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Abstract

Economic and financial time series data can exhibit nonstationary and nonlinear patterns si-

multaneously. This paper studies copula-based time series models that capture both patterns. We

introduce a procedure where nonstationarity is removed via a filtration, and then the nonlinear

temporal dependence in the filtered data is captured via a flexible Markov copula. We propose two

estimators of the copula dependence parameters: the parametric (two-step) copula estimator where

the marginal distribution of the filtered series is estimated parametrically; and the semiparametric

(two-step) copula estimator where the marginal distribution is estimated via a rescaled empirical

distribution of the filtered series. We show that the limiting distribution of the parametric copula

estimator depends on the nonstationary filtration and the parametric marginal distribution estima-

tion, and may be non-normal. Surprisingly, the limiting distribution of the semiparametric copula

estimator using the filtered data is shown to be the same as that without nonstationary filtration,

which is normal and free of marginal distribution specification. The simple and robust properties

of the semiparametric copula estimators extend to models with misspecified copulas, and facili-

tate statistical inferences, such as hypothesis testing and model selection tests, on semiparametric

copula-based dynamic models in the presence of nonstationarity. Monte Carlo studies and real data

applications are presented.
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1. Introduction

Nonstationarity and nonlinearity are important empirical features in economic and financial time se-

ries. For many economic time series, nonstationary behavior is often the most dominant characteristic.

Some series grow in a secular way over long periods of time, others appear to wander around as if they

have no fixed population mean. Growth characteristics are especially evident in time series that repre-

sent aggregate economic behavior. Random wandering behavior is also evident in many financial time

series. In addition, existing literature (e.g. Gallant, Rossi, Tauchen (1993), Granger (2002), Gallant

(2009)) points out that the classical linear time series modelling based on the Gaussian distribution

assumption clearly fails to explain the stylized facts observed in economic and financial data, and that

it is highly undesirable to perform various economic policy evaluations, financial forecasts, and risk

managements based on linear Gaussian models.

Econometric analysis that ignores either nonstationarity or nonlinearity may lead to erroneous in-

ference for policy evaluations and financial applications. Deterministic or stochastic trend components

are commonly used to capture persistent and trending types nonstationarity in time series. In the

presence of a deterministic trend, detrending methods are often used to extract this trend and the

residuals are then analyzed as a stationary time series. Unit root and cointegration models are widely

used to model stochastic trends in economic time series. For stationary series, copula-based Markov

models provide a rich source of potential nonlinear dynamics describing temporal dependence and

tail dependence, without imposing any restrictions on marginal distributions. See, e.g., Joe (1997),

Chen and Fan (2006a), Patton (2006, 2009, 2012), Ibragimov (2009), Cherubini, et al (2012) and

the references therein. However, existing large sample theories for estimation and inference on the

copula-based time series models rule out nonstationarity.

An important issue is that nonstationarity and nonlinearity can occur simultaneously. In this

paper, we study copula-based time series models that can capture nonstationarity and nonlinearity

(and tail dependence). We propose a sequential procedure where nonstationarity is first removed via

a filtration, and then the nonlinear temporal dependence (and the tail dependence) in the filtered

series is captured by a copula-based first-order stationary Markov model. We are interested in simple

estimation and inference on the copula dependence parameter for the deterministic or stochastic

detrended series. We focus on the sequential approach due to its easy implementation in empirical

applications.

An advantage of copula-based modeling approach is to leave the marginal distribution completely

free of parametric assumptions. Nevertheless, many empirical researchers still like to assume a para-

metric functional form of the marginal distribution and estimate it parametrically before proceeding

to estimate the copula dependence parameters. For the sake of comparison, we consider both the

parametric (two-step) copula estimation where the marginal distribution of the filtered series belongs
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to a parametric family, and the semiparametric (two-step) copula estimation where the marginal dis-

tribution of the filtered series is nonparametric. Without nonstationary filtering and for observable

stationary Markov data, both copula estimators are shown to be asymptotically normal, while the

semiparametric copula estimator is obviously robust to misspecification of the marginal distribution.

We show that the copula estimators using nonstationary filtered data have very different properties,

however. In particular, the limiting distribution of the parametric (two-step) copula estimator is af-

fected by the nonstationary filtration and the parametric marginal distribution estimation, and may

be non-normal in the presence of stochastic trends (unit root or cointegration). While the paramet-

ric copula estimator using deterministic trend filtered data is shown to be asymptotically normal,

its asymptotic variance still depends on the filtrating and the parametric marginal specification in a

complicated way. Surprisingly, we show that the limiting distribution of the semiparametric (two-step)

copula estimator using the filtered data is the same as that without nonstationary filtration, which is

normal and free of marginal distribution specification.

Previously, Chen and Fan (2006b) use parametric copula to generate contemporaneous dependence

among multivariate standardized innovations of observed weakly-dependent multivariate time series,

where the standardized innovations have no serial dependence. They established that the limiting

distribution of their semiparametric two-step copula estimator does not depend on the stationary

parametric filtering in the first step. Recently, Chen, Huang and Yi (2020) generalize their result to

stationary nonparametric GARCH filtered multivariate series. It is interesting that these papers and

our work all establish the surprising "no-filtering-effect" in semiparametric two-step copula parameter

estimation. Nevertheless, our result cannot be derived from theirs. While Chen and Fan (2006b) and

Chen, Huang and Yi (2020) consider the contemporaneous copula dependence among multivariate

standardized innovations that are orthogonal to the stationary dynamic filtering part, our paper

studies the temporal copula dependence of univariate non-stationary filtered residuals, and there is

dependence among the nonstationary (stochastic trending) and the stationary parts in our setting.

While this surprising result is first derived for models with correctly specified parametric copu-

las in Section 3, we show in Section 4 that the limiting distribution of the semiparametric copula

estimator (for the pseudo-true parameter) is still not affected by the nonstationary filtration even

in misspecified parametric copula models. The simple and robust properties of the semiparametric

copula estimators greatly facilitate statistical inferences, such as hypothesis testing and model selec-

tion tests, on semiparametric copula-based dynamic models in the presence of nonstationarity. It is

well-known that there is not enough time series data to accurately estimate the tail dependence fully

nonparametrically and that a semiparametric temporal copula model captures the tail dependence.

Our “no-filtering-effect”of semiparametric two-step copula estimation, testing and model selection on

possibly misspecified parametric residual copula models are particularly useful to empirical researchers
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who care about tail dependence in short term dynamics of the nonstationary filtered time series.

Monte Carlo studies reveal interesting finite sample behaviors of the parametric and the semipara-

metric (two-step) copula estimators under various combinations of nonstationary filtration, correctly-

and incorrectly- specified marginal distribution of the filtered series, and copula function specification

(with or without tail dependence). Simulation evidences (in terms of biases and variances) indicate

that the finite sample performance of parametric copula estimator is indeed very sensitive to different

types of filtration and the parametric estimation of marginal distributions. The semiparametric copula

estimator not only is robust to specification of marginal distributions, but also performs very similarly

to the infeasible semiparametric estimator without nonstationary filtering. In comparison to the para-

metric copula estimator with correctly specified parametric marginal distributions, the semiparametric

estimator has reasonably good sampling performance over a wide range of copula parameter values.

Simulation patterns are consistent with our theoretical findings.

To illustrate the practical usefulness of our theoretical results, we first apply our method to estimate

the short term dynamics in the (USA) GNP time series after the cointegrating regression of GNP on

consumption series. Our semiparametric copula estimation and testing using the filtered data detect

both lower and upper tail dependence in the GNP series, although the lower tail dependence is stronger.

We next apply our method to the famous "CAY" time series that was first constructed in Lettau

and Ludvigson (2001), which is the residual term from a cointegrating regression of consumption

(ct) on asset holding (at) and labor income (yt). According to Lettau and Ludvigson (2001) and

many subsequent work, the "CAY" time series contain important information of future returns at

short horizons. Our semiparametric copula estimation and testing detect very significant lower tail

dependence and weak upper tail dependence in the "CAY" series.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3 presents

estimation of copula parameters for both the parametric and semiparametric models of the filtered

data. It also obtains the large sample properties of the parametric and semiparametric copula esti-

mators. Section 4 considers estimation under possibly misspecified copula models. It also presents

Wald test and semiparametric copula model selection tests using nonstationary filtered data. Section

5 presents Monte Carlo studies. Section 6 provides empirical applications. Section 7 briefly concludes

with future research. Appendix A and the Online Appendix C display tables summarizing the Monte

Carlo results. Appendix B and the Online Appendix D contain all the technical proofs. Notation:

BM(ω2) denotes a Brownian motion with variance ω2. For a generic parameter, say, β, we denote the

true parameter value by β∗, the pseudo-true value by β̄ and a feasible estimator by β̂. The expectation

E[W ], the conditional expectation E[W |V ] and the variance Var[W ] are all taken under the true data

generating process (DGP).
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2. The Model

We assume that the observed scalar time series {Zt}nt=1 can be modelled as

Zt = X ′tπ
∗ + Yt, (2.1)

where X ′tπ
∗ is the nonstationary component in which Xt is an observed dx-dimensional vector of

nonstationary regressors. For example, Xt may contain deterministic trends, unit root or near unit

root nonstationary time series. Yt is the latent stationary ergodic component that could exhibit

nonlinear temporal dependence and/or tail dependence.

Estimation of the parameter π∗ in model (2.1) is by now standard (usually an OLS regression

of Zt on Xt) and is not the focus of our paper. Instead we are interested in estimation of the

copula parameter β that captures stationary nonlinear temporal dependence in {Yt}nt=1. Unfortunately

{Yt}nt=1 is unobserved. We shall estimate the latent temporal dependence parameter β and study its

asymptotic properties based on the filtered time series {Ŷt}nt=1, where

Ŷt ≡ Zt −X ′tπ̂, (2.2)

and π̂ denotes some nonstationary filtering estimator for π∗. We state the basic regularity conditions

on the nonstationary part and the stationary part as follows. The assumptions about the nonstationary

part {X ′tπ∗}nt=1 are the typical ones for trend, unit roots and cointegration, and the assumptions about

the stationary part {Yt}nt=1 are the same as those in Chen and Fan (2006a).

Due to the nonstationarity inXt, in the next assumption we introduce appropriate re-standardization

via a scaling matrix Dn to facilitate asymptotic analysis.

Assumption X. In model (2.1), the elements in Xt can be either a deterministic trend function, or

an unit root or local to unit root process such that[
Yn(r)

Xn(r)

]
≡
[
n−1/2

∑[nr]
t=1 Yt

n1/2D−1
n X[nr]

]
⇒
[
BY (r)

X(r)

]
, r ∈ [0, 1] as n→∞,

where BY (r) is a Brownian motion, X(r) is a vector of stochastic or deterministic functions. And

Dn (π̂ − π∗)⇒ ξ as n→∞.

In the above assumption, X(·) may be stochastic processes such as Brownian motions, or deter-
ministic functions, or mixtures of both. In the case when X(·) contains stochastic functions, they
can be correlated with BY (·). The limiting distribution of the filtration parameter, ξ, is a function of
(X(·)′, BY (·)) and may not be a normal variate. We give below a few examples that are widely used
in time series applications. In all the examples, we let π̂ be the OLS estimator of π∗.
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Example 1. Trending Time Series. Xt is a vector of deterministic trend function and Xn(r) →
X(r), where X(r) is a piecewise continuous limiting trending function. (For example, if Zt =

π∗0 + π∗1t + Yt, then Xt = (1, t)′ and X(r) = (1, r)′, and the standardization matrix is Dn =

diag(n1/2, n3/2).) Let Yn(r)⇒ BY (r) = BM(ω2
Y ). Then:

Dn (π̂ − π∗)⇒ ξ1, ξ1 =

[∫
X(r)X(r)′dr

]−1 [∫
X(r)dBY (r)

]
where ξ1 is a normal random variable with mean zero and variance matrix ω

2
Y

[∫
X(r)X(r)′dr

]−1.

Example 2. Time Series with a Root Close to Unity. Xt = Zt−1 and π∗ = 1 + c/n. Thus

Xt = Zt−1 can be a unit root (c = 0) or local to unit root process. Dn = n, and Xn(r) =

n−1/2X[nr] ⇒ X(r) = Jc(r) =
∫ r

0 e
(r−s)cdBY (s), where Jc(r) is a Ornstein—Uhlenbeck process. If

c = 0, J0(r) = BY (r) is simply a Brownian motion. The OLS filtration estimators π̂ converges

at the rate-n to a non-normal limit ξ2:

n (π̂ − π∗)⇒ ξ2, ξ2 =

[∫ 1

0
Jc(r)

2dr

]−1 [∫ 1

0
Jc(r)dBY (r) + λ

]
with λ =

∞∑
h=1

E(Y1Y1+h).

Example 3 Cointegrated Time Series. Xt = (X ′1t, X
′
2t)
′, where X1t is a vector of deterministic

trend, and X2t is a vector of stochastic nonstationary process, then

n1/2D−1
1nX1,[nr] → X1(r), n−1/2X2,[nr] ⇒ B2(r) = BM(ω2

2),

X1(r) is the limiting trending function, and B2(r) is a stochastic process. Then

Xn(r) = n1/2D−1
n X[nr] ⇒ X(r) =

[
X1(r)

B2(r)

]
with Dn = diag{D1n, n, · · ·, n}.

The OLS filtration estimators π̂ has the following non-normal limit ξ3:

Dn (π̂ − π∗)⇒ ξ3, ξ3 =

[∫
X(r)X(r)′dr

]−1 [∫
X(r)′dBY (r) + ΛXY

]
with Λ′XY = [0,Λ′2Y ],

where, in general cointegration applications, Λ2Y 6= 0, B2(r) is usually correlated with BY (r),

and
[∫
B2(r)B2(r)′dr

]−1 ∫
B2(r)dBY (r) is asymmetrically distributed.

We make the following basic assumptions on the latent process {Yt}, which are also imposed in
Chen and Fan (2006a).

Assumption DGP: (1). {Yt}nt=1 in model (2.1) is a stationary first-order Markov process generated

from (F ∗(·), C∗(·, ·)), where F ∗(·) is the true invariant distribution that is absolutely continuous with
respect to Lebesgue measure on the real line; C∗(·, ·) is the true copula function for (Yt−1, Yt), and is
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absolutely continuous with respect to Lebesgue measure on [0, 1]2. (2) C∗(·, ·) = C(·, ·;β∗) for β∗ ∈ B
a compact subset of Rk.
Assumption MX: {Yt} is absolutely regular with mixing coeffi cient β (τ) = O(τ−δ), with δ >

q/(q − 1) for some constant q > 1.

Under Assumption DGP(1), by Sklar’s (1959) theorem, the probabilistic properties of {Yt}nt=1 is

uniquely determined by the true conditional density of Yt given Yt−1:

p(yt|yt−1) = f∗(yt)c
∗(F ∗ (yt−1) , F ∗ (yt)),

where f∗(·) is the true invariant density (of F ∗(·)) and c∗(·, ·) is the true copula density (of C∗(·, ·)). Let
Ut ≡ F ∗(Yt). Then {Ut}nt=1 is a strictly stationary first-order Markov process with uniform marginal

distributions and the true joint distribution of (Ut−1, Ut) is given by C∗(ut−1, ut)

For simplicity, Assumption DGP(1) assumes that {Yt}nt=1 is a first-order stationary Markov process,

although higher order Markov process of {Yt}nt=1 can be handled similarly (see, e.g., Ibragimov, 2009).

Assumption DGP automatically implies that {Yt}nt=1 is absolutely regular (or beta-mixing). Assump-

tion MX only imposes a mild polynomial mixing decay rate, which is satisfied by commonly used

parametric copulas. See Chen and Fan (2006a), Chen, Wu and Yi (2009), Beare (2010), Longla and

Peligrad (2012) and others for suffi cient conditions that commonly used copula-based Markov processes

are geometric ergodic and hence absolutely regular with exponentially decaying mixing coeffi cients.

In this paper, a parametric copula density family {c(·, ·;β) : β ∈ B} with B a compact subset

of Rk, can be correctly specified as assumed in Assumption DGP(2) (and Section 3) or incorrectly
specified in the sense that c∗(·, ·) /∈ {c(·, ·;β) : β ∈ B} (as in Section 4). Under Assumption DGP(1)
and some mild regularity conditions, we can define a uniquely pseudo-true value β ∈ B as

β = arg max
β∈B

∫ 1

0

∫ 1

0
[log c(u, v, β)]× c∗(u, v)dudv = arg min

β∈B
KLIC (c∗, c (·, ·, β)) (2.3)

where, followingWhite (1982), KLIC(c∗, c (·, ·, β)) is the Kullback-Leibler Information Criterion (KLIC)

between a parametric copula density c(·, ·;β) and the unknown true copula density c∗(·, ·):

KLIC (c∗, c (·, β)) =

∫ 1

0

∫ 1

0
[log c∗(u, v)− log c(u, v, β)]× c∗(u, v)dudv ≥ 0.

Under Assumption DGP(2) (i.e., the parametric copula function C(u, v, β) is correctly specified) then

β = β∗ (the true parameter value) and KLIC
(
c∗, c

(
·, β
))

= 0. We say the copula function is incorrectly

specified if KLIC
(
c∗, c

(
·, β
))
> 0.

Regardless if the parametric copula density c(u, v, β) is correctly specified or not, the following

notation is used throughout the paper. Let `(u, v, β) = log c(u, v, β), and

∂`(u, v, β)

∂β
= `β (u, v, β) ,

∂`(u, v, β)

∂u
= `1 (u, v, β) ,

∂`(u, v, β)

∂v
= `2 (u, v, β) ,
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∂`β (u, v, β)

∂u
= `β1 (u, v, β) ,

∂`β (u, v, β)

∂v
= `β2 (u, v, β) ,

∂`β (u, v, β)

∂β
= `ββ (u, v, β) .

Ωβ = E
[
`β (Ut−1, Ut, β) `β (Ut−1, Ut, β)′

]
, Hβ = −E[`ββ (Ut−1, Ut, β)]. (2.4)

Under mild regularity conditions, we have Ωβ∗ = Hβ∗ for correctly specified copula models (see Section

3), but Ωβ 6= Hβ for incorrectly specified copula models (see Section 4).

3. Estimation Under Correctly-Specified Copulas

We are interested in estimation and inference on the copula dependence parameter β∗.

3.1. Feasible estimation of copula parameter using filtered data Ŷt

Let F̂ (·) be a feasible estimator of the marginal distribution F ∗(·) using the filtered data Ŷt. We
propose the following feasible copula estimator

β̂ = arg max
β

Q̂n(F̂ , β), where Q̂n(F̂ , β) =
1

n

n∑
t=2

log c(F̂ (Ŷt−1), F̂ (Ŷt), β). (3.1)

3.1.1. Parametric marginal case

We first consider the parametric case where the marginal distribution of Yt belongs to a parametric

family. Denote the unknown true marginal density function and the distribution function of Yt by

f(·, α∗) and F (·, α∗), where α is an k1-dimensional vector of unknown parameters. We could then

estimate the true marginal F ∗(·) by F (·, α̂) where

α̂ = arg max
α

n∑
t=1

log f(Ŷt, α), (3.2)

and estimate the copula parameter β∗ by the following “parametric copula estimator”:

β̂P ≡ arg max
β

Q̂n(β), where Q̂n(β) =
1

n

n∑
t=2

log c(F (Ŷt−1, α̂), F (Ŷt, α̂), β).

3.1.2. Nonparametric marginal case

In practice, the exact form of marginal distribution is usually beyond our knowledge and thus the

parametric model of marginal distribution may be misspecified. We now consider a semiparametric

estimator where the marginal distribution is estimated nonparametrically based on the filtered time

series Ŷt. We use the so-called rescaled empirical distribution function (EDF) to estimate F ∗(·):

F̂n(y) ≡ 1

n+ 1

n∑
t=1

1
(
Ŷt ≤ y

)
, (3.3)
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and estimate the copula parameter β∗ by the following “semiparametric copula estimator”:

β̂SP ≡ arg max
β
L̂n(β), where L̂n(β) =

1

n

n∑
t=2

log c(F̂n(Ŷt−1), F̂n(Ŷt), β).

3.2. Infeasible estimation of copula parameter using Yt

For comparison purpose, we review an infeasible estimator, β̃, of β∗ assuming that Yt is observed.

Let F̃ (·) be an infeasible estimator of the true marginal distribution F ∗(·) using Yt. Then a pseudo
maximum likelihood estimator of β∗ using observed Yt is given by

β̃ = arg max
β

Qn(F̃ , β), where Qn(F̃ , β) =
1

n

n∑
t=2

log c(F̃ (Yt−1), F̃ (Yt), β).

Again, β̃P denotes the parametric copula estimator using the infeasible parametric marginal estima-

tor:1

F̃ = F (·, α̃), α̃ = arg max
α

n∑
t=1

log f(Yt, α).

And β̃SP denotes the semiparametric copula estimator using the infeasible rescaled estimator for F
∗(·):

F̃ (y) = Fn(y) ≡ 1

n+ 1

n∑
t=1

1 (Yt ≤ y) . (3.4)

Chen and Fan (2006a) has proposed and studied the asymptotic properties of β̃SP for first-order

stationary Markov process Yt.

In the next two subsections, we show that although the parameter estimators β̂P and β̃P could

have different asymptotic properties, the semiparametric copula estimators β̂SP and β̃SP have the

same asymptotic distribution.

3.3. Asymptotic properties of parametric copula estimator

In this subsection we establish the consistency and limiting distribution for the feasible parametric cop-

ula estimator. We introduce some additional notation for the parametric case. Let g (Yt−1, Yt, α, β) =

1Previously, Joe and Xu (1996) and Joe (2005) studied two-step parametric estimation of copula parameter

β for iid data {(Y1,i, ..., Yd,i)}ni=1 of a multivariate random vector (Y1, ..., Yd) whose concurrent copula density

c(F1(Y1;α1), ..., Fd(Yd;αd);β) links different parametric marginal distributions Fj(Yj ;αj), j = 1, ..., d.
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log c(F (Yt−1, α), F (Yt, α), β) and gβ (s1, s2, α, β) = ∂g (s1, s2, α, β) /∂β. For i = 1, 2, j = 1, 2, we define

∂gβ (s1, s2, α, β)

∂α
= gβα (s1, s2, α, β) ,

∂gβ (s1, s2, α, β)

∂β
= gββ (s1, s2, α, β) ,

∂gβ (s1, s2, α, β)

∂sj
= gβj (s1, s2, α, β) ,

∂gββ (s1, s2, α, β)

∂sj
= gββj (s1, s2, α, β) ,

∂gββ (s1, s2, α, β)

∂α
= gββα (s1, s2, α, β) ,

∂gβα (s1, s2, α, β)

∂sj
= gβαj (s1, s2, α, β) ,

∂gβi (s1, s2, α, β)

∂sj
= gβij (s1, s2, α, β) ,

∂gβi (s1, s2, α, β)

∂α
= gβiα (s1, s2, α, β) .

For consistency in the parametric case, we make the following assumptions.

Assumption ID1: (1) A and B are compact subsets of Rk1 and Rk. (2). q(α) =E[log f(Yt, α)] has

a unique maximizer α∗ ∈ A; and Q(β) =E[g (Yt−1, Yt, α
∗, β)] has a unique maximizer β∗ ∈ B. (3)

f(y, α) is continuous in α ∈ A, and g (α, β) =E[g (Yt−1, Yt, α, β)] is Lipschitz continuous in α ∈ A and
β ∈ B.
Assumption M1 (1) E[supα | log f(Yt, α)|] < ∞, and E

[
supβ∈B,α∈Aδ |g (Yt−1, Yt, α, β)|

]
< ∞. (2)

f(y, α) is uniformly continuous in y, uniformly over α ∈ A (that is, for any ε > 0 there exists δ > 0,

such that if |y1 − y2| < δ, then supα∈A |log f(y1, α)− log f(y2, α)| < ε.). Similarly, g(s1, s2, α, β) is

uniformly continuous in (s1, s2, α), uniformly over β ∈ B.

Theorem 1: Let Assumptions X, DGP, MX, ID1, and M1 hold. Then: β̂P = β∗ + op(1).

We introduce additional notation and assumptions for the limiting distribution of β̂P . Denote

Ωα = E
[
∂ log f(Yt, α

∗)

∂α

∂ log f(Yt, α
∗)

∂α′

]
, Hα = −E

[
∂2 log f(Yt, α

∗)

∂α∂α′

]
.

Assumption ID2: (1). β∗ ∈ int(B) and β̂P = β∗+ op(1). (2) gβ (s1, s2, α, β) is Lipschitz continuous

in β, gβj (s1, s2, α, β) are continuous in (s1, s2, α, β). (3). Ωβ∗ = Hβ∗ given in (2.4) is positive definite.

(4). f(·, α∗) is differentiable in α∗. (5) Ωα = Hα is positive definite.

Assumption M2 (1) the derivatives of gβ (s1, s2, α, β) are uniformly continuous in (s1, s2, α, β). (2)

the following limits hold in probability:

Pnj =
1

n

n∑
t=2

gβj (Yt−1, Yt, α
∗, β∗)X ′t−2+jD

−1
n n1/2 = Pj + op(1), j = 1, 2,

Pn3 = n−1
n∑
t=2

gβα (Yt−1, Yt, α
∗, β∗) = P3 + op(1).

HnαY =
1

n

n∑
t=1

∂2 log f(Yt, α
∗)

∂α∂y

(
X ′tD

−1
n n1/2

)
= HαY + op(1).
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Theorem 2: Let Assumptions X, DGP, MX, ID2 and M2 hold. Then:

√
n
(
β̂P − β∗

)
⇒ N

(
0, H−1

β∗ Ω#
β H

−1
β∗

)
−H−1

β∗
(
P1 + P2 + P3Ω−1

α HαY

)
ξ

where

Ω#
β = lim

n→∞
Var

(
1√
n

n∑
t=2

(
gβ (Yt−1, Yt, α

∗, β∗) + P3Ω−1
α

∂ log f(Yt, α
∗)

∂α

))
.

Theorem 2 implies that, in the presence of nonstationarity, the limiting distribution of the para-

metric copula estimator β̂P may not be normal.

From the proof of Theorem 2, we can decompose the limiting distribution of β̂P into three com-

ponents: The first part is N
(

0, H−1
β∗ Ωβ∗H

−1
β∗

)
= N

(
0,Ω−1

β∗

)
, the normal limit of the ideal infeasible

estimator when Yt is observed with a completely known marginal F ∗(Yt) = F (Yt, α
∗) (or a known

α∗); The second part is N(0, H−1
β∗ P3Ω−1

α P ′3H
−1
β∗ ), the normal limit from the parametric estimation of

the marginal parameter α∗ using Yt; The third part is H−1
β∗
(
P1 + P2 + P3Ω−1

α HαY

)
ξ, the effect of

nonstationary filtration Ŷt. The first two parts are normal random variates but the third part may not

be normal. Unless P1 + P2 + P3Ω−1
α HαY = op(1), the nonstationary filtration will affect the limiting

distribution of β̂P . In particular, the filtration affects the limiting distribution of
√
n
(
β̂P − β∗

)
di-

rectly through Ŷt and indirectly through α̂. Unless Xt is purely deterministic, the limiting distribution

of
√
n
(
β̂P − β∗

)
is not normal and is generally affected by nuisance parameters in a complicated way.

Remark 1. We define the ideal infeasible estimator β̆ as the maximum likelihood estimator of β∗

assuming Yt is observed with a completely known marginal distribution F ∗(·):

β̆ = arg max
β

Qn(F ∗, β), where Qn(F ∗, β) =
1

n

n∑
t=2

log c(F ∗(Yt−1), F ∗(Yt), β). (3.5)

It is obvious that
√
n
(
β̆ − β∗

)
⇒ N

(
0, H−1

β∗ Ωβ∗H
−1
β∗

)
= N

(
0,Ω−1

β∗

)
.

From the proof of Theorem 2, we have

√
n
(
β̃P − β∗

)
⇒ N

(
0, H−1

β∗ Ω#
β H

−1
β∗

)
.

Since Ω#
β − Ωβ∗ is positive definite, even assuming observable Yt, there is still effi ciency loss of the

infeasible parametric copula estimator β̃P using a consistent parametric estimator of marginal dis-

tribution F ∗(). Nevertheless, according to Theorem 2, it is unclear which one, β̃P vs β̂P , is more

effi cient.

Example 1 (Continued). Trending Time Series. Let

η =

2∑
j=1

Egβj (Yt−1, Yt, α
∗, β∗) + P3Ω−1

α E
[
∂2 log f(Yt, α

∗)

∂α∂Y

]
, (3.6)
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and

ηX = η

∫ 1

0
X(r)′dr

(∫ 1

0
X(r)X(r)′dr

)−1

.

Notice that

Pnj → Pj = Egβj (Yt−1, Yt, α
∗, β∗)

∫ 1

0
X(r)′dr, j = 1, 2,

HnαY → HαY = E
[
∂2 log f(Yt, α

∗)

∂α∂Y

] ∫ 1

0
X(r)′dr,

we have

P1 + P2 + P3Ω−1
α HαY = η

∫ 1

0
X(r)′dr,

and
√
n
(
β̂P − β∗

)
⇒ N

(
0, H−1

β∗ Ω
#
β H

−1
β∗

)
,

where

Ω
#
β = lim

n→∞
Var

(
1√
n

n∑
t=2

gβ (Yt−1, Yt, α
∗, β∗) + Pn3Ω−1

α

1√
n

n∑
t=1

∂ log f(Yt, α
∗)

∂α
− ηX

∑
t

D−1
n XtYt

)
.

In this example, the nonstationary component is deterministic and hence uncorrelated with Yt,

the limiting distribution ofDn (π̂ − π∗) is normal. Thus the limiting distribution of β̂P is normal,
but is affected by the filtration as reflected in the formula of Ω

#
β .

Example 2 (Continued). Unit Root. Let Zt = Zt−1 + Yt is a unit root process. Then Xt = Zt−1,

π∗ = 1, and

n (π̂ − π∗)⇒ ξ2 =

[∫ 1

0
BY (r)2dr

]−1
[∫ 1

0
BY (r)dBY (r) +

∞∑
h=1

E(Y1Y1+h)

]
.

Then,
√
n
(
β̂P − β∗

)
⇒ N

(
0, H−1

β∗ Ω#
β H

−1
β∗

)
− ηH−1

β∗ h(BY (r))

where η is defined as (3.6), and

h(BY (r)) =

∫ 1

0
BY (r)dr

[∫ 1

0
BY (r)2dr

]−1
[∫ 1

0
BY (r)dBY (r) +

∞∑
h=1

E(Y1Y1+h)

]
.

In this example, the limiting distribution ξ2 of the nonstationary filtration π̂ is non-normal, and

thus the limiting distribution of β̂P is not normal and is affected by the filtration.

Example 3 (Continued). Cointegrated Time Series. Xt = (X ′1t, X
′
2t)
′, where X1t is a vector of

deterministic trend, and X2t is a vector of unit root process, then

Pnj → Pj = Egβj (Yt−1, Yt, α
∗, β∗)

[∫ 1

0
X1(r)′dr,

∫ 1

0
B2(r)′dr

]
, j = 1, 2,
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and

HnαY → HαY = E
[
∂2 log f(Yt, α

∗)

∂α∂Y

] ∫ 1

0
X(r)′dr.

Then,
√
n
(
β̂P − β∗

)
⇒ N

(
0, H−1

β∗ Ω#
β H

−1
β∗

)
− ηH−1

β∗ h3(X1, B2, BY )

where

h3(X1, B2, BY ) =

[∫ 1

0
X1(r)′dr,

∫ 1

0
B2(r)′dr

][[ ∫
X1(r)X1(r)′dr

∫
X1(r)B2(r)′dr∫

B2(r)X1(r)′dr
∫
B2(r)B2(r)′dr

]]−1

×
[ ∫ 1

0 X1(r)dBY (r)∫ 1
0 B2(r)dBY (r) + Λ2Y

]
.

In this example, the stochastic nonstationary process X2t is correlated with Yt, and the limiting

distribution ξ3 of the nonstationary filtration π̂ is non-normal. Thus the limiting distribution of

β̂P is not normal and is affected by the filtration.

3.4. Asymptotic properties of semiparametric copula estimator

We first establish a key Lemma for a weighted empirical process that is of independent interest to

handle filtration for time series. Lemma 1 below is about the empirical distribution functions based

on filtered data, and has nothing to do with copula models.

Assumption SP: (1) There exists Y , for |y| > Y , and any sequence δn = o(1), |F ∗(y + δn)− F ∗(y)| ≤
F ∗(y)δn. (2) w (·) is a continuous function on [0, 1] which is strictly positive on (0, 1), symmetric at
u = 0.5, and increasing on (0, 1/2], satisfying w(u) ≥ ζ [u(1− u)]µ log(1/(u(1 − u)))µ1 with ζ > 0,

µ1 > 0, µ < 1/2q for q given in Assumption MX.

Let b = (b1, · · ·, bn)′ and |b| = max1≤t≤n |bt|. Denote

Zn(y, b) ≡ 1√
n+ 1

n∑
t=1

[
1
(
Yt ≤ y + n−1/2bt

)
− F ∗(y + n−1/2bt)

]
.

Lemma 1: Let Assumptions X, DGP(1), MX and SP hold. Then: for any given B > 0,

sup
|b|≤B

sup
y

∣∣∣∣Zn(y, b)−Zn(y, 0)

w(F ∗(y))

∣∣∣∣ = op(1).

Let F denote the space of probability distributions over the support of Yt, and w (·) be a positive
weighting function as given in Assumption SP(2). For any F ∈ F we define a weighted metric ‖·‖w as

‖F − F ∗‖w = sup
y
|{F (y)− F ∗(y)} /w(F ∗(y))| .
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For a small δ > 0, let Fδ = {F ∈ F : ‖F − F ∗‖w ≤ δ}. Then for Fn(·) given in (3.4) we have Fn ∈ Fδ
a.s. (by Chen and Fan (2006a) lemma 4.1(1)).

The following conditions are imposed for the consistency of the semiparametric copula estimator.

Assumption ID3: (1). B is a compact subset of Rk, E[`β(F ∗(Yt−1), F ∗(Yt), β)] = 0 if and only if

β = β∗ ∈ B. (2) `β (s1, s2, β) is Lipschitz continuous in β, `βj (s1, s2, β) are continuous in (s1, s2, β).

Assumption M3: (1). E
[
supβ∈B ‖`β (F ∗(Yt−1), F ∗(Yt), β)‖ log (1 + ‖`β (F ∗(Yt−1), F ∗(Yt), β)‖)

]
<∞.

(2). E
[
supβ∈B,F∈Fδ ‖`βj (F (Yt−1), F (Yt), β)‖w(F ∗(Yt−2+j))

]
<∞, j = 1, 2.

(3). supy |f∗(y)/w(F ∗(y))| <∞.

We note that Assumptions ID3 and M3(1)(2) are already imposed in Chen and Fan (2006a) for

the consistency of the infeasible semiparametric estimator β̃SP using {Yt}. We impose Assumption
M3(3) since β̂SP is computed using the filtered data

{
Ŷt

}
.

Theorem 3: Let Assumptions X, DGP, MX, SP, ID3 and M3 hold. Then: β̂SP = β∗ + op (1).

Recall that under Assumption DGP(1), {Ut = F ∗(Yt)}nt=1 is a first-order Markov with c
∗ (v1, v2)

as the true joint density of (Ut−1, Ut). Denote

Gn (β) =
1√
n

n∑
t=2

{`β (Ut−1, Ut, β) +G0(Ut, β) +G1(Ut−1, β)} , (3.7)

where, for j = 0, 1,

Gj(Ut−j , β) =

∫ 1

0

∫ 1

0
`β,2−j (v1, v2;β) [1 (Ut−j ≤ v2−j)− v2−j ] c

∗ (v1, v2) dv1dv2 (3.8)

= E {`β,2−j (U1, U2;β) [1(Ut−j ≤ U2−j)− U2−j ] | Ut−j} . (3.9)

Let

Ω+
β = Ω+(β) = lim

n→∞
Var (Gn (β)) . (3.10)

The following additional assumptions are used for the asymptotic normality of β̂SP .

Assumption ID4: (1). Assumption ID3(1) is satisfied with β∗ ∈ int (B), β̂SP = β∗+ op(1). (2) Hβ∗

given in (2.4) and Ω+
β∗ given in (3.10) are positive definite. (3). supy |(Fn(y)− F ∗(y)) /w(F ∗(y))| =

Op(n
−1/2).

Assumption M4 (1). Let Fη = F ∗ + η [F − F ∗] for η ∈ [0, 1] and F ∈ Fδ, the interchange of
differentiation and integration of `β

(
Fη(Yt−1), Fη(Yt), βη

)
w.r.t η ∈ (0, 1) is valid.

(2) E
[
sup‖β−β∗‖≤δ,F∈Fδ ‖`β (F (Yt−1), F (Yt), β)‖2 log (1 + ‖`β (F (Yt−1), F (Yt), β)‖)

]
<∞,

E
[
sup‖β−β∗‖≤δ,F∈Fδ ‖`ββ (F (Yt−1), F (Yt), β)‖2

]
<∞,

E
[
sup‖β−β∗‖≤δ,F∈Fδ ‖`βj (F (Yt−1), F (Yt), β)‖w(F ∗(Yt−2+j))

]2
<∞, j = 1, 2.

(3). E
[
sup‖β−β∗‖≤δ,F∈Fδ |`βij (F (Yt−1), F (Yt), β)w(F ∗(Yt+i−2))w(F ∗(Yt+j−2))|

]
<∞, i, j = 1, 2,
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E
[
sup‖β−β∗‖≤δ,F∈Fδ ‖`ββj (F (Yt−1), F (Yt), β)w(F ∗(Yt+j−2))‖

]
<∞, i, j = 1, 2.

E
[
sup‖β−β∗‖≤δ,F∈Fδ ‖`βββ (F (Yt−1), F (Yt), β)‖

]
<∞.

We note that Assumptions ID4 and M4(1)(2) are already imposed in Chen and Fan (2006a) for

the asymptotic normality of the infeasible semiparametric estimator β̃SP using {Yt}. We impose

Assumption M4(3) since β̂SP is computed using the filtered data
{
Ŷt

}
.

Theorem 4: Let Assumptions X, DGP, MX, SP, ID4 and M4 hold. Then:

√
n
(
β̂SP − β∗

)
=
√
n
(
β̃SP − β∗

)
+ op(1) = H−1

β∗ Gn (β∗) + op(1)⇒ N
(

0, H−1
β∗ Ω+

β∗H
−1
β∗

)
.

Theorem 4 shows that the nonstationary filtration does not affect the limiting distribution of the

semiparametric copula estimator β̂SP , which is the same as that of the infeasible semiparametric

copula estimator β̃SP using Yt.

From the proof of Theorem 4, we can again decompose the limiting distribution of the semiparamet-

ric copula estimator β̂SP into three components: The first part is N
(

0, H−1
β∗ Ωβ∗H

−1
β∗

)
= N

(
0,Ωβ∗

)
,

the normal limit of the ideal infeasible estimator β̆ when Yt is observed with a completely known

marginal distribution F ∗(·); The second part, denoted as An2 + An4 in the Appendix, is from the

nonparametric estimation of the unknown marginal distribution using Yt, and is also asymptotically

normal; The third part, denoted as An1 +An3 in the Appendix, is the effect of nonstationary filtration

Ŷt. We show in the Appendix that An1 +An3 = op(1). Therefore, the distribution of
√
n
(
β̂SP − β∗

)
is only asymptotically affected by the first two parts. Consequently, the limiting distribution of
√
n
(
β̂SP − β∗

)
is the same as that of

√
n
(
β̃SP − β∗

)
, which is always normal.

Remark 2. Chen and Fan (2006b) studied semiparametric copula-based multivariate dynamic models

Zt = (Z1,t, ..., Zd,t) , Zj,t = µj,t(θ
∗) + σj,t(θ

∗)Yj,t,

µj,t(θ
∗) = E[Zj,t|It−1], σ2

j,t(θ
∗) = V ar[Zj,t|It−1],

Yt = (Y1,t, ..., Yd,t) is independent of It−1, and {Yt}nt=1 is i.i.d. over t

where the joint distribution of the multivariate standardized innovation Yt = (Y1,t, ..., Yd,t) has the con-

current copula density c(F1(Y1,t), ..., Fd(Yd,t);β) that links marginal distributions Fj(Yj,t), j = 1, ..., d

of individual standardized innovation at the same time period t. Chen and Fan (2006b) established

that the asymptotic distribution of the semiparametric (two-step) copula parameter estimator using

the filtered standardized innovation Ŷt is the same as that based on true multivariate standardized

innovation Yt, and hence is not affected by the parametric estimation of the conditional mean and

volatility parameters θ∗. Recently Chen, Huang and Yi (2020) extend this result to nonparametric

estimated (E[Zj,t|It−1], V ar[Zj,t|It−1])dj=1. We should stress that the results in Chen and Fan (2006b)
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and Chen, Huang and Yi (2020) crucially depend on the independence between Yt = (Y1,t, ..., Yd,t)

and the dynamic part It−1 of the observed time series Zt. However, in the presence of stochastic

nonstationarity (unit-root or cointegration) as in our paper, Xt can be correlated with the residual

term Yt, and hence our Theorem 4 can not be explained by their results.

Remark 3. Under Assumption DGP(2), {Ut = F ∗(Yt)}nt=1 is a first-order Markov with c
∗ (v1, v2) =

c(v1, v2;β∗) as the true joint density of (Ut−1, Ut). Hence we can simulate a first-order Markov
{
Ũt

}
from c(v1, v2; β̂SP ) (see Chen and Fan 2006a, Chen, Koenker and Xiao 2009), and a parametric

bootstrap approach can be used for inference on copula dependence parameter β∗. For instance,

we could compute a consistent long-run variance estimator for β̂SP using H̃
−1
β Ω̃+

β H̃
−1
β , where H̃β =

− 1
n

∑n
t=2 `ββ

(
Ũt−1, Ũt, β̂SP

)
and

Ω̃+
β =

M∑
h=−M

K

(
h

M

)
γ̃n(h), γ̃n(h) =

1

n

n∑
t=2

2≤t,t+h≤n

S̃t(β̂SP )S̃t+h(β̂SP )′,

where the kernel K() and the bandwidth M are given in Assumption KB below, and

S̃t(β̂SP ) = `β

(
Ũt−1, Ũt, β̂SP

)
+ Ĝ0(Ũt) + Ĝ1(Ũt−1),

Ĝj(Ũt−j) =

∫ 1

0

∫ 1

0
`β,2−j

(
v1, v2; β̂SP

) [
1
(
Ũt−j ≤ v2−j

)
− v2−j

]
c(v1, v2; β̂SP )dv1dv2.

Nevertheless, for the sake of robustness to the potential misspecification of copula models, we recom-

mend an alternative long-run variance estimator given in Theorem 7 below.

4. Semiparametric Estimation Under Copula-Misspecification

Section 3 considers the case where the residual copula function is correctly specified. In empirical

work, as illustrated in Section 6 below, one may select a parametric copula family to capture the

tail dependence by eye spotting a simple scatter plot of F̂n(Ŷt) against F̂n(Ŷt−1). However, there are

still several parametric copula families that can generate similar tail dependence patterns, and any

parametric specification might be potentially misspecified. For this reason, we study semiparametric

estimation and residual copula model selection tests in the presence of misspecified residual copula

models, without any parametric specification of marginal distribution F ∗ of the residual process {Yt}.

4.1. Semiparametric two-step estimation of pseudo-true copula parameters

Suppose that the true copula function that captures the dependence in Yt is given by C∗(u, v), but

we consider a copula function C(u, v, β) and estimate β by β̂SP which maximizes

L̂n(β) =
1

n

n∑
t=2

log c(F̂n(Ŷt−1), F̂n(Ŷt), β), with F̂n(·) given in (3.3).
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The infeasible semiparametric estimator based on unobserved Yt maximize

Ln(β) =
1

n

n∑
t=2

log c(Fn(Yt−1), Fn(Yt), β), with Fn(·) given in (3.4).

Under appropriate assumptions, the maximizer of Ln(β) will converge to the pseudo-true value β

defined in (2.3).

We make the following assumptions, which are parallel to the assumptions in Section 3.4, but

modified to accommodate the misspecified copula model.

Assumption ID5: Assumption ID3 holds with β∗ replaced by the pseudo-true value β ∈ B defined

in (2.3).

Theorem 5. Let Assumptions X, DGP(1), MX, SP, ID5 and M3 hold. Then: β̂SP = β + op (1).

Assumption ID6: Assumption ID4 holds with β∗ replaced by β ∈ int (B).

Assumption M6: Assumption M4 holds with β∗ replaced by β.

Let Ω+
β

= limn→∞Var
(
Gn
(
β
))
where Gn

(
β
)
is defined as in (3.7).

Theorem 6. Let Assumptions X, DGP(1), MX, SP, ID6 and M6 hold. Then:

√
n
(
β̂SP − β

)
=
√
n
(
β̃SP − β

)
+ op(1) = H−1

β
Gn
(
β
)

+ op(1)⇒ N
(

0, H−1
β

Ω+
β
H−1
β

)
.

Theorem 6 shows that, even for a misspecified residual copula model, the nonstationary filtration

still does not affect the limiting distribution of the semiparametric copula estimator β̂SP (centered at

the pseudo-true parameter β), which is again normal, the same as that of the infeasible semiparametric

copula estimator β̃SP using Yt, under a misspecified copula model.

Similar to Theorem 2 for the correctly specified case, the limiting distribution of parametric copula

estimators based on filtered time series under copula misspecification are again affected by the pre-

liminary filtration, and may not be asymptotic normal in the presence of a nonstationary component.

4.2. Semiparametric inference on copula parameters

The simple and robust asymptotic properties of the semiparametric (two-step) copula estimator greatly

simplify all kinds of statistical inferences on copula models for latent {Yt}. In this section, we briefly
mention the Wald test for restrictions on the copula dependence parameters β using the asymptotic

results of Theorem 6 for possibly misspecified copula models. Notice that Theorem 6 becomes Theorem

4 under DGP(2) (correctly specified copula model, i.e., β = β∗).

Consider the general linear restriction H01 : Rβ = r. A leading example is the significance test for

a scalar element βj of β: H02: βj = β0j . Notice that under the null H01 and Assumptions for Theorem

7,
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√
n
(
Rβ̂SP − r

)
⇒ N

(
0, RH−1

β
Ω+
β
H−1
β
R′
)
.

Thus, under H01, as n→∞,

n
(
Rβ̂SP − r

)′ [
RH−1

β
Ω+
β
H−1
β
R′
]−1 (

Rβ̂SP − r
)
⇒ χ2

dr ,

where dr is the number of linearly independent restrictions.

Let Ĥβ and Ω̂+
β be any consistent estimators of Hβ and Ω+

β
respectively. Then we can compute a

simple Wald test statistic as

Ŵn = n
(
Rβ̂SP − r

)′ [
RĤ−1

β Ω̂+
β Ĥ

−1
β R′

]−1 (
Rβ̂SP − r

)
.

We may estimate Hβ by the sample analog:

Ĥβ = − 1

n

n∑
t=2

`ββ

(
F̂n(Ŷt−1), F̂n(Ŷt), β̂SP

)
,

and estimate Ω+
β
by a nonparametric kernel estimator (see, e.g., Newey and West (1987), Andrews

(1991)):

Ω̂+
β =

M∑
h=−M

K

(
h

M

)
γ̂n(h), γ̂n(h) =

1

n

n∑
t=2

2≤t+h≤n

St

(
F̂n, β̂SP

) [
St+h

(
F̂n, β̂SP

)]′
,

where

St

(
F̂n, β̂SP

)
= `β

(
F̂n(Ŷt−1), F̂n(Ŷt), β̂SP

)
+ Ĝ0

(
F̂n(Ŷt)

)
+ Ĝ1

(
F̂n(Ŷt−1)

)
;

Ĝj

(
F̂n(Ŷt−j)

)
=

1

n

n∑
l=2

`β,2−j
(
F̂n(Ŷl−1), F̂n(Ŷl), β̂SP

) [
1
(
F̂n(Ŷt−j) ≤ F̂n(Ŷl−j)

)
− F̂n(Ŷl−j)

]
.

We assume the following extra condition for the consistency of covariance estimator for Ω+
β
.

Assumption KB: (1). K (·) is a real valued function defined on [-1,1] with K(0) = 1, K(−u) =

K(u), and
∫
K(u)2du < ∞. K is continuous at 0 and all but finite number of other points. (2).

M → ∞ and M = o(n1/4) as n → ∞. (3). E
[
sup‖β−β‖≤δ,F∈Fδ ‖`β (F (Yt−1), F (Yt), β)‖4+ε

]
< ∞,

E
[
sup‖β−β‖≤δ,F∈Fδ ‖`βj (F (Yt−1), F (Yt), β)‖w(F ∗(Yt−2+j))

]4+ε
< ∞, j = 1, 2, for small δ > 0 and

ε > 0.

Theorem 7: Let Assumptions X, DGP(1), MX, SP, ID6, M6 and KB hold. Then: (1) Ω̂+
β =

Ω+
β

+ op(1). (2) Under H01, Ŵn ⇒ χ2
dr
where dr is the number of linearly independent restrictions.
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4.3. Semiparametric inference on copula model selection

In practice, there might be more than one copula functions that can generate similar temporal (and

tail) dependence in the fitted residuals, and we want to select a copula function among candidate

copula functions. We next consider residual copula model selection test based on Theorem 7 for

potentially misspecified copula models.

Consider two candidate classes of parametric copula models:
{
Cj
(
u1, u2, βj

)
: βj ∈ Bj ⊂ Rdj

}
,

j = 1, 2. We are interested in selecting a copula model from these two candidates. Corresponding to

the j-th copula model, the conditional log likelihood of Yt given Yt−1 is given by

log f∗(yt) + log cj(F
∗ (yt−1) , F ∗ (yt) , βj).

Notice that the first term log f∗(yt) does not depend on the copula, we may consider the following

log-likelihood-ratio:

LR = E
[
log

c2(F ∗ (Yt−1) , F ∗ (Yt) , β2)

c1(F ∗ (Yt−1) , F ∗ (Yt) , β1)

]
.

If we consider the hypothesis H0: Copula model C1 (u1, u2, β1) is not worse than copula model

C2 (u1, u2, β2); vs. H1: Copula model C1 (u1, u2, β1) is worse than copula model C2 (u1, u2, β2). Then:

LR ≤ 0 under H0, and LR > 0 under H1. In practice, neither F nor Yt are observed, and have to

be replaced by appropriate estimates. We construct the following pseudo log-likelihood-ratio (PLR)

statistic:

L̂Rn =
1

n

n∑
t=2

log
c2(F̂n(Ŷt−1), F̂n(Ŷt), β̂2)

c1(F̂n(Ŷt−1), F̂n(Ŷt), β̂1)
, with F̂n(·) given in (3.3),

where β̂j (j = 1, 2.) is the semiparametric estimator β̂SP for copula model j using the filtered time

series
{
Ŷt

}n
t=1

and F̂n(·). For convenience of asymptotic analysis, we introduce an infeasible PLR
statistic LRn using unobserved {Yt}nt=1:

LRn =
1

n

n∑
t=2

log
c2(Fn(Yt−1), Fn(Yt), β̃2)

c1(Fn(Yt−1), Fn(Yt), β̃1)
, with Fn(·) given in (3.4),

where β̃j (j = 1, 2.) is the infeasible semiparametric estimator β̃SP for copula model j using {Yt}nt=1

and Fn(·).
The following theorem shows that the PLR statistic L̂Rn is asymptotically equivalent to the

infeasible PLR test LRn.

Theorem 8: Let Assumptions X, DGP(1), MX, SP, ID6 and M6 hold for two candidate copula

models j = 1, 2, with βj ∈ Bj the pseudo-true copula parameter values.

(1) If Pr
{

(Y1, Y2) : c1(F ∗(Y1), F ∗(Y2), β1) 6= c2(F ∗(Y1), F ∗(Y2), β2)
}
> 0 (generalized non-nested

case), then:
√
n
(
L̂Rn − LRn

)
= op (1) , and hence

√
n

(
L̂Rn − E

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)

])
⇒ N

(
0, ω2

)
, with ω2 given in (4.1).
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(2) If Pr
{

(Y1, Y2) : c1(F ∗(Y1), F ∗(Y2), β1) = c2(F ∗(Y1), F ∗(Y2), β2)
}

= 1 (generalized nested case),

then: n
(
L̂Rn − LRn

)
= op (1) , and hence

2nL̂Rn = G2,n

(
β2

)′
H−1

2,β
G2,n

(
β2

)
− G1,n

(
β1

)′
H−1

1,β
G1,n

(
β1

)
+ op (1) ,

which converges to a weighted sum of independent χ2
1 random variables in which the weights (λ1, · · ·, λd1+d2)

is the vector of eigenvalues of the following matrix

lim
n→∞

Var

([
G2,n

(
β2

)
G1,n

(
β1

) ])
 H−1

2,β

−H−1
1,β

 ,
where, for copula model j = 1, 2, Hj,β and Gj,n

(
βj
)
are defined as in (2.4) and (3.7) respectively.

Theorem 8 shows that, under our assumptions, the limiting distribution of the pseudo-likelihood-

ratio (PLR) test L̂Rn is the same as the infeasible PLR statistic LRn based on unobserved Markov

series {Yt}nt=1.

For the generalized non-nested case, the null hypothesis H0 is a composite hypothesis, and we may

consider the least favorable configuration (LFC) that satisfies

E
[
log

c2(F ∗(Yt−1), F ∗(Yt), β2)

c1(F ∗(Yt−1), F ∗(Yt), β1)

]
= 0.

Thus, under the LFC
√
nL̂Rn =

√
nLRn + op(1)⇒ N

(
0, ω2

)
, with

ω2 = limVar

 1√
n

n∑
t=2

log
c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
+

2∑
j=1

{
gt,2j

(
β2

)
− gt,1j

(
β1

)} , (4.1)

where for i = 1, 2; j = 1, 2,

gt,ij
(
βi
)

= E
{
∂ log ci(Us−1, Us, βi)

∂Us−2+j
[1(Ut ≤ Us−2+j)− Us−2+j ]

∣∣∣∣Ut} .
Let ω̂2 be a consistent long-run variance estimator of ω2 based on

log
c2

(
F̂n(Ŷt−1), F̂n(Ŷt), β̂2

)
c1

(
F̂n(Ŷt−1), F̂n(Ŷt), β̂1

) +
2∑
j=1

{
ĝt,2j(β̂2)− ĝt,1j(β̂1)

}
where for i = 1, 2; j = 1, 2,

ĝt,ij(β̂i) =
1

n

n∑
l=2

∂ log ci

(
F̂n(Ŷl−1), F̂n(Ŷl), β̂i

)
∂Ul−2+j

[
1
(
F̂n(Ŷt) ≤ F̂n(Ŷl−2+j)

)
− F̂n(Ŷl−2+j)

]
.

Then for the generalized non-nested case and under the LFC we have:

LRn =

√
nL̂Rn
ω̂

⇒ N(0, 1).

We note that many empirical applications use non-nested copula models, and the model selection test

LRn is directly applicable.

20



5. Monte Carlo Studies

In this section, we exam the finite sample performance of the parametric and semiparametric copula

estimators based on filtered time series
{
Ŷt

}
. We compare the sampling performance of the semipara-

metric estimator β̂SP with the parametric estimator β̂P under correct and incorrect specifications of

the marginal distribution F ∗ (of the latent Yt). Let β̂P ∗ and β̂P1 be the β̂P under correct and incorrect

specification of F ∗ respectively. We also report two infeasible copula estimators using the true values

of {Yt}: the infeasible parametric estimator β̃P ∗ under correct specification of F ∗, and the infeasible
semiparametric estimator β̃SP using {Yt} as the data.

DGP designs: The observed time series {Zt}nt=1 is generated by model (2.1), where the latent

{Yt}nt=1 satisfies Assumption DGP.

In the Monte Carlo studies, we have examed various combinations of three kinds of filtering part

X ′tπ
∗, four kinds of copula functions C(·, ·;β∗) with a range value of the copula parameter β∗, and two

kinds of marginal distributions F ∗.

Three types of X ′tπ
∗: (1) Xt = (1, t)′ is a deterministic linear trend, and Zt = π∗0 +π∗1t+Yt with

π∗ = (0.2, 0.3)′.

(2) Zt (and thus Xt = Zt−1) is an unit root process: Zt = π∗Zt−1 + Yt with π∗ = 1.

(3) Xt = Xt−1 + εt and is cointegrated with Zt, with Zt = π∗Xt + Yt and π∗ = 1.

Two types of true marginal distributions F ∗: (i) symmetric one: student-t(3) distribution;

(ii) asymmetric one: re-centered Chi-square with d.f. 3.

Four types of copula functions: (A) Gaussian Copula: C(u, v;β) = Φβ(Φ−1(u),Φ−1(v)), where

Φβ(·, ·) is the bivariate normal distribution with mean zeros, variances 1, and correlation coeffi cient
β, and Φ is the univariate standard normal CDF.

(B). Frank copula: C(u, v;β) = − 1
β · log

(
1− (1−e−βu)(1−e−βv)

1−e−β

)
for β 6= 0.

(C). Clayton copula: C(u, v;β) = [u−β + v−β − 1]−1/β for β > 0.

(D) Gumbel copula: C(u, v;β) = exp
{
−((− lnu)β + (− ln v)β)1/β

}
for 1 ≤ β <∞.

Gaussian and Frank copulas have zero tail dependence. Clayton copula has zero upper tail de-

pendence but positive lower tail dependence (2−1/β) that increases with β. Gumbel copula has zero

lower tail dependence but positive upper tail dependence (2− 21/β) that increases with β. The overall

temporal dependence in Yt measured as Kendall’s tau is all increasing with copula parameter β in all

these copula models. Finally, the Yt generated according to all these copula functions are automatically

beta-mixing with exponential decay. See, e.g., Chen, Wu and Yi (2009).

For all the above models, we investigate the finite sample performance of the five copula estimators

mentioned at the beginning of this section: the three feasible ones β̂SP , β̂P ∗ and β̂P1 use the non-

stationary filtered data
{
Ŷt

}
; and the two infeasible ones β̃SP and β̃P ∗ use the true {Yt}nt=1 process.

Recall that β̂SP and β̃SP have the same asymptotic normal distribution, which does not depend on
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the filtration or the functional form of F ∗. The infeasible β̃P ∗ is asymptotically normal, with the

limiting distribution independent of the filtration but does depend on the parametric estimation of

F ∗. The two feasible parametric estimators β̂P ∗ and β̂P1 have complex limiting distributions that

depend on both the filtration and the parametric estimation of F ∗, while they are asymptotically

normal under deterministic trend filtration, are generally non-normal under stochastic trend (the unit

root and cointegration) filtration. β̂P1 is computed using N(0, α2) as the misspecified parametric

marginal distribution; while β̂P ∗ and β̃P ∗ are computed using corrected specified parametric marginal

distribution.

In Appendix A and the Online Appendix C, we present all the monte Carlo tables. For each table,

the number of Monte Carlo repetition is 2000 and the simulated sample size is n = 500. In addition,

we also considered a larger sample size of n = 2000 for deterministic trending models to illustrate the

performance as sample sizes increases. The Monte Carlo bias, variance, and the Ratio of MSE of an

estimator over the MSE of β̂P ∗ , denoted by "Ramse", are reported in each table.

All the simulations reveal the following patterns. First, the semiparametric copula estimator β̂SP
performs well in terms of finite sample bias, variance, "Ramse" compared to the correctly specified

parametric estimator β̂P ∗ in most situations. Second, for all the cases when there is no strong tail

dependence, both the semiparametric copula estimator β̂SP and the correctly specified parametric

copula estimator β̂P ∗ perform much better than the parametric copula estimator β̂P1 using incor-

rectly specified parametric marginals. The parametric copula estimator for β∗ is very sensitive to the

specification of parametric marginals, while the semiparametric copula estimator is truly robust to

functional form of marginals as well as the nonstationary filtering. Third, the feasible semiparametric

estimator β̂SP and its infeasible version β̃SP are reasonably close, corroborating the asymptotic results

- the effi ciency loss from filtration in the semiparametric estimators are of second order magnitude.

The feasible parametric estimator β̂P ∗ and its infeasible version β̃P ∗ are less close to each other, sig-

naling that the parametric estimator is sensitive to nonstationary filtration. Forth, it is interesting

to note that for Clayton and Gumbel copulas with very strong asymmetric tail dependence (i.e., very

large parameter values β∗), the infeasible parametric copula estimators β̃P ∗ perform better than the

feasible parametric estimator β̂P ∗ and the semiparametric estimators, β̂SP and β̃SP . Nevertheless,

the performance of β̂SP is again similar to the infeasible β̃SP for Clayton and Gumbel copulas with

very strong asymmetric tail dependence.2

2The infeasible semiparametric copula estimator β̃SP for Clayton copula with strong lower tail dependence has been

shown to perform poorly (with big bias) in Chen, Wu and Yi (2009). Although Chen, Wu and Yi (2009) had shown that

Clayton copula generated Markov process {Yt} is beta-mixing with exponential decay, Ibragimov and Lentzas (2017)
provided simulation evidence that, in finite samples, the time series plot of the Clayton copula generated stationary

Markov process {Yt} may exhibit a spurious long memory-like behavior when the lower tail dependence is very strong.
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6. Empirical Applications

In this section, we consider two empirical applications to highlight the potentials of our proposed

models and methods.

6.1. An application to macro time series

An important literature in empirical macroeconomic analysis is the study of long-run properties and

short term dynamics of GNP. Many studies (e.g. Blanchard 1981, Kydland and Prescott 1980, etc)

argue that GNP reverts to a long term trend following a shock, and that fluctuations in output

represent temporary deviations from the trend. Various macroeconomic theories are designed to

produce and understand the dynamics of transitory fluctuations that deviates from the long run

trend. Studies on the transitory shocks provide important information on the prediction of variation

in GNP growth. (see, e.g. Cochrane (1994), King, Plosser, Stock and Watson (1991)).

A time series that provides a good estimate of the "trend" in GNP is "consumption". Cochrane

(1994) provides empirical evidence on the role of consumption as an measurement of long run compo-

nent in GNP. In this section, we apply our model to estimate the short term dynamics in GNP time

series based on the cointegrating regression of GNP on consumption. In particular, we consider the

following trending cointegrating regression

Zt = a0 + a1t+ a2Xt + Yt (6.1)

where Zt is the logarithm of real GNP and Xt is the logarithm of real consumption. The permanent

component of the GNP series is characterized by a linear time trend combined with a stochastic trend

Xt. We assume that the latent process {Yt} is a stationary first-order Markov process generated from
a flexible copula C (·, ·;β).

All data are from FRED R© Economic Data.3 We consider quarterly time series from 1947 Q1 to

2019 Q2, with length 290. Consumption is defined as the sum of nondurables and services. We first

exam the nonstationarity of these series. In particular, we apply the ADF test to these series based

on the following regression

Zt = b0 + δt+ ρZt−1 +

p∑
i=1

bi∆Zt−i + εt

The ADF test statistics of the GNP and consumption time series are −1.933 (lag length = 2), and

−0.349 (lag length = 2) respectively, both are smaller (in absolute value) than the 5% critical value

(−3.43), thus the null hypothesis of a unit root can not be rejected. We then exam the relationship

3https://fred.stlouisfed.org/https://fred.stlouisfed.org/
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Figure 6.1: Scatter Plot of the standardized GNP residuals

between these two time series based on the cointegrating regression (6.1). The Engle-Granger two-

step cointegration test statistic is −4.483, rejecting the null hypothesis of no cointegration (5% critical

value −3.81).

Next, we study the short term dynamics in the latent process {Yt} using the fitted residual series
{Ŷt} obtained from the cointegrating regression (6.1). Figure 6.1 presents the scatter plot of the

empirical cdf standardized realizations of the filtered time series {Ŷt}. The figure indicates possibly
presence of asymmetric positive tail dependence.

Given the small sample size of n = 290, to capture possibly asymmetric tail dependence we consider

the Joe-Clayton copula:

C(u, v;β) = 1− {1− [(1− ūβ2)−β1 + (1− vβ2)−β1 − 1]−1/β1}1/β2 , (6.2)

where ū = 1 − u, v = 1 − v, β = (β1, β2)′ and β1 > 0, β2 ≥ 1. This family of copulas has the lower

tail dependence given by λL = 2−1/β1 and the upper tail dependence given by λU = 2− 21/β2 . When

β2 = 1, the Joe-Clayton copula reduces to the Clayton copula. When β1 → 0, the Joe-Clayton copula

approaches the Joe copula whose upper tail dependence increase as β2 increases. See Joe (1997) and

Patton (2006) for other properties of the Joe-Clayton copula.
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In addition to the Joe-Clayton copula, we also consider the following potential competitive choices:

(let cC and cG be density functions of Clayton and Gumbel copulas, respectively)

1. Mixture of Clayton and survival Clayton: cCC (u, v;β) = 0.5[cC (u, v;β1) + cC (1− u, 1− v;β2)].

2. Mixture of Gumbel and survival Gumbel: cGG (u, v;β) = 0.5[cG (u, v;β2)+ cG (1− u, 1− v;β1)].

3. Mixture of Clayton and Gumbel: cCG (u, v;β) = 0.5[cC (u, v;β1) + cG (u, v;β2)].

In all these candidate copula densities, β1 measures lower tail dependence and β2 measures upper

tail dependence. We use the pseudo-likelihood-ratio (PLR) test in Section 4.2 (and Theorem 8) for

a pairwise comparison and copula model selection between the Joe-Clayton copula and each of the

above three competitors. Given the choices of copulas, the tests are non-nested. We denote the above

three alternatives as Alternatives 1, 2, 3. The calculated PLR test statistics against Alternatives 1, 2,

3 are 0.07889, 0.60470, 0.39436 respectively. The Null hypothesis of Joe-Clayton copula model can not

be rejected even at 10% level. For this reason, we continue our analysis below using the Joe-Clayton

copula.

We examine tail dependence based on our semiparametric two-step Joe-Clayton copula parameter

estimates (β̂1, β̂2) for (β1, β2). The point estimate for β1 is β̂1 = 3.902 (with the standard deviation

0.774), and the corresponding 95% confidence interval is [2.384, 5.419], which clearly excludes zero and

provides empirical evidence of lower tail dependence. The point estimate for β2 is β̂2 = 2.765 (with

the standard deviation 0.516), and the corresponding 95% confidence interval is [1.754, 3.775], which

excludes one and provides empirical evidence of upper tail dependence. Thus, we find both lower and

upper tail-dependence in the short term dynamics of GNP.

6.2. An application to financial time series

The CAY time series (Lettau and Ludvigson (2001)) has been often used in macro-finance applications.

Lettau and Ludvigson (2001, 2003, 2009), Chen and Ludvigson (2009) studied the role of consumption

and fluctuations in the aggregate consumption—wealth ratio for predicting stock returns. They argue

that investors who want to maintain a flat consumption path over time will attempt to “smooth

out” transitory movements in their asset wealth arising from time variation in expected returns.

When excess returns are expected to be higher in the future, forward-looking investors will react by

increasing consumption out of current asset wealth and labor income, allowing consumption to rise

above its common trend with those variables. When excess returns are expected to be lower in the

future, these investors will react by decreasing consumption out of current asset wealth and labor

income, and consumption will fall below its shared trend with these variables. In this way, investors

may insulate future consumption from fluctuations in expected returns, and stationary deviations from
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Figure 6.2: Scatter Plot of the standardized CAY residual time series

the shared trend among consumption, asset holdings, and labor income are likely to be a predictor of

excess stock returns.

We apply the copula model to capture the short term dynamics in the consumption—wealth ratio

time series. Since this time series is not directly observed, Lettau and Ludvigson (2001) argue that

consumption (ct), asset holding (at) and labor income (yt) are cointegrated, and that deviations

from this shared trend summarize agents’expectations of future returns on the market portfolio. In

particular, the residual term from a cointegrating regression of consumption (ct) on asset holding (at)

and labor income (yt) is called the "CAY" time series by Lettau and Ludvigson (2001). The "CAY"

time series contain important information of future returns at short horizons.

We use the dataset from the website of Martin Lettau. The time series is from 1952Q4 to 1998Q3.

The unit root nonstationarity in time series ct, at, yt can be verified. In particular, the ADF t-test

statistics corresponding to (ct,at,yt) are −1.233, −2.603, −0.7918, thus the unit root hypothesis can

not be rejected. We then consider a cointegrating regression of consumption (ct) on asset holding

(at) and labor income (yt): ct = π0 + π1at + π2yt + Yt. The Engle-Granger 2-stage cointegration

test statistic is −3.93, rejecting the null hypothesis of no cointegration (the 5% level critical value is

−3.788). Figure 6.2 presents the corresponding scatter plot of standardized realizations of the CAY

time series. The figure indicates presence of lower tail dependence.
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We again consider the Joe-Clayton copula model given by (6.2) and the three potential competitive

choices of copulas that we considered in the previous application. We perform the pseudo-likelihood-

ratio (PLR) test for pairwise comparisons and selection between the Joe-Clayton copula and each of

the three competitors. The calculated PLR test statistics against Alternatives 1, 2, 3 are -0.73935,

-0.14707, -0.09362 respectively, and thus the Joe-Clayton copula is still selected. Consequently, we

perform the rest of our analysis based on the Joe-Clayton copula.

We examine tail dependence based on our semiparametric two-step Joe-Clayton copula parameter

estimates (β̂1, β̂2) for (β1, β2). The point estimate for β1 is β̂1 = 2.050 (with the standard deviation

0.414), and the corresponding 95% confidence interval is [1.238, 2.861], which clearly excludes zero and

provides empirical evidence of lower tail dependence. The point estimate for β2 is β̂2 = 1.356 (with

the standard deviation 0.195), and the corresponding 95% confidence interval is [0.973, 1.738], which

includes one near the left edge of the confidence interval. Therefore, the empirical evidence for upper

tail dependence is relatively weak. Thus, we find significant lower tail dependence and mild upper tail

dependence in this CAY time series.

7. Conclusion

We propose a component approach to study nonstationary time series with nonlinear short term

dynamics that may also exhibit tail dependence. The observed time series can be decomposed into a

nonstationary part and a stationary Markov component generated via a copula. The nonstationary

component can be removed by a filtration, and the copula-based Markov model is used to capture the

weakly dependent nonlinear dynamics (and the tail dependence) in the filtered time series.

When the marginal distribution of the filtered time series is parametrically estimated, we show that

the limiting distribution of the parametric (two-step) copula estimator can be affected by the filtra-

tion and the estimation of the marginal distribution, and may not be normal under stochastic trend

filtration. However, when the marginal distribution of the filtered time series is nonparametrically

estimated, we find that the limiting distribution of the semiparametric (two-step) copula estimator is

not affected by the nonstationary filtration and is asymptotically normal. The surprising result for

the semiparametric two-step copula estimator is also extended to models with misspecified residual

copula function. Monte Carlo studies reveal that, for different kinds of nonstationarity, symmetric or

asymmetric unknown marginal distributions, various copula functions with or without tail dependence,

our semiparametric (two-step) copula estimator not only is robust, but also performs very similarly to

the infeasible semiparametric copula estimator without filtration. The simple and robust asymptotic

properties of the semiparametric estimators greatly simplify statistical inferences on nonstationary

filtered copula-based time series models. Our results have many practical implications for empirical

analysis of nonstationary nonlinear time series in economics and finance.
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The results in this paper can be extended in many directions. First, other copula estimators, such

as those in Oh and Patton (2013) and Chen, Wu and Yi (2009), can be studied. Second, multivariate

nonstationary filtration can be considered, in which the latent stationary multivariate Markov process

can be modeled using a multivariate copula function as in Remillard, Papageorgiou and Soustra (2012)

and Beare and Seo (2015).
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Appendix A: Monte Carlo Results

In the Monte Carlo studies, we have examed various DGPs that are different combinations of three
kinds of filtering part X ′tπ

∗, four kinds of copula functions C(·, ·;β) with a range value of the copula
parameter β, and two kinds of marginal distributions F ∗ of Yt given in Section 5 of the paper. In
each table below, the number of Monte Carlo repetition is 2000 and sample size is n = 500 (we also
considered a larger sample size of n = 2000 in a few tables). The Monte Carlo bias, variance, and
"Ramse" (the Ratio of MSE of an estimator over the MSE of β̂P ∗) are reported in each table.

We investigate the finite sample performance of the semiparametric copula estimator β̂SP , the
parametric copula estimator β̂P ∗ with corrected specified parametric marginal; the parametric copula
estimator β̂P1 with a normal distribution N(0, α2) as the incorrectly specified marginal distribution;
the infeasible parametric estimator β̃P ∗ with correctly specified parametric marginal; and the infeasible
semiparametric estimator β̃SP . Both β̃SP and β̃P ∗ are computed using {Yt} directly, and are presented
for comparison purpose.

Recall that β̂SP and β̃SP have the same asymptotic normal distribution, which does not depend
on any filtration and the specification of F ∗. The infeasible β̃P ∗ is asymptotically normal, with the
limiting distribution independent of the filtration but does depend on the parametric estimation of
F ∗. The limiting distributions of β̂P ∗ and β̂P1 depend on the filtration and the parametric estimation
of F ∗ in complicated ways; they are normal under the deterministic trend filtration, but, are generally
non-normal under the stochastic trend (the unit root and cointegration) filtration.

Table 1 and Table 2 report the finite sample performances of the estimators for models with
deterministic trending time series. In particular, Tables 1A - 1D below summarize simulation results
corresponding to the deterministic trending model when the true marginal distribution is student-t(3)

distribution (symmetric dist.), with Table 1A for Gaussian copula, Table 1B for Frank copula, Table
1C for Clayton copula and Table 1D for Gumbel copula. Similarly, Tables 2A - 2D summarize results
corresponding to the deterministic trending model when the true marginal distribution is re-centered
Chi-square with d.f. 3, again with "A to D" corresponding to Gaussian, Frank, Clayton and Gumbel
copulas.

Tables 3 - 6 in the Online Appendix C report the finite sample behaviors of the estimators for
models with stochastic trends (the unit root and cointegration).
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Table 1A: Trending Time Series, Gaussian Copula

(True marginal t(3); β̃P∗ Ramse = β̃P∗mse / β̂P∗mse)

n = 500

β∗ -0.5 -0.3 -0.1 0.1 0.3 0.5

β̂SP Bias -0.0066 -0.0077 -0.0063 -0.0042 -0.0033 -0.0049

β̂SP Std 0.0391 0.0438 0.0462 0.0465 0.0445 0.0401

β̂SP Ramse 1.1224 1.0912 1.0613 1.0389 1.0369 1.0588

β̂P ∗ Bias 0.0004 -0.0014 -0.0035 -0.0056 -0.0076 -0.0094

β̂P ∗ Std 0.0374 0.0425 0.0452 0.0455 0.0431 0.0381

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias -0.0046 -0.0151 -0.0193 0.0078 0.0048 -0.0067

β̂P1 Std 0.0721 0.0835 0.0911 0.0945 0.0871 0.0725

β̂P1 Ramse 3.7261 3.9751 4.2273 4.2896 3.9660 3.4407

β̃SP Bias -0.0065 -0.0071 -0.0053 -0.0027 -0.0013 -0.0024

β̃SP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

β̃SP Ramse 1.1069 1.0763 1.0508 1.0264 1.0181 1.0257

β̃P ∗ Bias 0.0002 -0.0007 -0.0014 -0.0022 -0.0030 -0.0037

β̃P ∗ Std 0.0370 0.0423 0.0450 0.0452 0.0427 0.0375

β̃P ∗ Ramse 0.9758 0.9873 0.9889 0.9775 0.9569 0.9225

β̃SPmse / β̂SPmse 0.9862 0.9864 0.9901 0.9879 0.9819 0.9687

n = 2000

β̃P ∗ Ramse 0.9977 0.9960 0.9958 0.9926 0.9859 0.9731

β̃SPmse / β̂SPmse 0.9992 0.9981 0.9978 0.9983 0.9980 0.9935
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Table 1B: Trending Time Series, Frank Copula

(True marginal t(3); β̃P∗ Ramse = β̃P∗mse / β̂P∗mse)

n = 500

β∗ -5 -3 -1 1 3 5

β̂SP Bias -0.0115 -0.0229 -0.0242 -0.0310 -0.0591 -0.1280

β̂SP Std 0.4025 0.3230 0.2812 0.2812 0.3194 0.3925

β̂SP Ramse 1.2118 1.1066 1.0170 1.0207 1.1254 1.2741

β̂P ∗ Bias 0.0393 0.0093 -0.0103 -0.0288 -0.0581 -0.1116

β̂P ∗ Std 0.3637 0.3077 0.2797 0.2785 0.3006 0.3483

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias -1.5653 -1.3416 -0.8315 0.7674 1.2818 1.4765

β̂P1 Std 1.1554 1.1182 1.1144 1.1915 1.2066 1.2242

β̂P1 Ramse 28.2919 32.1860 24.6847 25.6159 33.0572 27.5063

β̃SP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764

β̃SP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

β̃SP Ramse 1.1879 1.0963 1.0075 1.0124 1.1010 1.1896

β̃P ∗ Bias -0.0144 -0.0134 -0.0108 -0.0092 -0.0112 -0.0128

β̃P ∗ Std 0.3489 0.3022 0.2776 0.2778 0.3003 0.3454

β̃P ∗ Ramse 0.9114 0.9658 0.9857 0.9854 0.9634 0.8935

β̃SPmse / β̂SPmse 0.9803 0.9907 0.9907 0.9919 0.9783 0.9336

n = 2000

β̃P ∗ Ramse 0.9696 0.9887 0.9965 0.9951 0.9867 0.9615

β̃SPmse / β̂SPmse 0.9935 0.9985 0.9992 0.9993 0.9975 0.9875
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Table 1C: Trending Time Series, Clayton Copula

(True marginal t(3); β̃P∗ Ramse = β̃P∗mse / β̂P∗mse)

n = 500

β∗ 0.5 1 2 4 6 8

β̂SP Bias -0.0012 -0.0307 -0.1672 -0.7897 -1.8797 -3.2800

β̂SP Std 0.1040 0.1989 0.4486 0.9392 1.2412 1.4254

β̂SP Ramse 1.3184 1.4836 1.4314 1.2141 1.7435 2.3035

β̂P ∗ Bias -0.0098 -0.0217 -0.0787 -0.3700 -0.9417 -1.6985

β̂P ∗ Std 0.0900 0.1638 0.3923 1.0504 1.4224 1.6333

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias -0.0706 -0.0086 0.1218 0.1131 -0.2723 -0.9375

β̂P1 Std 0.4077 0.5114 0.6111 0.9539 1.3258 1.7819

β̂P1 Ramse 20.8799 9.5796 2.4249 0.7439 0.6296 0.7301

β̃SP Bias 0.0016 -0.0256 -0.1415 -0.6389 -1.5373 -2.7485

β̃SP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

β̃SP Ramse 1.2899 1.3534 1.3191 1.1583 1.5055 1.8639

β̃P ∗ Bias -0.0026 -0.0069 -0.0171 -0.0257 -0.0240 -0.0160

β̃P ∗ Std 0.0854 0.1343 0.2602 0.6389 1.1813 1.7828

β̃P ∗ Ramse 0.8896 0.6621 0.4246 0.3296 0.4797 0.5725

β̃SPmse / β̂SPmse 0.9784 0.9122 0.9215 0.9289 0.8635 0.8092

n = 2000

β̃P ∗ Ramse 0.9051 0.7167 0.3915 0.2155 0.1923 0.2537

β̃SPmse / β̂SPmse 0.9948 0.9832 0.9577 0.9464 0.9520 0.9331
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Table 1D: Trending Time Series, Gumbel Copula

(True marginal t(3); β̃P∗ Ramse = β̃P∗mse / β̂P∗mse)

n = 500

β∗ 2 3 4 5 6 7

β̂SP Bias -0.0379 -0.1785 -0.4513 -0.8697 -1.4093 -2.0454

β̂SP Std 0.1666 0.3793 0.5882 0.7423 0.8490 0.9330

β̂SP Ramse 1.0719 1.0647 1.1286 1.3556 1.7370 2.1476

β̂P ∗ Bias -0.0236 -0.0907 -0.2292 -0.4523 -0.7562 -1.1173

β̂P ∗ Std 0.1633 0.3960 0.6592 0.8717 0.9932 1.0512

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias 0.1096 0.0663 -0.0742 -0.3122 -0.6547 -1.0985

β̂P1 Std 0.3842 0.5599 0.7989 1.0189 1.2148 1.4015

β̂P1 Ramse 5.8626 1.9262 1.3218 1.1775 1.2220 1.3473

β̃SP Bias -0.0321 -0.1540 -0.3861 -0.7354 -1.1963 -1.7464

β̃SP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121

β̃SP Ramse 0.9732 0.8909 0.9349 1.1187 1.4204 1.7311

β̃P ∗ Bias -0.0066 -0.0225 -0.0533 -0.0962 -0.1456 -0.1927

β̃P ∗ Std 0.1264 0.2810 0.4848 0.7297 1.0384 1.4401

β̃P ∗ Ramse 0.5887 0.4815 0.4883 0.5618 0.7054 0.8971

β̃SPmse / β̂SPmse 0.9079 0.8368 0.8284 0.8252 0.8177 0.8061

n = 2000

β̃P ∗ Ramse 0.6260 0.4710 0.4435 0.4376 0.4451 0.4496

β̃SPmse / β̂SPmse 0.9330 0.8732 0.8819 0.8744 0.8589 0.8521
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Table 2A: Trending Time Series, Gaussian Copula

(True marginal: re-centered Chi-square with d.f. 3; n = 500)

β∗ -0.5 -0.3 -0.1 0.1 0.3 0.5

β̂SP Bias -0.0062 -0.0074 -0.0059 -0.0037 -0.0028 -0.0046

β̂SP Std 0.0387 0.0436 0.0463 0.0466 0.0447 0.0404

β̂SP Ramse 1.3211 1.0519 0.9589 0.9521 0.9309 0.9054

β̂P ∗ Bias -0.0053 -0.0078 -0.0068 -0.0006 0.0083 0.0147

β̂P ∗ Std 0.0337 0.0425 0.0472 0.0479 0.0456 0.0401

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias 0.0897 0.0437 0.0079 -0.0181 -0.0344 -0.0414

β̂P1 Std 0.0302 0.0371 0.0431 0.0476 0.0496 0.0479

β̂P1 Ramse 7.7163 1.7650 0.8457 1.1262 1.6895 2.1902

β̃SP Bias -0.0065 -0.0071 -0.0053 -0.0027 -0.0013 -0.0024

β̃SP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

β̃SP Ramse 1.3371 1.0460 0.9483 0.9371 0.9077 0.8639

β̃P ∗ Bias 0.0044 0.0029 0.0000 -0.0036 -0.0063 -0.0074

β̃P ∗ Std 0.0320 0.0400 0.0444 0.0446 0.0404 0.0324

β̃P ∗ Ramse 0.9013 0.8646 0.8679 0.8705 0.7763 0.6047
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Table 2B: Trending Time Series, Frank Copula

(True marginal: re-centered Chi-square with d.f. 3; n = 500)

β∗ -5 -3 -1 1 3 5

β̂SP Bias -0.0297 -0.0344 -0.0297 -0.0296 -0.0440 -0.0851

β̂SP Std 0.3970 0.3214 0.2809 0.2819 0.3222 0.4001

β̂SP Ramse 1.3150 1.0811 0.9519 0.9623 0.8341 0.6380

β̂P ∗ Bias -0.0425 -0.0523 -0.0433 0.0036 0.0988 0.2274

β̂P ∗ Std 0.3445 0.3065 0.2863 0.2889 0.3421 0.4589

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias 0.4944 0.0962 0.0035 0.1712 0.3759 0.5257

β̂P1 Std 0.3021 0.2970 0.3018 0.3392 0.4140 0.5400

β̂P1 Ramse 2.7855 1.0084 1.0861 1.7296 2.4664 2.1656

β̃SP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764

β̃SP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

β̃SP Ramse 1.3188 1.0747 0.9411 0.9508 0.8140 0.6066

β̃P ∗ Bias 0.0033 -0.0013 -0.0065 -0.0132 -0.0208 -0.0255

β̃P ∗ Std 0.3370 0.2967 0.2764 0.2762 0.2943 0.3336

β̃P ∗ Ramse 0.9423 0.9108 0.9114 0.9158 0.6866 0.4267
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Table 2C: Trending Time Series, Clayton Copula

(True marginal: re-centered Chi-square with d.f. 3; n = 500)

β∗ 0.5 1 2 4 6 8

β̂SP Bias -0.0077 -0.0524 -0.2290 -0.9035 -1.9578 -3.2889

β̂SP Std 0.1014 0.1830 0.4007 0.8853 1.2933 1.5443

β̂SP Ramse 0.8758 1.0248 1.2213 1.2928 1.2684 1.1733

β̂P ∗ Bias 0.0022 -0.0198 -0.1264 -0.5526 -1.2366 -2.0305

β̂P ∗ Std 0.1086 0.1870 0.3981 0.9655 1.6767 2.6700

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias 0.6251 0.7053 0.7347 0.6051 0.3685 -0.0129

β̂P1 Std 0.1651 0.2284 0.4478 1.1839 2.3474 3.5508

β̂P1 Ramse 35.4067 15.5463 4.2438 1.4283 1.3008 1.1205

β̃SP Bias 0.0016 -0.0256 -0.1415 -0.6389 -1.5373 -2.7485

β̃SP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

β̃SP Ramse 0.8959 1.0454 1.2109 1.1607 1.0093 0.9198

β̃P ∗ Bias -0.0327 -0.0773 -0.2062 -0.6221 -1.2212 -1.9876

β̃P ∗ Std 0.0851 0.1402 0.2823 0.6896 1.2753 1.8589

β̃P ∗ Ramse 0.7039 0.7254 0.7007 0.6969 0.7183 0.6582
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Table 2D: Trending Time Series, Gumbel Copula

(True marginal: re-centered Chi-square with d.f. 3; n = 500)

β∗ 2 3 4 5 6 7

β̂SP Bias -0.0217 -0.1278 -0.3610 -0.7509 -1.2756 -1.9110

β̂SP Std 0.1736 0.4040 0.6410 0.8087 0.9238 1.0039

β̂SP Ramse 0.9308 0.9498 1.0090 1.1762 1.6286 2.4850

β̂P ∗ Bias 0.1061 0.2632 0.4169 0.5329 0.5779 0.5270

β̂P ∗ Std 0.1471 0.3461 0.6021 0.8668 1.0905 1.2639

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias -0.1716 -0.2440 -0.4207 -0.7133 -1.1187 -1.6247

β̂P1 Std 0.2353 0.5360 0.8422 1.1149 1.3327 1.4940

β̂P1 Ramse 2.5773 1.8340 1.6526 1.6922 1.9876 2.5980

β̃SP Bias -0.0321 -0.1540 -0.3861 -0.7354 -1.1963 -1.7464

β̃SP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121

β̃SP Ramse 0.8052 0.7776 0.8489 1.0421 1.4532 2.1726

β̃P ∗ Bias -0.0091 -0.0234 -0.0334 -0.0305 -0.0072 0.0184

β̃P ∗ Std 0.0758 0.1225 0.2694 0.5207 0.8738 1.2924

β̃P ∗ Ramse 0.1773 0.0822 0.1374 0.2628 0.5013 0.8909

Appendix B: Proofs of Results in Subsection 3.4

We use ζ and η ∈ (0, 1) to signify generic constants whose value may vary throughout the paper.
Recall that we denote the true values of F and β by F ∗ and β∗.

B.1. Proof of Lemma 1.

Following the argument of Csörgö, Csörgö, Horvath and Mason (1986), Csörgö and Horvath (1993),
Shao and Yu (1996), we only need to show that, for any ε > 0,

lim
L→∞

lim sup
n→∞

Pr

[
sup
y≤−L

∣∣∣∣Zn(y, b)−Zn(y, 0)

w(F ∗(y))

∣∣∣∣ ≥ ε
]

= 0, (.1)

and

lim
L→∞

lim sup
n→∞

Pr

[
sup
y≥L

∣∣∣∣Zn(y, b)−Zn(y, 0)

w(F ∗(y))

∣∣∣∣ ≥ ε
]

= 0. (.2)

We show (.1), (.2) can be proved in the same way. For a large L, partition (−∞,−L] into
∪∞j=1(yj , yj−1], with F ∗ (yj) = 2−jδ, where δ = δL = F ∗(−L), then
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Pr

[
sup
y≤−L

∣∣∣∣Zn(y, b)−Zn(y, 0)

w(F ∗(y))

∣∣∣∣ ≥ ε
]
≤
∞∑
j=1

Pr

[
sup

yj<y≤yj−1

∣∣∣∣Zn(y, b)−Zn(y, 0)

w(2−jδ)

∣∣∣∣ ≥ ε
]
.

Thus, we need to show that

lim
L→∞

lim sup
n→∞

∞∑
j=1

Pr

[
sup

yj<y≤yj−1
|Zn(y, b)−Zn(y, 0)| ≥ εw(2−jδ)

]
= 0.

By monotonicity of the indicator function and the distribution function, we have

sup
yj<y≤yj−1

|Zn(y, b)−Zn(y, 0)|

≤ |Zn(yj , b)− Zn(yj , 0)|+ |Zn(yj−1, b)− Zn(yj−1, 0)|
+ sup
yj<y≤yj−1

|Zn(yj−1, 0)−Zn(y, 0)|+ sup
yj<y≤yj−1

|Zn(yj , 0)−Zn(y, 0)|

+
1√
n+ 1

n∑
t=1

[
F ∗(yj−1 + n−1/2bt)− F ∗(yj + n−1/2bt)

]
+

1√
n+ 1

n∑
t=1

[F (yj−1)− F (yj)] .

Notice that F ∗ (yj) = 2−jδ, and, under Assumption SP, for large enough n,

Pr

[
sup

yj<y≤yj−1
|Zn(y, b)−Zn(y, 0)| ≥ εw(2−jδ)

]
≤ Pr {|Zn(yj , b)− Zn(yj , 0)|+ |Zn(yj−1, b)− Zn(yj−1, 0)|

+ sup
yj<y≤yj−1

|Zn(yj−1, 0)−Zn(y, 0)|+ sup
yj<y≤yj−1

|Zn(yj , 0)−Zn(y, 0)|+ C
√
n2−jδ ≥ εw(2−jδ).

We first consider the case when n1/22−jδC ≤ εw(2−jδ)/2, C = 8. Let

S1 =
{
j : n1/22−jδC ≤ εw(2−jδ)/2

}
,

if j ∈ S1, then

Pr

[
sup

yj<y≤yj−1
|Zn(y, b)−Zn(y, 0)| ≥ εw(2−jδ)

]

≤ Pr

[
|Zn(yj , b)− Zn(yj , 0)| ≥ εw(2−jδ)

8

]
+ Pr

[
|Zn(yj−1, b)− Zn(yj−1, 0)| ≥ εw(2−jδ)

8

]
+ Pr

[
sup

yj<y≤yj−1

∣∣∣∣∣ 1√
n+ 1

n∑
t=1

[1 (Yt ≤ yj)− F (yj)− 1 (Yt ≤ y) + F (y)]

∣∣∣∣∣ ≥ εw(2−jδ)

8

]

+ Pr

[
sup

yj<y≤yj−1

∣∣∣∣∣ 1√
n+ 1

n∑
t=1

[1 (Yt ≤ yj−1)− F (yj−1)− 1 (Yt ≤ y) + F (y)]

∣∣∣∣∣ ≥ εw(2−jδ)

8

]
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We consider each of these terms. In particular, we show that

lim
L→∞

lim sup
n→∞

∑
j∈S1

Pr

[
|Zn(yj , b)− Zn(yj , 0)| ≥ εw(2−jδ)

8

]
= 0, (.3)

lim
L→∞

lim sup
n→∞

∑
j∈S1

Pr

[
sup

yj<y≤yj−1

∣∣∣∣∣ 1√
n+ 1

n∑
t=1

[1 (Yt ≤ yj)− F (yj)− 1 (Yt ≤ y) + F (y)]

∣∣∣∣∣ ≥ εw(2−jδ)

8

]
= 0,

(.4)

and analysis of the other two terms are similar.
For the first term (.3), by Chebyshev inequality,

Pr

[
|Zn(yj , b)− Zn(yj , 0)| ≥ εw(2−jδ)

8

]
≤ 26E |Zn(yj , b)− Zn(yj , 0)|2

ε2w(2−jδ)2
.

Under weak dependence of Yt, by definition of yj , Assumption SP, and by the inequality of Yoshi-
hara (1976), we have:

E
[
|Zn(yj , b)− Zn(yj , 0)|2

]
≤ ζ

∣∣2−j+1δ
∣∣1/q ,

for ζ > 0, q > 1. Thus, for 1/(2q) > µ,

∑
j∈S1

Pr

[
|Zn(yj , b)− Zn(yj , 0)| ≥ εw(2−jδ)

8

]
≤ ζ

ε2

 ∞∑
j=1

2−j(1/q−2µ)

 δ1/q−2µ → 0, as δ → 0.

Thus, under our assumptions,

lim
L→∞

lim sup
n→∞

∑
j∈S1

Pr

[
|Zn(yj , b)− Zn(yj , 0)| ≥ εw(2−jδ)

8

]
= 0

For the second term (.4), using Billingsley (1968, eq. (22.17)),

Pr

[
sup

yj<y≤yj−1

∣∣∣∣∣ 1√
n+ 1

n∑
t=1

[1 (Yt ≤ yj)− F (yj)− 1 (Yt ≤ y) + F (y)]

∣∣∣∣∣ ≥ εw(2−jδ)

8

]

≤ Pr

[∣∣∣∣∣ 1√
n+ 1

n∑
t=1

[1 (Yt ≤ yj)− F (yj)− 1 (Yt ≤ yj−1) + F (yj−1)]

∣∣∣∣∣+
√
n2−jδ ≥ εw(2−jδ)

8

]

Notice that n1/22−jδ ≤ εw(2−jδ)/16, using (1) weak dependence of Yt, (2) the Cauchy-Schwarz
inequality, and (3) Yoshihara (1976), we have

Pr

[
sup

yj<y≤yj−1

∣∣∣∣∣ 1√
n+ 1

n∑
t=1

[1 (Yt ≤ yj)− F (yj)− 1 (Yt ≤ y) + F (y)]

∣∣∣∣∣ ≥ εw(2−jδ)

8

]
≤
ζ
[
2−jδ

]1/q
[εw(2−jδ)]2

,

and (.4) can be proved by a similar argument as the proof of (.3).
Next we consider the case n1/22−jδζ∗ ≥ εw(2−jδ)/2. Let

S2 =
{
j : n1/22−jδζ∗ ≥ εw(2−jδ)/2

}
, ∆n,j =

1

8n1/2
εw(2−jδ).
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We divide (−∞, yj−1] into ∪i(yj,i, yj,i+1], F (yj,i) = i∆n,j , 0 ≤ i ≤ F (yj−1)/∆n,j = 2−j+1δ/∆n,j , then

Pr

[
sup

yj<y≤yj−1
|Zn(y, b)−Zn(y, 0)| ≥ εw(2−jδ)

]

≤ Pr

[
max

0≤i≤F (yj−1)/∆n,j

sup
yj,i<y≤yj,i+1

|Zn(y, b)−Zn(y, 0)| ≥ εw(2−jδ)

]
.

Notice that

sup
yj,i<y≤yj,i+1

|Zn(y, b)−Zn(y, 0)|

≤ |Zn(yj,i, b)−Zn(yj,i, 0)|+ |Zn(yj,i+1, b)−Zn(yj,i+1, 0)|
+ sup
yj,i<y≤yj,i+1

|Zn(yj,i, 0)−Zn(y, 0)|+ sup
yj,i<y≤yj,i+1

|Zn(yj,i+1, 0)−Zn(y, 0)|

+
1√
n+ 1

n∑
t=1

[
F ∗(yj,i+1 + n−1/2bt)− F ∗(yj,i + n−1/2bt)

]
+

1√
n+ 1

n∑
t=1

[F (yj,i+1)− F (yj,i)] ,

by definition F (yj,i) = i∆n,j , under Assumption SP, for large n,

sup
yj,i<y≤yj,i+1

|Zn(y, b)−Zn(y, 0)|

≤ |Zn(yj,i, b)−Zn(yj,i, 0)|+ |Zn(yj,i+1, b)−Zn(yj,i+1, 0)|

+ sup
yj,i<y≤yj,i+1

|Zn(yj,i, 0)−Zn(y, 0)|+ sup
yj,i<y≤yj,i+1

|Zn(yj,i+1, 0)−Zn(y, 0)|+ 1

4
εw(2−jδ)

and thus

Pr

[
sup

yj<y≤yj−1
|Zn(y, b)−Zn(y, 0)| ≥ εw(2−jδ)

]

≤ Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)−Zn(yj,i, 0)| ≥ 3εw(2−jδ)

16

]
+ Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, b)−Zn(yj,i+1, 0)| ≥ 3εw(2−jδ)

16

]
+ Pr

[
max

0≤i≤F (yj−1)/∆n,j

sup
yj,i<y≤yj,i+1

|Zn(yj,i, 0)−Zn(y, 0)| ≥ 3εw(2−jδ)

16

]

+ Pr

[
max

0≤i≤F (yj−1)/∆n,j

sup
yj,i<y≤yj,i+1

|Zn(yj,i+1, 0)−Zn(y, 0)| ≥ 3εw(2−jδ)

16

]

By Billingsley (1968, eq. (22.17)) again,

sup
yj,i<y≤yj,i+1

|Zn(yj,i, 0)−Zn(y, 0)| ≤ |Zn(yj,i+1, 0)−Zn(yj,i, 0)|+ 1

8
εw(2−jδ),
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thus

Pr

[
sup

yj<y≤yj−1
|Zn(y, b)−Zn(y, 0)| ≥ εw(2−jδ)

]

≤ Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)−Zn(yj,i, 0)| ≥ 3εw(2−jδ)

16

]
+ Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, b)−Zn(yj,i+1, 0)| ≥ 3εw(2−jδ)

16

]
+ Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, 0)−Zn(yj,i, 0)| ≥ εw(2−jδ)

16

]
+ Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, 0)−Zn(yj,i, 0)| ≥ εw(2−jδ)

16

]
We next show that

lim
L→∞

lim sup
n→∞

∑
j∈S2

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)−Zn(yj,i, 0)| ≥ 3εw(2−jδ)

16

]
= 0

lim
L→∞

lim sup
n→∞

∑
j∈S2

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, b)−Zn(yj,i+1, 0)| ≥ 3εw(2−jδ)

16

]
= 0

lim
L→∞

lim sup
n→∞

∑
j∈S2

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, 0)−Zn(yj,i, 0)| ≥ εw(2−jδ)

16

]
= 0

lim
L→∞

lim sup
n→∞

∑
j∈S2

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, 0)−Zn(yj,i, 0)| ≥ εw(2−jδ)

16

]
= 0

We use the maximum inequality of Moricz (1982) to bound

E max
1≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)−Zn(yj,i, 0)|p ,

and Emax1≤i≤F (yj−1)/∆n,j
|Zn(yj,i, 0)|p. First,

E |Zn(yj,k, b)−Zn(yj,k, 0)−Zn(yj,i, b)−Zn(yj,i, 0)|2 ≤ ζ(k − i)∆n,j .

Next, by Viennet (1997), we obtain a Rosenthal-type inequality for

E |Zn(yj,k, b)−Zn(yj,k, 0)−Zn(yj,i, b)−Zn(yj,i, 0)|p .

For 0 ≤ i < k ≤ 2−j+1δ/∆n,j , let

ψt (j, k, i)

= 1
(
Yt ≤ yj,k + n−1/2bt

)
− 1 (Yt ≤ yj,k) + F ∗(yj,k)− F ∗(yj,k + n−1/2bt)

−1
(
Yt ≤ yj,i + n−1/2bt

)
+ 1 (Yt ≤ yj,i)− F ∗(yj,i) + F ∗(yj,i + n−1/2bt).

Notice that ψt (j, k, i) is a bounded function, by Theorem 2 of Viennet (1997), and application of
Moricz (1982), we have

E
[

max
1≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)−Zn(yj,i, 0)|
]p
≤ ζ3

(
2−jδ

)p1
+ ζ4n

−p2/22−jδ logp(2−j+2δ/∆n,j).
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where p1 = p/2, p2 = p− 2, and thus

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)−Zn(yj,i, 0)| ≥ 3εw(2−jδ)

16

]
≤

ζ3

(
2−jδ

)p1 + ζ4n
−p2/22−jδ logp(2−j+2δ/∆n,j)

[εw(2−jδ)]p
.

Notice that ∆n,j = 2−3n−1/2εw(2−jδ), and n1/22−jδζ∗ ≥ εw(2−jδ)/2,

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)−Zn(yj,i, 0)| ≥ 3εw(2−jδ)

16

]
≤ ζ

[
εw(2−jδ)/8

]−p [(
2−jδ

)p1
+
(
εw(2−jδ)

)−p2 (
δ2−j

)(1+p2)
logp(

n1/2 · 2−j+5δ

εw(2−jδ)
)

]
Under Assumption SP, we have

lim
L→∞

lim sup
n→∞

∑
j∈S2

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i, b)−Zn(yj,i, 0)| ≥ 3εw(2−jδ)

16

]
= 0.

Notice that,

Pr

[
max

0≤i≤F (yj−1)/∆n,j

|Zn(yj,i+1, 0)−Zn(yj,i, 0)| ≥ εw(2−jδ)

16

]
≤ ζ

Emax1≤i≤F (yj−1)/∆n,j
|Zn(yj,i, 0)|p

[εw(2−jδ)]p
.

The proofs of other terms are similar.

B.2. Proof of Theorem 3.

Notice that
√
n+ 1

(
F̂n(y)− F ∗(y)

)
=
√
n+ 1

(
F̂n(y)− Fn(y)

)
+
√
n+ 1 (Fn(y)− F ∗(y))

The first term,
√
n+ 1

(
F̂n(y)− Fn(y)

)
, captures the preliminary filtering effect, and the second term,

√
n+ 1 (Fn(y)− F ∗(y)), captures the effect of marginal estimation.
Let Yt(γ) = Yt − n−1/2

(
X ′tD

−1
n n1/2

)
γ, and Fn,γ(y) = 1

n+1

∑n
t=1 1 (Yt(γ) ≤ y). By Lemma 1 and

differentiability (and a Taylor expansion) of F ∗, we have that, for γ in an arbitrary compact set Γ of
Rk,

sup
γ∈Γ

sup
y

∣∣∣∣∣
{
√
n+ 1 (Fn,γ(y)− Fn(y))− f∗(y)

[
1

n

n∑
t=1

X ′tD
−1
n n1/2

]
γ

}/
w(F ∗(y))

∣∣∣∣∣ = op(1). (.5)

Notice that γ̂ = Dn (π̂ − π∗), we have F̂n(y) = Fn,γ̂(y) = 1
n+1

∑n
t=1 1 (Yt(γ̂) ≤ y). By (.5), we have

sup
y

∣∣∣∣∣
{
√
n+ 1

(
F̂n(y)− Fn(y)

)
− f∗(y)

[
1

n

n∑
t=1

X ′tD
−1
n n1/2

]
Dn (π̂ − π∗)

}/
w(F ∗(y))

∣∣∣∣∣ = op(1).

(.6)
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Let

s(F, β) = E
[
∂ log c(F (Yt−1), F (Yt), β)

∂β

]
,

Under our assumptions, the consistency of β̂SP can be obtained if

sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

∂ log c(F̂n(Ŷt−1), F̂n(Ŷt), β)

∂β′
− s(F ∗, β)

∥∥∥∥∥ = op (1)

By triangular inequality,

sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

∂ log c(F̂n(Ŷt−1), F̂n(Ŷt), β)

∂β′
− s(F ∗, β)

∥∥∥∥∥
≤ sup

β∈B

∥∥∥∥∥ 1

n

n∑
t=2

[
∂ log c(F̂n(Ŷt−1), F̂n(Ŷt), β)

∂β′
− ∂ log c(F ∗(Yt−1), F ∗(Yt), β)

∂β′

]∥∥∥∥∥
+ sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

∂ log c(F ∗(Yt−1), F ∗(Yt), β)

∂β′
− s(F ∗, β)

∥∥∥∥∥ .
By Chen and Fan (2006a),

sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

∂ log c(F ∗(Yt−1), F ∗(Yt), β)

∂β′
− s(F ∗, β)

∥∥∥∥∥ = op (1) .

Next we verify that

sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

[
∂ log c(F̂n(Ŷt−1), F̂n(Ŷt), β)

∂β′
− ∂ log c(F ∗(Yt−1), F ∗(Yt), β)

∂β′

]∥∥∥∥∥ = op (1)

Note that

sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

[
∂ log c(F̂n(Ŷt−1), F̂n(Ŷt), β)

∂β′
− ∂ log c(F ∗(Yt−1), F ∗(Yt), β)

∂β′

]∥∥∥∥∥
≤ sup

β∈B

∥∥∥∥∥ 1

n

n∑
t=2

`β1(F ηt−1, F
η
t , β)

(
F̂n(Ŷt−1)− Fn(Yt−1)

)∥∥∥∥∥
+ sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

`β2(F ηt−1, F
η
t , β)

(
F̂n(Ŷt)− Fn(Yt)

)∥∥∥∥∥
+ sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

`β1(F ηt−1, F
η
t , β) (Fn(Yt−1)− F ∗(Yt−1))

∥∥∥∥∥
+ sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

`β2(F ηt−1, F
η
t , β) (Fn(Yt)− F ∗(Yt))

∥∥∥∥∥
where F ηs = ηF̂n(Ŷs) + (1− η)F ∗(Ys), s = t− 1 or t, η ∈ (0, 1).

45



We can show that the third and fourth terms are op (1) using a similar argument as Chen and Fan
(2006a). We next show that the first two terms are op (1) . Notice that

sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

`β2

(
F ηt−1, F

η
t , β

) [
F̂n(Ŷt)− Fn(Yt)

]∥∥∥∥∥
≤ 1

n

n∑
t=2

sup
β∈B,F∈Fδ

|`β2 (F (Yt−1), F (Yt), β)w(F ∗(Yt))| sup
t

∣∣∣∣∣ F̂n(Ŷt)− Fn(Yt)

w(F ∗(Yt))

∣∣∣∣∣
By (.6), we have

sup
t

∣∣∣∣∣ F̂n(Ŷt)− Fn(Yt)

w(F ∗(Yt))

∣∣∣∣∣ = Op

(
n−1/2

)
,

together with Assumption M4, we obtain

sup
β∈B

∥∥∥∥∥ 1

n

n∑
t=2

[
∂ log c(F̂n(Ŷt−1), F̂n(Ŷt), β)

∂β′
− ∂ log c(F ∗(Yt−1), F ∗(Yt), β)

∂β′

]∥∥∥∥∥ = op (1) .

The consistency now follows from Assumptions MX, ID3 and M3(1).

B.3. Proof of Theorem 4.

A Taylor expansion of `β
(
F̂n(Ŷt−1), F̂n(Ŷt), β̂SP

)
w.r.t β around β∗ gives

0 =
1

n

n∑
t=2

`β

(
F̂n(Ŷt−1), F̂n(Ŷt), β̂SP

)
=

1

n

n∑
t=2

`β

(
F̂n(Ŷt−1), F̂n(Ŷt), β

∗
)

+
1

n

n∑
t=2

`ββ

(
F̂n(Ŷt−1), F̂n(Ŷt), β̊

)(
β̂SP − β∗

)
,

where β̊ is a middle value between β̂SP and β
∗, and β̂SP is a consistent estimator of β

∗.

Expanding `β
(
F̂n(Ŷt−1), F̂n(Ŷt), β

∗
)
around (F ∗(Yt−1), F ∗(Yt)), we have

1√
n

n∑
t=2

`β

(
F̂n(Ŷt−1), F̂n(Ŷt), β

∗
)

=
1√
n

n∑
t=2

`β (F ∗(Yt−1), F ∗(Yt), β
∗)

+
1

n

n∑
t=2

`β1 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n
(
F̂n(Ŷt−1)− F ∗(Yt−1)

)
+

1

n

n∑
t=2

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n
(
F̂n(Ŷt)− F ∗(Yt)

)
+

1

n3/2

2∑
i,j=1

n∑
t=2

`βij
(
F ηt−1, F

η
t , β

∗) [√n(F̂n(Ŷt+i−2)− F ∗(Yt+i−2)
)] [√

n
(
F̂n(Ŷt+j−2)− F ∗(Yt+j−2)

)]
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where F ηs = ηF̂n(Ŷs) + (1− η)F ∗(Ys), η ∈ (0, 1).
First, for i = 1, 2, j = 1, 2,

1

n3/2

n∑
t=2

`βij
(
F ηt−1, F

η
t , β

∗) [√n(F̂n(Ŷt+i−2)− F ∗(Yt+i−2)
)] [√

n
(
F̂n(Ŷt+j−2)− F ∗(Yt+j−2)

)]
= op (1) .

Consider, for example, the case i = 1, j = 2,∣∣∣∣∣ 1

n3/2

n∑
t=2

`β12

(
F ηt−1, F

η
t , β

∗) [√n(F̂n(Ŷt−1)− F ∗(Yt−1)
)] [√

n
(
F̂n(Ŷt)− F ∗(Yt)

)]∣∣∣∣∣
≤ 1

n3/2

n∑
t=2

sup
‖β−β∗‖≤δ,F∈Fδ

|`β12 (F (Yt−1), F (Yt), β
∗)w(F ∗(Yt−1))w(F ∗(Yt))|

×

∣∣∣∣∣∣
√
n
(
F̂n(Ŷt−1)− F ∗(Yt−1)

)
w(F ∗(Yt−1))

∣∣∣∣∣∣
∣∣∣∣∣∣
√
n
(
F̂n(Ŷt)− F ∗(Yt)

)
w(F ∗(Yt))

∣∣∣∣∣∣
Under Assumption M4,

1

n3/2

n∑
t=2

sup
‖β−β∗‖≤δ,F∈Fδ

|`β12 (F (Yt−1), F (Yt), β
∗)w(F ∗(Yt−1))w(F ∗(Yt))| = op (1) ,

and by application of Lemma 1,

sup
t

∣∣∣∣∣∣
√
n
(
F̂n(Ŷt−1)− F ∗(Yt−1)

)
w(F ∗(Yt−1))

∣∣∣∣∣∣ = Op(1), sup
t

∣∣∣∣∣∣
√
n
(
F̂n(Ŷt)− F ∗(Yt)

)
w(F ∗(Yt))

∣∣∣∣∣∣ = Op(1),

thus∣∣∣∣∣ 1

n3/2

n∑
t=2

`β12

(
F ηt−1, F

η
t , β

∗) [√n(F̂n(Ŷt−1)− F ∗(Yt−1)
)] [√

n
(
F̂n(Ŷt)− F ∗(Yt)

)]∣∣∣∣∣ = op (1) .

Second, by Taylor expansion,

1

n

n∑
t=2

`ββ

(
F̂n(Ŷt−1), F̂n(Ŷt), β̊

)
− 1

n

n∑
t=2

`ββ (F ∗(Yt−1), F ∗(Yt), β
∗)

=
1

n3/2

2∑
j=1

n∑
t=2

`ββj

(
F ηt−1, F

η
t , β

)√
n
(
F̂n(Ŷt+j−2)− F ∗(Yt+j−2)

)
+

1

n3/2

n∑
t=2

`βββ

(
F ηt−1, F

η
t , β

)√
n(̊β − β),
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where β = ηβ∗ + (1− η)̊β. Thus, by Assumptions M4, SP, and Lemma 1,∥∥∥∥∥ 1

n

n∑
t=2

[
`ββ

(
F̂n(Ŷt−1), F̂n(Ŷt), β̊

)
− `ββ (F ∗(Yt−1), F ∗(Yt), β

∗)
]∥∥∥∥∥

≤ 1

n3/2

2∑
j=1

n∑
t=2

sup
‖β−β∗‖≤δ,F∈Fδ

‖`ββj (F (Yt−1), F (Yt), β)w(F ∗(Yt+j−2))‖

×

∣∣∣∣∣∣
√
n
(
F̂n(Ŷt+j−2)− F ∗(Yt+j−2)

)
w(F ∗(Yt+j−2))

∣∣∣∣∣∣
+

1

n3/2

n∑
t=2

sup
‖β−β∗‖≤δ,F∈Fδ

‖`βββ (F (Yt−1), F (Yt), β)‖
∥∥∥√n(̊β − β∗)

∥∥∥
= op (1) .

Thus,

1

n

n∑
t=2

`ββ

(
F̂n(Ŷt−1), F̂n(Ŷt), β̊

)
=

1

n

n∑
t=2

`ββ (F ∗(Yt−1), F ∗(Yt), β
∗) + op (1) ,

Let

An1 =
1

n

n∑
t=2

`β1 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n
(
F̂n(Ŷt−1)− Fn(Yt−1)

)
,

An2 =
1

n

n∑
t=2

`β1 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n (Fn(Yt−1)− F ∗(Yt−1)) ,

An3 =
1

n

n∑
t=2

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n
(
F̂n(Ŷt)− Fn(Yt)

)
,

An4 =
1

n

n∑
t=2

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n (Fn(Yt)− F ∗(Yt)) ,

and

Σn = −
[

1

n

n∑
t=2

`ββ (F ∗(Yt−1), F ∗(Yt), β
∗)

]
, Sn =

1√
n

n∑
t=2

`β (F ∗(Yt−1), F ∗(Yt), β
∗) ,

then we have
Σn

√
n
(
β̂SP − β∗

)
= Sn +An1 +An2 +An3 +An4 + op (1) ,

where An2 +An4 is the effect of estimating F ∗(·) based on Yt (unobserved), and An1 +An3 is the effect
of filtration. Thus, the first part

Sn +An2 +An4

is the leading part of the infeasible estimator based on knowledge of Y ′t s, and the effect of filtration is
captured by An1 and An3.
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The analysis of An1 and An3 are similar, we illustrate our proof for An3. Notice that

An3 =
1

n

n∑
t=2

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗)
√
n
(
F̂n(Ŷt)− Fn(Yt)

)
= − 1

n2

n∑
t=2

n∑
j=2

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗) f∗ (Yt)

[
(Xj −Xt)

′D−1
n n1/2

]
Dn(π̂ − π∗) + op(1).

and

1

n2

n∑
t=2

n∑
j=2

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗) f∗ (Yt)

[
(Xj −Xt)

′D−1
n n1/2

]
=

1

n2

∑∑
t>j

`β2 (F ∗(Yj−1), F ∗(Yj), β
∗) f∗ (Yj)

[
X ′tD

−1
n n1/2

]
+

1

n2

∑∑
t>j

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗) f∗ (Yt)

[
X ′jD

−1
n n1/2

]
− 1

n2

∑∑
t>j

`β2 (F ∗(Yt−1), F ∗(Yt), β
∗) f∗ (Yt)

[
X ′tD

−1
n n1/2

]
− 1

n2

∑∑
t>j

`β2 (F ∗(Yj−1), F ∗(Yj), β
∗) f∗ (Yj)

[
X ′jD

−1
n n1/2

]
= H1n +H2n −H3n −H4n.

We investigate the behavior of each of the above terms and show that

H1n →
[∫ 1

0
rX(r)dr

]
E [`β2 (F ∗(Yj−1), F ∗(Yj), β

∗) f∗(Yj)] ,

H2n →
∫ 1

0

∫ r

0
X(s)dsdrE [`β2 (F ∗(Yt−1), F ∗(Yt), β

∗) f (Yt)] ,

H3n →
[∫ 1

0
rX(r)dr

]
E {`β2 (F ∗(Yt−1), F ∗(Yt), β

∗) f(Yt)} ,

H4n →
∫ 1

0

∫ r

0
X(s)dsdrE {`β2 (F ∗(Yt−1), F ∗(Yt), β

∗) f(Yt)} .

Thus An3 = op(1). Similarly, An1 = op(1). The semiparametric copula estimator of β based on
filtered data is asymptotically equivalent to the infeasible semiparametric copula estimator of β based
on the unobserved data Yt,

Σn

√
n
(
β̂SP − β∗

)
= Σn

√
n
(
β̃SP − β∗

)
+ op (1) = Sn +An2 +An4 + op (1) .

By Chen and Fan (2006a), we can then obtain the result of Theorem 4.

Appendix C: Additional Monte Carlo Tables

We investigate the finite sample performance of the semiparametric copula estimator β̂SP , the para-
metric copula estimator β̂P ∗ with corrected specified parametric marginals; the parametric copula
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estimator β̂P1 with a normal distribution N(0, α2) as the misspecified marginal distribution; and the
infeasible semiparametric estimator β̃SP (using {Yt} directly). Recall that β̂SP and β̃SP have the
same asymptotic normal distribution, which does not depend on any filtration and the specification of
F ∗. The limiting distributions of β̂P ∗ and β̂P1 depend on the filtration and the parametric estimation
of F ∗ in complicated ways; they are generally non-normal under the stochastic trend (unit root and
cointegration) filtration. Tables 1 and 2 in Appendix A of the paper already reported the performance
of the infeasible parametric estimator β̃P ∗ (using {Yt} directly) with correctly specified parametric
marginals.

Tables 3 - 6 below report the finite sample behaviors of the feasible estimators β̂SP , β̂P ∗ , β̂P1 and
the infeasible estimator β̃SP for models with stochastic trends. Tables 3A - 3D correspond to the unit
root model when the true marginal distribution is student-t(3). Tables 4A - 4D summarize results for
the unit root model when the true marginal distribution is re-centered Chi-square with d.f. 3. Tables
5A - 5D correspond to the cointegrated model when the true marginal distribution is student-t(3).
Tables 6A - 6D summarize results for the cointegrated model when the true marginal distribution is
re-centered Chi-square with d.f. 3. Again, "A to D" correspond to Gaussian, Frank, Clayton and
Gumbel copulas. In all the Tables, the number of Monte Carlo repetition is 2000 and sample size is
n = 500. The Monte Carlo bias, variance, and "Ramse" (the Ratio of MSE of an estimator over the
MSE of β̂P ∗) are reported in each table.

Table 3A: Unit Root Time Series, Gaussian Copula

(True marginal is student-t(3), n = 500)

β∗ -0.5 -0.3 -0.1 0.1 0.3 0.5

β̂SP Bias 0.0032 -0.0015 -0.0022 -0.0010 -0.0005 -0.0020

β̂SP Std 0.0413 0.0444 0.0464 0.0464 0.0443 0.0398

β̂SP Ramse 0.9609 1.0487 1.0587 1.0552 1.0651 1.0977

β̂P ∗ Bias 0.0149 0.0072 0.0024 -0.0010 -0.0036 -0.0054

β̂P ∗ Std 0.0396 0.0428 0.0451 0.0452 0.0428 0.0376

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias 0.0068 -0.0072 -0.0130 0.0132 0.0094 -0.0024

β̂P1 Std 0.0738 0.0844 0.0918 0.0945 0.0869 0.0720

β̂P1 Ramse 3.0701 3.8195 4.2210 4.4582 4.1482 3.5967

β̃SP Bias -0.0065 -0.0071 -0.0053 -0.0027 -0.0013 -0.0024

β̃SP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

β̃SP Ramse 0.8674 1.0368 1.0589 1.0549 1.0615 1.0943
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Table 3B: Unit Root Time Series, Frank Copula

(True marginal is student-t(3), n = 500)

β∗ -5 -3 -1 1 3 5

β̂SP Bias 0.1320 0.0370 0.0026 -0.0118 -0.0312 -0.0746

β̂SP Std 0.4599 0.3355 0.2831 0.2819 0.3205 0.3926

β̂SP Ramse 0.9452 1.0435 1.0200 1.0293 1.1367 1.3053

β̂P ∗ Bias 0.2276 0.0858 0.0239 -0.0032 -0.0219 -0.0444

β̂P ∗ Std 0.4363 0.3190 0.2793 0.2781 0.3012 0.3469

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias -1.3618 -1.2542 -0.7833 0.8126 1.3305 1.5537

β̂P1 Std 1.3053 1.2081 1.1563 1.1914 1.2061 1.2220

β̂P1 Ramse 14.6941 27.7834 24.8172 26.8892 35.3614 31.9379

β̃SP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764

β̃SP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

β̃SP Ramse 0.6563 0.9518 1.0039 1.0264 1.1317 1.3005

Table 3C: Unit Root Time Series, Clayton Copula

(True marginal is student-t(3), n = 500)

β∗ 0.5 1 2 4 6 8

β̂SP Bias 0.0029 -0.0238 -0.1400 -0.6490 -1.5641 -2.7850

β̂SP Std 0.1032 0.1930 0.4410 1.0001 1.3963 1.6425

β̂SP Ramse 1.4129 1.7608 2.0309 1.7618 1.7485 2.1501

β̂P ∗ Bias -0.0044 -0.0137 -0.0504 -0.2014 -0.4862 -0.9244

β̂P ∗ Std 0.0868 0.1459 0.3207 0.8753 1.5092 2.0019

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias -0.0623 0.0084 0.1702 0.2957 0.1473 -0.1913

β̂P1 Std 0.4181 0.5283 0.6247 0.9293 1.2528 1.6933

β̂P1 Ramse 23.6719 12.9987 3.9770 1.1788 0.6329 0.5972

β̃SP Bias 0.0016 -0.0256 -0.1415 -0.6389 -1.5373 -2.7485

β̃SP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

β̃SP Ramse 1.4013 1.7206 2.0036 1.7806 1.7425 2.1287
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Table 3D: Unit Root Time Series, Gumbel Copula

(True marginal is student-t(3), n = 500)

β∗ 2 3 4 5 6 7

β̂SP Bias -0.0294 -0.1470 -0.3747 -0.7229 -1.1864 -1.7400

β̂SP Std 0.1641 0.3615 0.5748 0.7517 0.8779 0.9840

β̂SP Ramse 1.3930 1.4290 1.4408 1.3654 1.4689 1.6783

β̂P ∗ Bias -0.0148 -0.0569 -0.1378 -0.2572 -0.4252 -0.6287

β̂P ∗ Std 0.1404 0.3215 0.5548 0.8546 1.1411 1.4091

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias 0.1259 0.1172 0.0386 -0.1034 -0.3119 -0.5863

β̂P1 Std 0.3842 0.5646 0.8089 1.0408 1.2631 1.4861

β̂P1 Ramse 8.1965 3.1196 2.0069 1.3733 1.1414 1.0719

β̃SP Bias -0.0321 -0.1540 -0.3861 -0.7354 -1.1963 -1.7464

β̃SP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121

β̃SP Ramse 1.3284 1.3795 1.3933 1.3545 1.4927 1.7112

Table 4A: Unit Root Time Series, Gaussian Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ -0.5 -0.3 -0.1 0.1 0.3 0.5

β̂SP Bias 0.0049 0.0010 -0.0003 0.0001 0.0001 -0.0017

β̂SP Std 0.0421 0.0447 0.0462 0.0463 0.0442 0.0398

β̂SP Ramse 1.6123 1.1434 0.9912 0.9845 1.0668 1.2028

β̂P ∗ Bias 0.0026 0.0004 0.0017 0.0027 0.0029 0.0029

β̂P ∗ Std 0.0333 0.0418 0.0463 0.0466 0.0427 0.0362

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias 0.0989 0.0511 0.0137 -0.0133 -0.0301 -0.0372

β̂P1 Std 0.0309 0.0371 0.0429 0.0472 0.0493 0.0475

β̂P1 Ramse 9.6256 2.2816 0.9414 1.1046 1.8186 2.7519

β̃SP Bias -0.0065 -0.0071 -0.0053 -0.0027 -0.0013 -0.0024

β̃SP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

β̃SP Ramse 1.3922 1.1162 1.0032 0.9870 1.0666 1.1961

52



Table 4B: Unit Root Time Series, Frank Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ -5 -3 -1 1 3 5

β̂SP Bias 0.1025 0.0325 0.0014 -0.0109 -0.0275 -0.0624

β̂SP Std 0.4346 0.3291 0.2801 0.2815 0.3201 0.3923

β̂SP Ramse 1.5689 1.1906 0.9808 0.9860 1.0704 1.0627

β̂P ∗ Bias 0.0513 -0.0012 0.0002 0.0144 0.0327 0.0735

β̂P ∗ Std 0.3528 0.3031 0.2828 0.2833 0.3088 0.3783

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias 0.5930 0.1565 0.0413 0.2045 0.4112 0.5774

β̂P1 Std 0.5355 0.4057 0.3297 0.3397 0.4119 0.5258

β̂P1 Ramse 5.0235 2.0582 1.3803 1.9540 3.5128 4.1070

β̃SP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764

β̃SP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

β̃SP Ramse 1.2505 1.1307 0.9867 0.9866 1.0703 1.0714

Table 4C: Unit Root Time Series, Clayton Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ 0.5 1 2 4 6 8

β̂SP Bias 0.0030 -0.0260 -0.1464 -0.6391 -1.4513 -2.5290

β̂SP Std 0.1030 0.1901 0.4360 1.0528 1.7108 2.3180

β̂SP Ramse 1.1142 1.3112 1.4351 1.3368 1.2267 1.1781

β̂P ∗ Bias -0.0068 -0.0431 -0.1549 -0.5338 -1.1085 -1.8549

β̂P ∗ Std 0.0973 0.1619 0.3513 0.9218 1.6954 2.5592

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias 0.6387 0.7224 0.7678 0.7159 0.6593 0.5805

β̂P1 Std 0.1603 0.2091 0.3837 1.0003 2.1043 3.3443

β̂P1 Ramse 45.5370 20.1466 4.9984 1.3336 1.1852 1.1532

β̃SP Bias 0.0016 -0.0256 -0.1415 -0.6389 -1.5373 -2.7485

β̃SP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

β̃SP Ramse 1.1108 1.3163 1.4329 1.2661 1.0677 1.0360
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Table 4D: Unit Root Time Series, Gumbel Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ 2 3 4 5 6 7

β̂SP Bias -0.0243 -0.1264 -0.3328 -0.6624 -1.1074 -1.6450

β̂SP Std 0.1645 0.3706 0.5923 0.7663 0.8860 0.9805

β̂SP Ramse 1.5436 1.7158 1.8271 1.8169 2.0074 2.3653

β̂P ∗ Bias 0.0432 0.1260 0.2160 0.3035 0.3676 0.3911

β̂P ∗ Std 0.1266 0.2711 0.4538 0.6875 0.9310 1.1822

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias -0.1573 -0.1898 -0.2874 -0.4533 -0.6804 -0.9590

β̂P1 Std 0.2221 0.5060 0.8124 1.1127 1.3962 1.6602

β̂P1 Ramse 4.1361 3.2682 2.9395 2.5562 2.4076 2.3709

β̃SP Bias -0.0321 -0.1540 -0.3861 -0.7354 -1.1963 -1.7464

β̃SP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121

β̃SP Ramse 1.4798 1.6453 1.8024 1.9105 2.2092 2.6276

Table 5A: Cointegrated Time Series, Gaussian Copula

(True marginal is student t(3), n = 500)

β∗ -0.5 -0.3 -0.1 0.1 0.3 0.5

β̂SP Bias -0.0066 -0.0074 -0.0058 -0.0034 -0.0023 -0.0037

β̂SP Std 0.0388 0.0435 0.0462 0.0465 0.0444 0.0398

β̂SP Ramse 1.1386 1.0925 1.0611 1.0460 1.0519 1.0850

β̂P ∗ Bias 0.0003 -0.0011 -0.0025 -0.0039 -0.0053 -0.0066

β̂P ∗ Std 0.0369 0.0422 0.0451 0.0454 0.0430 0.0378

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias -0.0039 -0.0140 -0.0176 0.0102 0.0075 -0.0038

β̂P1 Std 0.0725 0.0838 0.0915 0.0945 0.0870 0.0722

β̂P1 Ramse 3.8714 4.0452 4.2554 4.3448 4.0632 3.5518

β̃SP Bias -0.0065 -0.0071 -0.0053 -0.0027 -0.0013 -0.0024

β̃SP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

β̃SP Ramse 1.1401 1.0916 1.0567 1.0350 1.0411 1.0730
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Table 5B: Cointegrated Time Series, Frank Copula

(True marginal is student t(3), n = 500)

β∗ -5 -3 -1 1 3 5

β̂SP Bias -0.0213 -0.262 -0.0233 -0.0257 -0.0470 -0.1018

β̂SP Std 0.3981 0.3216 0.2811 0.2819 0.3196 0.3913

β̂SP Ramse 1.2980 1.1326 1.0182 1.0221 1.1355 1.3120

β̂P ∗ Bias 0.0137 -0.0018 -0.0106 -0.0189 -0.0347 -0.0628

β̂P ∗ Std 0.3496 0.3032 0.2793 0.2793 0.3012 0.3473

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias -1.5928 -1.3566 -0.8338 0.7883 1.3134 1.5319

β̂P1 Std 1.2267 1.1657 1.1345 1.1913 1.2069 1.2233

β̂P1 Ramse 33.0116 34.7982 25.3703 26.0401 34.6178 30.8483

β̃SP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764

β̃SP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

β̃SP Ramse 1.2980 1.1301 1.0099 1.0130 1.1229 1.2770

Table 5C: Cointegrated Time Series, Clayton Copula

(True marginal is student t(3), n = 500)

β∗ 0.5 1 2 4 6 8

β̂SP Bias 0.0004 -0.0280 -0.1519 -0.7054 -1.6939 -2.9915

β̂SP Std 0.1032 0.1927 0.4434 0.9793 1.3301 1.5500

β̂SP Ramse 1.3655 1.6828 1.9211 1.7613 2.1061 2.6836

β̂P ∗ Bias -0.0063 -0.0149 -0.0498 -0.2098 -0.5225 -0.9808

β̂P ∗ Std 0.0881 0.1494 0.3344 0.8849 1.3890 1.8078

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias -0.0647 0.0067 0.1725 0.3067 0.1600 -0.1894

β̂P1 Std 0.4123 0.5222 0.6256 0.9401 1.2729 1.7079

β̂P1 Ramse 22.3337 12.1029 3.6831 1.1824 0.7473 0.6980

β̃SP Bias 0.0016 -0.0256 -0.1415 -0.6389 -1.5373 -2.7485

β̃SP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

β̃SP Ramse 1.3561 1.6400 1.8475 1.7371 1.9892 2.4468
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Table 5D: Cointegrated Time Series, Gumbel Copula

(True marginal is student t(3), n = 500)

β∗ 2 3 4 5 6 7

β̂SP Bias -0.0349 -0.1676 -0.4205 -0.8015 -1.3003 -1.8937

β̂SP Std 0.1627 0.3558 0.5579 0.7233 0.8493 0.9527

β̂SP Ramse 1.1636 1.2718 1.3916 1.6076 1.9301 2.2544

β̂P ∗ Bias -0.0140 -0.0559 -0.1443 -0.2866 -0.4859 -0.7285

β̂P ∗ Std 0.1537 0.3442 0.5743 0.8018 1.0068 1.2094

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias 0.1251 0.1147 0.0301 -0.1249 -0.3561 -0.6626

β̂P1 Std 0.3855 0.5664 0.8119 1.0448 1.2625 1.4788

β̂P1 Ramse 6.8989 2.7456 1.8822 1.5274 1.3769 1.3172

β̃SP Bias -0.0321 -0.1540 -0.3861 -0.7354 -1.1963 -1.7464

β̃SP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121

β̃SP Ramse 1.1129 1.2088 1.2984 1.4882 1.7713 2.0438

Table 6A: Cointegrated Time Series, Gaussian Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ -0.5 -0.3 -0.1 0.1 0.3 0.5

β̂SP Bias -0.0063 -0.0072 -0.0056 -0.0032 -0.0021 -0.0035

β̂SP Std 0.0388 0.0436 0.0463 0.0465 0.0444 0.0399

β̂SP Ramse 1.3898 1.1142 1.0103 0.9926 0.9952 1.0527

β̂P ∗ Bias -0.0013 -0.0034 -0.0040 -0.0015 0.0033 0.0073

β̂P ∗ Std 0.0333 0.0417 0.0462 0.0468 0.0444 0.0384

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias 0.0911 0.0453 0.0097 -0.0159 -0.0318 -0.0384

β̂P1 Std 0.0302 0.0371 0.0431 0.0474 0.0493 0.0475

β̂P1 Ramse 8.2865 1.9519 0.9062 1.1415 1.7373 2.4417

β̃SP Bias -0.0065 -0.0071 -0.0053 -0.0027 -0.0013 -0.0024

β̃SP Std 0.0388 0.0436 0.0461 0.0463 0.0442 0.0397

β̃SP Ramse 1.3971 1.1118 1.0040 0.9835 0.9857 1.0339
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Table 6B: Cointegrated Time Series, Frank Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ -5 -3 -1 1 3 5

β̂SP Bias -0.0313 -0.0325 -0.0263 -0.0252 -0.0387 -0.0773

β̂SP Std 0.3968 0.3213 0.2806 0.2816 0.3201 0.3937

β̂SP Ramse 1.3420 1.1197 0.9819 0.9849 0.9466 0.8169

β̂P ∗ Bias -0.0243 -0.0303 -0.0270 -0.0015 0.0548 0.1379

β̂P ∗ Std 0.3427 0.3037 0.2831 0.2849 0.3268 0.4219

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias 0.5008 0.1040 0.0149 0.1884 0.3985 0.5604

β̂P1 Std 0.3628 0.3278 0.3109 0.3385 0.4141 0.5344

β̂P1 Ramse 3.2402 1.2697 1.1977 1.8496 3.0082 3.0429

β̃SP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764

β̃SP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

β̃SP Ramse 1.3463 1.1153 0.9757 0.9782 0.9400 0.8075

Table 6C: Cointegrated Time Series, Clayton Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ 0.5 1 2 4 6 8

β̂SP Bias -0.0034 -0.0399 -0.1888 -0.7936 -1.7964 -3.0777

β̂SP Std 0.1025 0.1872 0.4119 0.9159 1.3067 1.5658

β̂SP Ramse 0.9985 1.1506 1.3626 1.4072 1.4238 1.4918

β̂P ∗ Bias -0.0091 -0.0403 -0.1571 -0.5909 -1.2861 -2.1973

β̂P ∗ Std 0.1022 0.1739 0.3550 0.8333 1.3460 1.7789

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias 0.6315 0.7141 0.7526 0.6658 0.4923 0.1799

β̂P1 Std 0.1626 0.2150 0.3894 0.9684 1.8165 2.6612

β̂P1 Ramse 40.3787 17.4608 4.7656 1.3233 1.0220 0.8901

β̃SP Bias 0.0016 -0.0256 -0.1415 -0.6389 -1.5373 -2.7485

β̃SP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

β̃SP Ramse 1.0042 1.1603 1.4019 1.3764 1.2641 1.2949
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Table 6D: Cointegrated Time Series, Gumbel Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

β∗ 2 3 4 5 6 7

β̂SP Bias -0.0264 -0.1393 -0.3687 -0.7297 -1.2112 -1.7912

β̂SP Std 0.1646 0.3676 0.5754 0.7426 0.8632 0.9660

β̂SP Ramse 1.4518 1.5389 1.7695 2.0905 2.5928 3.3765

β̂P ∗ Bias 0.0663 0.1697 0.2678 0.3417 0.3741 0.3457

β̂P ∗ Std 0.1214 0.2676 0.4385 0.6338 0.8445 1.0522

β̂P ∗ Ramse 1 1 1 1 1 1

β̂P1 Bias -0.1548 -0.1821 -0.2766 -0.4411 -0.6698 -0.9527

β̂P1 Std 0.2238 0.5124 0.8083 1.0926 1.3600 1.6112

β̂P1 Ramse 3.8690 2.9455 2.7646 2.6779 2.6937 2.8563

β̃SP Bias -0.0321 -0.1540 -0.3861 -0.7354 -1.1963 -1.7464

β̃SP Std 0.1596 0.3512 0.5534 0.7335 0.8846 1.0121

β̃SP Ramse 1.3843 1.4646 1.7249 2.0810 2.5945 3.3213
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Appendix D: Additional Proofs

D.1. Proofs of Results for Parametric Models

We first introduce a useful inequality of absolutely regular process given by Yoshihara (1976).

Lemma A. Let xt1 , xt2 , . . . , xtk (with t1 < t2 < · · · < tk) be absolutely regular random vectors with
mixing coeffi cients β(t). Let h(xt1 , xt2 , . . . , xtk) be a Borel measurable function and there be a
δ > 0 such that P = max{M1,M2} <∞, where

M1 = sup
t1,t2,...,tk

∫
|h(xt1 , xt2 , . . . , xtk)|1+δ dF (xt1 , xt2 , . . . , xtk),

M2 = sup
t1,t2,...,tk

∫
|h(xt1 , xt2 , . . . , xtk)|1+δ dF (xt1 , . . . , xtj )dF (xtj+1 , . . . , xtk).

Then for all j, we have:∣∣∣∣∫ h(xt1 , . . . , xtk)dF (xt1 , . . . , xtk)− h(xt1 , . . . , xtk)dF (xt1 , . . . , xtj )dF (xtj+1 , . . . , xtk)

∣∣∣∣
≤ 4P

1
1+δ β (tj+1 − tj)

δ
1+δ .

D.1.1. Proof of Theorem 1 for consistency of β̂P

For the first step estimator, α̂ = arg maxα∈A
∑n

t=1 log f(Ŷt, α), let q(α) =E[log f(Yt, α)], we need to
verify that

sup
α∈A

∣∣∣∣∣ 1n
n∑
t=1

log f(Ŷt, α)− q(α)

∣∣∣∣∣ = op (1) .

By (1) Assumption ID1(1): compactness of A; (2) Assumption MX: weak dependence of Yt; (3) As-
sumption ID1(3): f(y, α) is continuous in α ∈ A; and (4) Assumption M1(1): E[supα∈A|logf(Yt, α)|] <
∞, we can show that supα∈A

∣∣ 1
n

∑n
t=1 log f(Yt, α)− q(α)

∣∣ = op (1). Thus, we only need to show that

sup
α∈A

∣∣∣∣∣ 1n
n∑
t=1

[
log f(Ŷt, α)− log f(Yt, α)

]∣∣∣∣∣ = op (1) .

Denote the re-standardized Xt by Xt ≡ n1/2D−1
n Xt. Let qt (η, α) = log f(Yt − X ′tη, α). Under

Assumption M1(2), we have, for all sequences of positive numbers {εn} with εn = o (1),

sup
α∈A,‖η‖≤εn

∣∣∣∣∣ 1n
n∑
t=1

[qt (η, α)− qt (0, α)]

∣∣∣∣∣ = op (1) .

Thus

sup
α∈A

∣∣∣∣∣ 1n
n∑
t=1

[
log f(Ŷt, α)− log f(Yt, α)

]∣∣∣∣∣ ≤ sup
α∈A,‖η‖≤εn

∣∣∣∣∣ 1n
n∑
t=1

[qt (η, α)− qt (0, α)]

∣∣∣∣∣ = op (1) .
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Together with Assumption ID1(2), we obtain consistency of α̂.

For the second step estimation, we need to verify that supβ∈B

∥∥∥Q̂n(β)−Q(β)
∥∥∥ = op (1), where

Q̂n(β) =
1

n

n∑
t=2

g(Ŷt−1, Ŷt, α̂, β), Q(β) = E [g(Yt−1, Yt, α
∗, β)] .

Denote Qn(β) = 1
n

∑n
t=2 g(Yt−1, Yt, α

∗, β). Again by: (1) Assumption ID1(1): compactness of B;
(2) Assumption MX: weak dependence of Yt; (3) Assumption ID(3): g(·) is continuous in β; (4)
Assumption M1(1): E

[
supβ∈B,α∈Aδ |g(Yt−1, Yt, α, β)|

]
< ∞, we have supβ∈B |Qn(β)−Q(β)| = op (1).

Thus, it suffi ce to show that
sup
β∈B

∣∣∣Q̂n(β)−Qn(β)
∣∣∣ = op (1) .

Notice that Ŷt = Yt −X ′t (π̂ − π∗) = Yt − n−1/2
(
X ′tn

1/2D−1
n

)
Dn (π̂ − π∗), let

Dn (π̂ − π∗) = δn,
√
n (α̂− α∗) = ∆1n,

then we may write

Q̂n(β) =
1

n

n∑
t=2

g
(
Yt−1 − n−1/2

(
X ′t−1n

1/2D−1
n

)
δn, Yt − n−1/2

(
X ′tn

1/2D−1
n

)
δn, α

∗ + n−1/2∆1n, β
)
.

Recall Xt = n1/2D−1
n Xt, we let mt (η, α, β) = g

(
Yt−1 −X ′t−1η, Yt −X ′tη, α, β

)
. Under Assumption

M1(2) that g(s1, s2, α, β) is uniformly continuous in (s1, s2, α), uniformly over β ∈ B, thus we can
show that, for all sequences {εn} with εn = o (1),

sup
β∈B,‖α−α∗‖+‖η‖≤εn

∣∣∣∣∣ 1n
n∑
t=2

[mt (η, α, β)−mt (0, α∗, β)]

∣∣∣∣∣ = op (1) .

Let η̂ = n−1/2δn, then

Q̂n(β)−Qn(β) =
1

n

n∑
t=2

[mt (η̂, α̂, β)−mt (0, α∗, β)]

Notice that

sup
β∈B

∣∣∣Q̂n(β)−Qn(β)
∣∣∣

≤ sup
β∈B,‖α−α∗‖+‖η‖≤εn

∣∣∣∣∣ 1n
n∑
t=2

[
g(Yt−1 −X ′t−1η, Yt −X ′tη, α, β)− g(Yt−1, Yt, α

∗, β)
]∣∣∣∣∣ = op (1) .

Thus, supβ∈B

∣∣∣Q̂n(β)−Qn(β)
∣∣∣ = op (1). In addition with Assumption ID1, Theorem 1 is proved.
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D.1.2. Proof of Theorem 2 for the limiting Distribution of β̂P

Let g
(
Ŷt−1, Ŷt, α̂, β

)
= log c(F (Ŷt−1, α̂), F (Ŷt, α̂), β), then Q̂n(β) = 1

n

∑n
t=2 g

(
Ŷt−1, Ŷt, α̂, β

)
. Let

√
n (β − β∗) = ∆2, and Dn (π̂ − π∗) = δn,

√
n (α̂− α∗) = ∆1n,

√
n
(
β̂ − β∗

)
= ∆2n, then, we may

re-write the criterion function Q̂n(β) as

Vn(∆2)

=
1

n

n∑
t=2

g
(
Yt−1 − n−1/2

(
X ′t−1n

1/2D−1
n

)
δn, Yt − n−1/2

(
X ′tn

1/2D−1
n

)
δn, α

∗ + n−1/2∆1n, β
∗ + n−1/2∆2

)
.

and minβQ̂n(β) is equivalent to min∆2Vn(∆2).

The FOC to minimize Vn(∆2) w.r.t. ∆2 is given by
∂Vn(∆2)
∂∆2

∣∣∣
∆2=∆2n

= 0. Expanding ∂Vn(∆2)
∂∆2

∣∣∣
∆2=∆2n

around ∆2 = 0, we have

0 =
∂Vn(∆2)

∂∆2

∣∣∣∣
∆2=∆2n

=
1

n

n∑
t=2

gβ

(
Ŷt−1, Ŷt, α̂, β

∗
)

+ n−1/2

[
1

n

n∑
t=2

gββ

(
Ŷt−1, Ŷt, α̂, β

#
)]

∆2n

where β# is the middle value between β∗ and β̂.
Let Ĥnβ = −n−1

∑n
t=2 gββ

(
Ŷt−1, Ŷt, α̂, β

#
)
, Ŝnβ = n−1/2

∑n
t=2 gβ

(
Ŷt−1, Ŷt, α̂, β

∗
)
, and η =

(η′1, η
′
2, η
′
3)′. By consistency of β̂, Assumptions X and M2, for any sequence {εn} with εn = o(1),

we have for j = 1, 2,

sup
‖η‖≤εn

1

n

n∑
t=2

∥∥gββ (Yt−1 +X ′t−1η1, Yt +X ′tη1, α
∗ + η2, β

∗ + η3

)
− gββ (Yt−1, Yt, α

∗, β∗)
∥∥ = op(1)

sup
‖η‖≤εn

1

n

n∑
t=2

∥∥gβα (Yt−1 +X ′t−1η1, Yt +X ′tη1, α
∗ + η2, β

∗ + η3

)
− gβα (Yt−1, Yt, α

∗, β∗)
∥∥ = op(1)

sup
‖η‖≤εn

1

n

n∑
t=2

∥∥gβj (Yt−1 +X ′t−1η1, Yt +X ′tη1, α
∗ + η2, β

∗ + η3

)
− gβj (Yt−1, Yt, α

∗, β∗)
∥∥ = op(1),

we have
Ĥnβ ≡ Hnβ + op(1).

Denote

Snβ =
1√
n

n∑
t=2

gβ (Yt−1, Yt, α
∗, β∗) ,

and expanding gβ
(
Ŷt−1, Ŷt, α̂, β

∗
)
around (Yt−1, Yt, α

∗), Using a similar argument as for the previous
term, we can show that

Ŝnβ = Snβ + n−1
n∑
t=2

gβ1 (Yt−1, Yt, α
∗, β∗)X ′t−1n

1/2D−1
n δn

+n−1
n∑
t=2

gβ2 (Yt−1, Yt, α
∗, β∗)

(
X ′tn

1/2D−1
n

)
δn + n−1

n∑
t=2

gβα (Yt−1, Yt, α
∗, β∗) ∆1n + op(1)
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Thus,

√
n
(
β̂ − β∗

)
= H−1

nβ Snβ −H
−1
nβ (Pn1 + Pn2)Dn (π̂ − π∗) +H−1

nβ Pn3

√
n (α̂− α∗) + op(1)

= H−1
β∗ N

(
0,Ωβ∗

)
−H−1

β∗ (P1 + P2)Dn (π̂ − π∗) +H−1
β∗ P3

√
n (α̂− α∗) + op(1)

= H−1
β∗ N

(
0,Ωβ∗

)
−H−1

β∗
(
P1 + P2 + P3Ω−1

α HαY

)
Dn (π̂ − π∗) +H−1

β∗ P3

√
n (α̃− α∗) + op(1)

Notice that
√
n (α̃− α∗) = H−1

nαSnα + op(1), where

Hnα = − 1

n

n∑
t=1

∂2 log f(Yt, α
∗)

∂α∂α′
; Snα =

1√
n

n∑
t=1

∂ log f(Yt, α
∗)

∂α
,

thus,

√
n
(
β̂ − β∗

)
= H−1

nβ

[
Snβ + Pn3H

−1
nαSnα

]
−H−1

β∗
(
P1 + P2 + P3Ω−1

α HαY

)
Dn (π̂ − π∗) + op(1).

D.2. Proof of Theorem 5.

Very similar to the proof of Theorem 3, except that we use pseudo-true copula parameter, and hence
omitted.

D.3. Proof of Theorem 6.

Very similar to the proof of Theorem 4, except that we use pseudo-true copula parameter, and hence
omitted.

D.4. Proof of Theorem 7.

Let

Ŝt+h

(
F̂n, β̂SP

)
= `β

(
F̂n(Ŷt+h−1), F̂n(Ŷt+h), β̂SP

)
+ Ĝ0

(
F̂n(Ŷt+h)

)
+ Ĝ1

(
F̂n(Ŷt+h−1)

)
;

St+h

(
F̂n, β̂SP

)
= `β

(
F̂n(Ŷt+h−1), F̂n(Ŷt+h), β̂SP

)
+G0

(
F̂n(Ŷt+h)

)
+G1

(
F̂n(Ŷt+h−1)

)
.

For simplicity of notation, we assume that β is a scalar in the rest of the proof.

γ̂n(h) =
1

n

n∑
t=2

2≤t,t+h≤n

Ŝt

(
F̂n, β̂SP

)
Ŝt+h

(
F̂n, β̂SP

)

γn1(h) =
1

n

n∑
t=2

2≤t,t+h≤n

St

(
F̂n, β̂SP

)
St+h

(
F̂n, β̂SP

)

γn2(h) =
1

n

n∑
t=2

2≤t,t+h≤n

St

(
F ∗, β̂SP

)
St+h

(
F ∗, β̂SP

)
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γn(h) =
1

n

n∑
t=2

2≤t,t+h≤n

St
(
F ∗, β

)
St+h

(
F ∗, β

)
.

We may re-write the variance estimator Ω̂+
β as:

Ω̂+
β =

M∑
h=−M

K

(
h

M

)
γ̂n(h)

=
M∑

h=−M
K

(
h

M

)
γn(h) +

M∑
h=−M

K

(
h

M

)
[γn2(h)− γn(h)]

+

M∑
h=−M

K

(
h

M

)
[γn1(h)− γn2(h)] +

M∑
h=−M

K

(
h

M

)
[γ̂n(h)− γn1(h)] .

The first part,
M∑

h=−M
K

(
h

M

)
γn(h)

is the conventional long-run variance (spectral density) estimator, which converges to Ω+
β
by the

standard arguments as Hannan (1970).
The second part,

M∑
h=−M

K

(
h

M

)
[γn2(h)− γn(h)] ,

contains the effect of copula estimation error (β̂SP − β), this term converges to 0 following a similar
argument as Andrews (1991, p852).

We now consider the third term,

M∑
h=−M

K

(
h

M

)
[γn1(h)− γn2(h)] ,

which contains the estimation error from the filtration and the estimation of marginal. Notice that

γn1(h) =
1

n

n∑
t=2

2≤t,t+h≤n

St

(
F̂n, β̂SP

)
St+h

(
F̂n, β̂SP

)

γn2(h) =
1

n

n∑
t=2

2≤t,t+h≤n

St

(
F ∗, β̂SP

)
St+h

(
F ∗, β̂SP

)
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thus

M∑
h=−M

K

(
h

M

)
[γn1(h)− γn2(h)]

=
M∑

h=−M
K

(
h

M

)
1

n

n∑
t=2

2≤t,t+h≤n

[
St

(
F̂n, β̂SP

)
− St

(
F ∗, β̂SP

)] [
St+h

(
F ∗, β̂SP

)]

+

M∑
h=−M

K

(
h

M

)
1

n

n∑
t=2

2≤t,t+h≤n

[
St

(
F ∗, β̂SP

)] [
St+h

(
F̂n, β̂SP

)
− St+h

(
F ∗, β̂SP

)]

+

M∑
h=−M

K

(
h

M

)
1

n

n∑
t=2

2≤t,t+h≤n

[
St

(
F̂n, β̂SP

)
− St

(
F ∗, β̂SP

)] [
St+h

(
F̂n, β̂SP

)
− St+h

(
F ∗, β̂SP

)]

We can verify the order of magnitude for each of these terms. For example, consider the second
term

M∑
h=−M

K

(
h

M

)
1

n

n∑
t=2

2≤t,t+h≤n

[
St

(
F ∗, β̂SP

)] [
St+h

(
F̂n, β̂SP

)
− St+h

(
F ∗, β̂SP

)]
,

notice that

M∑
h=−M

K

(
h

M

)
1

n

n∑
t=2

2≤t,t+h≤n

St

(
F ∗, β̂SP

) [
St+h

(
F̂n, β̂SP

)
− St+h

(
F ∗, β̂SP

)]

≈
M∑

h=−M
K

(
h

M

)
1

n

∑
t

St

(
F ∗, β̂SP

)
`β1

(
Ut+h−1, Ut+h, β̂SP

)(
F̂n(Ŷt+h−1)− F ∗(Yt+h−1)

)

+

M∑
h=−M

K

(
h

M

)
1

n

∑
t

St

(
F ∗, β̂SP

)
`β2

(
Ut+h−1, Ut+h, β̂SP

)(
F̂n(Ŷt+h)− F ∗(Yt+h)

)

−
M∑

h=−M
K

(
h

M

)
1

n

∑
t

St

(
F ∗, β̂SP

) ∂G0

(
Ut+h, β̂SP

)
∂Ut+h

(
F̂n(Ŷt+h)− F ∗(Yt+h)

)

−
M∑

h=−M
K

(
h

M

)
1

n

∑
t

St

(
F ∗, β̂SP

) ∂G1

(
Ut+h−1, β̂SP )

)
∂Ut+h−1

(
F̂n(Ŷt+h−1)− F ∗(Yt+h−1)

)
,

under our regularity assumptions, the order of magnitude for each of these terms are op (1). For
example
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∣∣∣∣∣∣∣∣
M∑

h=−M
K

(
h

M

)
1

n

n∑
t=2

2≤t,t+h≤n

St

(
F ∗, β̂

)
`β1

(
Ut+h−1, Ut+h, β̂SP

)(
F̂n(Ŷt+h−1)− F (Yt+h−1)

)∣∣∣∣∣∣∣∣
≤ 1√

n

1

n

M∑
h=−M

n∑
t=2

2≤t,t+h≤n

∣∣∣∣K ( h

M

)∣∣∣∣ sup
F∈Fδ

∣∣∣St (F ∗, β̂)w (F ∗(Yt+h+j−2)) `β1

(
Ut+h−1, Ut+h, β̂

)∣∣∣

×

∣∣∣∣∣∣
√
n
(
F̂n(Ŷt+h+j−2)− F ∗(Yt+h+j−2)

)
w (F ∗(Yt+h+j−2))

∣∣∣∣∣∣
under our regularity assumptions and the bandwidth condition, the above term is op (1).

Other terms can be verified to be op (1) using similar arguments.
Finally,∣∣∣∣∣

M∑
h=−M

K

(
h

M

)
[γ̂n(h)− γn1(h)]

∣∣∣∣∣
≤

M∑
h=−M

K

(
h

M

) ∣∣∣∣∣∣∣∣
1

n

n∑
t=2

2≤t,t+h≤n

St

(
F̂n, β̂SP

) [
Ŝt+h

(
F̂n, β̂SP

)
− St+h

(
F̂n, β̂SP

)]∣∣∣∣∣∣∣∣
+

M∑
h=−M

K

(
h

M

) ∣∣∣∣∣∣∣∣
1

n

n∑
t=2

2≤t,t+h≤n

[
Ŝt

(
F̂n, β̂SP

)
− St

(
F̂n, β̂SP

)] [
St+h

(
F̂n, β̂SP

)]∣∣∣∣∣∣∣∣
+

M∑
h=−M

K

(
h

M

) ∣∣∣∣∣∣∣∣
1

n

n∑
t=2

2≤t,t+h≤n

[
Ŝt

(
F̂n, β̂SP

)
− St

(
F̂n, β̂SP

)] [
Ŝt+h

(
F̂n, β̂SP

)
− St+h

(
F̂n, β̂SP

)]∣∣∣∣∣∣∣∣ .
Under regularity assumptions, for a neighborhood Bn

(
β
)
of β and an appropriately chosen εn → 0,

as n→∞, for j = 0, 1,

sup
εn≤u≤1−εn,
β∈Bn(β)

∣∣∣∣∣
[

1

n

n∑
l=2

{`β,2−j (Ul−1, Ul;β) [1 (u ≤ Ul−j)− Ul−j ]− E`β,2 (Ul−1, Ul;β) [1 (u ≤ Ul−j)− Ul−j ]}
]∣∣∣∣∣

= op

(
1

M

)
thus

sup
εn≤u≤1−εn,

sup
β∈Bn(β)

∣∣∣Ĝj (u, β)−Gj (u, β)
∣∣∣ = op

(
1

M

)
, j = 0, 1.

and
∣∣∣∑M

h=−M K
(
h
M

)
[γ̂n(h)− γn1(h)]

∣∣∣ = op(1).
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D.5. Proof of Theorem 8.

We show that the filtration does not affect the limiting distribution. Expanding log c2(F̂n(Ŷt−1), F̂n(Ŷt), β2)

around β̂2, and notice that the FOC corresponding to β̂2 implies

∑
t

∂ log c2(F̂n(Ŷt−1), F̂n(Ŷt), β̂2)

∂β
= 0,

(1) Generalized non-nested case,

Pr

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
6= E

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)

]]
> 0

Pr

[
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
6= ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

]
> 0

we have

1

n

n∑
t=2

log c2(F̂n(Ŷt−1), F̂n(Ŷt), β̂2)

=
1

n

n∑
t=2

log c2(F̂n(Ŷt−1), F̂n(Ŷt), β2)− 1

2n

n∑
t=2

(
β2 − β̂2

)′ ∂2 log c2(F̂n(Ŷt−1), F̂n(Ŷt), β2)

∂β∂β′

(
β2 − β̂2

)
=

1

n

n∑
t=2

log c2(Ut−1, Ut, β2) +
1

n

2∑
j=1

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j

[
F̂n(Ŷt−2+j)− F ∗(Yt−2+j)

]
+ op

(
n−1/2

)
and

L̂Rn =
1

n

n∑
t=2

log
c2(F̂n(Ŷt−1), F̂n(Ŷt), β̂2)

c1(F̂n(Ŷt−1), F̂n(Ŷt), β̂1)

=
1

n

n∑
t=2

log
c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)

+
1

n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}[
F̂n(Ŷt−2+j)− F ∗(Yt−2+j)

]
+ op

(
n−1/2

)
.

Thus

L̂Rn − E
[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)

]
=

1

n

n∑
t=2

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
− E

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)

]]

+
1

n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}[
F̂n(Ŷt−2+j)− F ∗(Yt−2+j)

]
+op

(
n−1/2

)
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1

n

2∑
j=1

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j

[
F̂n(Ŷt−2+j)− F ∗(Yt−2+j)

]
=

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut−1

[
F̂n(Ŷt−1)− Fn(Yt−1)

]
+

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut

[
F̂n(Ŷt)− Fn(Yt)

]
+

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut−1
[Fn(Yt−1)− F ∗(Yt−1)]

+
1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut
[Fn(Yt)− F ∗(Yt)]

Using similar argument as in the proof of Theorem 4, we can show

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut

[
F̂n(Ŷt)− Fn(Yt)

]
=

1√
n

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut
f∗ (Yt)

1

n

n∑
j=1

[(
X ′j −X ′t

)
D−1
n n1/2

]
Dn (π̂ − π∗) + op

(
n−1/2

)
=

1√
n

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut
f∗ (Yt)

1

n

n∑
j=1

[
X ′jD

−1
n n1/2

]
Dn (π̂ − π∗)

− 1√
n

1

n

n∑
t=2

∂ log c2(Ut−1, Ut, β2)

∂Ut
f∗ (Yt)

1

n

n∑
j=1

[
X ′tD

−1
n n1/2

]
Dn (π̂ − π∗) + op

(
n−1/2

)
= op

(
n−1/2

)
and thus

1

n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}[
F̂n(Ŷt−2+j)− F ∗(Yt−2+j)

]

=
1

n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}
[Fn(Yt−2+j)− F ∗(Yt−2+j)] + op

(
n−1/2

)
.

Let

gt,ij
(
βi
)

= E
{[

∂ log ci(Us−1, Us, βi)

∂Us−2+j

]
[1(Ut ≤ Us−2+j)− Us−2+j ]

∣∣∣∣Ut} .
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1√
n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}
[Fn(Yt−2+j)− F ∗(Yt−2+j)]

=
1√
n

2∑
j=1

n∑
l=2

E
{[

∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

]
[1(Ul ≤ Ut−2+j)− Ut−2+j ]

∣∣∣∣Ul}

=
2∑
j=1

[
1√
n

n∑
l=2

{
gl,2j

(
β2

)
− gl,1j

(
β1

)}]
,

we have

√
n

(
L̂Rn − E

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)

])
=

1√
n

n∑
t=2

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
− E

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)

]]

+
1√
n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}
[Fn(Yt−2+j)− F ∗(Yt−2+j)] + op (1)

=
1√
n

n∑
t=2

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
− E

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)

]]

+

2∑
j=1

[
1√
n

n∑
l=2

{
gl,2j

(
β2

)
− gl,1j

(
β1

)}]
+ op (1)

⇒ N
(
0, ω2

)
(2) Generalized nested case. Denote

Hjn = − 1

n

n∑
t=2

∂2 log cj(F̂n(Ŷt−1), F̂n(Ŷt), βj)

∂β∂β′
→ Hj,β,

Notice that
Pr
[
c2(Ut−1, Ut, β2) = c1(Ut−1, Ut, β1)

]
= 1

thus

Pr

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
= 0 = E

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)

]]
= 1

Pr

[
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
=
∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

]
= 1
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thus,

L̂Rn − E
[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)

]
=

1

n

n∑
t=2

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)
− E

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)

]]

+
1

n

2∑
j=1

n∑
t=2

{
∂ log c2(Ut−1, Ut, β2)

∂Ut−2+j
− ∂ log c1(Ut−1, Ut, β1)

∂Ut−2+j

}[
F̂n(Ŷt−2+j)− F ∗(Yt−2+j)

]
+

1

2

(
β2 − β̂2

)′
H2n

(
β2 − β̂2

)
− 1

2

(
β1 − β̂1

)′
H1n

(
β1 − β̂1

)
+

=
1

2

(
β2 − β̂2

)′
H2n

(
β2 − β̂2

)
− 1

2

(
β1 − β̂1

)′
H1n

(
β1 − β̂1

)
+ op

(
1

n

)
Let

Gj,n
(
βj
)

=
1√
n

n∑
t=2

{
∂ log cj

(
Ut−1, Ut, βj

)
∂β

+Gj,0(Ut, βj) +Gj,1(Ut−1, βj)

}
,

where for l = 0, 1,

Gj,l(Ut−l, βj) =

∫ 1

0

∫ 1

0

∂2 log cj
(
v1, v2, βj

)
∂βj∂v2−l

[1 (Ut−l ≤ v2−l)− v2−l] c
∗(v1, v2)dv1dv2,

then [
G2,n

(
β2

)
G1,n

(
β1

) ]⇒ N

(
0,

[
Ω+

2,β Ω2,1

Ω
′
2,1 Ω+

1,β

])
.

Applying Theorem 6,
√
n
(
β̂j − βj

)
= H−1

j,β
Gj,n

(
βj
)

+ op(1)⇒ N
(

0, H−1
j,β

Ω+
j,βH

−1
j,β

)
.

and

n

[
L̂Rn − E

[
log

c2(Ut−1, Ut, β2)

c1(Ut−1, Ut, β1)

]]
=

1

2
n
(
β2 − β̂2

)′
H2n

(
β2 − β̂2

)
− 1

2
n
(
β1 − β̂1

)′
H1n

(
β1 − β̂1

)
+ op (1)

=
1

2
G2,n

(
β2

)′
H−1

2,β
(H2n)H−1

2,β
G2,n

(
β2

)
− 1

2
G1,n

(
β1

)′
H−1

1,β
(H1n)H−1

1,β
G1,n

(
β1

)
+ op (1)

=
1

2

[
G2,n

(
β2

)′ G1,n

(
β1

)′ ] H−1
2,β

0

0 −H−1
1,β

[ G2,n

(
β2

)
G1,n

(
β1

) ]+ op (1) .

Thus, under the null, 2nL̂Rn converges to a weighted sum of independent χ2
1 random variables

in which the weights (λ1, · · ·, λd1+d2) is the vector of eigenvalues of the following matrix Ω+
2,βH

−1
2,β

Ω2,1H
−1
1,β

Ω
′
2,1H

−1
2,β

Ω+
1,βH

−1
1,β

 =

[
Ω+

2,β Ω2,1

Ω
′
2,1 Ω+

1,β

] H−1
2,β

−H−1
1,β

 .
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