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Mixed Bundling in Oligopoly Markets�

Jidong Zhou

School of Management

Yale University

January 2021

Abstract

This paper proposes a framework for studying competitive mixed bundling

with an arbitrary number of �rms. We examine both a �rm�s incentive to

introduce mixed bundling and equilibrium tari¤s when all �rms adopt the

mixed-bundling strategy. In the duopoly case, relative to separate sales, mixed

bundling has ambiguous impacts on prices, pro�t and consumer surplus; with

many �rms, however, mixed bundling typically lowers all prices, harms �rms

and bene�ts consumers.

Keywords: bundling, multiproduct pricing, price competition, oligopoly
JEL classi�cation: D43, L13, L15

1 Introduction

There are many circumstances where consumers are o¤ered a package of products at

a discounted price relative to the sum of the component prices. This selling strategy

is called �mixed bundling.� Examples include software suites, TV-internet-phone

bundles, home and auto insurance bundles, package tours, value meals, lawn care

and landscaping packages, gas and electricity in some regions, and so on. (In the

extreme form of �pure bundling,�all component products are sold in a package only

and no individual products are available for purchase.)

The possible rationales for bundling and the impact of bundling on market per-

formance are classic economic questions that have received wide attention. Early

research on bundling focuses on the monopoly case. It is pointed out that, aside

from some obvious reasons such as the cost savings in production and transactions,

�I am grateful to the editor, an associate editor, three anonymous referees, Mark Armstrong,

Barry Nalebu¤, Andrew Rhodes, and Mike Riordan for their helpful comments.
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bundling can be a strategy to price discriminate and extract more surplus from con-

sumers (e.g., Stigler (1968), Adams and Yellen (1976), and McAfee, McMillan, and

Whinston (1989)).1 Bundling can also be used by a multiproduct �rm to exclude

smaller rivals that only supply a subset of the products (e.g., Whinston (1990), Choi

and Stefanadis (2001), Carlton and Waldman (2002), and Nalebu¤ (2004)). This is

the usual antitrust concern about bundling.

In many examples of bundling, however, the market structure is relatively sta-

ble and several competing multiproduct �rms operate there. In that case, bundled

discounting is usually not intended to exclude rivals from the market but is simply

a business strategy to attract consumers to buy more products from the same �rm.

This paper studies mixed bundling in such a competitive environment. Given the

prevalence of bundled discounting among competing �rms, there is already substan-

tial research on this phenomenon, such as Matutes and Regibeau (1992), Anderson

and Leruth (1993), Reisinger (2004), Thanassoulis (2007, 11), and Armstrong and

Vickers (2010). Nevertheless, all the existing papers focus on the duopoly case.

Little is understood about how the degree of competition in terms of the number

of �rms might a¤ect �rms� incentives to adopt the mixed-bundling strategy and

the impact of mixed bundling on market performance. This is the �rst paper that

studies competitive mixed bundling with an arbitrary number of �rms. It makes the

following contributions.

First, we o¤er a random-utility framework for studying competitive mixed bundling.

To have product di¤erentiation,2 the existing works usually use a two-dimensional

Hotelling model where consumers with di¤erent preferences for products are distrib-

uted on a square. In a multiproduct environment, it is not convenient to extend this

spatial approach of product di¤erentiation to the case with more than two �rms. In

this paper, we instead adopt a multiproduct version of the random utility framework

in Perlo¤ and Salop (1985). This framework can easily accommodate any number

of �rms; in the duopoly case, it can be converted into a two-dimensional Hotelling

model such that we can compare our results with those in the existing literature.3

Second, we extend the existing insights on a �rm�s incentive to use the mixed-

bundling strategy (e.g., from McAfee, McMillan, and Whinston (1989), and Chen

1See, for example, also Long (1984), Schmalensee (1984), Fang and Norman (2006), and Chen

and Riordan (2013).
2Introducing product di¤erentiation is necessary for studying competitive bundling if �rms have

similar cost conditions. Otherwise, prices would settle at marginal costs and there would be no

meaningful scope for o¤ering a bundling discount.
3Anderson and Leruth (1993) also use a random-utility framework in their duopoly model of

mixed bundling, but they focus on the logit setting where the utility shock follows the extreme

value distribution. Another important di¤erence is that in our model the utility shock is at the

level of individual products, while in Anderson and Leruth (1993) the utility shock is at the bundle

level (so that a consumer might like both products individually but dislike the package of the two

products).
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and Riordan (2013)) to a general oligopoly model. The oligopoly problem can actu-

ally be formulated as a monopoly problem but with a random outside option that

depends on the equilibrium prices. The particular structure of the outside option in

a symmetric competition environment enables us to obtain some clean results. For

instance, for any continuous joint valuation distribution, each �rm has a unilateral

incentive to introduce mixed bundling when there are only two �rms,4 or when there

are many �rms and a certain tail-behavior condition is satis�ed.

Third, we explain why the problem of mixed bundling is much harder once we go

beyond duopoly. The main challenge, when there are more than two �rms, is how

to calculate a �rm�s demand. From a �rm, a consumer can buy both products, one

product only, or nothing. In the third option, the consumer can buy both products

from a single rival �rm to take advantage of its bundling discount or mix and match

across all rival �rms to assemble a better bundle. Which is better depends on

whether the best matched products among the rival �rms are from the same �rm

or two di¤erent �rms and also depends on the magnitude of the bundling discount.

We develop an approach to calculate the demand and characterize the necessary

conditions for a mixed-bundling equilibrium (if it exists). However, the equilibrium

conditions are hard to deal with in general, and further analytical progress is made

only in the duopoly case and the case with many �rms. In particular, in the latter

case, the equilibrium prices typically have a simple approximation: the bundling

discount is approximately equal to half of the single-product markup. When the

production cost is zero, the approximate pricing scheme features �50% o¤ for the

second product.�

Finally, and perhaps most importantly, we show that the impacts of mixed

bundling on market prices, pro�t and consumer welfare can qualitatively depend

on the number of �rms in the market.5 The example often highlighted in the exist-

ing research is when consumers are uniformly distributed on the Hotelling square. In

that case, compared to separate sales, bundling reduces all prices, harms �rms and

bene�ts consumers. This leads to the usual perception that mixed bundling is pro-

competitive. In this paper, we �rst argue that this insight is incomplete. There are

many other duopoly examples with di¤erent valuation distributions where bundling

raises single-product prices or even all prices relative to separate sales so that it is

possible for bundling to bene�t �rms and harm consumers or even harm all players.

Therefore, in duopoly the impacts of mixed bundling are in general ambiguous, and

we should be cautious about the policy implications drawn from some convenient

examples such as the widely used Hotelling model with uniformly distributed con-

4A similar duopoly result is also derived by Armstrong and Vickers (2010) in their Hotelling

setup.
5With the assumption of full market coverage, bundling must always harm total welfare as it

causes too much one-stop shopping and so sub-optimal match between consumers and products.

3



sumers. However, with many �rms, we show that mixed bundling has less ambiguous

impacts, and it usually makes all products cheaper, and therefore harms �rms and

bene�ts consumers.

The intuition behind these results is as follows. The bundling discount creates

a new competition boundary on which consumers are indi¤erent between buying

both products from a �rm and buying both from its rivals. For these marginal

consumers, if the �rm makes one of its single products slightly cheaper (but keeps

the price of the other single product and the bundling discount unchanged), they will

switch to buying both products from it. This renders the price reduction �doubly

pro�table,�which is a force for bundling to intensify price competition and which is

emphasized in the literature. However, the bundling discount also shifts the position

of all the marginal consumers who will respond to a �rm�s price reduction and so

potentially changes their density. This e¤ect is subtler and depends on the shape

of the consumer valuation distribution. For example, in the Hotelling model with a

uniform distribution, this second e¤ect does not exist because the position of those

marginal consumers does not a¤ect their density. This is why in that case all prices

go down in the regime of mixed bundling. For other distributions, it can be well

the case that the bundling discount decreases the density of marginal consumers,

which goes against and sometimes even dominates the �double pro�t�e¤ect. This

is the source of the potentially ambiguous impacts of mixed bundling. However, if

the bundling discount is small, we show that the second e¤ect is of second order

relative to the �double pro�t�e¤ect, and so mixed bundling intensi�es competition.

In other words, a small bundling discount is generally pro-competitive. When there

are many �rms, competition leaves little scope for o¤ering a bundling discount and

the discount is indeed small in equilibrium. This explains why mixed bundling has

unambiguous impacts when there are many �rms.

Among the existing papers on competitive mixed bundling, Armstrong and Vick-

ers (2010) is the most general study so far if there are only two �rms and each

consumer needs to buy all products.6 They consider a general symmetric consumer

distribution on the Hotelling square, allow for the existence of an exogenous shop-

ping cost and also consider elastic demand and general nonlinear pricing schedules.

Our paper is more general in terms of considering more than two �rms, but oth-

erwise, it focuses on the simple case with unit demand and without an exogenous

shopping cost. Some of our analysis (e.g., the local-deviation argument used in

various places) parallels theirs.

There are also many works on competitive pure bundling. See, for example,

Matutes and Regibeau (1988), Economides (1989), Kim and Choi (2015), Zhou

6Thanassoulis (2007, 11) study the case when some �small�consumers only need one product

and highlight the possible distributional e¤ect of bundling on di¤erent types of consumers. This

consumer heterogeneity is absent in both Armstrong and Vickers (2010) and this paper.
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(2017), Hurkens, Jeon, and Menicucci (2019), and Shuai, Yang, and Zhang (2019).7

The random-utility framework used in this paper follows Zhou (2017). Pure bundling

is easier to deal with, so more analytical progress has been made there in a general

oligopoly model. It is shown that compared to separate sales, pure bundling tends to

relax price competition when the number of �rms is above a threshold. A somewhat

opposite result is derived in this paper for mixed bundling. This contrast highlights

an important di¤erence between mixed and pure bundling: with mixed bundling,

the bundling discount is endogenous and becomes small when there are many �rms,

while pure bundling is like mixed bundling with a �xed and su¢ ciently large discount

regardless of the number of �rms. As discussed above, the pro-competitiveness of

mixed bundling when there are many �rms relies on the discount being small in

equilibrium.

Bundling has also been studied in other competitive environments such as auc-

tions. See, for instance, Zhou (2017) for a discussion on how pure bundling among

competing �rms is related to pure bundling in multi-object auctions as studied in

Palfrey (1983) and Chakraborty (1999) (and also to information disclosure in single-

object auctions as studied in Board (2009) and Ganuza and Penalva (2010)). From

a mechanism-design perspective, Armstrong (2000), Avery and Hendershott (2000),

and Jehiel, Meyer-ter-Vehn, and Moldovanu (2007) study the possibility of mixed

bundling being a feature of revenue-maximizing design in multi-object auctions. The

�rst two papers mainly focus on the case with binary valuations; in a setup with

continuous valuations, Jehiel, Meyer-ter-Vehn, and Moldovanu (2007) show that

introducing a discount for the bidder who receives the whole package of objects im-

proves the revenue relative to separate sales and pure bundling. They also calculate

the optimal discount in a two-bidder example. This strand of research, however, is

very di¤erent from studying the equilibrium mixed-bundling tari¤among competing

�rms.

The rest of the paper is organized as follows. Section 2 introduces the model and

studies the benchmark case of separate sales. Section 3 examines a �rm�s individual

incentive to introduce a bundling discount. Section 4 characterizes the demand and

the equilibrium pricing schedule when all �rms use the mixed-bundling strategy and

also derives the general formulas of how mixed bundling a¤ects industry pro�t and

consumer surplus compared to separate sales. Section 5 deals with two special cases

with two or many �rms. Section 6 discusses issues such as multi-stop shopping cost

and bundling premium, and Section 7 concludes. All omitted proofs are presented

in the appendix.

7See Section 7 in Stole (2007) and Section 4 in Armstrong (2016) for surveys of the literature

on competitive bundling.
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2 The model and the benchmark

Consider a market where each consumer needs to buy two products 1 and 2. The

measure of consumers is normalized to one. There are n � 2 �rms, each supplying
both products. The unit production cost of each product is normalized to zero,

so we can regard prices as markups. Each product is horizontally di¤erentiated

across �rms (e.g., each �rm produces a di¤erent variety of the product), but there

is no product compatibility issue and consumers can freely mix and match. We

adopt a multiproduct version of the random utility framework in Perlo¤ and Salop

(1985) to model product di¤erentiation. Let Xk � (Xk
1 ; X

k
2 ), k = 1; � � � ; n, denote

the random match utilities of �rm k�s two products for a consumer, and they are

privately observed by the consumer. We assume that Xk is i.i.d. across consumers

(e.g., consumers have idiosyncratic tastes for the products from di¤erent �rms), and

is also i.i.d. across �rms (so �rms are ex ante symmetric). SupposeXk is distributed

according to a common joint cumulative distribution function (cdf) F (x1; x2). F

has a full-dimensional support S � R2 and a bounded and di¤erentiable probability
density function (pdf) f(x1; x2). Let Fi(x) and fi(x), i = 1; 2, be the marginal cdf

and pdf of Xk
i , and let [xi; xi] be its support (where xi = �1 and xi = 1 are

allowed). We generally allow correlation in a consumer�s match utilities for the two

products supplied by the same �rm; but for some results we consider the special

�i.i.d.�case with F (x1; x2) = F1(x1)F2(x2) and F1 = F2, i.e., the case when the two

products in each �rm are symmetric and have independent match utilities.

We consider a discrete-choice framework where the incremental utility from con-

suming more than one variety of a product is zero and so a consumer only wants to

buy one variety of each product.8 We also assume that a consumer has unit demand

for her preferred variety of each product. If a consumer consumes two products with

match utilities (x1; x2) (which can be purchased from di¤erent �rms) and makes a

total payment T , she obtains surplus (x1 + x2)� T .9

If a �rm sells its two products separately, it chooses a price vector (p̂1; p̂2). Let

P̂ � p̂1 + p̂2 be the associated bundle price. If a �rm adopts the mixed-bundling

strategy, it chooses a pair of single-product prices (p1; p2) together with a bundling

discount � > 0.10 Let P � p1+p2�� be the associated bundle price. In either regime
8This assumption is standard in the literature on competitive bundling, though it is not always

without loss of generality. For example, reading another article on the same subject in a di¤erent

newspaper, or reading another chapter on the same topic in a di¤erent textbook, sometimes im-

proves utility. There are works on consumer demand which extend the usual discrete choice model

by allowing consumers to consume multiple versions of a product (see, e.g., Gentzkow (2007)).
9Most of bundling papers assume such an additive utility function, and this is also compatible

with perfect complements under the assumption of full market coverage. There is some research

which studies bundling of substitutes or complements (see, e.g., Long (1984), Armstrong (2013),

and Haghpanah and Hartline (2019)).
10We assume that consumer purchase cannot be monitored and so it is impossible to implement
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the timing is that �rms choose their prices simultaneously, and then consumers make

their choices after observing all the match utilities and prices. As often assumed in

the literature on competitive bundling, the market is fully covered (i.e., all consumers

buy both products). This will be the case if consumers do not have outside options,

or if they have a su¢ ciently high basic valuation for each product on top of the

above match utilities.

For convenience, we introduce a few pieces of notation. Denote by

Y �ki � max
k0 6=k

Xk0

i

the match utility of �rm k�s best rival product i, and by

Zki � Xk
i � Y �ki

the match utility of �rm k�s product i relative to its best rival product. When �rms

sell their products separately and charge the same prices, a consumer will buy �rm

k�s product i if and only if Zki > 0. Note that X
k
i and Y

�k
i are independent of each

other given Xk
i is i.i.d. across �rms. Since �rms are symmetric, we suppress the

superscripts k and �k thereafter.
LetG(y1; y2) � F (y1; y2)n�1 be the joint cdf of (Y1; Y2), g(y1; y2) be the associated

joint pdf, and Gi(y) � Fi(y)n�1 be the marginal cdf of Yi. The joint cdf of (Z1; Z2)
is

H(z1; z2) �
Z
S

F (y1 + z1; y2 + z2)dG(y1; y2) ;

and let h(z1; z2) be the associated joint pdf. (Whenever there is no confusion we

ignore the integral region S thereafter.) The marginal cdf of Zi is Hi(zi) �
R
Fi(y+

zi)dGi(y) with support [xi � xi; xi � xi], and let hi(zi) be the associated marginal
pdf. In particular, due to �rm symmetry, we have

Hi(0) = 1�
1

n
and hi(0) =

Z
fi(y)dFi(y)

n�1 : (1)

Here Hi(0) is the chance that a �rm�s product i is worse than its best rival product,

and hi(0) is the density of consumers who are indi¤erent between this �rm�s product

i and its best rival product.

Separate-sales benchmark. We �rst report the equilibrium in the benchmark

regime of separate sales. Since �rms compete on each product separately, the mar-

ket for each product is an independent Perlo¤-Salop model where only the marginal

distribution of that product�s match utility matters. Consider the market for prod-

uct i, and let p̂i be the (symmetric) equilibrium price.11 Suppose a �rm deviates to

a pricing strategy with a bundling premium � < 0. See Section 6.2 for a further discussion.
11In the duopoly case, Perlo¤ and Salop (1985) have shown that the pricing game has no asym-

metric equilibrium. Beyond duopoly Caplin and Nalebu¤ (1991) show that there is no asymmetric

equilibrium in the logit model. More recently, Quint (2014) proves a general result (see Lemma 1

there) which implies that our pricing game of separate sales has no asymmetric equilibrium if fi is

log-concave.
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price p̂0i, while other �rms stick to the equilibrium price p̂i. Then the demand for

the deviating �rm�s product i is

qi(p̂
0
i) = Pr[Xi � p̂0i > Yi � p̂i] = 1�Hi(p̂0i � p̂i) :

In equilibrium the demand is qi(p̂i) = 1
n
due to �rm symmetry, and this is also easy

to see by using (1).

The deviating �rm�s pro�t from product i is p̂0iqi(p̂
0
i), and for p̂i to be the equilib-

rium price the pro�t should be maximized at p̂0i = p̂i. From the �rst-order condition

we derive

p̂i =
1

nhi(0)
; (2)

where hi(0) is de�ned in (1). Henceforth, we assume that this �rst-order condition

is also su¢ cient for de�ning the equilibrium price. This is the case, for example,

when fi is log-concave (see Caplin and Nalebu¤(1991)).12 In the example of uniform

distribution with Fi(x) = x, we have hi(0) = 1 and so p̂i = 1=n. In the example of

extreme value distribution with Fi(x) = e�e
�x
(which generates the logit model), we

have hi(0) = (n� 1)=n2 and so p̂i = n=(n� 1). Generally, p̂i decreases in n if fi is
log-concave (see, e.g., Anderson, de Palma, and Nesterov (1995), and Zhou (2017)),

and limn!1 p̂i = 0 if and only if limx!xi
fi(x)

1�Fi(x) =1 (see Zhou (2017)). The latter

must be true if fi is strictly positive on a bounded support.

3 Incentive to use mixed bundling

We �rst examine, starting from separate sales, whether a �rm has a unilateral in-

centive to introduce the mixed-bundling strategy (so that separate sales cannot be

an equilibrium outcome). We need another two pieces of notation: the cdf of Zi,

conditional on Zj = zj where j 6= i, is

Hi(zijzj) �
Z zi

�1
hi(� ijzj)d� i ;

where hi(� ijzj) � h(� i; zj)=hj(zj) is the conditional pdf of Zi.
Suppose a �rm unilaterally deviates from separate sales and introduces a small

bundling discount � > 0 (but keeps its single-product prices the same as in the

separate-sales equilibrium). Figure 1 below depicts how this small deviation a¤ects

consumer demand in the space of (z1; z2), where 
i, i = 1; 2, indicates consumers who

buy only product i from the �rm in question and 
b indicates consumers who buy

both products from it. (This local-deviation approach follows McAfee, McMillan,

and Whinston (1989) who study bundling incentive in the monopoly case. Figure 1

below is similar to their Figure III.)

12Many often used distributions such as uniform, normal, logistic, and extreme value have a log-

concave density. Caplin and Nalebu¤ (1991) provide a weaker su¢ cient condition which requires

fi to be � 1
n+1 -concave for a given n.
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Figure 1: The impact of a small bundling discount on demand

The negative e¤ect of the deviation is that the deviating �rm earns � less from

the consumers who buy both products from it. In the regime of separate sales, the

measure of those consumers is


b = 1�H1(0)�H2(0) +H(0; 0) =
2

n
� 1 +H(0; 0) ;

where we have used Hi(0) = 1� 1
n
. So the (�rst-order) loss from the small deviation

is �
b.

The positive e¤ect of the deviation is that more consumers buy both products

from the deviating �rm, i.e., the region 
b expands as indicated on the graph.

Those consumers on the two shaded rectangle areas switch from buying only one

product to buying both products from the deviating �rm, and those on the small

shaded triangle area switch from buying nothing to buying both products from the

deviating �rm.

Notice that given a bounded and continuous joint density, the small triangle

area is a second-order e¤ect when � is small, so only the two rectangle areas matter.

The measure of consumers on the vertical rectangle area is �
R1
0
h(0; z2)dz2, and the

deviating �rm now makes an extra pro�t p̂1 � � from each of them. This yields a

(�rst-order) gain

�p̂1

Z 1

0

h(0; z2)dz2 =
�

nh1(0)
� h1(0)

Z 1

0

h2(z2j0)dz2 =
�

n
[1�H2(0j0)] ; (3)

where the �rst equality used the equilibrium condition (2) in the regime of sepa-

rate sales. Similarly, the measure of consumers on the horizontal rectangle area is

�
R1
0
h(z1; 0)dz1, and the deviating �rm now makes an extra pro�t p̂2� � from each

of them. This yields another (�rst-order) gain

�p̂2

Z 1

0

h(z1; 0)dz1 =
�

n
[1�H1(0j0)] : (4)
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Introducing a small bundling discount is therefore pro�table if the sum of these two

gains
�

n
[2�H1(0j0)�H2(0j0)] (5)

is greater than the loss �
b, i.e., if

n[1�H(0; 0)] > H1(0j0) +H2(0j0) : (6)

The following result reports simple primitive conditions for (6) to hold:

Proposition 1 Starting from separate sales with prices de�ned in (2), each �rm

has a strict unilateral incentive to introduce mixed bundling if (6) holds.

(i) For a given distribution F , (6) holds if n = 2, or if n is su¢ ciently large and

limzi!xi�xi
h(z1;z2)

h1(z1)h2(z2)
6= 0.

(ii) For a given n, (6) holds if X1 and X2 are independent, negatively dependent (in

the sense that Pr(Xi > ajXj > b) is decreasing in b for any a), or limitedly positively

dependent (in the sense that Pr(Xi > ajXj > b) � Pr(Xi > a) for any a and b, and
d
dt
Hi(0jH�1

j (t)) > �1 for t 2 [1� 1
n
; 1]).

The duopoly and the independence result are relatively easy to understand. Both

can be seen from the condition for p̂i to be the equilibrium price in the benchmark

regime of separate sales. With separate sales, if a �rm unilaterally lowers its price,

say, p̂1 by a small �, the (�rst-order) loss is �(
1 + 
b) where 
1 + 
b is the num-

ber of consumers who buy product 1 from the �rm (and is actually equal to 1
n

in a symmetric equilibrium), and the (�rst-order) gain is �p̂1
R1
�1 h(0; z2)dz2 where

�
R1
�1 h(0; z2)dz2 is the measure of consumers who switch to buying product 1 from

the �rm in question, i.e., the vertical shaded area on Figure 1 extended to the lower

bound of z2. These two terms must be equal in equilibrium. Since h(0; z2) is sym-

metric around z2 = 0 in the duopoly case, this implies that the �rst gain in (3)

equals 1
2
�(
1+
b). A similar result holds for the second gain (4) when a �rm lowers

its price p̂2 slightly. Therefore, the sum of the two gains equals �(
1 +
b) and it is

clearly greater than the loss �
b caused by a small bundling discount.

In the independence case, the loss �
b actually equals either of the two gains. We

can interpret �
b = �
R1
0

R1
0
h(z1; z2)dz1dz2 as the loss when a �rm was able to lower

p̂1 by a small � only among the consumers who have z2 > 0, and �p̂1
R1
0
h(0; z2)dz2

in (3) as the associated gain. When Z1 and Z2 are independent, these two e¤ects

cancel out each other if and only if two similar e¤ects are also equal when the

condition z2 > 0 is removed, i.e., if �
R1
�1
R1
0
h(z1; z2)dz1dz2 = �p̂1

R1
�1 h(0; z2)dz2,

where the �rst term is equal to �(
1 + 
b). As explained above, this is just the

equilibrium condition for p̂1. Therefore, the sum of the two gains must exceed the

loss. (This explanation is the same as in the monopoly case in McAfee, McMillan,

and Whinston (1989).)
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The result with many �rms has a similar intuition as in the independence case.

In the proof we show that the loss �
b is approximately equal to one of the gains

when n is large. Intuitively, when there are many �rms, the measure of consumers

in the region of 
b is close to zero since a �rm�s product is almost surely dominated

by the best rival product. Then the potential correlation between Z1 and Z2 in that

region plays a rather limited role.

In general, given other �rms are selling their products separately, a �rm�s problem

of whether to introduce mixed bundling is essentially a monopoly problem where a

consumer�s net valuation for its product i is Xi� (Yi� p̂i). Here Yi� p̂i is regarded
as a random outside option. Then our incentive results in part (ii) of Proposition

1 are closely related to the existing works on the pro�tability of mixed bundling in

a monopoly setting. For example, McAfee, McMillan, and Whinston (1989) have

shown a general su¢ cient condition for mixed bundling to be pro�table and the

condition must hold when valuations are independent across products. Using a

copula approach, Chen and Riordan (2013) have further identi�ed simple primitive

conditions when valuations are dependent. (Our proof for the cases with dependent

valuations closely follows their approach.) However, the additional structure in our

symmetric oligopoly setting leads to the result for n = 2 (which has also been derived

by Armstrong and Vickers (2010) in their Hotelling model), and the result for a large

n (which is new in the literature).

4 Mixed-bundling equilibrium

In this section, we characterize a mixed-bundling pricing equilibrium (if it exists) and

derive the general formula of the impacts of mixed bundling on pro�t and consumer

surplus relative to separate sales. We will consider some special cases in next section

where more analytical progress can be made.

Consider a symmetric mixed-bundling equilibrium (p1; p2; �), where pi is the price

of single product i and � is the bundling discount. We focus on the equilibrium with

� � minfp1; p2g, in which case P = p1 + p2 � � � maxfp1; p2g and so the bundle is
no cheaper than any single product.13

4.1 Demand

We �rst need to investigate �rms� demand in the mixed-bundling regime. Sup-

pose that a �rm unilaterally deviates to a pricing schedule (p01; p
0
2; �

0) with �0 �
13We are not claiming that it is impossible to have an equilibrium with P < maxfp1; p2g. (In

that case, at least one single product is never sold alone as long as consumers have free disposal

of either single product from the bundle.) Such a possible equilibrium, however, involves �rms

playing weakly dominated strategies: a �rm can always earn the same pro�t by reducing the price

of the more expensive single product so that P = maxfp1; p2g.

11



minfp01; p02g,14 while other �rms stick to the equilibrium pricing schedule. Then for

a consumer who values this �rm�s products at (x1; x2) and the best products from

other �rms at (y1; y2), she has the following four purchase options:

(a) buy both products from the deviating �rm, in which case her surplus is

x1 + x2 � (p01 + p02 � �0);
(b) buy product 1 from the deviating �rm but product 2 elsewhere, in which

case her surplus is x1 + y2 � p01 � p2;
(c) buy product 2 from the deviating �rm but product 1 elsewhere, in which case

her surplus is y1 + x2 � p1 � p02;
(d) buy both products from other �rms, in which case her surplus is � � (p1 +

p2� �), where � is a random variable conditional on (y1; y2) as de�ned in (7) below.
When the consumer buys only one product, say, product i from some other �rm,

she will buy the one with the highest match utility yi. When she buys both products

from other �rms, however, she does not always buy the two with the highest match

utilities (y1; y2) if n � 3. This is because she may choose to buy the two products
from a single �rm due to the bundling discount but (y1; y2) are not realized at that

�rm. For this reason, (y1; y2) is not a su¢ cient statistic for the match utilities from

other �rms. This is the main source of the complication in studying competitive

bundling when we go beyond the duopoly case. To derive �, we discuss two cases:

First, if y1 and y2 are realized at the same �rm, how to buy in option (d) is

simple: the consumer will just buy both products from that �rm, and so � = y1+y2.

Conditional on Y1 = y1 and Y2 = y2, this event occurs with probability

�(y1; y2) �
(n� 1)f(y1; y2)F (y1; y2)n�2

g(y1; y2)
;

where the numerator is the probability in the density sense that Y1 = y1 and Y2 = y2
are realized in the same �rm among n � 1 ones, and the denominator is the joint
pdf of (Y1; Y2), i.e., the probability that Y1 = y1 and Y2 = y2 in the density sense.15

Notice that (i) when n = 2, �(y1; y2) = 1; (ii) when the two products at each �rm

have independent match utilities, �(y1; y2) simpli�es to 1
n�1 as expected.

Second, with the rest of the probability 1��(y1; y2), y1 and y2 are realized at two
di¤erent �rms. Then the consumer faces the trade-o¤ between consuming better-

matched products by two-stop shopping, in which case she gets surplus y1 + y2 �
(p1+p2), or enjoying the bundling discount by one-stop shopping, in which case she

gets surplus Y (y1; y2)�(p1+p2��), where Y (y1; y2) denotes the match utility of the
best bundle among n � 1 �rms conditional on Y1 = y1 and Y2 = y2 being realized
at di¤erent �rms. Hence, in this second case, � = maxfY (y1; y2); y1 + y2 � �g.
(The conditional distribution of Y (y1; y2) is important but complicated for demand

calculation. We characterize it in Lemma 2 in the appendix.)

14As explained in footnote 13, other pricing schedules are weakly dominated.
15More explicitly, g(y1; y2) = (n� 1)F (y1; y2)n�3[f(y1; y2)F (y1; y2) + (n� 2) @F@y1

@F
@y2
].
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In sum, conditional on Y1 = y1 and Y2 = y2, we have

� =

8<: y1 + y2 with probability �(y1; y2)

maxfY (y1; y2); y1 + y2 � �g with probability 1� �(y1; y2)
: (7)

When n = 2, y1 and y2 must be from the same �rm and so � = y1 + y2 for sure.

Then the problem can be converted into an often used two-dimensional Hotelling

model by using two �location�random variables Z1 = X1 � Y1 and Z2 = X2 � Y2.
Given (y1; y2; �) where � is a realization of �, Figure 2 below describes how a

consumer chooses among the four purchase options in the space of (x1; x2).

x1

x2

@
@
@
@@

y1 + p
0
1 � p1 � �0

� � y2 + p01 � p1 + �

y2 + p
0
2 � p2 � �0

� � y1 + p02 � p2 + �

b


2


1

buy both from

other �rms

Figure 2: The pattern of consumer choice conditional on (y1; y2; �)

As before, 
i, i = 1; 2, indicates the region where the consumer buys only product i

from the deviating �rm, and 
b indicates the region where the consumer buys both

products from it. Then integrating the area of 
i over (y1; y2; �) yields the demand

for the deviating �rm�s single product i, and integrating the area of 
b over (y1; y2; �)

yields the demand for its bundle.

From Figure 2, we can see that the equilibrium demand for a �rm�s single product

1 is


1(�) � E[
Z y2��

x2

Z x1

��y2+�
f(x1; x2)dx1dx2] ; (8)

and the equilibrium demand for a �rm�s single product 2 is


2(�) � E[
Z x2

��y1+�

Z y1��

x1

f(x1; x2)dx1dx2] : (9)

(All the expectations in this paper are taken over (y1; y2; �).) Given full market

coverage, the equilibrium demand depends only on the bundling discount � but
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not on any single-product price. Let 
b(�) be the equilibrium demand for a �rm�s

bundle. Then we must have


i(�) + 
b(�) =
1

n
: (10)

This is because, with full market coverage, all consumers buy product i, so 1=n

of them should buy it from a particular �rm (via either single product purchase or

bundle purchase). This also implies that 
1(�) = 
2(�), even when the two products

are asymmetric.

4.2 Equilibrium prices

We now characterize the necessary conditions for (p1; p2; �) to be an equilibrium

pricing schedule. Using Figure 2, one can write down a �rm�s deviation pro�t func-

tion and then derive the �rst-order conditions. To better understand the economics

behind the �rst-order conditions, here we adopt the following graphic approach by

considering a few local deviations. (This local-deviation argument is in the spirit

of the analysis in McAfee, McMillan, and Whinston (1989) and is also used in

Armstrong and Vickers (2010). Readers who want to skip the details can jump to

Proposition 2 directly.)

First, suppose a �rm unilaterally raises its bundling discount to �0 = � + ",

where " > 0 is small, while keeps its single-product prices unchanged. Figure 3a

below describes, conditional on (y1; y2; �), how this small deviation a¤ects consumer

choices: 
b expands because now more consumers buy both products from the

deviating �rm.

x1

x2

@
@
@
@@

y1 � �

� � y2 + �

y2 � �

� � y1 + �

b


2


1

buy both from

other �rms

pppppppppppppp

ppppppppppppppp
ppppppppppppppp pppppppppppppp

@
@
@
@
@@

p p p p p p p p p p p p p p p
p p p p p p p p p p p p p p

~

~�1

~�2

Figure 3a: Price deviation and consumer choice I

The marginal consumers who adjust their purchase are distributed on the shaded
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areas. Here

~�1 =

Z x2

��y1+�
f(y1 � �; x2)dx2 and ~�2 =

Z x1

��y2+�
f(x1; y2 � �)dx1

are the densities of marginal consumers along the vertical and horizontal line seg-

ments on the graph, respectively, and

~ =

Z ��y2+�

y1��
f(x1; � � x1)dx1

is the density of marginal consumers along the diagonal line segment. For the

marginal consumers on the vertical shaded area (which has a measure of "~�1), they

switch from buying only product 2 to buying both products from the deviating

�rm, and so the �rm makes p1� �� " extra pro�t from each of them. Similarly, the
deviating �rm makes p2 � � � " extra pro�t from each of the marginal consumers

on the horizontal shaded area (which has a measure of "~�2). For those marginal

consumers on the diagonal shaded area (which has a measure of "~), they switch

from buying both products from other �rms to buying both from the deviating �rm.

So the deviating �rm makes p1 + p2 � � � " extra pro�t from each of them. The

only negative e¤ect of the deviation is that those consumers on 
b who were already

purchasing both products at the deviating �rm now each pay " less. The sum

of all these e¤ects integrated over (y1; y2; �) should be equal to zero in equilibrium.

After all the second-order e¤ects being discarded, this yields the following �rst-order

condition:

�1(p1 � �) + �2(p2 � �) + (p1 + p2 � �) = 
b(�) ; (11)

where

�i � E[~�i];  � E[~] ; (12)

and 
b(�) is de�ned in (10).

Second, suppose a �rm unilaterally raises its stand-alone price p1 to p01 = p1 + "

and its bundling discount to �0 = � + " (such that its bundle price remains un-

changed). Figure 3b below describes how this small deviation a¤ects consumer

choices: 
1 shrinks because now fewer consumers buy a single product 1 from the

deviating �rm.
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y1 � �

� � y2 + �
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� � y1 + �
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2


1
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other �rms
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Figure 3b: Price deviation and consumer choice II

Here
~�2 =

Z y2��

x2

f(� � y2 + �; x2)dx2

is the density of marginal consumers along the vertical line segment on the graph.

For those marginal consumers on the horizontal shaded area (which has a measure

of "~�2), they switch from buying only product 1 to buying both products from the

deviating �rm. So the �rm makes p2 � � extra pro�t from each of them. For those

marginal consumers on the vertical shaded area (which has a measure of "~�2), they

switch from buying product 1 to buying nothing from the deviating �rm. So the

�rm loses p1 from each of them. The direct revenue e¤ect of this deviation is that

the �rm earns " more from each consumer on 
1. The sum of these e¤ects integrated

over (y1; y2; �) should be equal to zero in equilibrium. This yields another �rst-order

condition:

�2(p2 � �) + 
1(�) = �2p1 ; (13)

where

�2 � E[~�2] ; (14)

and 
1(�) is de�ned in (8).

Third, suppose a �rm slightly raises its stand-alone price p2 to p02 = p2+" and its

bundling discount to �0 = � + " (such that its bundle price remains unchanged). (If

the two products are symmetric, there is no need to consider this third deviation.)

Then 
2 shrinks as described in Figure 3c below.
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Figure 3c: Price deviation and consumer choice III

Here
~�1 =

Z y1��

x1

f(x1; � � y1 + �)dx1

is the density of marginal consumers along the horizontal line segment on the graph.

A similar argument as before yields the third �rst-order condition:

�1(p1 � �) + 
2(�) = �1p2 ; (15)

where

�1 � E[~�1] ; (16)

and 
2(�) is de�ned in (8).

The following result rewrites the above three �rst-order conditions:16

Proposition 2 If a symmetric mixed-bundling equilibrium with � � minfp1; p2g
exists, the single-product prices p1 and p2 and the bundling discount � must satisfy

(�1 + �2 + )p1 + p2 � (�1 + )� =
1

n
; (17)

(�2 + �1 + )p2 + p1 � (�2 + )� =
1

n
; (18)

and

(�2 � �1)p1 + (�1 � �2)p2 + (�1 + �2)� = 2
1(�) ; (19)

where �i, �i and  are de�ned in (12), (14) and (16) as functions of � only.

16Notice that (17) is derived from the �rst and the second �rst-order condition (11) and (13) by

using (10), and (18) is derived from the �rst and the third one (11) and (15) by using (10). Adding

the second �rst-order condition (13) to the third one (15) and using 
1(�) = 
2(�) yield (19).
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One can check that the �rst two conditions (17) and (18) are actually the �rst-

order conditions from considering a deviation of raising a single-product price but

keeping the bundling discount unchanged. We refer to these two conditions as single-

product price equations. Since they are linear in p1 and p2, from them one can solve

p1 and p2 as functions of �. Substituting them into the third condition, which is

referred to as the discount equation, yields an equation of �. These equations are

more complicated than they appear because all �i, �i and  are functions of �. In

general little can be said on how mixed bundling a¤ects market prices relative to

separate sales. More progress will be made in a few special cases studied in Section

5.

Discussion: equilibrium existence. To prove the existence of the above symmetric

equilibrium, we need to show that (i) the system of necessary conditions (17)-(19)

has a solution with � � minfp1; p2g, and (ii) the necessary conditions are also
su¢ cient for de�ning the equilibrium prices. Unfortunately, both issues are hard to

investigate in general. For the �rst one, we will prove it in the i.i.d. case when n = 2

under a log-concavity condition or when n is su¢ ciently large. For the second one,

no analytical progress has been made in general even in the duopoly case.17 This is

an unsolved problem in the literature on mixed bundling.18

4.3 Impact of mixed bundling

Given the assumption of full market coverage, the impact of mixed bundling on total

welfare is straightforward. Total welfare is solely determined by the match quality

between consumers and products. Since the bundling discount induces consumers

to one-stop shop too often, mixed bundling must lower match quality and so total

welfare relative to separate sales. In the following, we examine the impacts of mixed

bundling on industry pro�t and consumer surplus.

Let �(p1; p2; �) denote the equilibrium industry pro�t. Then

�(p1; p2; �) = p1 + p2 � n�
b(�) :

Every consumer buys both products, but those who buy both from the same �rm

17See, for example, a discussion of this issue in footnote 19 in Armstrong and Vickers (2010).

They claim that in the Hotelling setup with uniformly distributed consumers the �rst-order condi-

tions are also su¢ cient for de�ning the equilibrium. We can further verify that in the i.i.d. duopoly

case, if the valuation distribution F is uniform or exponential, each �rm�s pro�t function is locally

concave at the equilibrium prices.
18In our pricing game, each �rm�s pro�t function is continuous since the consumer match utility

distribution is assumed to be continuous. If �rms do not choose an in�nite price (e.g., due to

consumers�budget constraints), their pricing strategy space is compact. Then it is well-known

that our pricing game must have a mixed-strategy equilibrium. Moreover, given our game is

symmetric, according to Becker and Damianov (2006), there must exist a symmetric mixed-strategy

equilibrium.
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pay � less. Thus, relative to separate sales the impact of mixed bundling on industry

pro�t is

�� � �(p1; p2; �)� �(p̂1; p̂2; 0) = (p1 � p̂1) + (p2 � p̂2)� n�
b(�)
= P � P̂ + n�
1(�) ; (20)

where we used 
1+
b = 1=n in the second equality. (Recall that p̂i and P̂ = p̂1+ p̂2
are respectively the stand-alone price and the bundle price in the regime of separate

sales.) Two simple cases are: if bundling lowers both stand-alone prices (and so the

bundle price as well), it must harm industry pro�t; if bundling raises the bundle

price, it must enhance industry pro�t. (When the two products are asymmetric,

a more expensive bundle does not necessarily require each single product be more

expensive, but the sum of the two stand-alone prices must increase.)

Let v(~p1; ~p2; ~�) denote the consumer surplus when all �rms charge stand-alone

prices (~p1; ~p2) and o¤er a bundling discount ~�. Given full market coverage, an

envelope argument implies that vi(~p1; ~p2; ~�) = �1, i = 1; 2, and v3(~p1; ~p2; ~�) =

n
b(~�), where the subscripts indicate partial derivatives. This is because raising ~pi
by a small " will make every consumer pay " more, and raising the discount ~� by "

will save " for every consumer who buy both products from the same �rm.19 Then

relative to separate sales, the impact of mixed bundling on consumer surplus is

�v � v(p1; p2; �)� v(p̂1; p̂2; 0)

=

Z p1

p̂1

v1(~p1; p2; �)d~p1 +

Z p2

p̂2

v2(p̂1; ~p2; �)d~p2 +

Z �

0

v3(p̂1; p̂2; ~�)d~�

= (p̂1 � p1) + (p̂2 � p2) + n
Z �

0


b(~�)d~�

= P̂ � P � n
Z �

0


1(~�)d~� ; (21)

where we used 
1 + 
b = 1=n in the last equality. This formula implies that if

bundling makes each single product cheaper, it must improve consumer welfare even

if the bundling discount causes some product mismatch. This is simply because of

a revealed-preference argument: consumers can at least buy the same products as

they would buy in the case of separate sales but now at lower prices. In contrast,

if bundling makes the bundle more expensive, it must harm consumers. This is

because in this case we already know that industry pro�t must go up but bundling

always reduces total welfare.20

19More rigorously, raising the discount slightly will also increase the number of consumers who

choose to one-stop shop, but the a¤ected consumers are those who were initially almost indi¤erent

between one-stop shopping and two-stop shopping. Therefore, the impact from these marginal

consumers is of second order when " is small.
20From (20) and (21), we have �� + �v = n[�
1(�) �

R �
0

1(~�)d~�], a formula of how mixed

bundling impacts total welfare relative to separate sales. Consistent with the claim made before,

this impact must be negative as 
1(~�) decreases in ~�.
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In sum, if bundling makes each single product cheaper, it must harm �rms and

bene�t consumers; if bundling makes the bundle more expensive, it must help �rms

and harm consumers; the less clear case is when bundling makes single products

more expensive but the bundle cheaper.

5 Special cases

To make more progress, in this section we focus on the i.i.d. case where the two

products at each �rm are symmetric and have independent match utilities. Slightly

abusing the notation, let F (x) and f(x) be the common cdf and pdf of Xi, and let

H(z) =

Z
F (y + z)dF (y)n�1 and h(z) =

Z
f(y + z)dF (y)n�1

be respectively the common cdf and pdf of Zi = Xi � Yi. (When n = 2, h(z) is

symmetric around zero.) Let p be the common single-product price, and let � = �i
and � = �i. Then the single-product price equations (17) and (18) simplify to

p =
1=n+ (�+ )�

�+ � + 2
; (22)

and the discount equation (19) simpli�es to

(� � �) p+ �� = 
1(�) : (23)

The di¢ culty in making analytical progress is from the complication of �, �, ,

and 
1(�). However, they are simple in the duopoly case, and they also have simple

(�rst-order) Taylor approximations if � is small, which, as we show below, is usually

the case when the number of �rms is large.

5.1 Revisit the duopoly case

We �rst revisit the duopoly case. With � = y1 + y2, our random utility model can

be converted into a two-dimensional Hotelling model with two �location�variables

Zi = Xi � Yi, i = 1; 2. This case has been extensively studied in the literature (see,
e.g., Armstrong and Vickers (2010) for a general treatment). Here we report some

results that have not been noticed before.

Using the symmetry of h, one can check that21

� = � = h(�)[1�H(�)] ;  = 2
Z �

0

h(t)2d ; 
1(�) = [1�H(�)]2 :

21It may not be obvious to derive the expression for  from (12). Using � = y1 + y2 in the

duopoly case, we have  = E[
R y1+�
y1�� f(x1)f(y1 + y2 � x1)dx1] = E[

R �
�� f(y1 � t)f(y2 + t)dt], where

the second equality is from changing the variable from x1 to t = y1 � x1. Then the de�nition of h
implies  =

R �
�� h(�t)h(t)dt = 2

R �
0
h(t)2dt, where the second equality is from the symmetry of h

in the duopoly case. All these expressions for �, �,  and 
1 can also be seen from Figure 5 below.

20



Thus, the single-product price equation (22) further simpli�es to

p =
�

2
+

1

4(�+ )
; (24)

and the discount equation (23) simpli�es to

� =
1�H(�)
h(�)

: (25)

The most often studied example in the literature is when H is a uniform dis-

tribution.22 Suppose H is uniform on [�1; 1]. Then it is easy to check that in the
regime of separate sales, each product is sold at price p̂ = 1; in the regime of mixed

bundling, the single-product price drops to p = 11
12
, the bundling discount is � = 0:5,

and so the bundle price is P = 4
3
. Both the stand-alone products and the bundle

become cheaper under mixed bundling. Therefore, in this example, mixed bundling

intensi�es price competition and results in a prisoner�s dilemma outcome for �rms

(�� � �0:6), but it bene�ts consumers (�v � 0:52). This observation is what the
existing literature highlights.

In the following, we argue that the impacts of mixed bundling in the duopoly case

are actually sensitive to the underlying valuation distribution. The following table

reports the comparison between the two regimes in a few other examples (where the

distributions are F instead of H):

p̂ p � P �� �v �(� + v)

Uniform 0:5 0:57 1=3 0:81 �0:16 0:10 �0:06
Normal 1:77 1:85 1:06 2:63 �1:10 0:93 �0:17

Exponential 1 1:5 1 2 0:07 �0:22 �0:15
Pareto 5=8 1:48 1:37 1:58 0:37 �0:52 �0:15

Table 1: Impact of mixed bundling in duopoly

Prices. In the example of uniform distribution with F (x) = x or standard normal

distribution, compared to separate sales, mixed bundling makes each single product

more expensive but the bundle cheaper; in the example of standard exponential

distribution or Pareto distribution with F (x) = 1� 1
x2
on [1;1), it (weakly) increases

all prices. More generally, we have the following results:

Proposition 3 In the i.i.d. duopoly case, suppose that 1�H(z) is log-concave (i.e.,
d
dz
1�H(z)
h(z)

� 0) in z > 0 (which is true if f is log-concave). Then
(i) the system of (25) and (24) has a unique solution with � 2 (0; p);
(ii) relative to separate sales, mixed bundling lowers the bundle price, and it raises

the single-product price if h(z) is decreasing and d
dz
1�H(z)
h(z)

� �1
2
for z > 0.

22This is the standard case in the Hotelling model, but in our random utility setup it is possible

only if we consider correlated match utilities across �rms since X � Y cannot have a uniform

distribution when X and Y are independent of each other.
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Recall that our demand analysis is predicated on � � p, i.e., the bundle is no

cheaper than each single product. This is true at least under the log-concavity

condition as shown in result (i), but can also be true even beyond this log-concavity

case as suggested by the Pareto example. Result (ii) shows that under the log-

concavity condition the bundle becomes cheaper in the mixed-bundling regime, but

each single product becomes more expensive if 1�H(z)
h(z)

does not decrease too fast

(which requires the tail of the density h(z) decrease fast enough). (It appears harder

to �nd a simple general condition for each single product to become cheaper.) The

proof of result (ii) also reveals that once 1�H becomes log-convex, even the bundle

will become more expensive in the mixed-bundling regime. 1 � H is log-concave

in the �rst two examples and log-convex in the last example, and the exponential

example is the edge case where 1�H is log-linear and so the bundle price remains

unchanged.23

Pro�t and consumer surplus. Armstrong and Vickers (2010) have derived a suf-

�cient condition in their Proposition 4 for mixed bundling to harm �rms and bene�t

consumers in the duopoly case. With our notation, the condition is d
dz
1�H(z)
h(z)

� �1
4

for z � 0. When this condition is not satis�ed, the welfare impacts of mixed

bundling can be reversed. For instance, in the exponential or Pareto example mixed

bundling helps �rms but harms consumers. It is also possible that both �rms and

consumers su¤er from mixed bundling. Consider a generalized Pareto distribution

with F (x) = 1 � (1 � ax) 1a , where a 2 [0; 1] and the support is [0; 1
a
]. It has a

log-concave density, and it becomes the exponential distribution when a = 0 and

the uniform distribution when a = 1. Figure 4 below depicts how the impacts of

mixed bundling in this example vary with a.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.1

0.0

0.1

a

profit

consumer surplus

Figure 4: The example of generalized Pareto distribution

When a is su¢ ciently large, mixed bundling harms �rms and bene�ts consumers as

in the uniform example; when a is su¢ ciently small, the opposite is true as in the

exponential example; in between mixed bundling harms both �rms and consumers.

23When F is expotential, H is a double exponential distribution and so 1 � H is log-linear in

z > 0.
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Intuition. Why can the underlying valuation distribution qualitatively matter

for the impacts of mixed bundling? This can be seen from how the bundling discount

a¤ects �rms�single-product pricing incentives. Suppose �rm 1 raises p1 by a small

" > 0 but keeps p2 and � unchanged. Figure 5 below depicts how this small deviation

a¤ects the demand in the (z1; z2) space.
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Figure 5: Price deviation and consumer choice in duopoly

Roughly, the marginal consumers with a measure of "(�+�+) stop buying �rm 1�s

product 1, causing a loss "p1(�+ � + ).24 Among these marginal consumers, those

on the diagonal shaded area  actually stop buying the whole bundle, which causes

an extra loss "(p2��). As emphasized in the literature, this �double loss�e¤ect, or
�double pro�t�e¤ect if we consider a price reduction, is the source for bundling to

intensify price competition. However, notice that bundling also changes the position

of marginal consumers and so potentially their density: in separate sales with � = 0,

�+ � +  = h(0); in mixed bundling with � > 0, �+ � +  becomes smaller if h(z)

is single-peaked at z = 0. This is a force to relax price competition. When h is

uniform, this second force does not exist, so as we have seen mixed bundling lowers

all prices; but if h decreases fast enough on both sides of z = 0, this second force

can play a dominant role such that bundling raises all prices as we have seen in the

exponential or Pareto example. Therefore, when h has heavier tails (in which case

the tails usually decrease faster), it is more likely that mixed bundling helps relax

price competition.

In sum, in the duopoly case the impacts of mixed bundling on prices, pro�t

and consumer welfare are ambiguous in general. We should be cautious about the

24More precisely, those marginal consumers on the shaded area � only pay p1� � less when they
switch from buying the bundle to buying product 2 only, so the loss should be "[p1(�+�+)���].
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policy implications drawn from some convenient examples such as the widely used

Hotelling model with uniformly distributed consumers.

5.2 The case with many �rms

Another case where we can make analytical progress is when n is large. In this

case, we show that mixed bundling has less ambiguous impacts, and under a mild

condition it intensi�es price competition, harms �rms and bene�ts consumers.

We �rst report a useful approximation result based on Taylor expansion when �

is small:

Lemma 1 For any given n � 2, if � is close to zero, we have the following approx-
imations in the i.i.d. case:

� � h(0)

n
�
�
h(0)2

n� 1 +
h0(0)

n

�
� ;

� �
�
1� 1

n

�
h(0)�

�
h(0)2 � h

0(0)

n

�
� ; (26)

 � n

n� 1h(0)
2� ;


1(�) � 1

n

�
1� 1

n

�
� 2

n
h(0)� ;

where h(0) =
R
f(x)dF (x)n�1 and h0(0) =

R
f 0(x)dF (x)n�1.

These approximations are much simpler than the original expressions and give us

some idea of how these objects vary with � and n. One observation that is useful

for our analysis below is �+ � +  � h(0).
When n is large, we show in the appendix that the system of (22) and (23) usually

has a solution with � close to zero. Then Lemma 1 can be used to approximate the

equilibrium mixed-bundling prices.

Proposition 4 Suppose limn!1 p̂ = 0, where p̂ = 1
nh(0)

is the separate-sales price

in (2), and jh0(0)j
h(0)

is uniformly bounded for any n (which is true if jf
0(x)j
f(x)

is uniformly

bounded). When n is large, the system of (22) and (23) has a solution with � 2 (0; p)
and it can be approximated as

p � 1

nh(0)

1 + h(0)�

1 + n
n�1h(0)�

; � � 1
2h0(0)
h(0)

+ 2n2�3n+2
n2�n nh(0)

: (27)

Both the single-product price and the bundle price are lower than in the regime of

separate sales.
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Note that both required conditions are satis�ed if f(x) is strictly positive on

a bounded support and jf 0(x)j < 1.25 This proposition implies that when there

are many �rms in the market, mixed bundling tends to be pro-competitive relative

to separate sales (though the impact is small as the outcome is close to perfect

competition in either case). As we discussed in the duopoly case, the bundling

discount � makes the competition boundary  doubly pro�table when a �rm lowers

a single-product price, which is a force to intensify price competition; at the same

time � also shifts the position of marginal consumers along the boundaries �, �

and  and so may a¤ect the density of them, which can be a force in the opposite

direction. When � is small, however, from the approximations in (26), we see that

� + � +  � h(0), i.e., the small discount has no �rst-order e¤ect on the density

of marginal consumers. As a result, only the former �double pro�t�e¤ect matters.

This implies that mixed bundling is pro-competitive if � is small (which is usually

the case when n is large). This discussion also suggests that even with a small

number of �rms, if the bundling discount is capped at a low level, price competition

is �ercer in the regime of mixed bundling than in the regime of separate sales.

For a large n, we can further simplify the approximations in (27) to p � p̂ and
� � 1

2
p̂. That is, the single-product price is approximately equal to the price in

the regime of separate sales and the bundling discount is approximately half of the

single-product price. The mixed-bundling scheme in this limit case can thus be

interpreted as �50% o¤ for the second product.�26

When Proposition 4 holds, mixed bundling reduces all prices relative to separate

sales, so it must harm �rms and bene�t consumers according to Section 4.3. To-

gether with the duopoly case, this suggests that the impacts of mixed bundling can

qualitatively depend on the number of �rms in the market.

6 Discussion

6.1 Multi-stop shopping cost as a bundling discount

A situation similar to mixed bundling is when �rms use linear pricing strategies but

consumers face an exogenous multi-stop shopping cost � > 0. That is, if a consumer

25Among the examples we studied in the duopoly case, the normal, exponential, and Pareto

distribution have an unbounded support, and the generalized Pareto distribution with a 2 (0; 1)
has f(x) = 0 and limx!x f

0(x)=f(x) = 1. But if we consider a properly truncated version of
those distributions, these issues disappear and meanwhile the results in those examples remain

qualitatively unchanged. For instance, for a truncated exponential distribution with support [0; 5],

mixed bundling improves pro�t by about 0:05 and reduces consumer surplus by about 0:19 in the

duopoly case.
26This interpretation works only when the production cost is zero. If there is a positive produc-

tion cost c for each product, we have � � (p̂ � c)=2, i.e., the bundling discount is approximately
equal to half of the single product�s markup.
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buys two products from two di¤erent �rms, she needs to pay an extra cost �, which

re�ects, for instance, the extra travelling cost or the transaction cost of paying an

additional bill. If the shopping cost is not prohibitively high and some consumers

still multi-stop shop, it then a¤ects consumer purchase behavior exactly the same as

the bundling discount. Therefore, the method developed in this paper can be used

to investigate the impact of multi-stop shopping cost on competition and market

performance. We show that the number of �rms can play an important role in

determining whether the shopping cost harms or improves consumer welfare.

Following a similar analysis as in Section 4.2, one can derive the �rst-order

conditions for (p1; p2) to be the equilibrium prices:

(�1 + �2 + )p1 + p2 =
1

n
; (�2 + �1 + )p2 + p1 =

1

n
:

(These two conditions di¤er from the single-product price equations (17) and (18)

because in this shopping-cost case � does not directly a¤ect �rm pro�t.) In the i.i.d.

case, we have

p =
1

n(�+ � + 2)
:

In general it is unclear how � + � + 2 varies with the shopping cost �. However,

if the shopping cost � is small, we can invoke the approximations in Lemma 1 and

show that

p � 1

nh(0)

1

1 + n
n�1h(0)�

< p̂ : (28)

That is, introducing a small shopping cost will induce a �ercer competition among

�rms. The underlying reason is the same as in the case with a small bundling

discount explained before.27

Although a small shopping friction lowers market prices, it also adversely a¤ects

the match quality between consumers and products. As a result, its impact on

consumers is less clear.

Proposition 5 Suppose � is an exogenous multi-stop shopping cost and �rms com-
pete in linear prices. In the i.i.d. case, if � is small, it intensi�es price competition

for any n, but it bene�ts consumers if and only if n � 3.

Intuitively, the price-reduction e¤ect of shopping costs is more signi�cant when

there are fewer competitors, while the match quality e¤ect is larger when there are

more �rms. That is why introducing a small shopping cost bene�ts consumers in

equilibrium only when there are relatively few �rms. Notice that when n is large,

27This argument, however, can fail when � is larger. For example, when � is su¢ ciently large,

the situation will be as if all �rms use a pure-bundling strategy. According to Zhou (2017), we

know that pure bundling often induces higher market prices than in separate sales when n is above

a threshold. Hence, in general whether the presence of shopping cost � intensi�es or softens price

competition depends both on the magnitude of � and the number of �rms.
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the impact on consumers is opposite to what we see in the mixed-bundling case, but

this is simply because � is a shopping cost here but a bene�cial discount there.

6.2 Bundling premium

So far we have ruled out the possibility of bundling premium (in which case the

bundle price exceeds the sum of component prices). Bundling premium, even if

it is desirable for �rms, is usually hard to implement as it requires �rms be able

to monitor consumer purchase behavior; otherwise no consumers would buy the

bundle at an additional cost. It might be becoming technically more feasible in

the online market (e.g., for some digital goods) where �rms have better monitoring

technologies.

Starting from the separate-sales equilibrium, the analysis of the incentive to

introduce a small bundling premium is very similar to Section 3. The demand

pattern when a �rm unilaterally charges a small bundling premium � > 0 is depicted

on Figure 6 where 
b shrinks and both 
1 and 
2 expand.

-
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Figure 6: The impact of a small bundling premium on demand

Compared to Figure 1, the competition boundaries di¤er: 
1 and 
2 are now con-

nected by a boundary (the short diagonal segment), while 
b and the region of

buying both products from other �rms become disconnected. This, however, does

not a¤ect the �rst-order analysis of a small deviation. One can show that introduc-

ing a small bundling premium is pro�table if condition (6) is reversed. Therefore,

if bundling premium is also feasible, a unilateral deviation to mixed bundling is

generically pro�table. (McAfee, McMillan, and Whinston (1989) made a similar

observation in the monopoly case.)

The necessary conditions for an equilibrium with a bundling premium (if it exists)

can be derived similarly as in the case of bundling discount. Instead of going through
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all the analysis again, here we brie�y consider the simple i.i.d. duopoly case. If an

equilibrium with a single-product price p and a bundling premium � > 0 exists, then

one can check that (p; �) must satisfy

2p =
H(�)

h(�)

2�H(�)
1�H(�) ; 2(p+ �) =

1�H(�)
h(�)

:

They imply an equation of � :

1�H(�)
h(�)

� H(�)
h(�)

2�H(�)
1�H(�) = 2� :

This equation, however, has no solution of � > 0 if h is log-concave (which is the

case if f is log-concave). When � = 0, the left-hand side equals � 1
h(0)
, less than the

right-hand side; meanwhile, the left-hand side decreases in � if h is log-concave while

the right-hand side increases in � .28 Therefore, under the log-concavity condition,

this i.i.d. duopoly case has no equilibrium with a bundling premium. Of course, in

a more general case (e.g., when the valuations for the two products are correlated),

it is possible that bundling premium arises in equilibrium and it can be investigated

similarly as in Section 4.

7 Conclusion

This paper has studied competitive mixed bundling in an oligopoly market by using a

random-utility framework. It explains the source of di¢ culty in studying competitive

mixed bundling beyond the duopoly case, and develops a method to calculate the

demand and characterize the necessary conditions for equilibrium tari¤s. Analytical

progress on the impacts of bundling on prices, pro�t and consumer welfare is only

made in the duopoly case (where we derive some new results compared to the existing

literature) and the case with many �rms (where a simple approximation of the

equilibrium tari¤ is o¤ered). We show that the impact of bundling in the duopoly

case is sensitive to the underlying consumer valuation distribution, while in the case

with many �rms, the impact is less ambiguous and bundling tends to lower market

prices, harm �rms and bene�t consumers. This suggests that the number of �rms

can qualitatively matter for the assessment of the impact of mixed bundling.

As in most theoretical studies on bundling, we have focused on the case with two

products only. This is not meant to be realistic. In many examples of bundling, �rms

sell more than two products. The problem when there are more than two products

is that the pricing strategy space will become much more complicated since �rms

can set a distinct price for each subset of its products. This is hard to deal with even

in the duopoly case, as discussed in the appendix of Armstrong and Vickers (2010).

28When h is log-concave, both 1 �H and H are log-concave, and so 1�H
h is decreasing and H

h

is increasing; meanwhile, 2�H1�H is clearly increasing.
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One possible way to proceed is to consider simple pricing policies such as two-part

tari¤s or bundle-size pricing schemes as in Chu, Leslie, and Sorensen (2011). Another

feature which is not captured in this paper and many other bundling papers is that

some consumers may only need a subset of the products. This possible demand

heterogeneity has been studied in Thanassoulis (2007, 11) and it can generate some

interesting distributional e¤ect of bundling on di¤erent types of consumers.

We have also focused on the case where each �rm makes their mixed-bundling de-

cisions independently. There are examples where rival �rms coordinate on cross-�rm

joint-purchase discounts (e.g., a discounted city pass that covers various separately

owned museums). See, e.g., Gans and King (2006), Armstrong (2013), and Jeitschko,

Jung, and Kim (2017) for research on this type of cross-�rm bundling. These papers

consider single-product �rms, but in principle, cross-�rm joint-purchase discounts

can also be o¤ered by competing multiproduct �rms.

Appendix

Proof of Proposition 1: The duopoly result. When n = 2, we have Yi = Xi. Then

conditional on Zi = 0 (i.e., X1
i = X

2
i ), X

1
j and X

2
j should share the same conditional

distribution. This implies H1(0j0) = H2(0j0) = 1=2. Meanwhile, H(0; 0) is always
strictly less than Hi(0) = 1=2. Then

2[1�H(0; 0)] > 2[1�Hi(0)] = 1 = H1(0j0) +H2(0j0) :

The independence result. When the two products have independent valuations,

Hi(0j0) = Hi(0) and H(0; 0) = H1(0)H2(0). Given Hi(0) = 1 � 1
n
, it is ready to

check that the gain (5) is twice the loss �
b for any n.

To prove the other su¢ cient conditions for (6), we use the copula approach

introduced in Chen and Riordan (2013). (A classic reference on copula is Nel-

son, 2006.) Let C(t1; t2) be the copula associated with the joint cdf H such that

H(z1; z2) = C(H1(z1); H2(z2)). According to the Sklar�s Theorem, such a copula

exists uniquely for a given joint cdf if its marginal distributions are continuous.

Therefore, a joint cdf can be represented by its marginal cdf�s and a copula. A cop-

ula itself is a joint cdf on [0; 1]2 with uniform marginal distributions, and it captures

the dependence structure of the original distribution. Let Ci(t1; t2) be the partial

derivative with respect to ti. Let d(t) � C(t; t) be the diagonal section of C, and it
is increasing and uniformly continuous on [0; 1]. The following properties on copula

are useful:

(a) C(t1; 0) = C(0; t2) = 0;

(b) C(t1; 1) = t1 and C(1; t2) = t2;

(c) Ci(t1; t2) is the conditional distribution of t�i given ti;
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(d) maxf0; 2t� 1g � d(t) � t.
We �rst claim that (6) is equivalent to

1� d(t) > (1� t)d0(t) at t = 1� 1

n
. (29)

The de�nition of copula and Hi(0) = 1� 1
n
imply that

H(0; 0) = C(H1(0); H2(0)) = d(1�
1

n
) :

Using the fact

h(z1; z2) = C12(H1(z1); H2(z2))h1(z1)h2(z2) (30)

and property (a), one can check that H1(0j0) = C2(t; t) and H2(0j0) = C1(t; t) at

t = 1� 1
n
. Then (6) can be written as n(1� d(t)) > C1(t; t) + C2(t; t) at t = 1� 1

n

which is equivalent to (29).

The large-n result. Given d(1) = 1 (which can be seen from property (b)),

(29) holds for a su¢ ciently large n if d(t) is strictly convex at t = 1. Notice that

d00(1) = C11(1; 1) + 2C12(1; 1) + C22(1; 1) = 2C12(1; 1) since Cii(1; 1) = 0 (which is

again from property (b)). Then d00(1) > 0 if and only if C12(1; 1) > 0, which is

equivalent to the condition stated in the proposition according to (30).

To understand the intuition of this large-n result explained in the main text, we

approximate the loss and gain from the small bundling discount using the copula.

Note that 
b = 2
n
� 1 + H(0; 0) = 2

n
� 1 + d(t) at t = 1 � 1

n
. When t = 1 � "

with " � 0, we have d(t) � 1 � 2" + 1
2
d00(1)"2, where the approximation is from

Taylor expansion, d(1) = 1 and d0(1) = 2 (both of which are from property (b)).

Letting " = 1
n
yields 
b � 1

2n2
d00(1) = 1

n2
C12(1; 1) when n is large, where we have

used the expression for d00(1) derived before. On the other hand, p̂1
R1
0
h(0; z2)dz2 =

1
n
[1 �H2(0j0)] = 1

n
[1 � C1(t; t)] at t = 1� 1

n
. When t = 1� " with " � 0, we have

C1(t; t) � C1(1; 1) � "(C11(1; 1) + C12(1; 1)) = C1(1; 1) � "C12(1; 1). Letting " = 1
n

yields p̂1
R1
0
h(0; z2)dz2 � 1

n2
C12(1; 1) when n is large. Therefore, the loss �
b caused

by a small discount � is approximately equal to one of the gains, which is similar as

in the independence case.

The negative-dependence result. Since Pr(Xi > ajXj > b) decreases in b for any

a, for any given realization of (Yi; Yj) we have Pr(Xi > a+YijXj > b+Yj) decreases

in b. Then Pr(Zi > ajZj > b) decreases in b for any a. (This is called �right tail

decreasing� in Nelson, 2006.) Corollary 5.2.6. in Nelson (2006) then implies that

for any t 2 (0; 1) we have

Ci(t; t) <
t� C(t; t)
1� t , i = 1; 2 .

So (1� t)d0(t) < 2(t� d(t)). Then a su¢ cient condition for (29) is

1� d(t) � 2(t� d(t)), d(t) � 2t� 1 :
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This is always true given property (d).

The positive-dependence result. As in the proof of Proposition 3 in Chen and

Riordan (2013), (29) can be rewritten as

1� 2t+ d(t) +
Z 1

t

(1� ~t)C11(~t; t)d~t+
Z 1

t

(1� ~t)C22(t; ~t)d~t > 0 at t = 1�
1

n
: (31)

(This can be veri�ed by using integration by parts and property (b).) Given

Pr(Xi > ajXj > b) � Pr(Xi > a) (which is called �positive quadrant depen-

dence� in Nelson, 2006), we have F (x1; x2) � F1(x1)F2(x2). This implies that

H(z1; z2) � H1(z1)H2(z2) and so d(t) � t2 for any t. Also notice that C1(~t; t) =

H2(H
�1
2 (t)jH�1

1 (~t)) = H2(0jH�1
1 (~t)) at t = 1 � 1

n
. Then our condition on the con-

ditional distribution implies that C11(~t; t) > �1 for ~t � t = 1 � 1
n
. Similarly,

C22(t; ~t) > �1 for ~t � t = 1 � 1
n
. Then the left-hand side of (31) is strictly greater

than (1� t)2 � 2
R 1
t
(1� ~t)d~t = 0.

Omitted details in demand analysis in section 4.1: Recall that Y (y1; y2)
denotes the match utility of the best bundle among n � 1 �rms conditional on
Y1 = y1 and Y2 = y2 being realized at di¤erent �rms.

Lemma 2 When n � 3, the cdf of Y (y1; y2) is

L(yjy1; y2) =
F1(y � y2jy2)
F1(y1jy2)

F2(y � y1jy1)
F2(y2jy1)

(32)

� 1

F (y1; y2)n�3

 
F (y1; y � y1) +

Z y2

y�y1

Z y�x2

x1

f(x1; x2)dx1dx2

!n�3
for y 2 [maxfy1 + x2; x1 + y2g; y1 + y2), where Fi(yijyj) is the conditional cdf of yi.

Proof. For a given consumer, let I(yi), i = 1; 2, be the identity of the �rm

where yi is realized. The lower bound of Y (y1; y2) is from the fact that the lowest

possible match utility of the bundle from �rm I(yi) is yi+xj. We now calculate the

conditional probability of Y (y1; y2) < y. This event occurs if and only if all of the

following three conditions are satis�ed: (i) y1 +X
I(y1)
2 < y, (ii) XI(y2)

1 + y2 < y, and

(iii) Xk
1 + X

k
2 < y for all k 6= I(y1); I(y2) among the n � 1 competitors. Given y1

and y2, condition (i) holds with probability

F2(y � y1jy1)
F2(y2jy1)

;

since the cdf of XI(y1)
2 conditional on y1 and X

I(y1)
2 < y2 is F2(x2jy1)=F2(y2jy1).

Similarly, condition (ii) holds with probability

F1(y � y2jy2)
F1(y1jy2)

:
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One can also check (with the help of a graph) that the probability that Xk
1 +X

k
2 < y

holds for a �rm other than I(y1) and I(y2), is

1

F (y1; y2)

 
F (y1; y � y1) +

Z y2

y�y1

Z y�x2

x1

f(x1; x2)dx1dx2

!
:

(The term in the bracket is the unconditional probability that (Xk
1 ; X

k
2 ) lies in the

region where Xk
i < yi and Xk

1 + X
k
2 < y.) Conditional on y1 and y2, these three

events are independent of each other. Therefore, the conditional probability of

Y (y1; y2) < y is as stated in (32).

With this lemma, we can calculate the expectation of any function �(Y1; Y2;�)

(if exists) as follows:

E[�(Y1; Y2;�)] =
Z
(y1;y2)

[�(y1; y2)� �(y1; y2; y1 + y2) (33)

+(1� �(y1; y2))�
Z
y

�(y1; y2;maxfy; y1 + y2 � �g)dL(yjy1; y2)]dG(y1; y2) :

Proof of Proposition 3: (i) When 1�H(z) is log-concave, the right-hand side of
(25) is decreasing, and so the equation has a unique solution � > 0. From (24) it is

evident that � < p if �+  < 1
2�
. This condition can be written as

h(�) (1�H(�)) + 2
Z �

0

h(t)2dt <
1

2

h(�)

1�H(�) (34)

by using (25) and the de�nitions of � and . At � = 0, the left-hand side is equal to
1
2
h(0) and the right-hand side is equal to h(0), and so (34) must hold. Meanwhile,

the derivative of the left-hand side is h0(�) (1�H(�)) + h(�)2, and the derivative
of the right-hand side is 1

2(1�H(�))2 [h
0(�) (1�H(�)) + h(�)]. Given 1 � H(�) is log-

concave and 1 �H(�) < 1
2
for � > 0, both derivatives are positive but the latter is

at least twice the former, and so the result follows.

(ii) The bundle price in the regime of mixed bundling is 2p � � = 1
2(�+)

, and

that in the regime of separate sales is 1
h(0)
. The former is smaller if and only if

�+  > 1
2
h(0) which equals

h(�) (1�H(�)) + 2
Z �

0

h(t)2dt >
1

2
h(0) :

This is true as the equality holds at � = 0 and the left-hand side is increasing in � if

1�H(�) is log-concave. (Conversely, the opposite is true if 1�H(�) is log-convex
and so the left-hand side is decreasing.)

p > p̂ if the right-hand side of (24) increases in � given it is equal to p̂ at � = 0.

One can check this is true if 2(� + )2 > h0(�)(1 � H(�)) + h(�)2 for any � > 0.

When h is decreasing in � > 0, we have  > 2h(�)
R �
0
h(t)dt = h(�)(2H(�) � 1),
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and so � +  > h(�)H(�) > 1
2
h(�). Therefore, the desired condition holds if

h0(�)(1�H(�)) + 1
2
h(�)2 � 0 for � > 0, or equivalently if d

d�
1�H(�)
h(�)

� �1
2
for � > 0.

Proof of Lemma 1: We �rst explain how to calculate E[�(Y1; Y2;�)] de�ned in
(33), where the expectation is taken over (Y1; Y2;�). Using (7) in the i.i.d. case, we

have

E[�(Y1; Y2;�)] =
1

n� 1

Z
�(y1; y2; y1+y2)dG

+
n� 2
n� 1

Z �
L(y1 + y2 � �jy1; y2)�(y1; y2; y1 + y2 � �) +

Z y1+y2

y1+y2��
�(y1; y2; y)dL(yjy1; y2)

�
dG ;

where G(y1; y2) = F (y1; y2)n�1 and L(yjy1; y2) is de�ned in (32). By integration by
parts and using L(y1 + y2jy1; y2) = 1, we can simplify this to

E[�(Y1; Y2;�)] =
Z
�(y1; y2; y1+y2)dG�

n� 2
n� 1

Z �Z y1+y2

y1+y2��

@

@y
�(y1; y2; y)L(yjy1; y2)dy

�
dG :

Now let us derive the �rst-order approximation of �. (For our purpose, we do not

need the higher-order approximations.) According to the formula above, we have

� =

Z
f(y1 � �)(1� F (y2 + �))dG+

n� 2
n� 1

Z
'(y1; y2; �)dG ; (35)

where

'(y1; y2; �) =

Z y1+y2

y1+y2��
f(y1 � �)f(y � y1 + �)L(yjy1; y2)dy :

When � � 0, we have f(y1 � �) � f(y1)� �f 0(y1), soZ
f(y1 � �)dG �

Z
f(y1)dF (y1)

n�1 � �
Z
f 0(y1)dF (y1)

n�1 = h(0)� h0(0)� :

We also have 1� F (y2 + �) � 1� F (y2)� �f(y2), soZ
(1�F (y2+ �))dG �

Z
(1�F (y2))dF (y2)n�1� �

Z
f(y2)dF (y2)

n�1 =
1

n
� h(0)� :

To approximate
R
'(y1; y2; �)dG, notice that '(y1; y2; 0) = 0 and '3(y1; y2; 0) =

f(y1)f(y2) since L(yjy1; y2) is independent of � and L(y1 + y2jy1; y2) = 1. Hence,Z
'(y1; y2; �)dG � �

Z
f(y1)f(y2)dG = �h(0)

2 :

Substituting these approximations into (35) and discarding all higher order terms

yields the approximation for � in (26). The other approximations can be derived

similarly.

Proof of Proposition 4: We �rst show that when n is large, the system of (22)

and (23) has a solution with a small � under mild conditions.
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Lemma 3 Suppose limn!1 p̂ = 0, where p̂ = 1
nh(0)

is the separate sales price in

(2), and limn!1
jh0(0)j

n3=2h(0)2
< 1 (which is true, e.g., when jf 0(x)j

f(x)
is uniformly bounded).

Then when n is su¢ ciently large, the system of (22) and (23) has a solution with

� 2 (0; 1
nh(0)

).

Proof. Using (22), we rewrite (23) as an equation of �:

(� � �) 1=n+ (�+ )�
�+ � + 2| {z }
�L(�)

= 
1(�)� ��| {z }
�R(�)

:

Denote the left-hand side by �L(�) and the right-hand side by �R(�).

We �rst show that �L(0) < �R(0). At � = 0, it is easy to verify that � =
1
n
h(0),

� =
�
1� 1

n

�
h(0),  = 0 and 
1(0) = 1

n

�
1� 1

n

�
. Then

�L(0) =
1

n
(1� 2

n
) < �R(0) =

1

n
(1� 1

n
) :

Next, we show that �L(�) > �R(�) at � =
1

nh(0)
when n is su¢ ciently large. The

condition limn!1 p̂ = 0 implies that � = 1
nh(0)

� 0 when n is large. Replacing � in
(26) by 1

nh(0)
, we have

� � h(0)

n
�
�
h0(0)

n
+
h(0)2

n� 1

�
1

nh(0)
=

�
1

n
� 1

n(n� 1)

�
h(0)� h0(0)

n2h(0)
:

Similarly,

� �
�
1� 1

n

�
h(0) +

�
h0(0)

n
� h(0)2

�
1

nh(0)
=

�
1� 2

n

�
h(0) +

h0(0)

n2h(0)
;

 � nh(0)2

n� 1
1

nh(0)
=
h(0)

n� 1 ;


1(�) �
1

n

�
1� 1

n

�
� 2h(0)

n

1

nh(0)
=
1

n
� 3

n2
:

Notice that in each expression we just replaced � by 1
nh(0)

and no further approxi-

mations were made.

Notice that �L(�) > �R(�) if and only if�
1

n
+ �(�+ )

�
(� � �) > [
1(�)� ��] (�+ � + 2) : (36)

Using the above approximations, we have

�+  � 2h(0)

n
� h0(0)

n2h(0)
and � � � �

�
1� 3

n
+

1

n(n� 1)

�
h(0) +

2h0(0)

n2h(0)
:

Then at � = 1
nh(0)

the left-hand side of (36) equals�
1

n
+

1

nh(0)

�
2h(0)

n
� h0(0)

n2h(0)

��
�
��
1� 3

n
+

1

n(n� 1)

�
h(0) +

2h0(0)

n2h(0)

�
=

�
1

n
+
2

n2
� h0(0)

n3h(0)2

�
�
�
1� 3

n
+

1

n(n� 1) +
2h0(0)

n2h(0)2

�
h(0) : (37)
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Using the approximations, at � = 1
nh(0)

we also have


1(�)� �� �
1

n
� 4

n2
+

1

n2(n� 1) +
h0(0)

n3h(0)2

and

�+ � + 2 � h(0) +  � h(0) + h(0)

n� 1 =
n

n� 1h(0) ;

where we have used the fact that � + � +  � h(0) when � is small. Then the

right-hand side of (36) equals�
1

n
� 4

n2
+

1

n2(n� 1) +
h0(0)

n3h(0)2

�
n

n� 1h(0) : (38)

It is straightforward to show that (37) is greater than (38) if and only if

2� 1

n(n� 1) +
8� 5n
n2

+
6n� 8
n3

h0(0)

h(0)2
� 2(n� 1)

n4
h0(0)2

h(0)4
> 0 :

Treating the left-hand side as a quadratic function of h0(0)
nh(0)2

, one can show that this

inequality holds if and only if h0(0)
nh(0)2

2
�
3n�4�n

p
4n�5

2(n�1) ; 3n�4+n
p
4n�5

2(n�1)

�
. When n is large,

this is equivalent to jh0(0)j
nh(0)2

<
p
n or jh0(0)j

n3=2h(0)2
< 1. Given limn!1

1
nh(0)

= 0, a simple

su¢ cient condition is that jh0(0)j
h(0)

is uniformly bounded for any n, which is true if
jf 0(x)j
f(x)

is uniformly bounded for any x.29 This completes the proof of the lemma.

Given the system (22) and (23) has a solution with a small � when n is large,

we can approximate each side of (23) around � � 0 by using (26) and discarding

all higher order terms. Then it is straightforward to derive (27), from which it is

evident that p < p̂ = 1
nh(0)

and so bundling lowers all prices, and using the condition

that jh
0(0)j
h(0)

is uniformly bounded, one can also check � < p.

Proof of Proposition 5: Following a similar logic as in section 4.3, in this case
we have vi(~p1; ~p2; ~�) = �1, i = 1; 2, and v3(~p1; ~p2; ~�) = �[1 � n
b(~�)] = �n
1(~�).
Raising the single-product prices has the same marginal e¤ect as before, but now

raising the shopping cost by " will harm each multi-stop-shopping consumer by " and

the number of them is 1�n
b(~�). (In the case of mixed bundling, a higher bundling
discount bene�ts each one-stop-shopping consumer and so v3 has the opposite sign.)

Then

�v � v(p1; p2; �)� v(p̂1; p̂2; 0) = (p̂1 � p1) + (p̂2 � p2)� n
Z �

0


1(~�)d~� :

29Suppose jf
0(x)j
f(x) < M for a constant M < 1. Then �Mf(x) < f 0(x) < Mf(x), and so

�M
R
f(x)dF (x)n�1 <

R
f 0(x)dF (x)n�1 < M

R
f(x)dF (x)n�1 for any n. That is, �Mh(0) <

h0(0) < Mh(0) for any n, and so jh
0(0)j
h(0) is uniformly bounded.
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In the i.i.d. case with a small �, we have

p � 1

nh(0)

1

1 + n
n�1h(0)�

� 1

nh(0)
� �

n� 1 ;

and so

�v � 2(p̂� p)� n�
1(0) �
2

n� 1� �
n� 1
n

� =

�
2

n� 1 �
n� 1
n

�
� ;

where we have used 
1(0) = 1
n

�
1� 1

n

�
. Therefore, when � is small, �v is positive

for n = 2; 3 but negative for n � 4.
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