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Abstract

Economic and financial time series data can exhibit nonstationary and nonlinear patterns si-
multaneously. This paper studies copula-based time series models that capture both patterns. We
introduce a procedure where nonstationarity is removed via a filtration, and then the nonlinear
temporal dependence in the filtered data is captured via a flexible Markov copula. We propose two
estimators of the copula dependence parameters: the parametric (two-step) copula estimator where
the marginal distribution of the filtered series is estimated parametrically; and the semiparametric
(two-step) copula estimator where the marginal distribution is estimated via a rescaled empirical
distribution of the filtered series. We show that the limiting distribution of the parametric copula
estimator depends on the nonstationary filtration and the parametric marginal distribution estima-
tion, and may be non-normal. Surprisingly, the limiting distribution of the semiparametric copula
estimator using the filtered data is shown to be the same as that without nonstationary filtration,
which is normal and free of marginal distribution specification. The simple and robust properties
of the semiparametric copula estimators extend to models with misspecified copulas, and facili-
tate statistical inferences, such as hypothesis testing and model selection tests, on semiparametric
copula-based dynamic models in the presence of nonstationarity. Monte Carlo studies and real data
applications are presented.
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1. Introduction

Nonstationarity and nonlinearity are important empirical features in economic and financial time se-
ries. For many economic time series, nonstationary behavior is often the most dominant characteristic.
Some series grow in a secular way over long periods of time, others appear to wander around as if they
have no fixed population mean. Growth characteristics are especially evident in time series that repre-
sent aggregate economic behavior. Random wandering behavior is also evident in many financial time
series. In addition, existing literature (e.g. Gallant, Rossi, Tauchen (1993), Granger (2002), Gallant
(2009)) points out that the classical linear time series modelling based on the Gaussian distribution
assumption clearly fails to explain the stylized facts observed in economic and financial data, and that
it is highly undesirable to perform various economic policy evaluations, financial forecasts, and risk
managements based on linear Gaussian models.

Econometric analysis that ignores either nonstationarity or nonlinearity may lead to erroneous in-
ference for policy evaluations and financial applications. Deterministic or stochastic trend components
are commonly used to capture persistent and trending types nonstationarity in time series. In the
presence of a deterministic trend, detrending methods are often used to extract this trend and the
residuals are then analyzed as a stationary time series. Unit root and cointegration models are widely
used to model stochastic trends in economic time series. For stationary series, copula-based Markov
models provide a rich source of potential nonlinear dynamics describing temporal dependence and
tail dependence, without imposing any restrictions on marginal distributions. See, e.g., Joe (1997),
Chen and Fan (2006a), Patton (2006, 2009, 2012), Ibragimov (2009), Cherubini, et al (2012) and
the references therein. However, existing large sample theories for estimation and inference on the
copula-based time series models rule out nonstationarity.

An important issue is that nonstationarity and nonlinearity can occur simultaneously. In this
paper, we study copula-based time series models that can capture nonstationarity and nonlinearity
(and tail dependence). We propose a sequential procedure where nonstationarity is first removed via
a filtration, and then the nonlinear temporal dependence (and the tail dependence) in the filtered
series is captured by a copula-based first-order stationary Markov model. We are interested in simple
estimation and inference on the copula dependence parameter for the deterministic or stochastic
detrended series. We focus on the sequential approach due to its easy implementation in empirical
applications.

An advantage of copula-based modeling approach is to leave the marginal distribution completely
free of parametric assumptions. Nevertheless, many empirical researchers still like to assume a para-
metric functional form of the marginal distribution and estimate it parametrically before proceeding
to estimate the copula dependence parameters. For the sake of comparison, we consider both the

parametric (two-step) copula estimation where the marginal distribution of the filtered series belongs



to a parametric family, and the semiparametric (two-step) copula estimation where the marginal dis-
tribution of the filtered series is nonparametric. Without nonstationary filtering and for observable
stationary Markov data, both copula estimators are shown to be asymptotically normal, while the
semiparametric copula estimator is obviously robust to misspecification of the marginal distribution.
We show that the copula estimators using nonstationary filtered data have very different properties,
however. In particular, the limiting distribution of the parametric (two-step) copula estimator is af-
fected by the nonstationary filtration and the parametric marginal distribution estimation, and may
be non-normal in the presence of stochastic trends (unit root or cointegration). While the paramet-
ric copula estimator using deterministic trend filtered data is shown to be asymptotically normal,
its asymptotic variance still depends on the filtrating and the parametric marginal specification in a
complicated way. Surprisingly, we show that the limiting distribution of the semiparametric (two-step)
copula estimator using the filtered data is the same as that without nonstationary filtration, which is
normal and free of marginal distribution specification.

Previously, Chen and Fan (2006b) use parametric copula to generate contemporaneous dependence
among multivariate standardized innovations of observed weakly-dependent multivariate time series,
where the standardized innovations have no serial dependence. They established that the limiting
distribution of their semiparametric two-step copula estimator does not depend on the stationary
parametric filtering in the first step. Recently, Chen, Huang and Yi (2020) generalize their result to
stationary nonparametric GARCH filtered multivariate series. It is interesting that these papers and
our work all establish the surprising "no-filtering-effect" in semiparametric two-step copula parameter
estimation. Nevertheless, our result cannot be derived from theirs. While Chen and Fan (2006b) and
Chen, Huang and Yi (2020) consider the contemporaneous copula dependence among multivariate
standardized innovations that are orthogonal to the stationary dynamic filtering part, our paper
studies the temporal copula dependence of univariate non-stationary filtered residuals, and there is
dependence among the nonstationary (stochastic trending) and the stationary parts in our setting.

While this surprising result is first derived for models with correctly specified parametric copu-
las in Section 3, we show in Section 4 that the limiting distribution of the semiparametric copula
estimator (for the pseudo-true parameter) is still not affected by the nonstationary filtration even
in misspecified parametric copula models. The simple and robust properties of the semiparametric
copula estimators greatly facilitate statistical inferences, such as hypothesis testing and model selec-
tion tests, on semiparametric copula-based dynamic models in the presence of nonstationarity. It is
well-known that there is not enough time series data to accurately estimate the tail dependence fully
nonparametrically and that a semiparametric temporal copula model captures the tail dependence.
Our “no-filtering-effect” of semiparametric two-step copula estimation, testing and model selection on

possibly misspecified parametric residual copula models are particularly useful to empirical researchers



who care about tail dependence in short term dynamics of the nonstationary filtered time series.

Monte Carlo studies reveal interesting finite sample behaviors of the parametric and the semipara-
metric (two-step) copula estimators under various combinations of nonstationary filtration, correctly-
and incorrectly- specified marginal distribution of the filtered series, and copula function specification
(with or without tail dependence). Simulation evidences (in terms of biases and variances) indicate
that the finite sample performance of parametric copula estimator is indeed very sensitive to different
types of filtration and the parametric estimation of marginal distributions. The semiparametric copula
estimator not only is robust to specification of marginal distributions, but also performs very similarly
to the infeasible semiparametric estimator without nonstationary filtering. In comparison to the para-
metric copula estimator with correctly specified parametric marginal distributions, the semiparametric
estimator has reasonably good sampling performance over a wide range of copula parameter values.
Simulation patterns are consistent with our theoretical findings.

To illustrate the practical usefulness of our theoretical results, we first apply our method to estimate
the short term dynamics in the (USA) GNP time series after the cointegrating regression of GNP on
consumption series. Our semiparametric copula estimation and testing using the filtered data detect
both lower and upper tail dependence in the GNP series, although the lower tail dependence is stronger.
We next apply our method to the famous "CAY" time series that was first constructed in Lettau
and Ludvigson (2001), which is the residual term from a cointegrating regression of consumption
(c) on asset holding (a;) and labor income (y;). According to Lettau and Ludvigson (2001) and
many subsequent work, the "CAY" time series contain important information of future returns at
short horizons. Our semiparametric copula estimation and testing detect very significant lower tail
dependence and weak upper tail dependence in the "CAY" series.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3 presents
estimation of copula parameters for both the parametric and semiparametric models of the filtered
data. It also obtains the large sample properties of the parametric and semiparametric copula esti-
mators. Section 4 considers estimation under possibly misspecified copula models. It also presents
Wald test and semiparametric copula model selection tests using nonstationary filtered data. Section
5 presents Monte Carlo studies. Section 6 provides empirical applications. Section 7 briefly concludes
with future research. Appendix A and the Online Appendix C display tables summarizing the Monte
Carlo results. Appendix B and the Online Appendix D contain all the technical proofs. Notation:
BM (w?) denotes a Brownian motion with variance w?. For a generic parameter, say, 3, we denote the
true parameter value by 3*, the pseudo-true value by 3 and a feasible estimator by B The expectation
E[W], the conditional expectation E[W|V] and the variance Var[W] are all taken under the true data
generating process (DGP).



2. The Model
We assume that the observed scalar time series {Z;}}_; can be modelled as

Zy = Xim" + Yy, (2.1)

where X|7* is the nonstationary component in which X; is an observed d,-dimensional vector of

nonstationary regressors. For example, X; may contain deterministic trends, unit root or near unit
root nonstationary time series. Y; is the latent stationary ergodic component that could exhibit
nonlinear temporal dependence and/or tail dependence.

Estimation of the parameter 7* in model (2.1) is by now standard (usually an OLS regression
of Z; on X;) and is not the focus of our paper. Instead we are interested in estimation of the
copula parameter 3 that captures stationary nonlinear temporal dependence in {Y;}}" ;. Unfortunately
{Y;}}-, is unobserved. We shall estimate the latent temporal dependence parameter 5 and study its

asymptotic properties based on the filtered time series {2}?:1’ where
Y, = Z — X7, (2.2)

and 7 denotes some nonstationary filtering estimator for 7*. We state the basic regularity conditions
on the nonstationary part and the stationary part as follows. The assumptions about the nonstationary
part {X;7*}{"_; are the typical ones for trend, unit roots and cointegration, and the assumptions about
the stationary part {Y;}}"_; are the same as those in Chen and Fan (2006a).

Due to the nonstationarity in Xy, in the next assumption we introduce appropriate re-standardization
via a scaling matrix D,, to facilitate asymptotic analysis.
Assumption X. In model (2.1), the elements in X; can be either a deterministic trend function, or

an unit root or local to unit root process such that

_[nrEv
- n1/2D771X[nr}

By(T’)
X(r)

],TE[O,l] as n — 00,

where By (r) is a Brownian motion, X (r) is a vector of stochastic or deterministic functions. And
D,(mt—7%)=¢ as n— .

In the above assumption, X (-) may be stochastic processes such as Brownian motions, or deter-
ministic functions, or mixtures of both. In the case when X (-) contains stochastic functions, they
can be correlated with By (). The limiting distribution of the filtration parameter, &, is a function of
(X(+)', By(+)) and may not be a normal variate. We give below a few examples that are widely used

in time series applications. In all the examples, we let 7 be the OLS estimator of 7*.



Example 1. Trending Time Series. X; is a vector of deterministic trend function and X, (r) —
X(r), where X(r) is a piecewise continuous limiting trending function. (For example, if Z; =
5+ it + Yy, then X; = (1,¢)" and X (r) = (1,r)’, and the standardization matrix is D,, =
diag(n'/?,n3/2).) Let Y,,(r) = By(r) = BM(w?%). Then:

D,(m—7%)=¢&, &= [/X(T)X(T),d’l‘:| - |:/X(7")dBy(’l“):|

where £; is a normal random variable with mean zero and variance matrix w$. [ [ X (r) X (r)'dr] -

Example 2. Time Series with a Root Close to Unity. X; = Z;_; and 7* = 1+ ¢/n. Thus
Xt = Z;—1 can be a unit root (¢ = 0) or local to unit root process. D, = n, and X,(r) =
nil/QX[m,] = X(r) = Jo(r) = [ e"~9°dBy (s), where J(r) is a Ornstein-Uhlenbeck process. If
¢ =0, Jo(r) = By(r) is simply a Brownian motion. The OLS filtration estimators 7 converges
at the rate-n to a non-normal limit &,:

-1

1 o)
[/0 J(r)dBy (1) + )\} with A =) " E(Y1Yi44).
h=1

I S [ / 1 Jc@«)sz]

Example 3 Cointegrated Time Series. X; = (X1,, X},)’, where X;; is a vector of deterministic

trend, and Xo; is a vector of stochastic nonstationary process, then
n1/2D1_an1,[nr} - Xl(r)7 n71/2X2,[nr} = BQ(T) = BM(W§)7
X1(r) is the limiting trending function, and Ba(r) is a stochastic process. Then

Xl(r)

Xo(r) =n2D X0 = X(r) =
[n] Bo(r)

with D,, = diag{D1p,n,--,n}.

The OLS filtration estimators 7 has the following non-normal limit &5:

Du(F-m) > &= | [X0X(Ya] h [ xaBy )+ Ay v Ky = (0.0

where, in general cointegration applications, Ay # 0, Ba(r) is usually correlated with By (r),

and [ [ BQ(T)BQ(T),dT]il | Ba(r)dBy (r) is asymmetrically distributed.

We make the following basic assumptions on the latent process {Y;}, which are also imposed in
Chen and Fan (2006a).
Assumption DGP: (1). {Y;}/"; in model (2.1) is a stationary first-order Markov process generated
from (F*(-),C*(-,-)), where F"*(+) is the true invariant distribution that is absolutely continuous with

respect to Lebesgue measure on the real line; C*(-,-) is the true copula function for (Y;—1,Y%), and is



absolutely continuous with respect to Lebesgue measure on [0, 1]2. (2) C*(-,-) = C(-,-; %) for B* € B
a compact subset of RF.

Assumption MX: {Y;} is absolutely regular with mixing coefficient §(7) = O(779%), with § >
q/(q — 1) for some constant g > 1.

Under Assumption DGP(1), by Sklar’s (1959) theorem, the probabilistic properties of {Y;}{" ; is

uniquely determined by the true conditional density of Y; given Y;_1:

p(yelye—1) = [ ()" (F* (ye-1) , F* (yr)),

where f*(-) is the true invariant density (of F*(-)) and ¢*(, -) is the true copula density (of C*(-,-)). Let
Ui = F*(Y:). Then {U:}} is a strictly stationary first-order Markov process with uniform marginal
distributions and the true joint distribution of (U;_1, U) is given by C*(u—1, uy)

For simplicity, Assumption DGP(1) assumes that {Y;}}"_; is a first-order stationary Markov process,
although higher order Markov process of {Y;}"; can be handled similarly (see, e.g., Ibragimov, 2009).
Assumption DGP automatically implies that {Y;}}" ; is absolutely regular (or beta-mixing). Assump-
tion MX only imposes a mild polynomial mixing decay rate, which is satisfied by commonly used
parametric copulas. See Chen and Fan (2006a), Chen, Wu and Yi (2009), Beare (2010), Longla and
Peligrad (2012) and others for sufficient conditions that commonly used copula-based Markov processes
are geometric ergodic and hence absolutely regular with exponentially decaying mixing coefficients.

In this paper, a parametric copula density family {c(-,-;3): 3 € B} with B a compact subset
of R¥, can be correctly specified as assumed in Assumption DGP(2) (and Section 3) or incorrectly
specified in the sense that ¢*(-,-) ¢ {c(-,-;8) : B € B} (as in Section 4). Under Assumption DGP(1)

and some mild regularity conditions, we can define a uniquely pseudo-true value 3 € B as

1,1
B = arg max/ / [log c(u,v, B)] x ¢*(u,v)dudv = arg min KLIC (¢*, ¢ (-, -, #)) (2.3)
BeB Jo Jo peEDB

where, following White (1982), KLIC(c*, ¢ (-, -, 8)) is the Kullback-Leibler Information Criterion (KLIC)

between a parametric copula density c(-, -; 8) and the unknown true copula density ¢*(,-):

11
KLIC (¢*,¢(+,8)) = /0 /0 [log c*(u,v) — log c(u, v, B)] x c*(u,v)dudv > 0.

Under Assumption DGP(2) (i.e., the parametric copula function C(u,v, ) is correctly specified) then
B = 3* (the true parameter value) and KLIC (c*, c (-, B)) = 0. We say the copula function is incorrectly
specified if KLIC (c*, c (,E)) > 0.

Regardless if the parametric copula density c(u,v,3) is correctly specified or not, the following

notation is used throughout the paper. Let ¢(u, v, 3) = log c¢(u, v, 3), and

ol (u,v, f) ol(u,v, f) ol(u, v, f)

ngﬂ (U,Q},ﬁ), ou 251 (u,v,ﬁ), o :€2 (uavaﬁ>7



ol (u,v, olg (u,v, 9lg (u, v,
ov.) ov.) D) — g 0.

Qs =E [ls (Ur—1,Uy, 8) b5 (Up—1, U, B)'],  Hp = —E[lgs (Up-1, Uy, B)]. (2.4)

=lg1 (u,v, 5), =l (u,v, ),

Under mild regularity conditions, we have Qg+« = Hpg~ for correctly specified copula models (see Section

3), but Q5 # Hp for incorrectly specified copula models (see Section 4).

3. Estimation Under Correctly-Specified Copulas

We are interested in estimation and inference on the copula dependence parameter 3*.

3.1. Feasible estimation of copula parameter using filtered data 57,5

Let F(-) be a feasible estimator of the marginal distribution F*(-) using the filtered data Y;. We

propose the following feasible copula estimator
Bzargmgx@n@,ﬁ) where Qn(F, B) = Zlogc (Y1), F(Y)), B). (3.1)

3.1.1. Parametric marginal case

We first consider the parametric case where the marginal distribution of Y; belongs to a parametric
family. Denote the unknown true marginal density function and the distribution function of Y; by
f(,a*) and F(-,a*), where « is an kj-dimensional vector of unknown parameters. We could then

estimate the true marginal F*(-) by F(-, @) where

a = arg mcz}XZlog F(Yi, ), (3.2)
t=1

and estimate the copula parameter 8* by the following “parametric copula estimator”:
~ ~ ~ 1 & ~ ~
BP = argmgx@n(ﬁ), where Q'ﬂ(ﬁ) = g Z 10gC<F(Y2_1, a)a F<Y%a a)? B)
t=2

3.1.2. Nonparametric marginal case

In practice, the exact form of marginal distribution is usually beyond our knowledge and thus the
parametric model of marginal distribution may be misspecified. We now consider a semiparametric
estimator where the marginal distribution is estimated nonparametrically based on the filtered time
series Y;. We use the so-called rescaled empirical distribution function (EDF) to estimate F*(-):

n

ﬁn(y) = 1 Z 1 (1715 < y) , (3.3)

n—i—lt:l




)

and estimate the copula parameter 8* by the following “semiparametric copula estimator”:

Bsp = argm[?xﬁ (B), where L, (3 Zlogc Fo(Yie1), Fu(Y2), B).

3.2. Infeasible estimation of copula parameter using Y;

For comparison purpose, we review an infeasible estimator, B, of §* assuming that Y; is observed.
Let F (1) be an infeasible estimator of the true marginal distribution F™*(-) using Y;. Then a pseudo

maximum likelihood estimator of 8* using observed Y; is given by
B = argmax Qn(F, B), where Qu(F Zlogc (Y1), F(Y), B)-

Again, B p denotes the parametric copula estimator using the infeasible parametric marginal estima-

tor:!

n
F=F(,a), a= argmaleogf(Yt,oz).
«
t=1

And B gp denotes the semiparametric copula estimator using the infeasible rescaled estimator for F*(-):

n

F(y) = Fuly 121 Y <y). (3.4)
t=1

Chen and Fan (2006a) has proposed and studied the asymptotic properties of BSP for first-order
stationary Markov process Y;.

In the next two subsections, we show that although the parameter estimators B p and B p could
have different asymptotic properties, the semiparametric copula estimators BS p and ESP have the

same asymptotic distribution.

3.3. Asymptotic properties of parametric copula estimator

In this subsection we establish the consistency and limiting distribution for the feasible parametric cop-

ula estimator. We introduce some additional notation for the parametric case. Let g (Y;—1,Y, o, ) =

'"Previously, Joe and Xu (1996) and Joe (2005) studied two-step parametric estimation of copula parameter
g for iid data {(Y1,,...,Ya:)},., of a multivariate random vector (Y¥1,...,Ys) whose concurrent copula density

c(F1(Yi;a1), ..., Fa(Ya; aq); B) links different parametric marginal distributions F;(Yj;a5),7 =1, ...,d.



log ¢(F (Y1, ), F (Y3, ), B) and g (s1, S2, 0, B) = g (s1, 52,0, ) /OB. Fori = 1,2, j = 1,2, we define

agﬁ (8173270476) agﬁ (31a$27a7ﬁ)

Do = gga (51,52,, ), a3 = gp8 (51,52, 0, ) ,
0gp (s1, 82, o, B) 09p5 (51,52, @, B
5 ( 5 = ggj (s1,82,, ), op ) = ggsj (51,52, ¢, 0) ,
Sj 8Sj
ag 3175270‘76 ag 5178270576
5/8( 8& ) = 98B« (81’827a76)7 /BO‘( 88] ) :gﬂaj (5178270575)7
8g ] S]_,Sg,O[,ﬂ 89 i 8175230175
pi ) = ggij (51,52, 0, ), pi ( ) = 9Bia (51,52, @, ) .
aSj 8a

For consistency in the parametric case, we make the following assumptions.

Assumption ID1: (1) A and 9B are compact subsets of R¥1 and R*. (2). ¢(a) =E[log f(Y;, )] has
a unique maximizer a* € A; and Q(5) =E[g (Yi—1, Y:, a*, §)] has a unique maximizer §* € B. (3)
f(y, @) is continuous in a € A, and ¢ (o, 8) =E[g (Y;—1, Y%, o, §)] is Lipschitz continuous in « € A and
B € B.

Assumption M1 (1) E[sup, |log f(Y;,a)|] < oo, and E[supsem aca, 19 (Yi-1,Ys, o, B)]] < o0. (2)
f(y, ) is uniformly continuous in y, uniformly over o € A (that is, for any € > 0 there exists 0 > 0,
such that if |y; — ya2| < 6, then sup,c4|log f(y1, @) —log f(y2, )| < e.). Similarly, g(s1,s2,a, ) is

uniformly continuous in (s1, s2, ), uniformly over § € B.
Theorem 1: Let Assumptions X, DGP, MX, ID1, and M1 hold. Then: Bp = "+ 0p(1).
We introduce additional notation and assumptions for the limiting distribution of B p. Denote

9% log f(Yy, o)
dada’ )

dlog f(Y;, a*) Olog f (Y3, a*)
oo oo’

Q. =F | H=p

Assumption ID2: (1). 8* € int(B) and Bp = 5* +0p(1). (2) g (s1,s2,, ) is Lipschitz continuous
in 3, gg; (s1, 82, v, B) are continuous in (s1, s2, @, 3). (3). Qg = Hg= given in (2.4) is positive definite.
(4). f(-,a*) is differentiable in a*. (5) Q4 = H, is positive definite.

Assumption M2 (1) the derivatives of gg (s1, s2,a, §) are uniformly continuous in (s1, s2, o, 8). (2)

the following limits hold in probability:

1< _ :
Pnj = E Zgﬁj (Ki—h}/t,a*,ﬁ*) Xz‘{72+an1n1/2 = PJ + OP(D? Jj=12,
t=2

n
Py = nilzgﬂa(y}—hy}va*vﬁ*):P3+0P(1)'
t=2

1~ 0%log f (Y, 0%) (i1 172
Mooy = 5 2™ Gaty (XID02) = Hay +0,(1).

10



Theorem 2: Let Assumptions X, DGP, MX, ID2 and M2 hold. Then:
N (BP _ 5*) =~ N (o, Hﬁ_*lQ?Hﬁj}) —Hy' (P + Py + P30, Hay) €
where

4 . 1 & 0log f(Yy, a*)
— * % 1 t, &
Qﬁ—nhm Var<ft§2<gﬁ(yt—1,Yt,a,ﬂ)-l—PQ ))

Theorem 2 implies that, in the presence of nonstationarity, the limiting distribution of the para-
metric copula estimator B p may not be normal.

From the proof of Theorem 2, we can decompose the limiting distribution of B p into three com-
ponents: The first part is N (O, Hﬁ_*lﬁg* Hgf) =N <0, Q/g*l), the normal limit of the ideal infeasible
estimator when Y; is observed with a completely known marginal F*(Y;) = F(Y;, o*) (or a known
a*); The second part is N (0, Hpg. ' P30 1P3H 1), the normal limit from the parametric estimation of
the marginal parameter o* using Y;; The third part is H .. (P1 + P+ Pgﬁngay) &, the effect of
nonstationary filtration SAQ The first two parts are normal random variates but the third part may not
be normal. Unless P, + P + P3Q ' H,y = 0p(1), the nonstationary filtration will affect the limiting
distribution of B p- In particular, the filtration affects the limiting distribution of \/n (B p— ﬁ*) di-
rectly through XA/} and indirectly through @. Unless X; is purely deterministic, the limiting distribution

of /n (B p— 6*) is not normal and is generally affected by nuisance parameters in a complicated way.

Remark 1. We define the ideal infeasible estimator B as the maximum likelihood estimator of 5*

assuming Y; is observed with a completely known marginal distribution F*(-):
B = arg mﬁaxQn(F*,ﬁ) where Qn(F*, ) = Zlogc *(Yim1), F* (Y1), B)- (3.5)

It is obvious that
i * -1 -1\ _ -1
\/ﬁ(ﬁ—ﬁ ) ~ N (O,HB* Qﬁ*HB*> - N <O,QB*> .
From the proof of Theorem 2, we have
Jn (BP _ 5*) =~ N (0, Hﬁ_*lﬂ?H/;}) .
Since Q? — Qg+ is positive definite, even assuming observable Yy, there is still efficiency loss of the
infeasible parametric copula estimator B p using a consistent parametric estimator of marginal dis-

tribution F*(). Nevertheless, according to Theorem 2, it is unclear which one, B p Vs Bp, is more

efficient.

Example 1 (Continued). Trending Time Series. Let

9% log f(Yt,Oé*)]

2
=7 _Egs; (Yio1,Yi,a", 57) +P39;1E[ Sy

j=1
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and
-1
e o [ i)
Pnj*)P—Egﬁj(YVt 17Yta 76 /X d j:1727

2log f(V;, a
HnaYﬂHaY:E[a ng t :|/ X

Notice that

dadY

we have .

P+ P+ PsQ ' Hyy = n/ X (r)dr

0

and

\/ﬁ(ﬁpfﬁ ) :>N(0 HOf B*)
where
=# 1 1 - % % 810gf Y;fv ) -1
Qf = lim Var (\/ﬁ ;gg (Y1, Yi, 0, %) + PosQy ' — Z nxztan XY | .

In this example, the nonstationary component is deterministic and hence uncorrelated with Y,
the limiting distribution of D,, (7 — 7*) is normal. Thus the limiting distribution of B p is normal,

but is affected by the filtration as reflected in the formula of ﬁ?

Example 2 (Continued). Unit Root. Let Z; = Z;_1 + Y} is a unit root process. Then X; = Z;_1,

=1, and

n(F—1) =&y = Uol By(rmr] )

1 00
| Briny )+ Y B0V
h=1

Then,
Jn (BP - 5*) = N (0, Hg)ﬂ?Hg)) — H3 h(By (r))
where 7 is defined as (3.6), and

_ /O "By (r)dr [ /0 1 By(r)er] -

In this example, the limiting distribution &, of the nonstationary filtration 7 is non-normal, and

1 0o
/0 By (r)dBy (r) + Z E(Y1Y141)
h=1

thus the limiting distribution of B p is not normal and is affected by the filtration.

Example 3 (Continued). Cointegrated Time Series. X; = (X{,, X?,)’, where Xy, is a vector of

deterministic trend, and Xo; is a vector of unit root process, then
1 1
Pn] - PJ = Egﬁj (thl,Ytaa*;ﬁ*) |:/ Xl(’l")/dT,/ B2(T)/d7{| ) ] = 1a 2a
0 0
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and

& log f(Vi, @
Hpoy — Hay =E X(r
Y Hay [ 9adY } /

Then,
Jn (BP - ﬂ*) =N (o HQ H! ) —nH hs(X1, Bz, By)

where

JXa(r)Xa(r)'dr [ X1(r)Ba(r)'dr ”_1
[ Ba(r)Xi(r)'dr [ Ba(r)Ba(r)'dr

h3(X1, B2, By) = [/Ole(r)’dr,/Ol B2(r)’dr] _

Jiy X1(r)dBy (r)
[ Ba(r)dBy (r) + Asy |

In this example, the stochastic nonstationary process Xo; is correlated with Y;, and the limiting
distribution &5 of the nonstationary filtration 7 is non-normal. Thus the limiting distribution of

~

B p is not normal and is affected by the filtration.

3.4. Asymptotic properties of semiparametric copula estimator

We first establish a key Lemma for a weighted empirical process that is of independent interest to
handle filtration for time series. Lemma 1 below is about the empirical distribution functions based
on filtered data, and has nothing to do with copula models.

Assumption SP: (1) There exists Y, for [y| > Y, and any sequence &, = o(1), |F*(y + 6,) — F*(y)| <
F*(y)dpn. (2) w(-) is a continuous function on [0, 1] which is strictly positive on (0,1), symmetric at
u = 0.5, and increasing on (0,1/2], satisfying w(u) > ¢ [u(1 —u)]*log(1/(u(1 — w)))*r with ¢ > 0,
wy >0, u < 1/2q for ¢ given in Assumption MX.

Let b= (b1, -+, b,)" and |b] = maxj<¢<p |bs]. Denote

Z,(y, Z[ (ESern_l/th)—F*(y+n_1/26t) -

\/n +1
Lemma 1: Let Assumptions X, DGP(1), MX and SP hold. Then: for any given B > 0,

‘ Zn(y¢ b) — Zn(y7 O)
w(F*(y))

sup sup ' = o0p(1).

[b|<B ¥

Let F denote the space of probability distributions over the support of Y;, and w (-) be a positive

weighting function as given in Assumption SP(2). For any F' € F we define a weighted metric |||, as

£ = F*]l,, = Sup {F(y) = F(y)} Jw(F ()] -

13



For a small 6 >0, let F5={F € F:||F — F*|, < d}. Then for F,(-) given in (3.4) we have F;, € F;
a.s. (by Chen and Fan (2006a) lemma 4.1(1)).

The following conditions are imposed for the consistency of the semiparametric copula estimator.
Assumption ID3: (1). B is a compact subset of R*, E[{g(F*(Y;—1), F*(Y3), 8)] = 0 if and only if
B =p"€B. (2) Lg(s1,s2,) is Lipschitz continuous in 3, £3; (s1, 52, 3) are continuous in (s1, s2, 3).
Assumption M3: (1). E[supgen [[€5 (F*(Yi-1), F*(Y2), 8) | log (1 + [[€g (F*(Yi-1), F*(Y2), B)I)] < oc.
(2). E[supges per, [1€sj (F(Yi1), F(Y2), B)| w(F*(Yi-245))] < 00, =1,2.

(3). sup,, [f*(y)/w(F*(y))| < oo.

We note that Assumptions ID3 and M3(1)(2) are already imposed in Chen and Fan (2006a) for

the consistency of the infeasible semiparametric estimator ESP using {Y;}. We impose Assumption

M3(3) since BSP is computed using the filtered data {)A/t}

Theorem 3: Let Assumptions X, DGP, MX, SP, ID3 and M3 hold. Then: BSP ="+ o0, (1).
Recall that under Assumption DGP(1), {U; = F*(Y;)};_, is a first-order Markov with ¢* (v, v2)
as the true joint density of (U;—1,U;). Denote

G, (8) = <= YA (U1, Un ) + GolUh,B) + G (Vi1 ) (37
t=2
where, for j = 0,1,

1 1
G]’(Ut,j, ,6) = A /0 Eﬁ,Q—j (1}1, V23 B) [1 (Utfj S Ugfj) — ’Uz,]’] C”< (Ul, Ug) d’Uldvg (38)

= E{lg2—; (U1,U2; B) [L(Us—; < Uz—j) — Ua—j] | Up—j} (3.9)
Let
0 =Q7(B) = lim Var (G, (8)) - (3.10)

The following additional assumptions are used for the asymptotic normality of BS p-
Assumption ID4: (1). Assumption ID3(1) is satisfied with 8* € int (B), Bsp = 8 +0,(1). (2) Hp~
given in (2.4) and ng given in (3.10) are positive definite. (3). sup, [(Fn(y) — F*(y)) /w(F*(y))| =
0,(n=1/2).

Assumption M4 (1). Let F,, = F* + n[F — F*] for n € [0,1] and F' € F;, the interchange of
differentiation and integration of £g (F,(Y;-1), F, (), 8,) w.r.t n e (0,1) is valid.

(2) EJsupjs_ e <s.rer, 16 (F(Yi1), F(Y0), B)|*log (1 + |65 (F(Yi-1), F(Y,), B)])] < o0,

E{SUPHﬁfﬁ*Hgé,Fe}}; 1455 (F(thl),F(Yt),ﬁ)HQ} < o0,

E[supjspj<s.rer, 105 (Fi). FOR). )| w(F*(Yiai))] < o0, j = 1.2

(3). E[supjs_ae<s.per oss (Fi). (V). B) w(F* (Vi) J0(F* (V-] < 00, 1.3 = 1.2,
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E[Supufpg*”«s rer; 1€as5 (F(Yi- 1) F(Yt) B) w(F™ (Yiqj— 2))”] <00, i, =12
[Supug B*||<8,FeFs Wﬁﬁﬁ (F(Yi ”]
We note that Assumptions ID4 and M4(1)(2) are already imposed in Chen and Fan (2006a) for

the asymptotic normality of the infeasible semiparametric estimator BSP using {Y;}. We impose
Assumption M4(3) since B gp is computed using the filtered data {?t}
Theorem 4: Let Assumptions X, DGP, MX, SP, ID4 and M4 hold. Then:

Vi (Bsp = 8°) = v (Bsp = 8°) +0p(1) = H'Gu (8") + 0p(1) = N (0, H5'Qf. H3' )

Theorem 4 shows that the nonstationary filtration does not affect the limiting distribution of the
semiparametric copula estimator BS p, which is the same as that of the infeasible semiparametric
copula estimator ES p using Y;.

From the proof of Theorem 4, we can again decompose the limiting distribution of the semiparamet-
ric copula estimator BSP into three components: The first part is N (0, H[;*IQB*H[;}) =N (0, QB*)’
the normal limit of the ideal infeasible estimator 8 when Y; is observed with a completely known
marginal distribution F*(-); The second part, denoted as An2 + Anp4 in the Appendix, is from the
nonparametric estimation of the unknown marginal distribution using Y;, and is also asymptotically
normal; The third part, denoted as A,1 + An3 in the Appendix, is the effect of nonstationary filtration
Y;. We show in the Appendix that A, + Aps = 0p(1). Therefore, the distribution of v/n (BSP - ﬁ*)
is only asymptotically affected by the first two parts. Consequently, the limiting distribution of

Vvn (BSP - ﬂ*) is the same as that of \/n (ESP - ﬂ*), which is always normal.

Remark 2. Chen and Fan (2006b) studied semiparametric copula-based multivariate dynamic models

Zy = (Zigs ., Zd,t) v Ljr = Mmt(é’*) + Oj,t(Q*)Yj,t,
pi0%) = E[ZjTia),  03,(0%) = Var(Z| T,
Y; = (Yit...,Yas) Isindependent of Z,_i, and {Y;}; , isiid. overt

where the joint distribution of the multivariate standardized innovation Y; = (Y1, ..., Yq) has the con-
current copula density ¢(F1(Y14), ..., Fy(Ya); B) that links marginal distributions F;j(Yj.),7 = 1,...,d
of individual standardized innovation at the same time period t. Chen and Fan (2006b) established
that the asymptotic distribution of the semiparametric (two-step) copula parameter estimator using
the filtered standardized innovation fft is the same as that based on true multivariate standardized
innovation Y, and hence is not affected by the parametric estimation of the conditional mean and
volatility parameters 6*. Recently Chen, Huang and Yi (2020) extend this result to nonparametric
estimated (E[Z;|Ti—1], Var|[Z;|Zi— 1]) . We should stress that the results in Chen and Fan (2006b)
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and Chen, Huang and Yi (2020) crucially depend on the independence between Y; = (Y14, ..., Ya+)
and the dynamic part 7,1 of the observed time series Z;. However, in the presence of stochastic
nonstationarity (unit-root or cointegration) as in our paper, X; can be correlated with the residual

term Y;, and hence our Theorem 4 can not be explained by their results.

Remark 3. Under Assumption DGP(2), {Uy = F*(Y;)},_, is a first-order Markov with ¢* (vi,v2) =
c(vy,ve; B%) as the true joint density of (U;—1,U;). Hence we can simulate a first-order Markov {fft}
from c¢(vy,vo; Bsp) (see Chen and Fan 2006a, Chen, Koenker and Xiao 2009), and a parametric
bootstrap approach can be used for inference on copula dependence parameter $*. For instance,

we could compute a consistent long-run variance estimator for ESP using ﬁglﬁg ﬁﬁl’ where ﬁﬂ _
— Yo lsp (Ut—l, Ut, 551:) and

M n
~ h\ _ ~ 1 S5 NS /5
O => K <M> Fn(h)y An(h) = — > . Si(Bsp)Sein(Bsp)'s
h=-M 2§ti;2hgn

where the kernel K () and the bandwidth M are given in Assumption KB below, and
Si(Bsp) = s (ﬁt—la ﬁt:ESP> + Go(Uy) + G1(Us-1),

/01 /Olgm—j (01,02§BSP> {1 (fft—j < U2—j) - vg_j} c(vl,vz;Bsp)dvldw-

Nevertheless, for the sake of robustness to the potential misspecification of copula models, we recom-

G(Ui—y)

mend an alternative long-run variance estimator given in Theorem 7 below.

4. Semiparametric Estimation Under Copula-Misspecification

Section 3 considers the case where the residual copula function is correctly specified. In empirical
work, as illustrated in Section 6 below, one may select a parametric copula family to capture the
tail dependence by eye spotting a simple scatter plot of ﬁn(ﬁ) against ﬁn(ﬁ,l) However, there are
still several parametric copula families that can generate similar tail dependence patterns, and any
parametric specification might be potentially misspecified. For this reason, we study semiparametric
estimation and residual copula model selection tests in the presence of misspecified residual copula

models, without any parametric specification of marginal distribution F™* of the residual process {Y;}.

4.1. Semiparametric two-step estimation of pseudo-true copula parameters

Suppose that the true copula function that captures the dependence in Y; is given by C*(u,v), but

we consider a copula function C'(u, v, 3) and estimate 5 by BS p which maximizes

~ 1

Ln(8) > loge(Fy(Yi-1), Fu(Y:), ), with Fy () given in (3.3).
t=2

n_
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The infeasible semiparametric estimator based on unobserved Y; maximize
1 n
Ln(B) = — > loge(Fu(Yio1), Fu(Yy),8),  with F,(-) given in (3.4).
t=2

Under appropriate assumptions, the maximizer of £,(3) will converge to the pseudo-true value 3
defined in (2.3).

We make the following assumptions, which are parallel to the assumptions in Section 3.4, but
modified to accommodate the misspecified copula model.
Assumption ID5: Assumption ID3 holds with 3* replaced by the pseudo-true value 3 € B defined
in (2.3).

Theorem 5. Let Assumptions X, DGP(1), MX, SP, ID5 and M3 hold. Then: BSP =B+ o0, (1).

Assumption ID6: Assumption ID4 holds with 3* replaced by 3 € int (B).
Assumption M6: Assumption M4 holds with 38* replaced by /3.

Let Q% = lim,,_, o, Var (Qn (B)) where G, (B) is defined as in (3.7).

Theorem 6. Let Assumptions X, DGP(1), MX, SP, ID6 and M6 hold. Then:
~ 2\ ~ 7 _ -1 — 10+ 71
Jn (55,;, 5) —n (55,;, 5) +0y(1) = H3'Gy (B) + 0,(1) = N (O,HB OF )

Theorem 6 shows that, even for a misspecified residual copula model, the nonstationary filtration
still does not affect the limiting distribution of the semiparametric copula estimator B gp (centered at
the pseudo-true parameter 3), which is again normal, the same as that of the infeasible semiparametric
copula estimator 55 p using Y, under a misspecified copula model.

Similar to Theorem 2 for the correctly specified case, the limiting distribution of parametric copula
estimators based on filtered time series under copula misspecification are again affected by the pre-

liminary filtration, and may not be asymptotic normal in the presence of a nonstationary component.

4.2. Semiparametric inference on copula parameters

The simple and robust asymptotic properties of the semiparametric (two-step) copula estimator greatly
simplify all kinds of statistical inferences on copula models for latent {Y;}. In this section, we briefly
mention the Wald test for restrictions on the copula dependence parameters 8 using the asymptotic
results of Theorem 6 for possibly misspecified copula models. Notice that Theorem 6 becomes Theorem
4 under DGP(2) (correctly specified copula model, i.e., 8 = 3*).

Consider the general linear restriction Ho; : R3 = r. A leading example is the significance test for
a scalar element Bj of B: Hoo: Bj = Boj. Notice that under the null Hyp; and Assumptions for Theorem
7,
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N (RBSP _ r) ~ N (o, RHE*Q%HB*R’) .

Thus, under Hyp, as n — 00,
> ! 1 1] Y (p2 2
n(RBsp—r) |RHZ'QHHZ'R| (RBsp 1) =,

where d,. is the number of linearly independent restrictions.
Let H 5 and ﬁ; be any consistent estimators of HE and Q% respectively. Then we can compute a

simple Wald test statistic as
— ~ l ~ i~ o~ -1 ~
W, =n (RBSP _ 7") [RHgIQ;HglR’] (RBSP _ r) .

We may estimate HB by the sample analog:

:_7255[3( (Yi_1), Fu(Yy), 5513)

and estimate Q% by a nonparametric kernel estimator (see, e.g., Newey and West (1987), Andrews
(1991)):

QZ{ = Z K (]\]14) Yn(h),  An(h) :% z”: St (ﬁnaBSP) [St+h (ﬁmBSPﬂ/,

2<t+h<n

S (FusBsp) = eﬁ( Fu(¥i1), Bul(%2), Bsp ) + Co (Fu(¥) + G (FulFi-1))

~ ~ 1 ~ o~ ~ o~ o~ ~ o~ ~ o~ ~ o~

G (Fuin) = S laas (Ba(Fi0), Bu(00), Bsp) [1 (Ba(Viy) < FulViy)) = FulTiy)]
We assume the following extra condition for the consistency of covariance estimator for Q% .

Assumption KB: (1). K (-) is a real valued function defined on [-1,1] with K(0) = 1, K(—u) =

K(u), and [ K(u)’du < co. K is continuous at 0 and all but finite number of other points. (2).

M — oo and M = o(n'/*) as n — oco. (3). E[SupHﬁ—BHS&Fng 165 (F(Yi_1), F(Y2), B)]| 77| < oo,

+e

E[SupHﬁfEHS&FGfs 11€3; (F(Yt_l),F(Yt),/B)Hw(F*(Yt_ngj))] < 00, j = 1,2, for small 6 > 0 and
e> 0.

Theorem 7: Let Assumptions X, DGP(1), MX, SP, ID6, M6 and KB hold. Then: (1) ﬁg =
Q%“ +0p(1). (2) Under Hoy, W, = X?L,. where d, is the number of linearly independent restrictions.
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4.3. Semiparametric inference on copula model selection

In practice, there might be more than one copula functions that can generate similar temporal (and
tail) dependence in the fitted residuals, and we want to select a copula function among candidate
copula functions. We next consider residual copula model selection test based on Theorem 7 for
potentially misspecified copula models.

Consider two candidate classes of parametric copula models: {Cj (ul,ug, Bj) 1B, €B; C R },
j =1,2. We are interested in selecting a copula model from these two candidates. Corresponding to

the j-th copula model, the conditional log likelihood of Y; given Y;_; is given by

log f*(yt) +log c; (F™ (ye—1) , F™* (yt) , B;)-

Notice that the first term log f*(y;) does not depend on the copula, we may consider the following

log-likelihood-ratio:

(" (Y1), F* (V) 8,)

ey (F* (Y1), F* (Y2), 1))

If we consider the hypothesis Hyp: Copula model Cy (u1,us2, ;) is not worse than copula model

LR =F |log

Cy (uq,uz, B9); vs. Hy: Copula model Cy (uq,uz, 81) is worse than copula model Cy (uq,ug, 85). Then:
LR < 0 under Hy, and LR > 0 under H;. In practice, neither F' nor Y; are observed, and have to
be replaced by appropriate estimates. We construct the following pseudo log-likelihood-ratio (PLR)
statistic:

. with F,(-) given in (3.3),

-5 1 ilo CQ(F\n(ﬁ—l%ﬁn(ﬁ)?BZ)
n t=2 Cl(Fn(nfl)aFn(YVt)?BI)
where Bj (j = 1,2.) is the semiparametric estimator BS p for copula model j using the filtered time

~ n ~
series{Yt} and F,(-). For convenience of asymptotic analysis, we introduce an infeasible PLR
t=1

statistic LR, using unobserved {Y;};" ;:

LRn _ l zn:lo CQ(Fn(nfl)an(}/t)aB2)

n i G (Fu(Yi), Fa(¥e),B)
where Bj (j = 1,2.) is the infeasible semiparametric estimator B gp for copula model j using {Y;};"
and F,(-).

The following theorem shows that the PLR statistic ﬁn is asymptotically equivalent to the
infeasible PLR test LR,,.

, with F,,(-) given in (3.4),

Theorem 8: Let Assumptions X, DGP(1), MX, SP, ID6 and M6 hold for two candidate copula
models j = 1,2, with Bj € B; the pseudo-true copula parameter values.

(1) If Pr{(Y1,Y2): c1(F*(Y1), F*(Y2), B1) # co(F* (Y1), F*(Y2), B3)} > 0 (generalized non-nested
case), then: \/n (Z}\%n - LRn> = 0p (1), and hence

c2(Up-1, Uy, ?2)
c1(Ui-1, Uy, By)

Vvn <f§n —E {log ]) =N (0,w2) ., with w? given in (4.1).
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(2) If Pr{(Y1,Y2) : c1(F*(Y1), F*(Y2), B1) = co(F*(Y1), F*(Y2), B2) } = 1 (generalized nested case),
then: n (f}\Rn - LRn) =0, (1), and hence
Qnﬁn = g2,n (BZ), H;%gln (BZ) - gl,n (Bl)/ H;%gl,n (Bl) + Op (1) )

which converges to a weighted sum of independent x? random variables in which the weights (A1, - - -, Ag, +.d,)

is the vector of eigenvalues of the following matrix
lim Var ( Gzn (€2) ]) 25
n—oo Gin (B1)

where, for copula model j =1, 2, H;3 5 and Gj, (Bj) are defined as in (2.4) and (3.7) respectively.

-1 ’
5

Theorem 8 shows that, under our assumptions, the limiting distribution of the pseudo-likelihood-
ratio (PLR) test Z}\%n is the same as the infeasible PLR statistic LRz, based on unobserved Markov

series {Y:} ;.
For the generalized non-nested case, the null hypothesis Hy is a composite hypothesis, and we may
consider the least favorable configuration (LFC) that satisfies
F*(Y;_1), F*(Y,), B
E {logcz( (Yi—1), F*(Y2), g

-
c(F* (Y1), F*(Y2), 1)
Thus, under the LEC \/nLR, = nLR, + 0,(1) = N (0,w?), with

o(Ut—1, Uy, —
w? = lim Var \F Z (Uz 17 Ui,gi + ]Zl {Qt 2j 62 — gt,1j (,81)} ) (4.1)
Ut}.

where for i =1,2;5 =1, 2,

9tij (B;) = E

01 7 US— 7U877i
{ og cilUs-1, Us; By) LUt < Us—24j) — Us—244]

6US—2+j

Let &2 be a consistent long-run variance estimator of w? based on

c2 (ﬁn(?t—l),

log — ; + Z {gt 25 (B2) — 91,15 (31)}
1

er (Fu(¥ir), B (ff) B

/\

where for i =1,2; j =1, 2,

1 & Ologer (Fu(Vin), Bu(W).By) - N A

/g\t,ij(/ﬁ\i) = ZZ; o [1 (Fn(Ks) < ﬁ’n(Yl—2+j)) - ﬁn(Yl—2+j)] )

Then for the generalized non-nested case and under the LFC we have:

fLR

LR, = = N(0,1).

We note that many empirical applications use non-nested copula models, and the model selection test

LR, is directly applicable.
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5. Monte Carlo Studies

In this section, we exam the finite sample performance of the parametric and semiparametric copula
estimators based on filtered time series {3/}1:} We compare the sampling performance of the semipara-
metric estimator BS p with the parametric estimator B p under correct and incorrect specifications of
the marginal distribution F** (of the latent Y;). Let B p+ and B p1 be the B p under correct and incorrect
specification of F'* respectively. We also report two infeasible copula estimators using the true values
of {Y;}: the infeasible parametric estimator B p+ under correct specification of F*, and the infeasible
semiparametric estimator E gp using {Y;} as the data.

DGP designs: The observed time series {Z;}}_; is generated by model (2.1), where the latent
{Y;}}-, satisfies Assumption DGP.

In the Monte Carlo studies, we have examed various combinations of three kinds of filtering part
X/7*, four kinds of copula functions C(-, -; 3*) with a range value of the copula parameter 5%, and two
kinds of marginal distributions F™.

Three types of X/7*: (1) X; = (1,t)’ is a deterministic linear trend, and Z; = 7§+ 7}t +Y; with
7 =(0.2,0.3)".

(2) Z; (and thus X; = Z;_1) is an unit root process: Z; = n*Z;_1 + Y; with 7* = 1.

(3) Xy = Xy—1 + &4 and is cointegrated with Z;, with Z; = 7*X; + Y; and 7* = 1.

Two types of true marginal distributions F*: (i) symmetric one: student-¢(3) distribution;
(ii) asymmetric one: re-centered Chi-square with d.f. 3.

Four types of copula functions: (A) Gaussian Copula: C(u,v; 8) = ®5(® 1 (u), @~ (v)), where
P®g3(-,-) is the bivariate normal distribution with mean zeros, variances 1, and correlation coefficient
B, and ® is the univariate standard normal CDF.

(B). Frank copula: C(u,v;3) = —% -log (1 - (1767131)6(};67&)) for g # 0.

(C). Clayton copula: C(u,v;8) = [u=? +v=# — 1718 for 3 > 0.

(D) Gumbel copula: C(u,v; ) = exp {—((—Inu)? + (= Inv)#)/A} for 1 < 8 < o0.

Gaussian and Frank copulas have zero tail dependence. Clayton copula has zero upper tail de-

pendence but positive lower tail dependence (2_1/ #) that increases with 3. Gumbel copula has zero
lower tail dependence but positive upper tail dependence (2 — 21/8 ) that increases with 5. The overall
temporal dependence in Y; measured as Kendall’s tau is all increasing with copula parameter 3 in all
these copula models. Finally, the Y; generated according to all these copula functions are automatically
beta-mixing with exponential decay. See, e.g., Chen, Wu and Yi (2009).

For all the above models, we investigate the finite sample performance of the five copula estimators
mentioned at the beginning of this section: the three feasible ones BS P, E p+ and E p1 use the non-
stationary filtered data {17,5}7 and the two infeasible ones B gp and B p+ use the true {Y;}}; process.

Recall that BS p and 55 p have the same asymptotic normal distribution, which does not depend on
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the filtration or the functional form of F*. The infeasible B p« 1s asymptotically normal, with the
limiting distribution independent of the filtration but does depend on the parametric estimation of
F*. The two feasible parametric estimators BP* and BP]_ have complex limiting distributions that
depend on both the filtration and the parametric estimation of F*, while they are asymptotically
normal under deterministic trend filtration, are generally non-normal under stochastic trend (the unit
root and cointegration) filtration. B3 p1 is computed using N(0,@2) as the misspecified parametric
marginal distribution; while B p+ and B p+ are computed using corrected specified parametric marginal
distribution.

In Appendix A and the Online Appendix C, we present all the monte Carlo tables. For each table,
the number of Monte Carlo repetition is 2000 and the simulated sample size is n = 500. In addition,
we also considered a larger sample size of n = 2000 for deterministic trending models to illustrate the
performance as sample sizes increases. The Monte Carlo bias, variance, and the Ratio of MSE of an
estimator over the MSE of BP*, denoted by "Ramse", are reported in each table.

All the simulations reveal the following patterns. First, the semiparametric copula estimator BS p
performs well in terms of finite sample bias, variance, "Ramse" compared to the correctly specified
parametric estimator B p« in most situations. Second, for all the cases when there is no strong tail
dependence, both the semiparametric copula estimator ESP and the correctly specified parametric
copula estimator B p« perform much better than the parametric copula estimator B p1 using incor-
rectly specified parametric marginals. The parametric copula estimator for 5* is very sensitive to the
specification of parametric marginals, while the semiparametric copula estimator is truly robust to
functional form of marginals as well as the nonstationary filtering. Third, the feasible semiparametric
estimator E gp and its infeasible version B gp are reasonably close, corroborating the asymptotic results
- the efficiency loss from filtration in the semiparametric estimators are of second order magnitude.
The feasible parametric estimator 3 p+« and its infeasible version 3 p+ are less close to each other, sig-
naling that the parametric estimator is sensitive to nonstationary filtration. Forth, it is interesting
to note that for Clayton and Gumbel copulas with very strong asymmetric tail dependence (i.e., very
large parameter values $*), the infeasible parametric copula estimators B p+« perform better than the
feasible parametric estimator BP* and the semiparametric estimators, BS p and 3 gp- Nevertheless,
the performance of BS p is again similar to the infeasible B gp for Clayton and Gumbel copulas with

very strong asymmetric tail dependence.?

2The infeasible semiparametric copula estimator BSP for Clayton copula with strong lower tail dependence has been
shown to perform poorly (with big bias) in Chen, Wu and Yi (2009). Although Chen, Wu and Yi (2009) had shown that
Clayton copula generated Markov process {Y:} is beta-mixing with exponential decay, Ibragimov and Lentzas (2017)
provided simulation evidence that, in finite samples, the time series plot of the Clayton copula generated stationary

Markov process {Y:z} may exhibit a spurious long memory-like behavior when the lower tail dependence is very strong.
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6. Empirical Applications

In this section, we consider two empirical applications to highlight the potentials of our proposed

models and methods.

6.1. An application to macro time series

An important literature in empirical macroeconomic analysis is the study of long-run properties and
short term dynamics of GNP. Many studies (e.g. Blanchard 1981, Kydland and Prescott 1980, etc)
argue that GNP reverts to a long term trend following a shock, and that fluctuations in output
represent temporary deviations from the trend. Various macroeconomic theories are designed to
produce and understand the dynamics of transitory fluctuations that deviates from the long run
trend. Studies on the transitory shocks provide important information on the prediction of variation
in GNP growth. (see, e.g. Cochrane (1994), King, Plosser, Stock and Watson (1991)).

A time series that provides a good estimate of the "trend" in GNP is "consumption". Cochrane
(1994) provides empirical evidence on the role of consumption as an measurement of long run compo-
nent in GNP. In this section, we apply our model to estimate the short term dynamics in GNP time
series based on the cointegrating regression of GNP on consumption. In particular, we consider the

following trending cointegrating regression
Zy=ag+art+ a2 Xy +Y; (6.1)

where Z; is the logarithm of real GNP and X; is the logarithm of real consumption. The permanent
component of the GNP series is characterized by a linear time trend combined with a stochastic trend
X;. We assume that the latent process {Y;} is a stationary first-order Markov process generated from
a flexible copula C (-, -; ).

All data are from FRED® Economic Data.? We consider quarterly time series from 1947 Q1 to
2019 Q2, with length 290. Consumption is defined as the sum of nondurables and services. We first
exam the nonstationarity of these series. In particular, we apply the ADF test to these series based

on the following regression

p
Zy=byg+ 6t+ pZy_1 + Z biAZ_; + &4
=1

The ADF test statistics of the GNP and consumption time series are —1.933 (lag length = 2), and

—0.349 (lag length = 2) respectively, both are smaller (in absolute value) than the 5% critical value
(—3.43), thus the null hypothesis of a unit root can not be rejected. We then exam the relationship

*https://fred.stlouisfed.org/https://fred.stlouisfed.org/
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Figure 6.1: Scatter Plot of the standardized GNP residuals

between these two time series based on the cointegrating regression (6.1). The Engle-Granger two-
step cointegration test statistic is —4.483, rejecting the null hypothesis of no cointegration (5% critical
value —3.81).

Next, we study the short term dynamics in the latent process {Y;} using the fitted residual series
{)A/}} obtained from the cointegrating regression (6.1). Figure 6.1 presents the scatter plot of the
empirical cdf standardized realizations of the filtered time series {?t} The figure indicates possibly

presence of asymmetric positive tail dependence.

Given the small sample size of n = 290, to capture possibly asymmetric tail dependence we consider

the Joe-Clayton copula:
Clu,v; ) =1 —{1 = [(1 = a’2) ™ 4 (1 —P2)=h 17 V/A /P, (6.2)

where t =1 —u, v =1—wv, 8= (f1,0,) and $; > 0, 85 > 1. This family of copulas has the lower
tail dependence given by Az = 271/81 and the upper tail dependence given by Ay = 2 — 21/82. When
B9 = 1, the Joe-Clayton copula reduces to the Clayton copula. When 5; — 0, the Joe-Clayton copula
approaches the Joe copula whose upper tail dependence increase as (35 increases. See Joe (1997) and

Patton (2006) for other properties of the Joe-Clayton copula.
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In addition to the Joe-Clayton copula, we also consider the following potential competitive choices:

(let ¢ and ¢ be density functions of Clayton and Gumbel copulas, respectively)
1. Mixture of Clayton and survival Clayton: c“© (u,v;8) = 0.5[c® (u,v; B1) +c (1 —u,1 —v; B5)].
2. Mixture of Gumbel and survival Gumbel: ¢“% (u,v; 8) = 0.5[c% (u,v; B5) +c% (1 —u, 1 — v; 31)].

3. Mixture of Clayton and Gumbel: ¢“ (u,v; 8) = 0.5[c% (u,v; B;) + % (u,v; B5)].

In all these candidate copula densities, ; measures lower tail dependence and 3, measures upper
tail dependence. We use the pseudo-likelihood-ratio (PLR) test in Section 4.2 (and Theorem 8) for
a pairwise comparison and copula model selection between the Joe-Clayton copula and each of the
above three competitors. Given the choices of copulas, the tests are non-nested. We denote the above
three alternatives as Alternatives 1, 2, 3. The calculated PLR test statistics against Alternatives 1, 2,
3 are 0.07889, 0.60470, 0.39436 respectively. The Null hypothesis of Joe-Clayton copula model can not
be rejected even at 10% level. For this reason, we continue our analysis below using the Joe-Clayton
copula.

We examine tail dependence based on our semiparametric two-step Joe-Clayton copula parameter
estimates (31,32) for (8, 82). The point estimate for 3 is Bl = 3.902 (with the standard deviation
0.774), and the corresponding 95% confidence interval is [2.384, 5.419], which clearly excludes zero and
provides empirical evidence of lower tail dependence. The point estimate for 35 is Bg = 2.765 (with
the standard deviation 0.516), and the corresponding 95% confidence interval is [1.754, 3.775], which
excludes one and provides empirical evidence of upper tail dependence. Thus, we find both lower and

upper tail-dependence in the short term dynamics of GNP.

6.2. An application to financial time series

The CAY time series (Lettau and Ludvigson (2001)) has been often used in macro-finance applications.
Lettau and Ludvigson (2001, 2003, 2009), Chen and Ludvigson (2009) studied the role of consumption
and fluctuations in the aggregate consumption—wealth ratio for predicting stock returns. They argue
that investors who want to maintain a flat consumption path over time will attempt to “smooth
out” transitory movements in their asset wealth arising from time variation in expected returns.
When excess returns are expected to be higher in the future, forward-looking investors will react by
increasing consumption out of current asset wealth and labor income, allowing consumption to rise
above its common trend with those variables. When excess returns are expected to be lower in the
future, these investors will react by decreasing consumption out of current asset wealth and labor
income, and consumption will fall below its shared trend with these variables. In this way, investors

may insulate future consumption from fluctuations in expected returns, and stationary deviations from
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Figure 6.2: Scatter Plot of the standardized CAY residual time series

the shared trend among consumption, asset holdings, and labor income are likely to be a predictor of
excess stock returns.

We apply the copula model to capture the short term dynamics in the consumption—wealth ratio
time series. Since this time series is not directly observed, Lettau and Ludvigson (2001) argue that
consumption (c;), asset holding (a;) and labor income (y;) are cointegrated, and that deviations
from this shared trend summarize agents’ expectations of future returns on the market portfolio. In
particular, the residual term from a cointegrating regression of consumption (c;) on asset holding (a;)
and labor income (y;) is called the "CAY" time series by Lettau and Ludvigson (2001). The "CAY"
time series contain important information of future returns at short horizons.

We use the dataset from the website of Martin Lettau. The time series is from 1952Q4 to 1998Q3.
The unit root nonstationarity in time series c¢, a;, y; can be verified. In particular, the ADF t-test
statistics corresponding to (c¢, az,y:) are —1.233, —2.603, —0.7918, thus the unit root hypothesis can
not be rejected. We then consider a cointegrating regression of consumption (c;) on asset holding
(a;) and labor income (y;): ¢; = mp + miay + may+ + Y;. The Engle-Granger 2-stage cointegration
test statistic is —3.93, rejecting the null hypothesis of no cointegration (the 5% level critical value is
—3.788). Figure 6.2 presents the corresponding scatter plot of standardized realizations of the CAY

time series. The figure indicates presence of lower tail dependence.
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We again consider the Joe-Clayton copula model given by (6.2) and the three potential competitive
choices of copulas that we considered in the previous application. We perform the pseudo-likelihood-
ratio (PLR) test for pairwise comparisons and selection between the Joe-Clayton copula and each of
the three competitors. The calculated PLR test statistics against Alternatives 1, 2, 3 are -0.73935,
-0.14707, -0.09362 respectively, and thus the Joe-Clayton copula is still selected. Consequently, we
perform the rest of our analysis based on the Joe-Clayton copula.

We examine tail dependence based on our semiparametric two-step Joe-Clayton copula parameter
estimates (31,32) for (81, 35). The point estimate for 3, is 31 = 2.050 (with the standard deviation
0.414), and the corresponding 95% confidence interval is [1.238, 2.861], which clearly excludes zero and
provides empirical evidence of lower tail dependence. The point estimate for 3, is Bz = 1.356 (with
the standard deviation 0.195), and the corresponding 95% confidence interval is [0.973,1.738], which
includes one near the left edge of the confidence interval. Therefore, the empirical evidence for upper
tail dependence is relatively weak. Thus, we find significant lower tail dependence and mild upper tail

dependence in this CAY time series.

7. Conclusion

We propose a component approach to study nonstationary time series with nonlinear short term
dynamics that may also exhibit tail dependence. The observed time series can be decomposed into a
nonstationary part and a stationary Markov component generated via a copula. The nonstationary
component can be removed by a filtration, and the copula-based Markov model is used to capture the
weakly dependent nonlinear dynamics (and the tail dependence) in the filtered time series.

When the marginal distribution of the filtered time series is parametrically estimated, we show that
the limiting distribution of the parametric (two-step) copula estimator can be affected by the filtra-
tion and the estimation of the marginal distribution, and may not be normal under stochastic trend
filtration. However, when the marginal distribution of the filtered time series is nonparametrically
estimated, we find that the limiting distribution of the semiparametric (two-step) copula estimator is
not affected by the nonstationary filtration and is asymptotically normal. The surprising result for
the semiparametric two-step copula estimator is also extended to models with misspecified residual
copula function. Monte Carlo studies reveal that, for different kinds of nonstationarity, symmetric or
asymmetric unknown marginal distributions, various copula functions with or without tail dependence,
our semiparametric (two-step) copula estimator not only is robust, but also performs very similarly to
the infeasible semiparametric copula estimator without filtration. The simple and robust asymptotic
properties of the semiparametric estimators greatly simplify statistical inferences on nonstationary
filtered copula-based time series models. Our results have many practical implications for empirical

analysis of nonstationary nonlinear time series in economics and finance.
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The results in this paper can be extended in many directions. First, other copula estimators, such
as those in Oh and Patton (2013) and Chen, Wu and Yi (2009), can be studied. Second, multivariate
nonstationary filtration can be considered, in which the latent stationary multivariate Markov process
can be modeled using a multivariate copula function as in Remillard, Papageorgiou and Soustra (2012)
and Beare and Seo (2015).
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Appendix A: Monte Carlo Results

In the Monte Carlo studies, we have examed various DGPs that are different combinations of three
kinds of filtering part X;7*, four kinds of copula functions C(-,-; 8) with a range value of the copula
parameter 5, and two kinds of marginal distributions F* of Y; given in Section 5 of the paper. In
each table below, the number of Monte Carlo repetition is 2000 and sample size is n = 500 (we also
considered a larger sample size of n = 2000 in a few tables). The Monte Carlo bias, variance, and
"Ramse" (the Ratio of MSE of an estimator over the MSE of BP*) are reported in each table.

We investigate the finite sample performance of the semiparametric copula estimator BSP, the
parametric copula estimator B p« with corrected specified parametric marginal; the parametric copula
estimator 3 p1 With a normal distribution N (0,@?) as the incorrectly specified marginal distribution;
the infeasible parametric estimator B P with correctly specified parametric marginal; and the infeasible
semiparametric estimator B gp- Both B gp and B p+ are computed using {Y;} directly, and are presented
for comparison purpose.

Recall that BS p and 3 gsp have the same asymptotic normal distribution, which does not depend
on any filtration and the specification of F*. The infeasible E p« is asymptotically normal, with the
limiting distribution independent of the filtration but does depend on the parametric estimation of
F*. The limiting distributions of B p« and B p1 depend on the filtration and the parametric estimation
of F* in complicated ways; they are normal under the deterministic trend filtration, but, are generally
non-normal under the stochastic trend (the unit root and cointegration) filtration.

Table 1 and Table 2 report the finite sample performances of the estimators for models with
deterministic trending time series. In particular, Tables 1A - 1D below summarize simulation results
corresponding to the deterministic trending model when the true marginal distribution is student-(3)
distribution (symmetric dist.), with Table 1A for Gaussian copula, Table 1B for Frank copula, Table
1C for Clayton copula and Table 1D for Gumbel copula. Similarly, Tables 2A - 2D summarize results
corresponding to the deterministic trending model when the true marginal distribution is re-centered
Chi-square with d.f. 3, again with "A to D" corresponding to Gaussian, Frank, Clayton and Gumbel
copulas.

Tables 3 - 6 in the Online Appendix C report the finite sample behaviors of the estimators for
models with stochastic trends (the unit root and cointegration).
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Table 1A: Trending Time Series, Gaussian Copula

(True marginal ¢(3); Bp. Ramse = Bp.mse / 3p.mse)

n = 500

B 0.5 -0.3 0.1 0.1 0.3 0.5
Bsp Bias -0.0066  -0.0077  -0.0063  -0.0042  -0.0033  -0.0049
Bgp Std 0.0391  0.0438  0.0462  0.0465  0.0445  0.0401
Bsp Ramse 1.1224 1.0912 1.0613 1.0389 1.0369 1.0588
3 p+ Bias 0.0004 -0.0014 -0.0035 -0.0056 -0.0076  -0.0094
Bp- Std 0.0374  0.0425  0.0452  0.0455  0.0431  0.0381

3p+ Ramse 1 1 1 1 1 1
Bp, Bias -0.0046  -0.0151  -0.0193  0.0078  0.0048  -0.0067
Bp; Std 0.0721  0.0835  0.0911  0.0945  0.0871  0.0725
3p; Ramse 3.7261 3.9751 4.2273 4.2896 3.9660 3.4407
Bsp Bias -0.0065  -0.0071  -0.0053  -0.0027  -0.0013  -0.0024
Bgp Std 0.0388  0.0436  0.0461  0.0463  0.0442  0.0397
B¢p Ramse 1.1069 1.0763 1.0508 1.0264 1.0181 1.0257
B p- Bias 0.0002  -0.0007 -0.0014  -0.0022  -0.0030  -0.0037
Bp« Std 0.0370  0.0423  0.0450  0.0452  0.0427  0.0375
Bp- Ramse 0.9758 0.9873 0.9889 0.9775 0.9569 0.9225
Bgpmse / Bgpmse 0.9862 0.9864 0.9901 0.9879 0.9819 0.9687

n = 2000

Bp+ Ramse 0.9977 0.9960 0.9958 0.9926 0.9859 0.9731
Bgpmse / fgpmse 0.9992 0.9981 0.9978 0.9983 0.9980 0.9935
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Table 1B: Trending Time Series, Frank Copula

(True marginal ¢(3); 3p. Ramse = Bp.mse / 3p.mse)

n = 500
B* 5 -3 -1 1 3 5
Bsp Bias 0.0115  -0.0229  -0.0242  -0.0310  -0.0591  -0.1280
Bgp Std 04025 03230 02812 02812 03194  0.3925
Bsp Ramse 1.2118 1.1066 1.0170 1.0207 1.1254 1.2741
B p~ Bias 0.0393  0.0093  -0.0103  -0.0288  -0.0581  -0.1116
Bp~ Std 03637  0.3077 02797  0.2785  0.3006  0.3483
B p- Ramse 1 1 1 1 1 1
Bp, Bias 15653 -1.3416  -0.8315  0.7674  1.2818  1.4765
Bpl Std 1.1554 1.1182 1.1144 1.1915 1.2066 1.2242
Bp; Ramse 28.2919 32.1860 24.6847 25.6159 33.0572 27.5063
Bsp Bias -0.0330  -0.0307  -0.0232  -0.0218  -0.0362  -0.0764
Bgp Std 03973 0.3209 02799  0.2809 03192  0.3915
Bsp Ramse 1.1879  1.0963 1.0075 1.0124 1.1010 1.1896
Bp« Bias -0.0144  -0.0134  -0.0108  -0.0092  -0.0112  -0.0128
Bp« Std 03489  0.3022 02776 02778  0.3003  0.3454
Bp+ Ramse 0.9114 0.9658 0.9857 0.9854 0.9634 0.8935
Bgpmse / Bgpmse  0.9803  0.9907 0.9907 0.9919 0.9783  0.9336
n = 2000
Bp+ Ramse 0.9696 0.9887 0.9965 0.9951 0.9867 0.9615

Bgpmse / Bgpmse  0.9935  0.9985  0.9992 0.9993  0.9975  0.9875
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Table 1C: Trending Time Series, Clayton Copula

(True marginal ¢(3); 3p. Ramse = Bp.mse / 3p.mse)

n = 500

B 0.5 1 2 4 6 8
Bsp Bias -0.0012  -0.0307 -0.1672 -0.7897 -1.8797  -3.2800
Bgp Std 0.1040  0.1989 04486  0.9392  1.2412  1.4254
Bsp Ramse 1.3184 1.4836 1.4314 1.2141 1.7435 2.3035
Bp« Bias -0.0098  -0.0217  -0.0787 -0.3700 -0.9417  -1.6985
Bp~ Std 0.0900  0.1638  0.3923  1.0504 14224  1.6333

Bp+ Ramse 1 1 1 1 1 1
3p; Bias -0.0706  -0.0086  0.1218  0.1131  -0.2723  -0.9375
Bpy Std 04077 05114 06111 09539  1.3258  1.7819
3p; Ramse 20.8799 9.5796 2.4249 0.7439 0.6296 0.7301
Bsp Bias 0.0016  -0.0256 -0.1415  -0.6389 -1.5373  -2.7485
Bgsp Std 0.1028 01905 04373  1.0141  1.4205  1.6720
B¢p Ramse 1.2899 1.3534 1.3191 1.1583 1.5055 1.8639
B p« Bias -0.0026  -0.0069 -0.0171  -0.0257  -0.0240  -0.0160
Bp« Std 0.0854  0.1343  0.2602  0.6389  1.1813  1.7828
Bp- Ramse 0.8896 0.6621 0.4246 0.3296 0.4797 0.5725
Bgpmse / fgpmse  0.9784 0.9122 0.9215 0.9289 0.8635 0.8092

n = 2000

Bp+ Ramse 0.9051 0.7167 0.3915 0.2155 0.1923 0.2537
Bgpmse / Bgpmse 0.9948 0.9832 0.9577 0.9464 0.9520 0.9331
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Table 1D: Trending Time Series, Gumbel Copula

(True marginal ¢(3); 3p. Ramse = Bp.mse / 3p.mse)

n = 500

B 2 3 4 5 6 7
Bsp Bias -0.0379  -0.1785  -0.4513  -0.8697 -1.4093  -2.0454
Bgp Std 0.1666  0.3793  0.5882  0.7423  0.8490  0.9330
Bsp Ramse 1.0719 1.0647 1.1286 1.3556 1.7370 2.1476
3 p+ Bias -0.0236  -0.0907 -0.2292  -0.4523 -0.7562 -1.1173
Bp~ Std 0.1633  0.3960  0.6592  0.8717  0.9932  1.0512

3p+ Ramse 1 1 1 1 1 1
Bp, Bias 0.1096  0.0663 -0.0742 -0.3122  -0.6547  -1.0985
Bpy Std 0.3842  0.5599  0.7989  1.0189  1.2148  1.4015
3p; Ramse 5.8626 1.9262 1.3218 1.1775 1.2220 1.3473
Bsp Bias 0.0321  -0.1540 -0.3861 -0.7354  -1.1963  -1.7464
Bgp Std 0.1596  0.3512 05534  0.7335  0.8846  1.0121
B¢p Ramse 0.9732 0.8909 0.9349 1.1187 1.4204 1.7311
B p- Bias -0.0066 -0.0225 -0.0533  -0.0962  -0.1456  -0.1927
Bp« Std 0.1264  0.2810  0.4848  0.7207  1.0384  1.4401
Bp- Ramse 0.5887 0.4815 0.4883 0.5618 0.7054 0.8971
Bgpmse / Bgpmse 0.9079 0.8368 0.8284 0.8252 0.8177 0.8061

n = 2000

Bp+ Ramse 0.6260 0.4710 0.4435 0.4376 0.4451 0.4496
Bgpmse / Bgpmse 0.9330 0.8732 0.8819 0.8744 0.8589 0.8521
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Table 2A: Trending Time Series, Gaussian Copula

(True marginal: re-centered Chi-square with d.f. 3; n = 500)

B* 0.5 -0.3 -0.1 0.1 0.3 0.5
Bgp Bias  -0.0062 -0.0074 -0.0059 -0.0037 -0.0028  -0.0046
Bsp Std  0.0387  0.0436  0.0463  0.0466  0.0447  0.0404

Bsp Ramse 1.3211 1.0519 0.9589 0.9521 0.9309 0.9054
Bps Bias  -0.0053  -0.0078  -0.0068 -0.0006  0.0083  0.0147
Bpe Std 00337 00425  0.0472  0.0479  0.0456  0.0401

Bp+ Ramse 1 1 1 1 1 1
Bp; Bias  0.0897  0.0437  0.0079  -0.0181 -0.0344  -0.0414
Bpy Std 00302 00371 00431  0.0476  0.0496  0.0479

Bp; Ramse 7.7163 1.7650 0.8457 1.1262 1.6895 2.1902
Bgp Bias  -0.0065 -0.0071  -0.0053 -0.0027  -0.0013  -0.0024
Bsp Std  0.0388  0.0436  0.0461  0.0463  0.0442  0.0397

Bsp Ramse 1.3371 1.0460 0.9483 0.9371 0.9077 0.8639
Bpe Bias  0.0044  0.0029  0.0000 -0.0036 -0.0063  -0.0074
Bp«Std 00320 0.0400  0.0444  0.0446  0.0404  0.0324

Bp« Ramse 0.9013 0.8646 0.8679 0.8705 0.7763 0.6047

36



Table 2B: Trending Time Series, Frank Copula

(True marginal: re-centered Chi-square with d.f. 3; n = 500)

B* 5 -3 -1 1 3 5
Bgp Bias  -0.0297 -0.0344  -0.0297 -0.0296 -0.0440  -0.0851
Bgp Std 03970 0.3214  0.2809  0.2819  0.3222  0.4001

Bsp Ramse 1.3150 1.0811 0.9519 0.9623 0.8341 0.6380
Bps Bias  -0.0425 -0.0523  -0.0433  0.0036  0.0988  0.2274
Bpe Std 03445 03065  0.2863  0.2889  0.3421  0.4589

Bp+ Ramse 1 1 1 1 1 1
Bp; Bias 04944 00962  0.0035 01712 03759  0.5257
Bpy Std 03021 02970 03018  0.3392  0.4140  0.5400

Bp; Ramse 2.7855 1.0084 1.0861 1.7296 2.4664 2.1656
Bgp Bias  -0.0330 -0.0307 -0.0232 -0.0218 -0.0362  -0.0764
Bsp Std 03973 03209  0.2799  0.2809  0.3192  0.3915

Bsp Ramse 1.3188 1.0747 0.9411 0.9508 0.8140 0.6066
Bpe Bias  0.0033 -0.0013 -0.0065 -0.0132 -0.0208 -0.0255
Bp«Std 03370  0.2967 02764  0.2762  0.2943  0.3336

Bp« Ramse 0.9423 0.9108 0.9114 0.9158 0.6866 0.4267
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(True marginal: re-centered Chi-square with d.f. 3; n = 500)

Table 2C: Trending Time Series, Clayton Copula

B 0.5 1 2 4 6 8
Bgp Bias  -0.0077  -0.0524  -0.2200 -0.9035 -1.9578  -3.2889
Bgp Std 0.1014  0.1830 04007 0.8853  1.2933  1.5443

Bsp Ramse 0.8758  1.0248 1.2213 1.2928 1.2684 1.1733
Bpe Bias 00022  -0.0198  -0.1264 -0.5526  -1.2366  -2.0305
Bp« Std 0.1086  0.1870  0.3981  0.9655  1.6767  2.6700

3p+ Ramse 1 1 1 1 1 1
Bp; Bias 06251 07053  0.7347  0.6051  0.3685  -0.0129
Bpy Std 0.1651 02284 04478  1.1839 23474  3.5508

Bp; Ramse 35.4067 15.5463 4.2438 1.4283 1.3008 1.1205
Bgp Bias 00016  -0.0256  -0.1415 -0.6389 -1.5373  -2.7485
Bsp Std 0.1028  0.1905 04373  1.0141 14205  1.6720

Bsp Ramse 0.8959  1.0454 1.2109 1.1607 1.0093 0.9198
Bpe Bias  -0.0327  -0.0773  -0.2062 -0.6221 -1.2212  -1.9876
Bp« Std 0.0851  0.1402 02823  0.6896  1.2753  1.8589

Bp- Ramse 0.7039  0.7254 0.7007 0.6969 0.7183 0.6582
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Table 2D: Trending Time Series, Gumbel Copula

(True marginal: re-centered Chi-square with d.f. 3; n = 500)

B* 2 3 4 5 6 7
Bgp Blas  -0.0217 -0.1278  -0.3610  -0.7509  -1.2756  -1.9110
Bgp Std 01736 04040  0.6410  0.8087  0.9238  1.0039

Bsp Ramse 0.9308 0.9498 1.0090 1.1762 1.6286 2.4850
Bps Bias 01061  0.2632 04169  0.5329  0.5779  0.5270
Bpe Std 01471 03461  0.6021  0.8668  1.0905  1.2639

Bp+ Ramse 1 1 1 1 1 1
Bp; Bias  -0.1716  -0.2440  -0.4207 -0.7133  -1.1187  -1.6247
Bpy Std 02353 05360 0.8422 11149  1.3327  1.4940

Bp; Ramse 2.5773 1.8340 1.6526 1.6922 1.9876 2.5980
Bsp Bias  -0.0321 -0.1540 -0.3861 -0.7354  -1.1963  -1.7464
Bsp Std 01596  0.3512  0.5534  0.7335  0.8846  1.0121

Bsp Ramse 0.8052 0.7776 0.8489 1.0421 1.4532 2.1726
Bpe Bias  -0.0091 -0.0234 -0.0334 -0.0305 -0.0072  0.0184
Bpe Std 00758  0.1225 02694 05207  0.8738  1.2924

Bp« Ramse 0.1773 0.0822 0.1374 0.2628 0.5013 0.8909

Appendix B: Proofs of Results in Subsection 3.4

We use ¢ and n € (0,1) to signify generic constants whose value may vary throughout the paper.
Recall that we denote the true values of F' and 8 by F* and 8*.

B.1. Proof of Lemma 1.

Following the argument of Csorgs, Csorgsd, Horvath and Mason (1986), Csorgé and Horvath (1993),
Shao and Yu (1996), we only need to show that, for any ¢ > 0,

. Zn(y,b) — Zu(y,0) '
lim lim sup Pr | sup >e|l =0, 1
—00 n—00 LgL w(F*(y)) ( )
and
- Zn(y,b) — Zn(y,0) ‘
lim lim sup Pr |sup >e|l =0. 2
L—oo n—oo y>L w(F* (y)) ( )

We show (.1), (.2) can be proved in the same way. For a large L, partition (—oo, —L] into
U321 (Y5, yj—1], with F* (y;) = 2775, where § = 6;, = F*(—L), then
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ZTL - ZTL ) -
Pr | sup (y,0) : (y 0)' >e| <3 Pr| sup
y<—L w(F*(y)) =1 Y <y<yj—1

Thus, we need to show that

Zn(ya b) B Zn(yv 0) ‘ > E]
w(2796) -

oo

lim lim sup sup | Zn(y,b) — Z,(y,0)| > ew(?jé)] =0.

Pr
L—oo n—oo =1 Yy <y<yj_1

By monotonicity of the indicator function and the distribution function, we have

sup ’Zn(yvb) - Zn(y70)|
Y <y<yj—1

< |Zn(yjab) - Zn(yjao)’ + |Zn(yjflab) - Zn(yjflao)’
+ sup ’Zn(yj—la 0) - Zn(yv 0)| + sup ’Zn(ij 0) - Zn(fya 0)|

Y <y<yj—1 Y <y<yj—1
+ L i [F*(y]’—l + 0 2h) — F*(y; + n_l/th)} + L i [F(yj—1) — F (y5)] -
vn+1i= n+1

Notice that F* (y;) = 2776, and, under Assumption SP, for large enough n,

Pr
Y <y<yj—1
< Pr{|Zn(yj7b) - Zn(ij(m + |Zn(?/j*1’b) - Zn(yjfla(m

+  sup [Zn(yj-1,0) — Za(y,0)[ +  sup  |Zn(y;,0) — Za(y,0)| + Cv/n2776 > ew(2770).

Y <y<yj—1 Y <y<yj—1

sSup ’Zn(ya b) - Zn(yv 0)| Z ew(2j5)]

We first consider the case when n!'/22776C < ew(2776)/2, C = 8. Let
Sy = {j . nY/297I50 < ew(2*3'5)/2},

if 7 € 51, then

Pr| sup [Z(y,b) — Zn(y,0)| > ew(2776)
Yi<y<yj—1

ew(2776
< Pr [\Zn@j,b) — Za(y;.0)] > <8>}

[ w(2776
P {120 (i1, b) — Zn(yy1.0)] > <8>}

_ 1 - ew(2776)
+Pr| sup 1(Y: <y;)— F(y;)) -1 (Y: <y) + F(y)]| >

[y <y<y;—1 |Vt 1 ; ’ ! ! 8

— 1 - ew(2799)
+Pr| sup [1(Y; <yjo1) — Fyj-1) -1V < y) + F(y)]| >

lyj<y<y; 1 |V + 1 ; ! ! 8
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We consider each of these terms. In particular, we show that

279§
hm lim sup Z Pr [|Z (y;,b) — Zn(y;,0)| > 61”(8)} =0, (.3)
n~>oojes1
3 2796
hm lim sup Pr [ sup ~ F(y;) — 1(Y, < y) + F(y)]| > ew( )] _
L=oo  n—oo Yi<y<yj-1 8
JjESL J J 1
(-4)

and analysis of the other two terms are similar.
For the first term (.3), by Chebyshev inequality,

Ew(27j5) 26E|Zn(y]7b) — Zn(yj70)|2
P 12000~ Zu(ay,0) > L2 < ZEDLD

Under weak dependence of Y;, by definition of y;, Assumption SP, and by the inequality of Yoshi-
hara (1976), we have:

iy 1
E [[Zn(yj,b) —Zn(ypo)\z] < ¢ltalt,
for ¢ >0, ¢ > 1. Thus, for 1/(2q) > p,

—J
ZPI‘ |:‘Z yja (ijo)’ > W} % 22 s /azn) 51/q o _>0 as 0 — 0.
JES1 Jj=1

Thus, under our assumptions,

hm lim sup Z Pr {]Z (yj,b) — Zn(y;,0)| >

n—>oo]651

For the second term (.4), using Billingsley (1968, eq. (22.17)),

Pr sup

Y <Y<yj—1 8

Y (Vi<y)—Fly) -1V <y)+ Fy)| >
t=1

1 ew(2776)
vn+1

—F(y;) —1(Y: <yj1) + Fyj-1)]| +

cw(2779)
+/n2795 > < < ]

1

Notice that n'/2277§ < ew(2776)/16, using (1) weak dependence of Y;, (2) the Cauchy-Schwarz
inequality, and (3) Yoshihara (1976), we have

. _il/q
ew(2799) ¢[2794]
Pr| sup P - 1% <y + P 2 <L
La‘<y<ya‘1 vn 1 ; ’ 8 [ew(2-96))?
and (.4) can be proved by a similar argument as the proof of (.3).
Next we consider the case n'/22775¢* > ew(2778)/2. Let
Sy = {j nl/22796¢F > ew(2_j5)/2} A= Lew(w‘(s)
* — ) n,j 8n1/2 .
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We divide (—00, yj—1] into Us(y;, Yji+1], F (yj) = ilnj, 0 <i < Fyj—1)/Anj = 277715/ Ay 5, then

Pr[ sup 2, (y,b) — Za(y,0)| > ew(2776)
Y;<

y<yj—1
< Pr max sup Zn(y,b) — Z,(y,0)| > ew(2796) | .
loﬁiSF(yj—l)/AmJ’ Y5, <Y<Yj,i+1 [2n(s:0) .0l ( )

Notice that

sup | Zn(y,b) — Znu(y,0)]
Y5,i <Y<Yjit+1

S |Zn(y_]7z, b) - Zn(y],l) O)‘ + ’Zn(yj,i-i-l) b) - Zn(?/j@—&-l; 0)|
+ sup |Zn(yj,ia 0) - Zn(ya 0)| + sup |Zn(yj7i+17 0) - Zn(y7 0)|

Y5,i <Y<Yj,it1 Y5,i <Y<Yj,it1
1
n+1

+

[F*(yj,m + 0 2hy) = F*(y + n_l/th)} + > [F(ysir1) = F (y50)]
t=1

3
n+1 P
by definition F'(y;;) = iA,, j, under Assumption SP, for large n,

sup |Zn(y7 b) - Zn(y7 O)|
Y5,i <Y<Yj,i+1

< 1Z20(Y5,0) — Z0(Y5,, 0)| + [ 20(Y5,i41,0) — Zn(Yj.i41,0)]

1 »
+  sup  |Zn(Y50,0) = Zn(y,0)[+  sup  [Z4(y)i+1,0) — Zn(y, 0)] + 1610(2 76)
Y5, <Y<yj,it1 Y5, <y<Yji+1

and thus

Pr [ sup  |Zn(y,b) — Zn(y,0)| > ew(2j5)]

Y5 <y<y;j—1 |
< Pr [0<i<F8ja)i)/Aw 120 (10, 0) — Zn(y;.0,0)] > 3,610(126—15)]
+Pr :O<i<FI(2?}i) A, 120 (Yji41,0) — Zn(yji41,0)] > 361,}(12615) ]
+Pr _Ogigngi}i)/An,j yjyijy‘gj‘m 1Z,(yj.4,0) — Zn(y,0)] > Sew(126j5)]
+Pr _OgigF@i}%/an,j Wt 120 (yj41,0) — Zu(y,0)] > ?)611)(126J(5)]

By Billingsley (1968, eq. (22.17)) again,

1 s
sup [ Zn(Y5,i,0) — Zn(y, 0)| < [Z0(yji4+1,0) — 20y, 0) + gGUJ(Q 78),
Y5,i <Y<Yji+1
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thus

Pr [ sup | Z,(y,b) — Z,(y,0)| > ew(2j5)]

Y <y<yj-1 |
< Pr [0<i<F8?)i)/Aw 12,0 (Y70, b) — Zn(y;.,0)| > 3ew(126]6)]
+ Pr :Ogigr(??’j)/% 120 (Yjir1:b) — Zn(Yjir1,0)] > 3610(12635)]
+Pr :OfiSF?;i}i)/AnJ |Z0(Yj.is1,0) — Zn(y;.4,0)] > ew(i;ﬂé)}
+Pr :ogigFlélff)/Aw |Z0(ysi11,0) — Zn(y;4,0)] > ew(fgﬂé)}

We next show that

2776
Jim lim sup > Pr 120 (Yj,i,0) — Zn(y5,,0)| 2 ?)Eu)()] =0

[ max
0<i<F(yj—1)/An;

'n,4>ooj€S2 ].6

N [ 3ew(2776)

lim 1 p Za(yjis1sb) — Zn(yjir, 0)] > 202 201 g
Lgimfﬁg%rpggﬁﬁmw’“w”l) w1, 0)] > = }
o I ew(2776)

lim 1 p Zn(yji1,0) — Zn(ys,0)] > S02 2001 g
Jim lm sup > Pr| o omax o (Zn(yie,0) = Za(yin 0 2 =1 ]

JES2

o [ ew(2776)

lim 1 p Zn(Yji1,0) — Zn(ys,0)] > S02 2001
Lfimfﬁg%rpgggﬁmw|“%”l) w6, 0l = — ]

We use the maximum inequality of Moricz (1982) to bound

E1gigp?y1?_}i)mn,j 1 Zn(y)i:0) = Zn(y;,6, 0",
and Emaxi<i<r(y,_,)/A,; |2n(Yji,0)[. First,
E [ Z0(Yjk:0) = Zn(Uj5,0) = Zn (i, 0) — Zn(15i, 0)° < C(k —8) Ay
Next, by Viennet (1997), we obtain a Rosenthal-type inequality for
E[Z(Yjk: ) — Zn(Yjk:0) — Zn(yi: 0) — Zn (Y5, 0)" .

For 0 <i <k <279F1§/A, ;, let

¥ (4, k. 9)

=1 (Yt < Yjk + n_l/25t> —1(Y2 < yjin) + F*(yjn) — F*(yjn + 0 by)

-1 (Yt < yji+ n71/2bt) +1(Y: < yja) — F*(ys0) + F* (g0 + 1 20y).
Notice that v, (j,k,7) is a bounded function, by Theorem 2 of Viennet (1997), and application of
Moricz (1982), we have

E [IS%’SF{SJ&%)/A%J’ |20y, 0) — Zn(Yjis 0)’]1’ < (4 (2‘j5)p1 + C4n—P2/22—j(5logP(Q_j+25/An7j).
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where p1 = p/2, p2 = p — 2, and thus

3ew(2776)
P Zn 47,'7b *Zn '7;70 27
" o<i<Flyy 1)/ A, [2nli-) e 0 10
(5 (2798)P + (222705 logP (27925 / A )

: cw@ o)

Notice that A, ; = 2730~ 2ew(2776), and n'/22776¢* > ew(2776)/2,

3ew(2775)
P Zo (i) — Zolyis, 0)] > 2 7
r[0<i<F?;]a}i)/Awl n(Yjis ) — Zn(y54,0)| > 16 ]

. _ . . ) nt/2.9-Jj+5
< (lew(2776)/8] P [(2_](5);:1 + (ew(2774)) P (52_3)(1+p2) logp(ew(;_jjd)d ]

Under Assumption SP, we have

o 3ew(2776)

1 | P Zn(Yji,b) — Zn(yj4, > —| =0
e lmfggojgs: r[OSiSFngi}i)/An,j| (954,) (9.0) 16 } 0
2

Notice that,

ew(2776) Emaxi<icriy, 1)/an, 1Zn(Yj,i,0)"
P Zn(Yj,i+1,0) = Zn (Y54, 0)| = < e ’
' OSisF?yli}i)/An,j| (si+1,0) (450} 16 [ew(2776))

The proofs of other terms are similar. ll

B.2. Proof of Theorem 3.

Notice that

VT (Fuy) = F*) = Vi 1 (Faly) = Fa(v)) + Vi 1(Fa(y) - F*(3)

The first term, v/n + 1 (ﬁn(y) — Fn(y)>, captures the preliminary filtering effect, and the second term,
Vvn +1(F,(y) — F*(y)), captures the effect of marginal estimation.

Let Y;(v) = Y; — n~ Y2 (X;D;;'n'/?) 4, and F,,(y) = %H Y11 (Yi(v) <y). By Lemma 1 and
differentiability (and a Taylor expansion) of F*, we have that, for v in an arbitrary compact set I" of
RF,

sup sup
yel' y

;ZXzDglnl/Zl 7} / w(F*(y»‘ —op(1). ()

t=1

{\/n + 1 (Faq(y) — Fu(y) = ()
Notice that ¥ = D, (7 — 7*), we have F\n(y) =F,5(y) = %‘Fl Yo 1(Y:(3) <wy). By (.5), we have

sup
Y

{V” () - Fav) - 1) [i ZXanlnl/Ql D, (- w*>} / w(F*(y»‘ = 0,(1).
t=1
(.6)
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Let
s(F, ) =

i

Olog c(F(Y;-1), F'(Y3),B)
E [ % }

Under our assumptions, the consistency of B gp can be obtained if

dlog c(F(Yi_1), Fno(Y2), B)
n; op’

sup
BeB

- S(F*,ﬁ)H = 0p (1)

By triangular inequality,

1 <n dlog c(Fp(Yi1), Fa(Y2), B) )
el — s(F
pem ntz; ag’ sl ”6)'
< st log c(Fy(Yi1), Fu(Yy), 8)  dloge(F*(Yi-1), F*(Y2), 8)
- Ben || op’ o'
1 & dlog ¢(F*(Yi—1), F*(Yy), B) *

By Chen and Fan (2006a),

li alogc(F*(Y%—l)vF*(Y;f)wB)

sup 7
n = ap

BeEB

- S(F*yﬁ)H =op(1).

Next we verify that

dlog c(Fy(Yi1), Fo(Yy), B)  dloge(F*(Yiq), F*(Y,),8) || _
Sgg E ~ [ 65/ - 86/ H - Op (1)
Note that
dlog c(Fo(Yi1), Fa(Yy),B)  dlogc(F*(Yi1), F*(Y1), )
e n;[ ap oF H
S ;gg tZ: Ft 1)Ft7/6)< (Yt 1) Fn(ﬁ—l))H

csup |15 1) (i) - mm)“

1
peB ||
n

+ sup Z s1(Fy 1, F, B) (F(Yie1) — F*(Yi-1))

l

n

+ sup Z Ft 1’Ft7/8)( ( ) F*(}/t))H

pes || 1=

’“<>

where FI = nF,(Y;) + (1 = n)F*(Ys), s=t—1or t, n € (0,1).
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We can show that the third and fourth terms are o, (1) using a similar argument as Chen and Fan
(2006a). We next show that the first two terms are o, (1) . Notice that

1 & ~ o
=3 b (L0 FLL ) [Fu(Th) = Fu(v2)| H
t=2

< —Z sup  |€p2 (F(Y}—l),F(Yt)?mw(F*(thSUP
o BEB, FEF; t

By (.6), we have

sup
t

together with Assumption M4, we obtain

sup Olog e(Fr(Vir), Fu(11),8) _ DlogeF* (Yi1), "), B) ||| _,
BeB nt:2 op’ op' b

The consistency now follows from Assumptions MX, ID3 and M3(1).

B.3. Proof of Theorem 4.
A Taylor expansion of /g < (17} 1), n(ﬁ:);@gp) w.r.t 8 around * gives

0 = —Zﬁg( (Yi-1), Fn(Y2), 5SP)

_ 72%(}? Vi), ) 2655( (Yie1), En(Y2), 5) (BSP_B*)’

where B is a middle value between /B\S p and %, and BS p is a consistent estimator of 5*.
Expanding /3 ( L (Yil1), Fn(ﬁ),ﬁ*) around (F*(Y;_1), F*(Y:)), we have

255( (Virr), Fu(%0), 87)
- fzzg “(Yer). F* (V). 8°)
o Zﬁm Vi), F(¥0), 87) Vi (Fu(¥ic) = F*(¥i))
Z%z (Vi) F* (), 89 Vi (Ful(¥0) = F*(¥3))
s S 3 b (B B9 ) [V (BaFisice) — P (Yiri-2))] [V (BaFie) — (Vi)

1,j=1t=2

46



where Fll = nF,(Ys) + (1 — n)F*(Ys), n € (0,1).
First, fori =1,2, j = 1,2,

# zn:%ij (Ftn_p E/, /3*) {\/ﬁ (ﬁn(ﬁ+i—2) - F*(th—l-i—2)” [\/ﬁ (ﬁn(ﬁﬂ'_g) — F*(Y;H_j_2)>} =0, (1).
t=2

Consider, for example, the case i =1, j = 2,

ni/in?em (FL1 L BY) [Vt (Fu(Fies) = F* (Vi) )| [ﬁ@(ﬁ)—F*(m)}‘

- n3/2 ;w ﬁj‘g%ﬁ [g12 (F (Y1), F(Y2), B%) w(F* (Y1) w(F*(Yy))|

X

w(F*(Yi-1))

Vit (Fu(Fin) = F (Vi)
w(F* (%)

Vi (Bu(%) - F* (%)

Under Assumption M4,

n3/2 ; R [€p12 (F(Yio1), F(Y2), B7) w(E™ (Yi1))w(F™ (Y1) = 0p (1),

and by application of Lemma 1,

Vit (Fu(Fimr) = F* (Vi)
w(F*(Yi-1))

sup
¢

thus

Second, by Taylor expansion,

,Zgr%( Y; 1) ]/5 }//\} )—*Zéﬁﬁ (Y1), F*(Y2), B%)

= 5i s (B 57.5) i (B - P 00)

c.o
\
)

HM

fﬁﬁﬁ (FL1 R B) Va3 - ),
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where E =np*+(1— n)3. Thus, by Assumptions M4, SP, and Lemma 1,

Thus,

Let

and

n

5[50 (BaFin), BulF2), ) — s (F*(¥in), F (), 57)] '
t=2
1 2 n )
< =5 ; > i Wy (F(Yima) F6). B w(F (Vg

~

7 (Fu(Fiajon) — F*(Yisoo)

* w(F*(Yirj—2))

L s s (V). OB V(S - )

1—o I1B=B"1<6,FeF;s
= o0p,(1).

*Zﬁﬁﬂ (ﬁ (Yie1), Fu(Y2), B ) Zfﬁﬂ "(Yeo1), FT (Y1), 8%) + 0p (1),

t=2

Zem “(Viea), F (Y0, 89 Vi (Fu(Vit) = Fu(Yen) )
me (Vi) F7(Y2), B7) Vi (Fo(Yier) = F7 (Vi)
Ay = Zem “(YVie), F* (%), ) Vi (FulT2) = Fu(Y0))

Apg = Zﬂgz “(Yie1), F*(Y2), B%) Vn (Fu(Yy) — F* (V1)) ,

[ 2655 th 1 (Y;f)aﬁ ]7 n Zgﬁ Y;f 1 (Y;f)?ﬁ*)y

then we have

Zn\/ﬁ (BSP - B*> = Sn + Anl =+ An2 + An3 + An4 + Op (1) )

where Ao+ Apng is the effect of estimating F*(-) based on Y; (unobserved), and A, + A3 is the effect
of filtration. Thus, the first part

Sn + AnZ + An4

is the leading part of the infeasible estimator based on knowledge of Y/s, and the effect of filtration is

captured by A,; and A,3.

48



The analysis of A,1 and A,3 are similar, we illustrate our proof for A,s3. Notice that

Z% (Vi) (%), %) Vin (F(¥0) = (1))

ZZ% “(Yiea), F* (%), 8%) f* (V) [ (X = X0)/ D 'nl?| Du7 = 7%) + 0, (1).

t=2 j=2

and

S o (P (i) 000,87 £ () (X, - X0 D]

S
N n2z;zfﬁz F*(Y5), %) £* (Y)) [ti 1 1/2}
&
ST S (B (i), F (), 8°) £ () [ Xy )
ZZ% (Vi) F(%).8%) £ () [X{D7 ']
2l (F FH(Y)), %) £ (V) [ X5y 'n/2]
>j

= Hy, + Hs, — H3,, — Hy,.
We investigate the behavior of each of the above terms and show that
o = [ [ X0y Bl 050,055 7 ),
Hyy — / [ X dsarE e (i) P (4,6 1 (0],
i | [ rxe Jir| (P ¥ic), (30 %) 130,

Hip — / / X (s)dsdrE {£g5 (F*(Yi1), F*(Y2), 8%) f(Y2)}

Thus A,3 = op(1). Similarly, A,; = o0p(1). The semiparametric copula estimator of 8 based on
filtered data is asymptotically equivalent to the infeasible semiparametric copula estimator of 5 based
on the unobserved data Y3,

"\F<BSP_ ): ”\F(BSP_ )+0p(1)25n+An2+An4+op(1).

By Chen and Fan (2006a), we can then obtain the result of Theorem 4.

Appendix C: Additional Monte Carlo Tables

We investigate the finite sample performance of the semiparametric copula estimator B gp, the para-
metric copula estimator Sp. with corrected specified parametric marginals; the parametric copula
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estimator B p1 With a normal distribution N (0, @?) as the misspecified marginal distribution; and the
infeasible semiparametric estimator BSP (using {Y;} directly). Recall that BSP and BSP have the
same asymptotic normal distribution, which does not depend on any filtration and the specification of
F*. The limiting distributions of B p+ and B p1 depend on the filtration and the parametric estimation
of F* in complicated ways; they are generally non-normal under the stochastic trend (unit root and
cointegration) filtration. Tables 1 and 2 in Appendix A of the paper already reported the performance
of the infeasible parametric estimator B p« (using {Y;} directly) with correctly specified parametric
marginals.

Tables 3 - 6 below report the finite sample behaviors of the feasible estimators B SpPs B Py E p1 and
the infeasible estimator /3 gp for models with stochastic trends. Tables 3A - 3D correspond to the unit
root model when the true marginal distribution is student-¢(3). Tables 4A - 4D summarize results for
the unit root model when the true marginal distribution is re-centered Chi-square with d.f. 3. Tables
5A - 5D correspond to the cointegrated model when the true marginal distribution is student-(3).
Tables 6A - 6D summarize results for the cointegrated model when the true marginal distribution is
re-centered Chi-square with d.f. 3. Again, "A to D" correspond to Gaussian, Frank, Clayton and
Gumbel copulas. In all the Tables, the number of Monte Carlo repetition is 2000 and sample size is
n = 500. The Monte Carlo bias, variance, and "Ramse" (the Ratio of MSE of an estimator over the
MSE of EP*) are reported in each table.

Table 3A: Unit Root Time Series, Gaussian Copula

(True marginal is student-t(3), n = 500)

B 0.5 0.3 -0.1 0.1 0.3 0.5
Bgp Bias  0.0032 -0.0015 -0.0022 -0.0010  -0.0005  -0.0020
Bgp Std 00413  0.0444  0.0464  0.0464  0.0443  0.0398

Bgp Ramse 0.9609 1.0487 1.0587 1.0552 1.0651 1.0977
Bps Bias 00149  0.0072  0.0024 -0.0010 -0.0036  -0.0054
Bpe Std 00396 00428  0.0451  0.0452  0.0428  0.0376

3p- Ramse 1 1 1 1 1 1
Bp; Bias 00068 -0.0072 -0.0130  0.0132  0.0094  -0.0024
Bpy Std 00738  0.0844  0.0918  0.0945  0.0869  0.0720

Bp; Ramse 3.0701 3.8195 4.2210 4.4582 4.1482 3.5967
Bgp Bias  -0.0065 -0.0071  -0.0053  -0.0027 -0.0013  -0.0024
Bsp Std  0.0388  0.0436  0.0461  0.0463  0.0442  0.0397

BSP Ramse 0.8674 1.0368 1.0589 1.0549 1.0615 1.0943
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Table 3B: Unit Root Time Series, Frank Copula

(True marginal is student-t(3), n = 500)

B* -5 -3 -1 1 3 5
BSP Bias 0.1320 0.0370 0.0026 -0.0118 -0.0312 -0.0746
BSP Std 0.4599 0.3355 0.2831 0.2819 0.3205 0.3926

BSP Ramse 0.9452 1.0435 1.0200 1.0293 1.1367 1.3053
BP* Bias 0.2276 0.0858 0.0239 -0.0032 -0.0219 -0.0444
BP* Std 0.4363 0.3190 0.2793 0.2781 0.3012 0.3469

B p- Ramse 1 1 1 1 1 1
Bp, Bias  -1.3618  -1.2542  -0.7833 08126  1.3305  1.5537
BPl Std 1.3053 1.2081 1.1563 1.1914 1.2061 1.2220

BPl Ramse 14.6941 27.7834 24.8172 26.8892 35.3614 31.9379
/BSP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764
BSP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

BSP Ramse 0.6563 0.9518 1.0039 1.0264 1.1317 1.3005

Table 3C: Unit Root Time Series, Clayton Copula
(True marginal is student-t(3), n = 500)

B 0.5 1 2 4 6 8
BSP Bias 0.0029 -0.0238 -0.1400  -0.6490  -1.5641  -2.7850
BSP Std 0.1032 0.1930 0.4410 1.0001 1.3963 1.6425
BSP Ramse 1.4129 1.7608 2.0309 1.7618 1.7485 2.1501
BP* Bias -0.0044 -0.0137 -0.0504  -0.2014 -0.4862  -0.9244
BP* Std 0.0868 0.1459 0.3207 0.8753 1.5092 2.0019

Bp. Ramse 1 1 1 1 1 1
BPl Bias -0.0623 0.0084 0.1702 0.2957 0.1473 -0.1913
3131 Std 0.4181 0.5283 0.6247 0.9293 1.2528 1.6933
BPl Ramse 23.6719 12.9987 3.9770 1.1788 0.6329 0.5972
BSP Bias 0.0016 -0.0256 -0.1415  -0.6389  -1.5373  -2.7485
BSP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720
BSP Ramse 1.4013 1.7206 2.0036 1.7806 1.7425 2.1287
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Table 3D: Unit Root Time Series, Gumbel Copula

(True marginal is student-t(3), n = 500)

3" 2 3 4 5 6 7
Bgp Blas  -0.0294 -0.1470  -0.3747  -0.7229  -1.1864  -1.7400
Bgp Std 01641 03615 05748  0.7517  0.8779  0.9840

Bsp Ramse 1.3930 1.4290 1.4408 1.3654 1.4689 1.6783
Bp« Bias  -0.0148  -0.0569 -0.1378 -0.2572 -0.4252  -0.6287
Bp-Std 01404 03215  0.5548  0.8546  1.1411  1.4091

Bp- Ramse 1 1 1 1 1 1
Bp, Bias  0.1259  0.1172  0.0386  -0.1034 -0.3119  -0.5863
Bpy Std 03842 05646  0.8089  1.0408  1.2631  1.4861

Bp, Ramse 8.1965 3.1196 2.0069 1.3733 1.1414 1.0719
Bgp Bias  -0.0321  -0.1540 -0.3861 -0.7354 -1.1963  -1.7464
Bgp Std 01596 03512  0.5534  0.7335  0.8846  1.0121

Bsp Ramse 1.3284 1.3795 1.3933 1.3545 1.4927 1.7112

Table 4A: Unit Root Time Series, Gaussian Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B* 0.5 0.3 0.1 0.1 0.3 0.5
Bgp Bias  0.0049  0.0010  -0.0003  0.0001  0.0001  -0.0017
Bgp Std 00421  0.0447  0.0462  0.0463  0.0442  0.0398

Bsp Ramse 1.6123 1.1434 0.9912 0.9845 1.0668 1.2028
Bp- Bias  0.0026  0.0004  0.0017  0.0027  0.0029  0.0029
Bp-Std 00333 00418  0.0463  0.0466  0.0427  0.0362

Bp« Ramse 1 1 1 1 1 1
Bpy Bias  0.0989 00511 00137 -0.0133 -0.0301  -0.0372
Bpy Std  0.0309  0.0371  0.0429  0.0472  0.0493  0.0475

Bp, Ramse 9.6256 2.2816 0.9414 1.1046 1.8186 2.7519
Bgp Bias  -0.0065 -0.0071  -0.0053 -0.0027 -0.0013  -0.0024
Bgp Std 00388  0.0436  0.0461  0.0463  0.0442  0.0397

Bsp Ramse 1.3922 1.1162 1.0032 0.9870 1.0666 1.1961
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Table 4B: Unit Root Time Series, Frank Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B 5 3 1 1 3 5
BSP Bias 0.1025 0.0325 0.0014 -0.0109  -0.0275  -0.0624
BSP Std 0.4346 0.3291 0.2801 0.2815 0.3201 0.3923

BSP Ramse 1.5689 1.1906 0.9808 0.9860 1.0704 1.0627
BP* Bias 0.0513 -0.0012 0.0002 0.0144 0.0327 0.0735
BP* Std 0.3528 0.3031 0.2828 0.2833 0.3088 0.3783

Bp+ Ramse 1 1 1 1 1 1
Bpy Bias 05930 01565  0.0413 02045 04112  0.5774
BPl Std 0.5355 0.4057 0.3297 0.3397 0.4119 0.5258

Bpl Ramse 5.0235 2.0582 1.3803 1.9540 3.5128 4.1070
BSP Bias -0.0330  -0.0307  -0.0232  -0.0218 -0.0362 -0.0764
BSP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

BSP Ramse 1.2505 1.1307 0.9867 0.9866 1.0703 1.0714

Table 4C: Unit Root Time Series, Clayton Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

3* 0.5 1 P 4 6 8
BSP Bias 0.0030 -0.0260 -0.1464  -0.6391  -1.4513  -2.5290
BSP Std 0.1030 0.1901 0.4360 1.0528 1.7108 2.3180

BSP Ramse 1.1142 1.3112 1.4351 1.3368 1.2267 1.1781
BP* Bias -0.0068 -0.0431 -0.1549  -0.5338  -1.1085  -1.8549
,@p* Std 0.0973 0.1619 0.3513 0.9218 1.6954 2.5592

Bp- Ramse 1 1 1 1 1 1
BPI Bias 0.6387 0.7224 0.7678 0.7159 0.6593 0.5805
BPI Std 0.1603 0.2091 0.3837 1.0003 2.1043 3.3443

Bp; Ramse 45.5370 20.1466 4.9984 1.3336 1.1852 1.1532
BSP Bias 0.0016 -0.0256 -0.1415  -0.6389  -1.5373  -2.7485
BSP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

BSP Ramse 1.1108 1.3163 1.4329 1.2661 1.0677 1.0360
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Table 4D: Unit Root Time Series, Gumbel Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B* 2 3 4 5 6 7
Bgp Blas  -0.0243 -0.1264 -0.3328  -0.6624 -1.1074  -1.6450
Bgp Std 01645 03706  0.5923  0.7663  0.8860  0.9805

Bsp Ramse 1.5436 1.7158 1.8271 1.8169 2.0074 2.3653
Bpe Bias 00432 01260 02160  0.3035  0.3676  0.3911
Bp«Std 01266 02711 04538  0.6875 09310  1.1822

Bp+ Ramse 1 1 1 1 1 1
Bpy Bias  -0.1573  -0.1898  -0.2874  -0.4533  -0.6804  -0.9590
Bpy Std 02221 05060  0.8124  1.1127  1.3962  1.6602

Bp; Ramse 4.1361 3.2682 2.9395 2.5562 2.4076 2.3709
Bgp Bias  -0.0321 -0.1540 -0.3861 -0.7354 -1.1963  -1.7464
Bgp Std 01596  0.3512  0.5534  0.7335  0.8846  1.0121

Bsp Ramse 1.4798 1.6453 1.8024 1.9105 2.2092 2.6276

Table 5A: Cointegrated Time Series, Gaussian Copula

(True marginal is student t(3), n = 500)

B* 0.5 0.3 0.1 0.1 0.3 0.5
Bgp Bias  -0.0066 -0.0074 -0.0058 -0.0034  -0.0023  -0.0037
Bgp Std 00388  0.0435  0.0462  0.0465  0.0444  0.0398

Bsp Ramse 1.1386 1.0925 1.0611 1.0460 1.0519 1.0850
Bp. Bias  0.0003 -0.0011 -0.0025 -0.0039 -0.0053  -0.0066
Bp-Std 00369  0.0422  0.0451  0.0454  0.0430  0.0378

3p« Ramse 1 1 1 1 1 1
Bpy Bias  -0.0039  -0.0140 -0.0176  0.0102  0.0075  -0.0038
Bpy Std 00725  0.0838  0.0915  0.0945  0.0870  0.0722

Bp, Ramse 3.8714 4.0452 4.2554 4.3448 4.0632 3.5518
Bgp Bias  -0.0065 -0.0071  -0.0053  -0.0027  -0.0013  -0.0024
Bgp Std  0.0388  0.0436  0.0461  0.0463  0.0442  0.0397

Bsp Ramse 1.1401 1.0916 1.0567 1.0350 1.0411 1.0730
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Table 5B: Cointegrated Time Series, Frank Copula

(True marginal is student t(3), n = 500)

B* 5 -3 1 1 3 5
BSP Bias -0.0213 -0.262 -0.0233 -0.0257 -0.0470 -0.1018
BSP Std 0.3981 0.3216 0.2811 0.2819 0.3196 0.3913

BSP Ramse 1.2980 1.1326 1.0182 1.0221 1.1355 1.3120
Bp* Bias 0.0137 -0.0018 -0.0106 -0.0189 -0.0347 -0.0628
Bp* Std 0.3496 0.3032 0.2793 0.2793 0.3012 0.3473

Bp- Ramse 1 1 1 1 1 1
Bpl Bias -1.5928 -1.3566 -0.8338 0.7883 1.3134 1.5319
BPI Std 1.2267 1.1657 1.1345 1.1913 1.2069 1.2233

Bp, Ramse 33.0116 34.7982 25.3703 26.0401 34.6178 30.8483
/BSP Bias -0.0330 -0.0307 -0.0232 -0.0218 -0.0362 -0.0764
BSP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

BSP Ramse 1.2980 1.1301 1.0099 1.0130 1.1229 1.2770

Table 5C: Cointegrated Time Series, Clayton Copula
(True marginal is student t(3), n = 500)

B* 0.5 1 2 4 6 8
BSP Bias 0.0004 -0.0280 -0.1519  -0.7054  -1.6939  -2.9915
BSP Std 0.1032 0.1927 0.4434 0.9793 1.3301 1.5500
BSP Ramse 1.3655 1.6828 1.9211 1.7613 2.1061 2.6836
BP* Bias -0.0063 -0.0149 -0.0498  -0.2098  -0.5225  -0.9808
BP* Std 0.0881 0.1494 0.3344 0.8849 1.3890 1.8078

Bp- Ramse 1 1 1 1 1 1
BPI Bias -0.0647 0.0067 0.1725 0.3067 0.1600 -0.1894
Bp; Std 04123 05222 06256 09401  1.2729  1.7079
Bp, Ramse 22.3337 12.1029 3.6831 1.1824 0.7473 0.6980
Bsp Bias 0.0016 -0.0256 -0.1415  -0.6389  -1.5373  -2.7485
BSP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720
Bgp Ramse 1.3561  1.6400 1.8475 1.7371 1.9892 2.4468
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Table 5D: Cointegrated Time Series, Gumbel Copula

(True marginal is student t(3), n = 500)

3" 2 3 4 5 6 7
Bgp Blas  -0.0349 -0.1676 -0.4205 -0.8015 -1.3003  -1.8937
Bgp Std 01627 03558  0.5579  0.7233  0.8493  0.9527

Bsp Ramse 1.1636 1.2718 1.3916 1.6076 1.9301 2.2544
Bp« Bias  -0.0140  -0.0559  -0.1443  -0.2866 -0.4859  -0.7285
Bp-Std  0.1537 03442  0.5743  0.8018  1.0068  1.2094

Bp- Ramse 1 1 1 1 1 1
Bpy Bias  0.1251  0.1147  0.0301  -0.1249  -0.3561  -0.6626
Bpy Std 03855 05664  0.8119  1.0448  1.2625  1.4788

Bp, Ramse 6.8989 2.7456 1.8822 1.5274 1.3769 1.3172
Bgp Bias  -0.0321  -0.1540 -0.3861 -0.7354 -1.1963  -1.7464
Bgp Std 01596 03512  0.5534  0.7335  0.8846  1.0121

Bsp Ramse 1.1129 1.2088 1.2984 1.4882 1.7713 2.0438

Table 6A: Cointegrated Time Series, Gaussian Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B* 0.5 0.3 0.1 0.1 0.3 0.5
Bgp Bias  -0.0063 -0.0072 -0.0056 -0.0032 -0.0021  -0.0035
Bgp Std 00388  0.0436  0.0463  0.0465  0.0444  0.0399

Bsp Ramse 1.3898 1.1142 1.0103 0.9926 0.9952 1.0527
Bp- Bias  -0.0013  -0.0034 -0.0040 -0.0015  0.0033  0.0073
Bp-Std 00333  0.0417  0.0462  0.0468  0.0444  0.0384

Bp« Ramse 1 1 1 1 1 1
Bpy Bias  0.0911  0.0453  0.0097 -0.0159 -0.0318 -0.0384
Bpy Std  0.0302 00371 00431  0.0474  0.0493  0.0475

Bp, Ramse 8.2865 1.9519 0.9062 1.1415 1.7373 2.4417
Bgp Bias  -0.0065 -0.0071  -0.0053 -0.0027 -0.0013  -0.0024
Bgp Std 00388  0.0436  0.0461  0.0463  0.0442  0.0397

Bsp Ramse 1.3971 1.1118 1.0040 0.9835 0.9857 1.0339
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Table 6B: Cointegrated Time Series, Frank Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B 5 3 1 1 3 5
BSP Bias -0.0313  -0.0325  -0.0263 -0.0252  -0.0387  -0.0773
BSP Std 0.3968 0.3213 0.2806 0.2816 0.3201 0.3937

BSP Ramse 1.3420 1.1197 0.9819 0.9849 0.9466 0.8169
BP* Bias -0.0243  -0.0303 -0.0270  -0.0015 0.0548 0.1379
BP* Std 0.3427 0.3037 0.2831 0.2849 0.3268 0.4219

Bp. Ramse 1 1 1 1 1 1
BPl Bias 0.5008 0.1040 0.0149 0.1884 0.3985 0.5604
BPl Std 0.3628 0.3278 0.3109 0.3385 0.4141 0.5344

BPl Ramse 3.2402 1.2697 1.1977 1.8496 3.0082 3.0429
BSP Bias -0.0330  -0.0307 -0.0232  -0.0218 -0.0362 -0.0764
BSP Std 0.3973 0.3209 0.2799 0.2809 0.3192 0.3915

BSP Ramse 1.3463 1.1153 0.9757 0.9782 0.9400 0.8075

Table 6C: Cointegrated Time Series, Clayton Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

5* 0.5 1 2 4 6 8
BSP Bias -0.0034 -0.0399 -0.1888  -0.7936  -1.7964  -3.0777
BSP Std 0.1025 0.1872 0.4119 0.9159 1.3067 1.5658

BSP Ramse 0.9985 1.1506 1.3626 1.4072 1.4238 1.4918
BP* Bias -0.0091 -0.0403 -0.1571  -0.5909  -1.2861  -2.1973
BP* Std 0.1022 0.1739 0.3550 0.8333 1.3460 1.7789

Bp- Ramse 1 1 1 1 1 1
BPI Bias 0.6315 0.7141 0.7526 0.6658 0.4923 0.1799
BPI Std 0.1626 0.2150 0.3894 0.9684 1.8165 2.6612

Bpl Ramse 40.3787 17.4608 4.7656 1.3233 1.0220 0.8901
BSP Bias 0.0016 -0.0256 -0.1415  -0.6389  -1.5373  -2.7485
BSP Std 0.1028 0.1905 0.4373 1.0141 1.4205 1.6720

BSP Ramse 1.0042 1.1603 1.4019 1.3764 1.2641 1.2949
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Table 6D: Cointegrated Time Series, Gumbel Copula

(True marginal is re-centered Chi-square with d.f. 3, n = 500)

B 2 3 4 5 6 7
Bgp Blas  -0.0264 -0.1393  -0.3687 -0.7207 -1.2112  -1.7912
Bsp Std 01646 03676  0.5754  0.7426  0.8632  0.9660

Bsp Ramse 1.4518 1.5389 1.7695 2.0905 2.5928 3.3765
Bps Bias 00663 01697 02678 03417 03741  0.3457
Bpe Std 01214 02676 04385  0.6338  0.8445  1.0522

Bp+ Ramse 1 1 1 1 1 1
Bp; Bias  -0.1548  -0.1821  -0.2766  -0.4411  -0.6698  -0.9527
Bpy Std 02238 05124  0.8083  1.0926  1.3600  1.6112

Bp; Ramse 3.8690 2.9455 2.7646 2.6779 2.6937 2.8563
Bgp Bias  -0.0321 -0.1540 -0.3861 -0.7354  -1.1963  -1.7464
Bsp Std 01596  0.3512  0.5534  0.7335  0.8846  1.0121

Bsp Ramse 1.3843 1.4646 1.7249 2.0810 2.5945 3.3213
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Appendix D: Additional Proofs

D.1. Proofs of Results for Parametric Models

We first introduce a useful inequality of absolutely regular process given by Yoshihara (1976).

Lemma A. Let xy,, x4y, ..., 2y, (With { < t2 < --- < 1) be absolutely regular random vectors with
mixing coefficients 5(t). Let h(zy,, 4, ..., 2, ) be a Borel measurable function and there be a
d > 0 such that P = max{M;, M2} < oo, where

140
M, = sup /|h($t1axt2"--7$tk)| * dF(:UtM‘TtQa'--vxtk)a

t1,t2,..
§
M2 = . tSllpt / |h({13t1,.%'t2, N ,.%'tk)‘l-‘r dF(xtl, e .’I,'t].>dF(LUtj+1, e xtk)'
1,625tk

Then for all j, we have:

'/h(:ﬂtl,.. . ,ZL‘tk)dF(xtl,...,iBtk) — h(xtl,...,l'tk)dF(ZEtl,.. . ,ZL‘tj)dF(l'tj+1,. . .,IL‘tk)

1 5
< APTH B (41 — t)TH .

D.1.1. Proof of Theorem 1 for consistency of EP

For the first step estimator, & = argmaxaeca Y ;. log f(Yi, ), let g(o) =E[log f(Yz, )], we need to
verify that

sup
acA

=0, (1).

nzlogf Yi,e) — q(a)
t=1

By (1) Assumption ID1(1): compactness of A; (2) Assumption MX: weak dependence of Y;; (3) As-
sumption ID1(3): f(y, «) is continuous in a € A; and (4) Assumption M1(1): E[supaeallogf(Yz, a)|] <
0o, we can show that sup,ec 4 |1 31, log f(Y;, @) — g(a)| = 0, (1). Thus, we only need to show that

n

%Z [logf(?t,a) - logf(Y},oz)} ‘ =o0p(1).
t=1

sup
acA

Denote the re-standardized X; by X, = n'/?D;'X;. Let ¢; (n,) = log f(Y; — X/n,a). Under
Assumption M1(2), we have, for all sequences of positive numbers {¢,} with €, = o(1),

n

swp |~ (gt (1,0) — g5 (0, )]

=o0,(1).
acd |nll<en | T ’

t=1
Thus
n 1 n
sup [logf Yi, ) — log f(Yy, a)} sup — Z lg: (N, @) — q¢ (0,)]| = 0, (1) .
acA|T — a€A |nl|<en | T =1
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Together with Assumption ID1(2), we obtain consistency of a.
For the second step estimation, we need to verify that supge H@n(ﬁ) — Q(ﬁ)“ =0, (1), where

~

Q) =+ 3" o1, o). Q(B) = Blg(¥is, Yina®, 0.
t=2

Denote Qn(8) = 231, g(Yi—1,Y;, o, B). Again by: (1) Assumption ID1(1): compactness of B;
(2) Assumption MX: weak dependence of Y;; (3) Assumption ID(3): g(-) is continuous in S3; (4)
Assumption M1(1): E[SuPﬁe%,aeA5 |g(Y}_1,Yt,a,B)|] < 00, we have supgeg |Qn(8) — Q(B)| = 0p (1).
Thus, it suffice to show that
sup [Qu(8) — Qu(B)] = 0, (1)

BeB

Notice that ¥; = Y; — X[ (7 — %) = Y; — n~ /2 (X;n'/2D; ") D,, (7% — 7*), let
Dy (7 = 7%) = 0p, V(@ — a*) = Ay,

then we may write
1 n
Qn(B) = - Zg (Y},l —n /2 (Xé_lnl/QDgl) O, Yy — Y2 (Xgnl/ZDgl) Oy + 02N, B) .
t=2

Recall X, = n'/2D;1X;, we let my (n,c, 8) = g (Yie1 — X,_1n, Y — Xin, @, B). Under Assumption
M1(2) that g(s1,s2,,3) is uniformly continuous in (s, $2, ), uniformly over S € B, thus we can
show that, for all sequences {¢,} with €, = 0(1),

1 — .
sup - [mt (7770476)_7%15 (0,0Z 7ﬁ)] = Op (1)
BEB,[la—a*|+Inll<en | 15

Let 7j = n~1/2§,, then

[mt (;7\7 aa /8) —my (07 Oé*, /B)]
t=2

SHE

Qn(B) — Qu(B) =

Notice that

sup [Qn(8) ~ Qu(B)

BeB

n

1 .
=~ o0V = Xi . Ye = Xin 0, 8) = 9(Yer, Vi 0%, B)] | = 0, (1).
t=2

< sup
BB, la—a* |+ [nl<en

Thus, supgep ‘@n(ﬁ) - Qn(,ﬁ)) = 0p (1). In addition with Assumption ID1, Theorem 1 is proved.
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D.1.2. Proof of Theorem 2 for the limiting Distribution of Ep

Let g (V1,,@,6) = loge(F(V,1,@), F(V,@), 8), then Qu(8) = 11,0 (Yi1,¥,8,8). Let
VAL(B=B) = Do, and Dy (F—7") = 64, V/A (G = ") = Au, vt (B = 67) = Agy, then, we may

re-write the criterion function Qn(8) as
Vn(A2)

1 n
= Zg (Yt,l —n1/2 (Xt'_lnl/QD;l) 6n, Yy —n /2 (Xt'nl/QDgl) On, ™ + n_1/2A1n,B* + n_1/2A2> .
t=2

and ming@n(ﬁ) is equivalent to mina,V;,(As).

The FOC to minimize V,,(Ag) w.r.t. Ag is given by %ﬁﬂ Apehy, 0. Expanding %@ Ag=Agn
around Ay = 0, we have
0 — OV, (Az)
AN Ax=Agp

1 & o s i |1 S
= 7295 (Y;f—l?Y%vCWﬁ ) +n 1/2 [Zgﬁﬁ (Y;f—laY%aOQB#) AQTL
"= "=
where 87 is the middle value between 3* and B
Let Hnﬁ = _nil Z?:Q 9ps (n—17}/¥7a1/8#)7 S’nﬁ = n71/2 Z?:Q gp <n—17n7a7ﬂ*)7 and n =

~

(m1,m5,m5)". By consistency of §, Assumptions X and M2, for any sequence {e,} with €, = o(1),
we have for j = 1,2,

1 n
sup .~ Z Hgﬁﬁ (i/t—l + X;—lnla th + X;nlv o + 77275* + 773) — 988 (Y;f—lv }/t’ O‘*vﬁ*)H = Op(l)

[Inll<en n t=2

1 n
S > lgsa (Vo1 + Xiym1, Ve + Ximy, @ + 19, B 4 m3) — gsa (Yie1, Ve, 0%, 87)|| = 0,(1)
e

1 - * * * *
‘|S|}l<p EZHgﬁJ (Yt—l"‘X;:—ﬂhJQ-i-X;"h,Oé +77275 +773) — 9Bj (Y;f—laY%aa aﬁ )” :OP(1)7
M=€n "7 =2

we have

~

Hnﬁ = Hng + 0p(1).
Denote

1 n
Sng = — Y1, Y, o, BF
npB \/ﬁ;gﬁ( t—1, t7a75)7

and expanding gg }7,5,1, }A/t, a, ﬂ*) around (Y;—1,Y:, ), Using a similar argument as for the previous

term, we can show that

n
Sn,B = Snﬁ ‘I'n_lzgﬁl (Y;‘flathva*aﬁ*)Xé—lnlﬂD;lén
t=2
n n
—I-TL_l ZgﬂQ (}/t—la th a*7 /B*) <X£n1/2D;1> 5“ + n_l Zgﬂa (th—lv }/ta 05*7 B*) A1n + Op(]-)
t=2 t=2
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Thus,

Vi (B- 5*)
= H,;Ss—H,, (Pnl +Pn2)D (T —7*) + H, 5 Pugyv/n (@ — a*) 4 0p(1)
= Hj 1N (0,924+) — Hz! (Pr+ Po) Dy (7 — %) + Hg Pyv/n (@ — o) + 0,(1)
= HZ'N(0,Q4) — Hy' (Pr+ P+ P3O Hoy ) D (T — ) + Hy Py/n (@ — a*) + 0,(1)

Notice that v/n (& — a*) = H,, 1Sy + 0p(1), where

1 0% log f(Yi, a*) 1 dlog f(Y3, ")
Hna - E o aaaa, ’ Sna - \/> Z aa ’
thus,
Vit (B = 8Y) = Hy} [Sus + PasilSua] — Hy (Pr+ Pot Py Hoy) Dy (7 — %) + 0, (1),

D.2. Proof of Theorem 5.

Very similar to the proof of Theorem 3, except that we use pseudo-true copula parameter, and hence
omitted.

D.3. Proof of Theorem 6.

Very similar to the proof of Theorem 4, except that we use pseudo-true copula parameter, and hence
omitted.

D.4. Proof of Theorem 7.
Let

~ ~

Sith (ﬁm@sp> = g ( n(Vign1), Fa(Vesn), ﬁsp) + Gl ( (Yt+h)> + G (ﬁn(YtM—l)) ;
Seen (FusBsp) = b5 (FuFieno) Fu(Vern). Bsp) + Go (FuFin) + G (FuFisnn) )

For simplicity of notation, we assume that [ is a scalar in the rest of the proof.

R 1 am s e [ o
Tn(h) = > 5 (anBSP> Sth (Fn,ﬁsp)
t=2
2<t,t-+h<n

n

Yn1(h) = % Z St (F\nvl/éSP> St+h (ﬁmgsp)
2§tftj—2h§n

Tn2(h) = % i St (F*aBSP> Stth (F*aBSP>
2<tith<n
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Z St 7ﬂ StJrh( *73)
2<t t+h<n

We may re-write the variance estimator ﬁg as:
M
O+t —
OF = Z K( ) (h)
M
- Z K< ) (h) +

M

> & (37 ) sl = 7 0]

h=—M

—M
; ﬁ K( ) vn1<h>—wn2<h>1+hﬁMK(ﬂ’;) () = 1 ().

The first part,
M h
> K (3] )
h=—M

is the conventional long-run variance (spectral density) estimator, which converges to Qg by the
standard arguments as Hannan (1970).
The second part,

M
> & (37) Daalt) = (0.
h=—M

contains the effect of copula estimation error (B sp — ), this term converges to 0 following a similar
argument as Andrews (1991, p852).
We now consider the third term,

,ﬁMK (ﬁ) [ () = Yua(h)]

which contains the estimation error from the filtration and the estimation of marginal. Notice that

V1 (h Z Sy (1;551)) Stin (ﬁn,ﬁsp)
2<t t+h<n

n

Yn2(h) = % Z St (F*7§SP> St+h (F*7B5P>
2§tft:+2h§n
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thus

i)
K(h )i (FuBsr) = 50 (F=.Bsp) | [Seen (£, Bse )]

> % F 5SP)] {Swh (ﬁmgsp> — Stth (F*agsp)}
2<t t+h<n
> F 551)) St (F*, BSP)] [5t+h (ﬁmgsp) — St+n (F*aBspﬂ
2<t t+h<n
We can verify the order of magnitude for each of these terms. For example, consider the second
3 K (B)E S 5] [ (o) e (7).

h=—M =2
2<tt+h<n

term

notice that

St F ,Bsp [St+h (ﬁanSP) — St+h (F*aBSPﬂ
2<tiin<n

~

h) Zst (F*,Bsp) o1 (Vren1.Uins Bsp ) (FuVisn1) = F*(Yinn))
h
M

) ZSt F Bsp (39 <Ut+h 1 Uths 5sp)( W (Yiin) — F* (Yt+h))

K
M
M
>
=M
M h N 8Go UirnsBsp) , . .
Z_MK(M) ZSt (F.Bsp) <aUt+h )(Fn<n+h>—F<n+h>)
M
- ) K

G (Usn-1,Bsp)) .
()5 ) G20 (- ),

under our regularity assumptions, the order of magnitude for each of these terms are o, (1). For
example
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n
~

5 K(y)n X 80(F8) o (Vienon Uien Bop) (FalFisns) = FYiano))

M
=M t=2
2<t,t+h<n
11 &L 2 h - . .
Jin oY K )| St (F ,5)10(1: (Yethtj—2)) €p1 (Ut—i-h—laUt—i-haﬁ)‘
h=—M  t=2 g
2<t t+h<n

Vn (ﬁn(2+h+a‘—2) - F*(Yt+h+j—2))
w (F*(Yepntj—2))

X

under our regularity assumptions and the bandwidth condition, the above term is o, (1).

Other terms can be verified to be o, (1) using similar arguments.

Finally,
M
> & (7) Bal®) = 1a(h)
—M

< i K <h> % i Sy (ﬁmﬁsp) [§t+h (ﬁmBSP> — St4h (F\nagSP>:|
zgt,t;fhgn

s K( h ) LS [5(Budsr) - 5 (BuBse)] [Sen (FuFsr)]
2§tftj-2h§n

+ f: K <h> % Zn: [g\t (ﬁn,BSP> -5 (ﬁnngP)} [§t+h (ﬁmBSP> — St4n (ﬁmgspﬂ :
2§tf;2h§n

Under regularity assumptions, for a neighborhood B, (B) of B and an appropriately chosen €, — 0,

as n — oo, for j = 0,1,

l

sup
en<u<l—enp,

BEBL(B)

()

thus

[i Z {lgo—j (Ui—1, Ui B) 1 (u S U—j) = Up—j] = Bl o (Uj—1, Uy B) [1 (u < Up—j) — U]}
P

sSup sup ‘@] (u76)_Gj (U,ﬁ)’ = 0p <Z\14'> , J=0,1.
enguglfen,ﬁeBn(ﬁ)
and | ALy K (4) Fa(h) = 2 (] = 0p(D).
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D.5. Proof of Theorem 8.

We show that the filtration does not affect the limiting distribution. Expanding log ca(Fy, (Yi_1), Fpn (Y1), By)
around ﬁ2, and notice that the FOC corresponding to ﬁg implies

~

0log CQ(F\n<}/}t—1)7 ﬁn(ﬁ)? Bs)

(1) Generalized non-nested case,

=0,

Pr |:10g CQ(Ut—laUhéQ) # E |:10g CQ(Ut—l)Ut)52):|:| 0
c1(Ui—1, U, By) c1(Us-1,Us, By)
Pr |:alog02(Ut—l)Ut752) 7é alOgC]_(Ut_]_,Ut,ﬁl)] > 0
OU;—24 OU;—24

we have

1 R AR N AN
EZlogcz(Fn(Ytq),Fn(n)aﬁﬁ
=2

= *Zlog@ Fo(Yio1),

n

o 1 — /8210g02( (Yt 1) Fn(?t),ﬁ) = 7
w(Y2), Ba) — m 2 (52 — B > 9505 2 <52 - /82>

“ij>

2

1 1 " dlogc (U1, U,
_ *ZIOgCQ(Ut—lyUuﬁg +*Z g ca(Ui—1, Ut Bs)
ni— n

[BuFicars) - F(Via)] + 0 (n12)

j=1t=2 aUt 2+
and
EZ )7ﬁn(y;‘/)’32)
n =2 cl F (Y )7 n(Y;f)751)
_ ;z": c2(U-1, Ut, B)
ni— = ca(Ui-1,U By)
2 n - -
1 dlogca(Ui—1,Ut, By)  Ologer(Ui-1,Ut, B1) | [5 o . “1)2
- _ Bo(Vrgri) — F*(Yinri .
+nj;t2 aUt—2+j 8Ut—2+j |: ( t 2+]) ( t 2+]):| +Op <n )
Thus
IR, _E [l 02(Ut—1,Ut,ﬁ2)]
c1(Ui—1,Ut, By)
_1¢ [log ca(Ur-1,Ut, ) _E [log C2(Ut1,Ut,52)”
n = c1(U—1,Ut, By) c1(U—1,Ut, By)

—i—lz y {810g02(Ut17Uta/62) _ 0loger(Ui-1,Us, 1)
n

Fo(Yieasg) — F*(Yieos,
aUthJrj 8Ut,2+j }[ ( t 2+]) ( t 2+J)]
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722 dlog ca(Up—1, Uy, By) {ﬁn(fftﬂﬂ.) — F*(Yt,QH)}

=1 t=2 OUt—21;
B dlog ca(Up—1,Ut, B) [ o
_ Z L (B (Virr) = Fa(¥i)]

alOgCZ(Ut—laUtaB) oo
+HZ - el OS]

alOgCQ(Lt 17[/15752) [*
+n +=2 aUt 1 [ ( - 1) ( ' 1>]

1 & dlog ca(Us_1, Uy, Bs) *
Ly~ F(Y;) — F*(Y,
_|_n 2 o, [ ( t) ( t)]

Using similar argument as in the proof of Theorem 4, we can show

1 3 dlog 02([3';:7 Ut, ) [ﬁn(f@) - Fn(Yt)}

11 "~ dlog ca(Us—1,Ut, By) . 1 / N -1, 1/2 ~ % ~1/2
N \/ﬁn; U, ! (Yt)n;[(Xj_Xt)D”” | D=7+ 0, (n17)
1 1R Blogea(Ui1,Uy, By) . 1 [y et 12 N
- \/ﬁn; o0, f(mn;{Xﬂ‘Dn” | Da G —7%)
11 . alogc2(Ut717Ut)52 l & 1,,1/2 ~ % —1/2
\/ﬁn; oU n]:l [XtD ] n(T=m) 4o (n )
= op(n_l/Q)
and thus

- {310g02(Ut—1,Ut752) _ Qloger (Ui, Ut, By)

ﬁn }/}— i) — F* Yi_ i
8Ut—2+j 8Ut—2+j }{ (Y2 2+J) (Y 2+J)}

S
.MM

1t=2

J

- {alogCQ(Ut—l,Ut,ﬁz) _ Ologer(Up-1, U, By)

Fo(Yi—24j) — F* (Yioaq, -1/2) |
OUt—24j ;24 }[ n(Ye 2+]) (Y 2+])} + 0p <n )

a3

I
S
.Ml\?

1t=2

<
Il

Let

{ [8 log ¢;(Us_1,Us, B3;)
8Us—2+j

9t,ij (Bz) =E ] [1(U; < Us—24j) — Us—244]
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2 n _ .
1 0log ca(Ui—1, Uz, By) 810g61(Ut—17Ut7/81)} y
Z . F,(Yicori) — F*(Yi_oy;
{ OU;—24j s o4 [Fn(Yi—2+;) (Yi—o4j)]

1 "~ dlogca(Up_1,Us, By)  Ologer (U1, Uy, By)
= — - WU < Usors) —Us oy
\/ﬁjz1 ;E{ [ OU; 24 OU;—24; (LU= Ur-zg) = U249]| U
2 1 n B B
= Z [n {912 (B2) — 911 (ﬂ1)}] ;
j=1 1=2
we have
vn <f1§ —E [log c2 (U1, Ut’ﬁz)])
c1(Ui-1, Uy, B1)

1 = CZ(UtflthBQ) |: 02(Ut17Ut7/82):|:|
= — 1 —- —E |l =
\/ﬁ; {og c1(U-1,Ut, By) o c1(U-1,Ut, By)
1

2 n _ B
Z dlogca(Ui—1,Us, By)  0Ologer1 (U1, Uy, By) )
NG N E,(Yicori) — F*(Yi_oy: 1
vn 2{ OUt—2+j OUy_oj [Fn(Yi-2+5) (Yieo4j)] +o0p (1)

_l’_

t=

-1
_ i - |:10g CQ(Ut—17 Ut7§2) _E |:10g 62<Ut—17 Ut7/82):|:|
Vn = c1(Ui-1,Ut, By) c1(Ui-1,Ut, By)

2 n
+> 1 Z{gma B2) — a5 (B1) }| +op (1)
Jj=1 \/ﬁ
= N(O,wz)

(2) Generalized nested case. Denote

1 <~ 92 loge;(Fr(Yier), Fn(Y2), B;)
= —— — H,j
n 0pops 3,8

Notice that
Pr [Cg(Utfl, Ut,BQ) = Cl(Utfla Utaﬁl)] =1

thus
Pr {log co(Up—1, Ut,ég) —0—F [log co(Up—1, Ut,,ﬁz)H _
Cl(Ut*b Utvﬁl) Cl(Utfly Ut?lgl)
Pr [810g02(Ut_1,Ut,B2) _ 8logc1(Ut_1,Ut,ﬁl)} _
8Ut—2+j 8Ut_2+j
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thus,

02(Ut—17Ut762>]

c1(Ui-1,Ut, By)

_ 1y [10 cz(Ut1,Ut,52)_E[IOgc2(Ut1,Ut,ﬁ2)H
n = c1(Us-1,Ut, 1) c1(Ut-1,Ut, 1)

1 2 " (dlogca(Up_1,Us, By)  Ologer (U1, Us, B1)) [ .
n o Fn Y— 1) — F Y_ ;
i { OUt_24; OU—24; [ (Yi—2+5) (Y2 2+])]

" j=11t=2
1/~ _
+§ (Bz B ) Hop, (52 52) 9 </31 ,61) Hyy, (51 - 51> +
1 /— ~\/ / _ ~ 1
= (5= 3) Han (= P) = (i Bu) i (- B1) 0 (3
Let
01 (Us-1, Uy,
Gy (B;) = fZ{ kL i ) 4 6By + iU By >}
where for [ =0, 1,
1921 , V2,
G;i(Ui1, B / / og(;;é 81)1)12 v; bi) [1 (U < o) — va—y] c*(v1, v2)dvidvg,
then B B
[ Gon (Ba) ] N (O O, Qo ) |
Gin (1) ’ ﬁ,271 Qi‘:ﬁ
Applying Theorem 6,
Vi (8= 5;) = Hi3Gin (B)) +op(1) = N (0. 1,507,H 5.

and

" [f}\% _E [log ca(Ug—1, Ut,52)”
" c1(Ui—1,Us, By)

1 /=~y SN AN
= *n (52 - 52) Ha, <52 - 52) - 5“ (51 - 51) Hyy, (51 ﬂl) +0p (1)
= g2n (52) (H2n) H g2n (By) — %gl,n (Bl)lHl_% (Hin) Hl_%gm (B1) + 0, (1)

1 [ — — HQ_ 0 Gan (B2)

= | Gn(B) Gn() || 2 m o (1)
2 0 _Hl,% gl,n (ﬂl)

Thus, under the null, 2nf§n converges to a weighted sum of independent % random variables
in which the weights (A1, - -, Ag;+4,) is the vector of eigenvalues of the following matrix
_ = -1 — _

Qgﬁﬂw Qo H 3 Qf s Qo H, ﬁ

+ —1 o + -1 ’

DGy A sH 3 i ~Hip
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