𝐾 − 1, we verify the calibration constraint for sending signal 𝑠𝑘 to bidder 1 as

follows: ∑︁
𝑠∈𝑆

𝑥 ((𝑙, ℎ), (𝑠𝑘 , 𝑠)) · (𝑙 − 𝑠𝑘) + 𝑥 ((ℎ, 𝑙), (𝑠𝑘 , 𝑠)) · (ℎ − 𝑠𝑘) = 𝑥𝑘 · (𝑙 − 𝑠𝑘) + 𝑥𝑘−1 · (ℎ − 𝑠𝑘)

= 𝑥𝑘−1 ·
ℎ − 𝑠𝑘
𝑠𝑘 − 𝑙

· (𝑙 − 𝑠𝑘) + 𝑥𝑘−1 · (ℎ − 𝑠𝑘) = 0.

When sending signal 𝑠𝐾 to bidder 1:∑︁
𝑠∈𝑆

𝑥 ((𝑙, ℎ), (𝑠𝐾 , 𝑠)) · (𝑙 − 𝑠𝐾 ) + 𝑥 ((ℎ, 𝑙), (𝑠𝐾 , 𝑠)) · (ℎ − 𝑠𝐾 ) = 𝑧 · (𝑙 − 𝑠𝐾 ) + 𝑥𝐾−1 · (ℎ − 𝑠𝐾 ) + 𝑧 · (ℎ − 𝑠𝐾 )

=
ℎ − 𝑠𝐾

2𝑠𝐾 − 𝑙 − ℎ · 𝑥𝐾−1 · (𝑙 − 𝑠𝐾 ) + 𝑥𝐾−1 · (ℎ − 𝑠𝐾 ) +
ℎ − 𝑠𝐾

2𝑠𝐾 − 𝑙 − ℎ · 𝑥𝐾−1 · (ℎ − 𝑠𝐾 ) = 0.

When sending signal 𝑠−𝐾 to bidder 1:∑︁
𝑠∈𝑆

𝑥 ((𝑙, ℎ), (𝑠−𝐾 , 𝑠)) · (𝑙 − 𝑠−𝐾 ) + 𝑥 ((ℎ, 𝑙), (𝑠−𝐾 , 𝑠)) · (ℎ − 𝑠−𝐾 )

= 𝑥−𝐾 · (𝑙 − 𝑠−𝐾 ) + 𝑦 · (ℎ − 𝑠−𝐾 ) + 𝑦 · (ℎ − 𝑠−𝐾 )

= 𝑥−𝐾 · (𝑙 − 𝑠−𝐾 ) +
𝑠−𝐾 − 𝑙

𝑙 + ℎ − 2𝑠−𝐾
· 𝑥−𝐾 · (𝑙 − 𝑠−𝐾 ) +

𝑠−𝐾 − 𝑙
𝑙 + ℎ − 2𝑠−𝐾

· 𝑥−𝐾 · (ℎ − 𝑠−𝐾 ) = 0.

As the construction is symmetric for bidder 1 and 2, we omit the verication of the calibration

constraints for bidder 2.

Step 5: Now that we veried this is a calibrated signaling scheme, we bound its revenue.

Note that when 𝑠 ∈ {(𝑠𝑘 , 𝑠𝑘+1), (𝑠𝑘+1, 𝑠𝑘)}𝐾−1𝑘=−𝐾 , the auction allocates the item eciently and the

auctioneer extracts almost all the surplus. More specically, when 𝑠 = (𝑠𝑘 , 𝑠𝑘+1) for CTR prole (𝑙, ℎ), or

𝑠 = (𝑠𝑘+1, 𝑠𝑘) for CTR prole (ℎ, 𝑙), the conditional expected revenue is

ℎ · 𝑠𝑘
𝑠𝑘+1

= ℎ/(1 + 𝛿) > ℎ − 𝜖/2, when 𝛿 <
𝜖

2ℎ − 𝜖 .

Therefore, we remain to prove that the probability of not extracting revenue ℎ/(1 + 𝛿) is suciently

small, i.e., 𝑦, 𝑧 < 𝜖/8.
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Recall that ℎ ≥ 𝑠𝐾 · (1 + 𝛿), with suciently small 𝛿 < (ℎ − 𝑙)/2(ℎ + 𝑙),

𝑧 = 𝑥𝐾−1 ·
ℎ − 𝑠𝐾

2𝑠𝐾 − 𝑙 − ℎ ≤ 𝑥𝐾−1 ·
ℎ − ℎ/(1 + 𝛿)

2ℎ/(1 + 𝛿) − 𝑙 − ℎ

= 𝑥𝐾−1 ·
𝛿ℎ

ℎ − 𝑙 − 𝛿 · (ℎ + 𝑙) < 𝛿 · 2ℎ

ℎ − 𝑙 · 𝑥𝐾−1 < 𝛿 ·
2ℎ

ℎ − 𝑙 ,

which is less than 𝜖/8 when 𝛿 < ℎ−𝑙
16ℎ

· 𝜖 .

Similarly, 𝑠−𝐾 = (1 + 𝛿)−𝐾 · (𝑙 + ℎ)/2 ≤ 𝑙+ℎ
2ℎ

· (1 + 𝛿) · (𝑙 + ℎ)/2 < (1 + 𝛿) (ℎ + 3𝑙)/4, with suciently

small 𝛿 < (ℎ − 𝑙)/2(ℎ + 3𝑙),

𝑦 = 𝑥−𝐾 · 𝑠−𝐾 − 𝑙
𝑙 + ℎ − 2𝑠−𝐾

≤ 𝑥−𝐾 · (1 + 𝛿) (ℎ + 3𝑙)/4 − 𝑙
𝑙 + ℎ − (1 + 𝛿) (ℎ + 3𝑙)/2

= 𝑥−𝐾 · ℎ − 𝑙 + 𝛿 · (ℎ + 3𝑙)
2ℎ − 𝑙 − 2𝛿 · (ℎ + 3𝑙) <

3

2

· 𝑥−𝐾 .

It suces to show 𝑥−𝐾 < 𝜖/12with a suciently small 𝛿 . Note that 𝑠−𝐾 < · · · < 𝑠−1 < 𝑠0 = (𝑙+ℎ)/2 <

𝑠1 < · · · < 𝑠𝐾 , we then have 𝑥0 > 𝑥1 > · · · > 𝑥𝐾−1 and 𝑥0 > 𝑥−1 > · · · > 𝑥−𝐾 . Then

1/2 = 𝑦 + 𝑧 +
𝐾−1∑︁
𝑘=−𝐾

𝑥𝑘 > (𝐾 + 1) · 𝑥−𝐾 .

Therefore, when 𝛿 < 𝜖
6
· log 2ℎ

𝑙+ℎ , 𝑥−𝐾 can be bounded by 𝜖/12:

𝑥−𝐾 < 1/2(𝐾 + 1) < 1

2 log(1+𝛿) (2ℎ/(𝑙 + ℎ))
=

log(1 + 𝛿)
2 log(2ℎ/(𝑙 + ℎ)) <

𝛿

2 log(2ℎ/(𝑙 + ℎ)) .

In summary, for any given 𝜖 > 0, we can conclude the proof with a suciently small 𝛿 :

𝛿 <
ℎ − 𝑙

3(ℎ + 𝑙) =⇒ 𝐾 − 1 ≥ 1,

𝛿 <
𝜖

2ℎ − 𝜖 =⇒ ℎ/(1 + 𝛿) ≥ ℎ − 𝜖/2,

𝛿 < min

(
ℎ − 𝑙

2(ℎ + 𝑙) ,
ℎ − 𝑙
16ℎ

· 𝜖
)
=⇒ 𝑧 < 𝜖/8,

𝛿 < min

(
ℎ − 𝑙

2(ℎ + 3𝑙) ,
𝜖

6

· log 2ℎ

𝑙 + ℎ

)
=⇒ 𝑦 < 𝜖/8.

Lemma 4.2 is stated for a very special case within the class of symmetric environments. Both bidders

have value 1, each bidder has only one of two possible click-through rates, and the click-through rates

are perfectly negatively correlated. However, the result can now be extended immediately to a general

symmetric environment. The extension is based on two simple observations:

Corollary 4.3 (High-Low Pairing). Consider𝑛 bidders with values 𝑣𝑖 ≡ 𝑣 and click-through rates uniformly

distributed between two proles where 𝑟 and 𝑟 ′ are such for two bidders 𝑖, 𝑗 ∈ [𝑛] that we have: 𝑟𝑖 = 𝑟 ′𝑗 >

𝑟 𝑗 = 𝑟
′
𝑖 ≥ 𝑟𝑘 , 𝑟 ′𝑘 for any 𝑘 ≠ 𝑖, 𝑗 . Then, for any 𝜖 > 0 there is a calibrated, correlated information structure

with revenue 𝑣𝑟𝑖 − 𝜖 .
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Proof. Treat bidders 𝑖 and 𝑗 as the high/low pair in Lemma 4.2 and do full-disclosure for any other bidder.

The signal is still calibrated and only 𝑖 and 𝑗 win the item since their signals will be above the signals of

any other bidder. Hence, the revenue bound in Lemma 4.2 still holds.

The next lemma shows that information structures can be composed, in the sense that if we decom-

pose a distribution of click-through rates and design an information structure for each of them, we can

later compose them without loss in calibration.

Lemma 4.4 (Signal Composition). Let G′
and G′′

be distributions over click-through rate proles 𝑟 of 𝑛

bidders and let F ′
and F ′′

be corresponding calibrated information structures given by joint distributions

over vector pairs (𝑟, 𝑠) such that the 𝑟 -marginals are G′
and G′′

respectively.

Let G be the distribution obtained by sampling from G′
with probability _, and G′′

with probability

1 − _. Dene a distribution F similarly. Then, F is a calibrated information structure for G and

Rev(F ) = _Rev(F ′) + (1 − _)Rev(F ′′).

Proof. The 𝑟 -marginal of F is clearly G and Rev(F ) = _Rev(F ′) + (1−_)Rev(F ′′). The only non-trivial

part is to check that F is calibrated, which we do below:

E
F
[𝑟𝑖 |𝑠𝑖 = 𝑠′𝑖 ] =

EF [𝑟𝑖1{𝑠𝑖 − 𝑠′𝑖 }]
PrF (𝑠𝑖 = 𝑠′𝑖 )

=
_ EF ′ [𝑟𝑖1{𝑠𝑖 − 𝑠′𝑖 }] + (1 − _) EF ′′ [𝑟𝑖1{𝑠𝑖 − 𝑠′𝑖 }]

_ PrF ′ (𝑠𝑖 = 𝑠′𝑖 ) + (1 − _) PrF ′′ (𝑠𝑖 = 𝑠′𝑖 )

=
_ EF ′ [𝑠′𝑖1{𝑠𝑖 − 𝑠′𝑖 }] + (1 − _) EF ′′ [𝑠′𝑖1{𝑠𝑖 − 𝑠′𝑖 }]

_ PrF ′ (𝑠𝑖 = 𝑠′𝑖 ) + (1 − _) PrF ′′ (𝑠𝑖 = 𝑠′𝑖 )
= 𝑠′𝑖 .

Proof of Theorem 4.1. Consider an 𝑛-bidder symmetric environment and assume for simplicity that the

distribution over CTRs is discrete. For every prole of CTRs where bidder 𝑖 has the highest CTR 𝑟𝑖

and bidder 𝑗 has the second highest CTR 𝑟 𝑗 (breaking ties lexicographically), we can pair with a prole

where the CTRs of 𝑖 and 𝑗 are reversed. This leads to a decomposition of the original distribution of

CTRs into distributions with support two of the form studied in Corollary 4.3. The results follow from

applying Corollary 4.3 together with the composition technique in Lemma 4.4.

It turns out that the idea behind the construction in this section can be generalized to work under

the weaker requirement of equal means. The main building block for this is the following generalization

of Lemma 4.2, which we prove in Appendix A.

Proposition 4.5 (Generalized Dispersion). Consider a setting with two bidders with 𝑣1 = 𝑣2 = 𝑣 and a

support size two distribution over click-through rate vectors (𝑟1, 𝑟2) such that E[𝑟1] = E[𝑟2]. Then for every

𝜖 , there is a calibrated and correlated information structure with revenue 𝑣 · E[max(𝑟1, 𝑟2)] − 𝜖 .
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5 Correlated Structures Beyond Symmetric Environments

Our analysis so far has maintained a weak notion of ex-ante symmetry among the bidders. In Proposition

4.5, the bidders were assumed to have the same ex-ante mean in click-through rates, but may have

dierent supports and dierent distributions in terms of the ex-post click-through rates. In the presence

of ex-ante symmetry we established that an optimal information design supported a revenue level equal

to the full social surplus. In this section, we pursue a more limited objective for general asymmetric

environments. The central result of this section, Theorem 5.1, establishes that optimal information

design remains a powerful instrument to increase revenue, irrespective of the joint distribution of the

click-through rates. In particular, we can prove that there always exist information structures that

revenue-dominate either no-disclosure or full-disclosure information structures.

For this general environment, we do not provide a complete identication of the optimal information

design across all possible congurations of the joint distributions of click-through rates. However, the

arguments developed so far will be sucient to oer signicant qualitative characterizations of optimal

information design.

Dierent information structures oer dierent levels of informativeness, and in fact form a lattice

(see Figure 3). The no-disclosure information structure is the minimal information policy. The full-

disclosure information structure is the maximal information policy. Together, they form the set of

extremal informational policies. We refer to every information policy that is not extremal as moderate,

and to any information policy that does not consist of a combination of full- or no-disclosure as interior.

Theorem 5.1 establishes that in all environments, symmetric or asymmetric, there exists a moderate

information structure that presents a strict improvement. We then show that in some sense this is the

strongest result that we can obtain in a general asymmetric environment. Theorem 5.2 establishes that in

an environment in which one bidder always has the highest click-through rate, the optimal information

structure is moderate, but not interior. Finally, Proposition 5.4 shows that in other environments the

optimal information structure must indeed be not only moderate, but in fact interior.

5.1 Extremal Structures are Dominated

For the remainder of this section we consider an environment in which there are two bidders with values

𝑣1 = 𝑣2 = 1, and two possible click-through rate congurations, namely (𝑟1, 𝑟2) and (𝑟 ′
1
, 𝑟 ′

2
).Without loss
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Figure 3: Depiction of the disclosure lattice for two bidders. The label XY of a vertex denotes the pair of

policies X and Y used by bidder 1 and bidder 2. N stands for no-disclosure, P for partial disclosure, and F

for full-disclosure. All information structures inside the square are interior.

of generality, we can always label the identities of the bidders and the click-through rates so that:

𝑟1 ≥ 𝑟 ′1, 𝑟2, 𝑟 ′2.

The prior probability of the pair (𝑟1, 𝑟2) is 𝑝 , the other pair (𝑟 ′1, 𝑟 ′2) has the complementary probability

1 − 𝑝 . Let `1 = 𝑝 · 𝑟1 + (1 − 𝑝) · 𝑟 ′
1
and `2 = 𝑝 · 𝑟2 + (1 − 𝑝) · 𝑟 ′

2
be the expected click-through rates of

bidder 1 and bidder 2, respectively.

The main result of this section is the following theorem.

Theorem 5.1 (Moderate Information Structures). There always exists a moderate information structure

that strictly dominates any extremal information structure.

The theorem will be established in several steps. We split our analysis to match the nature of the

competition between the bidders. In the ex-ante symmetric case, the bidder with the highest click-

through rate was variable across the realizations, and we thus had a variable winner. In the asymmetric

setting, the bidder with the highest click-through rate may be uniform across click-through rates. Given
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the ranking, we will split our analysis into the following cases:

Uniform Winner: 𝑟 ′
1
≥ 𝑟 ′

2
Variable Winner: 𝑟 ′

1
< 𝑟 ′

2

Congruent Loser: 𝑟2 ≥ 𝑟 ′2 Incongruent Loser: 𝑟2 < 𝑟
′
2

Weak Competition: 𝑟2 ≤ `1 Strong Competition: 𝑟2 > `1

5.2 Moderate vs. Interior Structures

We next show by construction that Theorem 5.1 cannot be strengthened from moderate to interior

structures in the general asymmetric setting. For this, we consider the case of the uniform winner with

a congruent loser under weak competition. In this setting, bidder 1 has the higher click-through rate in

all realizations of click-through rates, and is thus the uniform winner. Moreover, the ranking across

realizations is the same for all bidders, and hence congruent. Finally, the expected click-through rate of

the winner is larger than the maximum of the realized click-through rates of the loser.

For this setting, we can identify the uniquely optimal information structure. Namely, it is optimal to

bundle the click-through rates of the winner and to unbundle the click-through rates of the loser. The

bundling of the click-through rates of the winner generates more competitive prices, and hence higher

revenue for the auctioneer. Thus, the optimal information structure is moderate, but not interior.

Theorem 5.2 (UniformWinner, Congruent Loser, Weak Competition). The optimal information structure

for the uniform winner, congruent loser, and weak competition case leaves the loser unbundled and fully

bundles the winner.

The main tool in our proof of Theorem 5.2 is the following lemma.

Lemma 5.3 (Chebyshev’s sum inequality (Hardy et al., 1988)). Given two sequences 𝑎1 ≥ 𝑎2 ≥ . . . 𝑎𝑛 ≥ 0

and 𝑏1 ≥ 𝑏2 ≥ . . . 𝑏𝑛 ≥ 0 that are monotone in the same direction, and a set of non-negative weights𝑤𝑖 ≥ 0

(not necessarily monotone), then:(∑︁
𝑖

𝑤𝑖𝑎𝑖𝑏𝑖

)
·
(∑︁
𝑖

𝑤𝑖

)
≥

(∑︁
𝑖

𝑤𝑖𝑎𝑖

)
·
(∑︁
𝑖

𝑤𝑖𝑏𝑖

)
.

If {𝑎𝑖} and {𝑏𝑖} sequences are monotone in dierent directions (one increasing and one decreasing), the

inequality holds in the opposite direction.

(Aside: The probabilistic interpretation of Lemma 5.3 is that if 𝐴 and 𝐵 are two positively-correlated

random variables, then E[𝐴𝐵] ≥ E[𝐴] · E[𝐵].)
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Proof of Theorem 5.2. We will start with a generic solution 𝑥 (𝑟, 𝑠) and show that using two applications

of Chebyshev’s sum inequality (Lemma 5.3) we can bound it with respect to

𝑝 · 𝑟1 ·
𝑟2

`1
+ (1 − 𝑝) · 𝑟 ′

1
·
𝑟 ′
2

`1
, (3)

which is the revenue obtained from leaving the loser unbundled and bundling the winner. We will

proceed in three steps.

Step 1: Bounding the revenue. Consider any information structure dened by 𝑥 (𝑟, 𝑠). For each signal

𝑠 = (𝑠1, 𝑠2), the revenue in the event that bidder 1wins is (𝑥 (𝑟, 𝑠)𝑟1+𝑥 (𝑟 ′, 𝑠)𝑟 ′1) ·𝑠2/𝑠1. If bidder 2wins, the

revenue is (𝑥 (𝑟, 𝑠)𝑟2+𝑥 (𝑟 ′, 𝑠)𝑟 ′2) ·𝑠1/𝑠2. In the second case, observe that since 𝑠2 ≥ 𝑠1 we have 𝑠1
𝑠2
< 1 <

𝑠2
𝑠1
,

and since we are in the uniform winner case, we know that 𝑥 (𝑟, 𝑠)𝑟1 + 𝑥 (𝑟 ′, 𝑠)𝑟 ′1 ≥ 𝑥 (𝑟, 𝑠)𝑟2 + 𝑥 (𝑟 ′, 𝑠)𝑟 ′2.

Hence, we can bound:

(𝑥 (𝑟, 𝑠)𝑟2 + 𝑥 (𝑟 ′, 𝑠)𝑟 ′2) ·
𝑠1

𝑠2
≤ (𝑥 (𝑟, 𝑠)𝑟1 + 𝑥 (𝑟 ′, 𝑠)𝑟 ′1) ·

𝑠2

𝑠1
,

and write:

Rev ≤
∑︁
𝑠

(𝑥 (𝑟, 𝑠)𝑟1 + 𝑥 (𝑟 ′, 𝑠)𝑟 ′1) ·
𝑠2

𝑠1
.

Step 2: Unbundling the loser. Substituting 𝑠2 by the calibration constraint we obtain:

Rev ≤
∑︁
𝑠2

∑︁
𝑠1

(
𝑥 (𝑟, (𝑠1, 𝑠2))

𝑟1

𝑠1
+ 𝑥 (𝑟 ′, (𝑠1, 𝑠2))

𝑟 ′
1

𝑠1

)
·
∑
𝑠1
𝑥 (𝑟, (𝑠1, 𝑠2))𝑟2 + 𝑥 (𝑟 ′, (𝑠1, 𝑠2))𝑟 ′2∑
𝑠1
𝑥 (𝑟, (𝑠1, 𝑠2) + 𝑥 (𝑟 ′, (𝑠1, 𝑠2))

≤
∑︁
𝑠2

∑︁
𝑠1

(
𝑥 (𝑟, (𝑠1, 𝑠2))

𝑟1𝑟2

𝑠1
+ 𝑥 (𝑟 ′, (𝑠1, 𝑠2))

𝑟 ′
1
𝑟 ′
2

𝑠1

)
,

where the second inequality follows from Chebyshev’s sum inequality with

{𝑎𝑖}𝑖 =
(
𝑟1

𝑠1
1

, . . . ,
𝑟1

𝑠𝑛
1

,
𝑟 ′
1

𝑠1
1

, . . . ,
𝑟 ′
1

𝑠𝑛
1

)
and {𝑏𝑖}𝑖 = (𝑟2, . . . , 𝑟2, 𝑟 ′2, . . . , 𝑟 ′2).

Congruence implies that the sequence {𝑏𝑖} is sorted. The sequence {𝑎𝑖} is sorted because 𝑟 ′
1
≤ 𝑠1

1
≤

. . . ≤ 𝑠1 ≤ 𝑟1, and hence
𝑟1
𝑠1

≥ 1 ≥ 𝑟 ′
1

𝑠1
. Now that the loser is unbundled, there is no longer any need to

keep track of 𝑠2. To simplify notation we will dene:

𝑥 (𝑟, 𝑠1) =
∑︁
𝑠2

𝑥 (𝑟, (𝑠1, 𝑠2))

and re-write our current bound on the objective as:

Rev ≤
∑︁
𝑠1

𝑥 (𝑟, 𝑠1)𝑟1𝑟2 + 𝑥 (𝑟 ′, 𝑠1)𝑟 ′1𝑟 ′2
𝑠1

.
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Step 3: Bundling the winner. We will replace 𝑠1 according to the calibration constraint in the expression

above and replace:

_(𝑠1) =
𝑥 (𝑟, 𝑠1)

𝑥 (𝑟, 𝑠1) + 𝑥 (𝑟 ′, 𝑠1)
and _′(𝑠1) =

𝑥 (𝑟 ′, 𝑠1)
𝑥 (𝑟, 𝑠1) + 𝑥 (𝑟 ′, 𝑠1)

.

We obtain:

Rev ≤
∑︁
𝑗

(𝑥 (𝑟, 𝑠1)𝑟1𝑟2 + 𝑥 (𝑟 ′, 𝑠1)𝑟 ′1𝑟 ′2) ·
𝑥 (𝑟, 𝑠1) + 𝑥 (𝑟 ′, 𝑠1)

𝑟1𝑥 (𝑟, 𝑠1) + 𝑟 ′
1
𝑥 (𝑟 ′, 𝑠1)

=
∑︁
𝑗

_(𝑠1)𝑟1𝑟2 + _′(𝑠1)𝑟 ′1𝑟 ′2
_(𝑠1)𝑟1 + _′(𝑠1)𝑟 ′

1

· (𝑥 (𝑟, 𝑠1) + 𝑥 (𝑟 ′, 𝑠1)) .

Now we can apply Chebyshev’s sum inequality one more time with:

𝑎(𝑠1) =
_(𝑠1)𝑟1𝑟2 + _′(𝑠1)𝑟 ′1𝑟 ′2
_(𝑠1)𝑟1 + _′(𝑠1)𝑟 ′

1

, 𝑏 (𝑠1) = _(𝑠1)𝑟1 + _′(𝑠1)𝑟 ′1, 𝑤 (𝑠1) = 𝑥 (𝑟, 𝑠1) + 𝑥 (𝑟 ′, 𝑠1).

Note that we can reorder signals 𝑠1 in any order we wish. Let us reorder the signals so that _(𝑠1) is

increasing. This immediately implies that 𝑏 (𝑠1) is increasing. Namely, 𝑏 (𝑠1) = _(𝑠1)𝑟1 + (1 − _(𝑠1))𝑟 ′1 =

_(𝑠1) (𝑟1 − 𝑟 ′1) + 𝑟 ′1. For 𝑎(𝑠1), we can take the derivative in _,

𝑑

𝑑_
𝑎(𝑠1) =

𝑟1 · 𝑟 ′1 · (𝑟2 − 𝑟 ′2)
(𝑟1_ − 𝑟 ′

1
(1 − _))2 > 0.

Thus, 𝑎(𝑠1) is also increasing in _, allowing us to apply the inequality to obtain:∑︁
𝑠1

𝑤 (𝑠1)𝑎(𝑠1) ≤
(∑︁
𝑠1

𝑤 (𝑠1)𝑎(𝑠1)𝑏 (𝑠1)
) ∑

𝑠1
𝑤 (𝑠1)∑

𝑠1
𝑤 (𝑠1)𝑏 (𝑠1)

,

which translates to (since

∑
𝑠1
𝑤 (𝑠1) = 1):

Rev ≤
∑
𝑠1
𝑥 (𝑟, 𝑠1)𝑟1𝑟2 + 𝑥 (𝑟 ′, 𝑠1)𝑟 ′1𝑟 ′2∑
𝑠1
𝑥 (𝑟, 𝑠1)𝑟1 + 𝑥 (𝑟 ′, 𝑠1)𝑟 ′

1

=
∑︁
𝑠1

𝑥 (𝑟, 𝑠1)𝑟1
𝑟2

`1
+ 𝑥 (𝑟 ′, 𝑠1)𝑟 ′1

𝑟 ′
2

`1
= 𝑝𝑟1

𝑟2

`1
+ (1 − 𝑝)𝑟 ′

1

𝑟 ′
2

`1
.

This is the revenue obtained by bundling the winner and unbundling the loser as desired.

The impact of competitive prices via competitive click-through rates can be so strong that even a

weaker position of the winning bidder can actually increase the revenue of the auctioneer. In fact, as

long as we maintain a uniform winner and a congruent loser, it is revenue-increasing for the winner to

have a lower click-through rate in the low click-through rate.

For the next result we stay with the uniform winner setting, but now ip the ranking of click-through

rates across click-through realizations. Thus, we consider the case of the incongruent loser. We can

verify that the competition is guaranteed to be weak in the above sense.
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Now, we can show that an interior information structure will always be the optimal information

structure. In contrast, the moderate information structure that was optimal in the congruent setting can

be shown to perform worse than either of the extremal information structures.

Proposition 5.4 (UniformWinner and Incongruent Loser). With a uniform winner and incongruent loser,

there is always an interior information structure that is revenue-improving over all exterior information

structures. In particular, partially bundling the winner and the loser is revenue-improving, relative to all

exterior information structures:

@
@
@
@@

𝑟

𝑠
(𝑟1, 𝑥) (𝑧,𝑦) (𝑧, 𝑥)

(
𝑟 ′
1
, 𝑦

)
(𝑟1, 𝑟2) 𝑝 − 𝑞 𝑞 0 0

(𝑟 ′
1
, 𝑟 ′

2
) 0 0 𝑞′ 𝑝′ − 𝑞′

for suitably chosen 𝑥 < 𝑦 ≤ 𝑧.

These two cases demonstrate how rich the optimal structures in the asymmetric setting can be, but

they also emphasize that the same guiding principles that governed the optimal policy in symmetric

settings are in play. Namely, as in the symmetric setting, the optimal schemes that we identify are not

extremal, maintain eciency, and seek to strengthen competition through calibrated signals.

6 Conclusion

A large share of online advertising, whether in search advertising, display advertising, or social net-

works, is allocated by various auction mechanisms. The auction seeks to form a match between the

viewer and competing advertisers. The viewers are typically heterogeneous in many dimensions: their

characteristics, their preferences, their (past) shopping behavior, their browsing history, and many other

aspects, observable and unobservable. A critical dimension of the heterogeneity is the click-through

rate of the user for a specic advertiser.

The disclosure policy of the auctioneer regarding the click-through rates therefore inuences the

distribution of bids, holding xed the distribution of preferences among the bidders. By disclosing less,

the auctioneer in eect bundles certain features, or as Levin and Milgrom (2010) suggest, conates

features of the viewer. The process of conation inuences the thickness or thinness of the market—in

other words, the strength of the competition.
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In our analysis, conation was achieved by bundling the information regarding click-through rates

in an optimal manner. The optimal information structure conveys just enough information so that the

resulting bidding process ranks the bidders according to the true social value of each bidder. At the

same time, the information is released only partially to maintain bids as close as possible to a perfectly

competitive level. We show that this requires that the information is provided to each bidder as private

information at an individual level, rather than as public information on a market level.

An alternative approach might have been to directly apply a version of the revelation principle

to the information design problem (see Bergemann and Morris (2019)). The revelation principle for

information design would suggest that the auctioneer only requires as many signals as allocations to be

implemented. This would suggest that a public signal that informs the market about the identity of the

winner and loser would be sucient. In a two-bidder environment, this would suggest that a binary

public information structure would be sucient. Indeed, the binary signal would lead to an ecient

allocation. But as our analysis and Example 2 have shown in detail, this would lead to a lower revenue for

the seller than what is attainable by optimal information design. The apparent failure of the revelation

principle here is related to the click-through auction. We deliberately xed the auction mechanism to

trace the implications of information design in a given auction mechanism. But by adopting the rules of

the click-through auction, we eectively limit the message space of each type, which is the fundamental

source of failure of the revelation principle, as famously observed by Green and Laont (1986).

A signicant advance in our information design problem is to allow for multi-dimensional and

private information in a strategic setting. By contrast, the most recent result in the design of optimal

information structure requires one-dimensional, or equivalently symmetric, solutions to optimal design

(see Kleiner et al. (2020)). A general approach to optimal multi-dimensional information design in

strategic settings is a wide-open question. In the current context, we could make progress by insights

specic to the auction setting.

Throughout this work we maintained the assumption of complete information, regarding the value

of each bidder. While this setting is commonly adopted in the analysis of sponsored search auctions, it

would clearly be an important issue for how the optimal information policy is inuenced by private

information, regarding the valuation of each bidder. We would then be in a setting where both the

auctioneer and bidders have private information. This also remains a wide-open issue, even in a setting

with a single receiver, and progress is currently being made only in specic settings, either binary

actions and states or multiplicative separable settings (see Kolotilin et al. (2017) and Candogan and

25



Strack (2021), respectively). We would hope that the current auction setting would give us additional

tools to address these issues eventually.
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A Full Surplus Extraction with Equal Means

Lemma (Lemma 4.5 Restate). Consider a setting with two bidders with click-through rates (𝑙, 𝑎) and (ℎ,𝑏),

where 0 ≤ 𝑙 < ℎ and 𝑎 ≠ 𝑏 ≥ 0, with probability

Pr[(𝑙, 𝑎)] = ℎ − 𝑏
ℎ + 𝑎 − 𝑙 − 𝑏 , Pr[(ℎ,𝑏)] = 𝑎 − 𝑙

ℎ + 𝑎 − 𝑙 − 𝑏 ,

and the same mean

` =
ℎ𝑎 − 𝑙𝑏

ℎ + 𝑎 − 𝑙 − 𝑏 .

Then, for every 𝜖 > 0, there is a calibrated, correlated information structure that extracts at least 1−𝑂 (
√
𝜖)

fraction of the welfare as revenue.

Note that we can, without loss of generality, assume that 𝑎 ≠ 𝑙 and 𝑏 ≠ ℎ. Otherwise, because of the

symmetric mean, when 𝑎 = 𝑙 we must have 𝑏 = ℎ, and vice versa. In this special case, the problem is

trivial (full-disclosure is optimal).

Consider the following information structure:

• Mapping (𝑙, 𝑎) to (𝑠2𝑘 , 𝑠2𝑘+1) with probability 𝑥𝑘 for −𝐾 ≤ 𝑘 ≤ 𝐾 ;

• Mapping (ℎ,𝑏) to (𝑠2𝑘 , 𝑠2𝑘−1) with probability 𝑥′
𝑘
for −𝐾 ≤ 𝑘 ≤ 𝐾 .

In particular,

𝑠𝑖 =


ℎ∗ = min{ℎ,max{𝑎, 𝑏}}, 𝑖 = 2𝐾 + 1;

𝑠 · (1 + 𝜖)𝑖, −2𝐾 ≤ 𝑖 ≤ 2𝐾 ;

𝑙∗ = max{𝑙,min{𝑎, 𝑏}}, 𝑖 = −2𝐾 − 1.

In general, we require that 𝑠−2𝐾−1 < 𝑠−2𝐾 < 𝑠2𝐾 < 𝑠2𝐾+1, that is

𝑙∗ < 𝑠 · (1 + 𝜖)−2𝐾 < 𝑠 · (1 + 𝜖)2𝐾 < ℎ∗.

Note that either 𝑎 > 𝑠2𝐾 , . . . , 𝑠−2𝐾 > 𝑏 or 𝑎 < 𝑠2𝐾 , . . . , 𝑠−2𝐾 < 𝑏.

We claim that as 𝜖 → 0, there exists a valid information structure of the above form satisfying the

calibration constraint and extracting at least 1 −𝑂 (
√
𝜖) of the welfare as revenue.

Consider the calibration constraints: For −𝐾 ≤ 𝑘 ≤ 𝐾 , the rst buyer receives signal 𝑠2𝑘 when the

CTR proles are (𝑙, 𝑎) or (ℎ,𝑏), with probability 𝑥𝑘 and 𝑥
′
𝑘
, respectively, i.e.,

ℎ · 𝑥′
𝑘
+ 𝑙 · 𝑥𝑘 = 𝑠2𝑘 · (𝑥′𝑘 + 𝑥𝑘) ⇐⇒ (ℎ − 𝑠2𝑘)𝑥′𝑘 = (𝑠2𝑘 − 𝑙)𝑥𝑘 .
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Similarly, for the second buyer receiving signal 𝑠2𝑘+1,

𝑎 · 𝑥𝑘 + 𝑏 · 𝑥′𝑘+1 = 𝑠2𝑘+1 · (𝑥𝑘 + 𝑥
′
𝑘+1) ⇐⇒ (𝑎 − 𝑠2𝑘+1)𝑥𝑘 = (𝑠2𝑘+1 − 𝑏)𝑥′𝑘+1.

Therefore, we have

𝑥𝑘+1 =
ℎ − 𝑠2𝑘+2
𝑠𝑠𝑘+2 − 𝑙

𝑥′
𝑘+1 =

ℎ − 𝑠2𝑘+2
𝑠2𝑘+2 − 𝑙

· 𝑎 − 𝑠2𝑘+1
𝑠2𝑘+1 − 𝑏

𝑥𝑘 ,

and similarly,

𝑥′
𝑘+1 =

𝑎 − 𝑠2𝑘+1
𝑠2𝑘+1 − 𝑏

𝑥𝑘 =
𝑎 − 𝑠2𝑘+1
𝑠2𝑘+1 − 𝑏

· ℎ − 𝑠2𝑘
𝑠2𝑘 − 𝑙

𝑥′
𝑘
.

Note that the coecients here are all positive,

𝑎 − 𝑠2𝑘+1
𝑠2𝑘+1 − 𝑏

> 0,

because either 𝑎 > 𝑠2𝑘+1 > 𝑏 or 𝑎 < 𝑠2𝑘+1 < 𝑏.

Thus,

𝑥𝑘 = 𝑥0

𝑘∏
𝑖=1

ℎ − 𝑠2𝑖
𝑠2𝑖 − 𝑙

· 𝑎 − 𝑠2𝑖−1
𝑠2𝑖−1 − 𝑏

𝑥−𝑘 = 𝑥0

𝑘∏
𝑖=1

𝑠2−2𝑖 − 𝑙
ℎ − 𝑠2−2𝑖

· 𝑠1−2𝑖 − 𝑏
𝑎 − 𝑠1−2𝑖

𝑥′
𝑘
= 𝑥′

0

𝑘∏
𝑖=1

ℎ − 𝑠2𝑖−2
𝑠2𝑖−2 − 𝑙

· 𝑎 − 𝑠2𝑖−1
𝑠2𝑖−1 − 𝑏

𝑥′−𝑘 = 𝑥
′
0

𝑘∏
𝑖=1

𝑠−2𝑖 − 𝑙
ℎ − 𝑠−2𝑖

· 𝑠1−2𝑖 − 𝑏
𝑎 − 𝑠1−2𝑖

Therefore, the construction is valid, if and only if the following probability constraint is satised:∑︁
𝑥𝑘 = Pr[(𝑙, 𝑎)] = ℎ − 𝑏

ℎ + 𝑎 − 𝑙 − 𝑏 ,
∑︁

𝑥′
𝑘
= Pr[(ℎ,𝑏)] = 𝑎 − 𝑙

ℎ + 𝑎 − 𝑙 − 𝑏 ,

and

𝑥𝑘 , 𝑥
′
𝑘
≥ 0.

It remains to argue the existence of such an information structure (𝑠, 𝜖, 𝐾) with 𝜖 → 0
+
, and for the

purpose of the revenue bound 𝑥𝐾 , 𝑥
′
−𝐾 = 𝑜 (1). This is established in Lemma A.1 and Lemma A.2 below.

Lemma A.1. For suciently small 0 < 𝜖 < (min{ℎ∗/`, `/𝑙∗})1/4 − 1 and 𝐾 < 1

4
log

1+𝜖 min{ℎ∗/`, `/𝑙∗},

there exist 𝑠 ∈ (𝑠−, 𝑠+) such that the above construction is a valid signaling scheme, where

𝑠− = ` · (1 + 𝜖)−2𝐾 , 𝑠+ = ` · (1 + 𝜖)2𝐾 .

Lemma A.2. As 𝜖 → 0
+
and 𝐾 =

√
𝜖

4
log

1+𝜖 min{ℎ∗/`, `/𝑙∗} = 𝑂 (1/
√
𝜖), the valid signaling scheme

dened in Lemma A.1 has 𝑥𝐾 , 𝑥
′
−𝐾 = 𝑂 (

√
𝜖).
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Proof of Lemma A.1. Note that from the previous analysis, we have

𝑥𝑘 = 𝐴𝑘 (𝑠, 𝜖) · 𝑥0, 𝑥′
𝑘
= 𝐴′

𝑘
(𝑠, 𝜖) · 𝑥′

0
,

where 𝐴𝑘 (𝑠, 𝜖) and 𝐴′
𝑘
(𝑠, 𝜖) are coecients depending on 𝑠 and 𝜖 .

Therefore, the construction is valid if and only if the following two conditions are satised:

• The probability constraints are satised, i.e.,

𝑥0

𝐾∑︁
𝑘=−𝐾

𝐴𝑘 (𝑠, 𝜖) = Pr[(𝑙, 𝑎)], 𝑥′
0

𝐾∑︁
𝑘=−𝐾

𝐴′
𝑘
(𝑠, 𝜖) = Pr[(ℎ,𝑏)]; (4)

• All probabilities are non-negative, or equivalently,

∀𝑘 ∈ [−𝐾,𝐾], 𝐴𝑘 (𝑠, 𝜖), 𝐴′
𝑘
(𝑠, 𝜖) ≥ 0. (5)

For any suciently small 0 < 𝜖 < (min{ℎ∗/`, `/𝑙∗})1/4−1, there exists 1 ≤ 𝐾 < 1

4
log

1+𝜖 min{ℎ∗/`, `/𝑙∗}.

Then, for any 𝑠 ∈ (𝑠−, 𝑠+) we have

𝑙∗ < ` · (1 + 𝜖)−4𝐾 = 𝑠− · (1 + 𝜖)−2𝐾 < 𝑠−2𝐾 , . . . , 𝑠2𝐾 < 𝑠+ · (1 + 𝜖)2𝐾 = ` · (1 + 𝜖)4𝐾 < ℎ∗.

Hence, for all −𝐾 ≤ 𝑘 ≤ 𝐾 , we know that (5) is satised. To conclude the proof, we next argue that

there exists 𝑠 ∈ (𝑠−, 𝑠+) such that (4) is also satised.

Note that 𝑥𝑘 and 𝑥
′
𝑘
are inter-dependent, i.e.,

𝑥′
𝑘
= 𝑥𝑘 ·

𝑠2𝑘 − 𝑙
ℎ − 𝑠2𝑘

.

In particular, if 𝑠2𝑘 < `, then

𝑠2𝑘 − 𝑙
ℎ − 𝑠2𝑘

<
` − 𝑙
ℎ − ` =

ℎ𝑎−𝑙𝑏
ℎ+𝑎−𝑙−𝑏 − 𝑙
ℎ − ℎ𝑎−𝑙𝑏

ℎ+𝑎−𝑙−𝑏
=

(ℎ − 𝑙) (𝑎 − 𝑙)
(ℎ − 𝑙) (ℎ − 𝑏) =

𝑎 − 𝑙
ℎ − 𝑏 =

Pr[(ℎ,𝑏)]
Pr[(𝑙, 𝑎)] ,

and vice versa.

Now,

𝐾∑︁
𝑘=−𝐾

𝑥′
𝑘
=

𝐾∑︁
𝑘=−𝐾

𝑥𝑘 ·
𝑠2𝑘 − 𝑙
ℎ − 𝑠2𝑘

= 𝑥0

𝐾∑︁
𝑘=−𝐾

𝐴𝑘 (𝑠, 𝜖) ·
𝑠2𝑘 − 𝑙
ℎ − 𝑠2𝑘

,

and so (4) can be satised if and only if∑𝐾
𝑘=−𝐾 𝐴𝑘 (𝑠, 𝜖) ·

𝑠
2𝑘−𝑙
ℎ−𝑠

2𝑘∑𝐾
𝑘=−𝐾 𝐴𝑘 (𝑠, 𝜖)

=
Pr[(ℎ,𝑏)]
Pr[(𝑙, 𝑎)] .
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With 𝜖 xed, the left-hand-side is a continuous function of 𝑠 , denoted as 𝛾 (𝑠). When 𝑠 = 𝑠−, 𝑠𝑖 < ` for

all −2𝐾 ≤ 𝑖 ≤ 2𝐾 . So,

𝛾 (𝑠−) <
∑𝐾
𝑘=−𝐾 𝐴𝑘 (𝑠, 𝜖) ·

Pr[(ℎ,𝑏)]
Pr[(𝑙,𝑎)]∑𝐾

𝑘=−𝐾 𝐴𝑘 (𝑠, 𝜖)
=
Pr[(ℎ,𝑏)]
Pr[(𝑙, 𝑎)] .

Similarly, we have

𝛾 (𝑠+) > Pr[(ℎ,𝑏)]
Pr[(𝑙, 𝑎)] .

Therefore, there must exist 𝑠 ∈ (𝑠−, 𝑠+) such that

𝛾 (𝑠) = Pr[(ℎ,𝑏)]
Pr[(𝑙, 𝑎)] ,

which implies that (4) is satised, hence completing the proof.

Proof of Lemma A.2. We now argue that for suciently small 𝜖 and properly selected 𝐾 , the information

structure dened by Lemma A.1 has 𝑥𝐾 , 𝑥
′
−𝐾 = 𝑜 (1).

Consider the following Taylor expansion near `,

ℎ − 𝑧
𝑧 − 𝑙 =

ℎ − `
` − 𝑙 +𝑂 (𝑧 − `) = ℎ − 𝑏

𝑎 − 𝑙 +𝑂 (𝑧 − `).

Similarly,

𝑎 − 𝑧
𝑧 − 𝑏 =

𝑎 − `
` − 𝑏 +𝑂 (𝑧 − `) = 𝑎 − 𝑙

ℎ − 𝑏 +𝑂 (𝑧 − `).

Therefore,

𝐴𝑘 (𝑠, 𝜖) = 1 +𝑂 (Δ𝑠), 𝐴′
𝑘
(𝑠, 𝜖) = 1 +𝑂 (Δ𝑠),

where Δ𝑠 = max{|𝑠−2𝐾 − ` |, |𝑠2𝐾 − ` |}.

Then, we have

𝑥𝐾 = 𝑥0 · 𝐴𝐾 (𝑠, 𝜖) = Pr[(𝑙, 𝑎)] · 𝐴𝐾 (𝑠, 𝜖)∑𝐾
−𝐾 𝐴𝑘 (𝑠, 𝜖)

= Pr[(𝑙, 𝑎)] · 1

2𝐾 + 1

+𝑂 (Δ𝑠),

and similarly,

𝑥′−𝐾 = 𝑥′
0
· 𝐴′

−𝐾 (𝑠, 𝜖) = Pr[(ℎ,𝑏)] ·
𝐴′
−𝐾 (𝑠, 𝜖)∑𝐾

−𝐾 𝐴
′
𝑘
(𝑠, 𝜖)

= Pr[(ℎ,𝑏)] · 1

2𝐾 + 1

+𝑂 (Δ𝑠).

In other words, as long as 𝐾 → ∞ and Δ𝑠 → 0, 𝑥𝐾 , 𝑥
′
−𝐾 → 0.

In particular, as 𝜖 → 0, the following 𝐾 satisfy the desired property:

𝐾 =

√
𝜖

4

log
1+𝜖 min{ℎ∗/`, `/𝑙∗} = 𝑂 (

√
𝜖/ln(1 + 𝜖)) = 𝑂 (1/

√
𝜖) → ∞,

in the meanwhile,

Δ𝑠 ≤ ` · (1 + 𝜖)4𝐾 − ` ≤ ` (min{ℎ∗/`, `/𝑙∗}
√
𝜖 − 1) = 𝑂 (

√
𝜖) → 0.
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B Additional Results and Proofs for Asymmetric Setting

In Section B.1 we provide a proof of Proposition 5.4 for the uniform winner and incongruent loser

case, which shows that the optimal information structure must be an interior information structure. In

Section B.2 and Section B.3 we state additional propositions for (i) the uniform winner and congruent

loser case and (ii) the variable winner case, which establish that the optimal information structure must

be moderate. Together, these results show Theorem 5.1, whose proof appears in Section B.4.

B.1 UniformWinner, Incongruent Loser

Proof of Proposition 5.4. Note that in this case 𝑟1 ≥ 𝑟 ′
1
≥ 𝑟 ′

2
≥ 𝑟2 and hence also `1 ≥ `2. Thus, the

revenue from the extremal information structures is given by `2 = 𝑝𝑟2 + (1 − 𝑝)𝑟 ′
2
. Consequently,

no-disclosure and full-disclosure yield the same expected revenue. Moreover, unbundling the winner

and bundling the loser yield the same revenue as no-disclosure or full-disclosure:

𝑟1𝑝

(
𝑟2𝑝 + 𝑟 ′2 (1 − 𝑝)

𝑟1

)
+ 𝑟 ′

1
(1 − 𝑝)

(
𝑟2𝑝 + 𝑟 ′2 (1 − 𝑝)

𝑟 ′
1

)
= 𝑝𝑟2 + (1 − 𝑝) 𝑟 ′

2

We then consider bundling the winner and unbundling the loser:

𝑟1𝑝

(
𝑟2

𝑟1𝑝 + 𝑟 ′
1
(1 − 𝑝)

)
+ 𝑟 ′

1
(1 − 𝑝)

(
𝑟 ′
2

𝑟1𝑝 + 𝑟 ′
1
(1 − 𝑝)

)
This yields a strictly lower revenue than no-disclosure with an incongruent loser:

𝑟1𝑝

(
𝑟2

𝑟1𝑝 + 𝑟 ′
1
(1 − 𝑝)

)
+ 𝑟 ′

1
(1 − 𝑝)

(
𝑟 ′
2

𝑟1𝑝 + 𝑟 ′
1
(1 − 𝑝)

)
−

(
𝑝𝑟2 + 𝑟 ′2 (1 − 𝑝)

)
=

𝑝 (1 − 𝑝)
(
𝑟1 − 𝑟 ′1

) (
𝑟2 − 𝑟 ′2

)
𝑝𝑟1 + 𝑟 ′

1
(1 − 𝑝) < 0,

as the incongruent loser is dened by the property(
𝑟1 − 𝑟 ′1

) (
𝑟2 − 𝑟 ′2

)
< 0.

Thus, the exact opposite result to the congruent loser. Finally, unbundling the winner and bundling the

loser yields the same revenue as no-disclosure or full-disclosure.

It therefore suces to show that we can construct an interior information structure such that

revenue improves in comparison to no-disclosure. We begin by partially bundling the loser only. This is
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a single-agent optimization problem:

@
@
@
@@

𝑟

𝑠
(𝑟1, 𝑥) (𝑟1, 𝑦)

(
𝑟 ′
1
, 𝑥

) (
𝑟 ′
1
, 𝑦

)
(𝑟1, 𝑟2) 𝑝 − 𝑞 𝑞 0 0

(𝑟 ′
1
, 𝑟 ′

2
) 0 0 𝑞′ 𝑝′ − 𝑞′

, (6)

where 𝑝′ = 1 − 𝑝 . This information structure leads the following revenue:

𝑟1

(
(𝑝 − 𝑞) 𝑥

𝑟1
+ 𝑞 𝑦

𝑟1

)
+ 𝑟 ′

1

(
𝑞′
𝑥

𝑟 ′
1

+ (𝑝′ − 𝑞′) 𝑦
𝑟 ′
1

)
(7)

where 𝑟1 and 𝑟
′
1
cancel:

((𝑝 − 𝑞) 𝑥 + 𝑞𝑦) + (𝑞′𝑥 + (𝑝′ − 𝑞′) 𝑦)

and the calibration constraints are given by:

𝑥 =
𝑟2 (𝑝 − 𝑞) + 𝑟 ′2𝑞′

(𝑝 − 𝑞) + 𝑞′

and

𝑦 =
𝑟2𝑞 + 𝑟 ′2 (𝑝′ − 𝑞′)
𝑞 + 𝑝′ − 𝑞′ .

Thus, we have revenue indierence (as expected):

((𝑝 − 𝑞) 𝑥 + 𝑞𝑦) + (𝑞′𝑥 + (𝑝′ − 𝑞′) 𝑦) = 𝑟2𝑝 + 𝑝′𝑟 ′2.

It follows that the introduction of (𝑞, 𝑞′), subject to the probability constraints, leaves revenue unchanged.

Clearly, we can always choose (𝑞, 𝑞′) so that

𝑦 > 𝑥 . (8)

However, we now notice that if we consider the submatrix:

(𝑟1, 𝑦)
(
𝑟 ′
1
, 𝑥

)
𝑞 0

0 𝑞′

and 𝑦 > 𝑥 , then this submatrix represents an instance of the congruent winner with weak competition

case, and hence by Theorem 5.2 it is optimal to bundle the winner. Thus,

(𝑧,𝑦) (𝑧, 𝑥)

𝑞 0

0 𝑞′
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with

𝑧 =
𝑟1𝑞 + 𝑟 ′1𝑞′

𝑞 + 𝑞′ .

Moreover, given that the benet of bundling is increasing in the dierence 𝑦 − 𝑥 , it follows that we have

an interior solution, as a higher 𝑦 and a lower 𝑥 mean that 𝑞 and 𝑞′ have to become smaller.

B.2 UniformWinner, Congruent Loser

Proposition B.1 (Uniform Winner, Congruent Loser). With a uniform winner and a congruent loser,

partially bundling the winner and the loser is revenue-improving relative to the extremal information

structures. Both partial unbundling of the loser:

@
@
@
@@

𝑟

𝑠
(`1, `1) (`1, `1)

(
`1, 𝑟

′
2

)
(𝑟1, 𝑟2) 𝑝 0 0

(𝑟 ′
1
, 𝑟 ′

2
) 0 1 − 𝑝 − 𝑞 𝑞

(9)

or partial bundling of the winner:

@
@
@
@@

𝑟

𝑠
(𝑟2, 𝑟2)

(
𝑟2, 𝑟

′
2

) (
𝑟 ′
1
, 𝑟 ′

2

)
(𝑟1, 𝑟2) 𝑝 0 0

(𝑟 ′
1
, 𝑟 ′

2
) 0 1 − 𝑝 − 𝑞 𝑞

(10)

for suitably chosen 𝑞 generates a strictly higher revenue than the extremal information structures.

Proof of Proposition B.1. We begin by observing that in the uniform winner and congruent loser case

the revenue from no- and full-disclosure is equal to

`2 = 𝑝𝑟2 + (1 − 𝑝)𝑟 ′
2
.

Next, we argue that the information structure in (9) yields a strict revenue improvement. Its revenue

is given by:

𝑟1𝑝 + 𝑟 ′1(1 − 𝑝 − 𝑞) + 𝑟 ′1𝑞
𝑟 ′
2

`1
,

where the calibration constraint is given by:

𝑟2𝑝 + 𝑟 ′2(1 − 𝑝 − 𝑞)
1 − 𝑞 = 𝑟1𝑝 + 𝑟 ′1(1 − 𝑝) = `1,
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where we remind the reader that

`1 = 𝑟1𝑝 + 𝑟 ′1(1 − 𝑝)

and thus:

𝑞 = −
(
𝑝𝑟1 − 𝑝𝑟2 − 𝑟 ′1 (𝑝 − 1) + 𝑟 ′

2
(𝑝 − 1)

)
𝑟 ′
2
− 𝑝𝑟1 + 𝑟 ′

1
(𝑝 − 1)

Hence, the revenue dierence is

𝑟1𝑝 + 𝑟 ′1(1 − 𝑝 − 𝑞) + 𝑞𝑟 ′1
𝑟 ′
2

`1
−

(
𝑟2𝑝 + (1 − 𝑝) 𝑟 ′

2

)
= 𝑝

𝑟1 − 𝑟 ′1
(1 − 𝑝) 𝑟 ′

1
+ 𝑝𝑟1

(
(1 − 𝑝)

(
𝑟 ′
1
− 𝑟 ′

2

)
+ 𝑝 (𝑟1 − 𝑟2)

)
> 0,

where the inequality holds due to the uniform winner property.

It remains to establish that the revenue of (10) is also greater than the revenue from the extremal

information structures. The revenue of (10) is:

𝑟1𝑝 + 𝑟 ′1(1 − 𝑝 − 𝑞)
𝑟 ′
2

𝑟2
+ 𝑟 ′

1
𝑞
𝑟 ′
2

𝑟 ′
1

,

where the calibration constraint is given by:

𝑟1𝑝 + 𝑟 ′1(1 − 𝑝 − 𝑞)
1 − 𝑞 = 𝑟2,

and thus:

𝑞 = − 1

𝑟 ′
1
− 𝑟2

(
𝑟2 − 𝑝𝑟1 + 𝑟 ′1 (𝑝 − 1)

)
.

The revenue dierence is therefore

𝑟1𝑝 + 𝑟 ′1(1 − 𝑝 − 𝑞)
𝑟 ′
2

𝑟2
+ 𝑟 ′

1
𝑞
𝑟 ′
2

𝑟 ′
1

−
(
𝑟2𝑝 + (1 − 𝑝) 𝑟 ′

2

)
=

𝑝

𝑟2
(𝑟1 − 𝑟2)

(
𝑟2 − 𝑟 ′2

)
> 0,

where the inequality holds by the congruent loser property.

B.3 Variable Winner

Proposition B.2 (Variable Winner). With a variable winner, a moderate information structure improves

on the extremal information structures.

Proof. Note that the revenue from full-disclosure is 𝑝𝑟1
𝑟 ′
1

𝑟1
+ (1−𝑝)𝑟 ′

2

𝑟2
𝑟 ′
2

= 𝑝𝑟 ′
1
+ (1−𝑝)𝑟2, which is no more

than `2 because 𝑟
′
1
≤ 𝑟 ′

2
, but also no more than `1 because 𝑟2 ≤ 𝑟1. So, the revenue from full-disclosure
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is at most min{`1, `2}. The revenue from no-disclosure, on the other hand, is `2 if `1 ≥ `2, and `1

otherwise. It is therefore equal to min{`1, `2}.

We construct a moderate information structure that strictly improves upon this. Without loss of

generality, we assume that `1 > `2. We consider the following candidate information structure:

@
@
@
@@

𝑟

𝑠
(𝑟1, 𝑟2) (𝑟 ′

1
, 𝑟 ′

2
)

(
𝑟 ′′
1
, 𝑟 ′′

2

)
(𝑟1, 𝑟2) 𝜖_ 0 1 − 𝜖

(𝑟 ′
1
, 𝑟 ′

2
) 0 𝜖 (1 − _) 1 − 𝜖

, (11)

the construction of which we now detail. By the hypothesis of a variable winner, namely

𝑟1 > 𝑟2, 𝑟
′
1
< 𝑟 ′

2
, (12)

we can nd a unique convex combination _ and 1 − _ of the click-through rate congurations (𝑟1, 𝑟2)

and (𝑟 ′
1
, 𝑟 ′

2
), such that the expected click-through rate of both bidders is the same. Thus, in expectation

they have the same expected click-through rate, which we call 𝑟 :

_𝑟1 + (1 − _) 𝑟 ′
1
= _𝑟2 + (1 − _) 𝑟 ′

2
= 𝑟 . (13)

The remaining probability is collected in a single calibrated signal that yields the posterior expectation

of the click-through rates:

𝑟 ′′𝑖 =
(𝑝 − 𝜖_) 𝑟𝑖 + (1 − 𝑝 − 𝜖 (1 − _)) 𝑟 ′𝑖
(𝑝 − 𝜖_) + (1 − 𝑝 − 𝜖 (1 − _)) .

This yields the above information structure (11). Now, we can always chose 𝜖 > 0 suciently small so

that 𝑟 ′′
1
≥ 𝑟 ′′

2
.

If we restrict attention to the subset of signals (𝑟1, 𝑟2), (𝑟 ′1, 𝑟 ′2), then it is as if we have a bidding game

with equal means of the CTRs by construction of (13). By Lemma 4.5, we know that on this subset of

signals we can extract the full surplus generated by the click-through rates. In the remaining prole,

we run the bidding game as if we have a zero-disclosure policy. With this, we know that the resulting

revenue is given by

𝜖_𝑟1 + (1 − 𝜖) _𝑟 ′
2
+ (1 − 𝜖)

(𝑝 − 𝜖_) 𝑟2 + (1 − 𝑝 − 𝜖 (1 − _)) 𝑟 ′
2

(𝑝 − 𝜖_) + (1 − 𝑝 − 𝜖 (1 − _)) . (14)

By contrast, in the no-disclosure policy the revenue would be `2, which can be written as

𝜖_𝑟2 + (1 − 𝜖) _𝑟 ′
2
+ (1 − 𝜖)

(𝑝 − 𝜖_) 𝑟2 + (1 − 𝑝 − 𝜖 (1 − _)) 𝑟 ′
2

(𝑝 − 𝜖_) + (1 − 𝑝 − 𝜖 (1 − _)) , (15)

and by the hypothesis of the variable winner (see (12)), 𝑟1 > 𝑟2, and the above information structure (11)

strictly improves upon the no-disclosure policy.
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B.4 Proof of Theorem 5.1

Proof of Theorem 5.1. The claim follows from combining Proposition 5.4 with Proposition B.1 and Propo-

sition B.2.
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