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Jidong Zhou

Yale University
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Abstract

This paper studies how an improved information environment a¤ects consumer

search and �rm competition. We �nd conditions for information improvement to

have unambiguous impacts on search duration, price and consumer welfare. In

many cases consumers bene�t from information improvement regardless of how it

a¤ects the market price, but there are also cases where information improvement

raises price signi�cantly so that consumers su¤er from it. Our model provides a

uni�ed way to consider the market implications of various types of information

improvement such as search advertising, personalized recommendations, �ltering,

and VR shopping technology.

Key words: consumer search, price competition, information improvement

JEL classi�cation: D43, D83, L13

1 Introduction

Over the past two decades consumers have experienced a signi�cantly improved in-

formation environment in their shopping process. For example, they often use online

platforms to gather product information such as search engines (e.g. Google), prod-

uct comparison websites (e.g. Expedia), and e-commerce marketplaces (e.g. Amazon).

�I am grateful to Mark Armstrong, Yongmin Chen, Barry Nalebu¤ and Andrew Rhodes for their

helpful comments.
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These platforms not only help consumers save on the cost of �nding sellers, but also

often guide consumers towards better and more relevant products. For instance, person-

alized recommendations or �ltering enables consumers to encounter and consider more

relevant products �rst; using a better display technology or o¤ering customer reviews

makes the inspection and comparison of products more informative. A related trend is

that sellers make use of consumer data (e.g. via data brokers or social media) to target

their ads and sometimes even o¤er personalized products. This also makes consumers

face a search pool with more relevant products.

Do consumers search more or less among more relevant products? With a better

search pool, they become choosier and aim to �nd a better matched product before

stopping their search, but it also becomes more likely for them to encounter a well-

matched product at each step. Do consumers always bene�t from improved product

information in a search environment? This should be the case if product prices remain

unchanged (and if consumers have no intrinsic privacy concerns). However, sellers

usually have incentives to adjust their prices given that consumer search behavior is

in�uenced by the information environment. How might sellers change their price? Is

it possible that improved information in�ates the market price so that consumers end

up worse o¤? These questions are also relevant for platform design. For example, if a

platform such as a search engine makes pro�t from per-click fees, it will have an incentive

to make consumers search longer. If a platform is a product comparison website and

its pro�t is from percentage commission fees, its interest will be more aligned with the

sellers�. If a platform faces strong competition from other platforms, it will put more

weight on consumer surplus.

Given the importance of these questions, it is not surprising that some research

has been done on this topic. They include, for example, Eliaz and Spiegler (2011),

de Corniere (2016), and Zhong (2020). As we will discuss in detail later, a common

message from these works is that an improved search pool will induce consumers to

search less and at the same time intensify price competition among sellers (whenever

consumer search remains active). However, a pro�t-maximizing platform may choose

to degrade the search pool, or the fee it charges to sellers may in�ate their cost and so

the �nal market price.
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In this paper we revisit the problem of how improved information a¤ects consumer

search and market performance. Our main contribution is to consider a more general

form of information improvement and show that its impact is generally ambiguous. In

particular, a better information environment can cause higher market prices and harm

consumers even without a strategic platform. We adopt the search framework developed

in Wolinsky (1986) and Anderson and Renault (1999), and consider a large number of

sellers, each supplying a horizontally di¤erentiated product. When a consumer visits a

seller, she discovers both its product price and how well matched its product is. The

match utility is a random draw from some distribution. As we will discuss more later,

this framework has become a standard setup for studying many consumer search related

economic issues. We model information improvement by assuming that consumers face

a new match utility distribution which is greater than the original one in the sense of

�increasing convex order�. Two leading cases are when the match utility distribution

becomes higher in the sense of �rst-order stochastic dominance (FOSD) (e.g. when con-

sumers face more relevant products), or more dispersed in the sense of mean-preserving

spread (MPS) (e.g. when the inspection of each product becomes more informative).

We do not explicitly model strategic platforms in this paper. Instead we focus on an

exogenous change of the information environment and aim to understand its market

implications more deeply. Considering strategic platforms is certainly important, but

the additional insight from doing so also often depends on the modelling details such

as the platform market structure, the fee structure, and whether sellers and consumers

multihome or not.

We introduce the model and some preliminaries in Section 2. In Section 3 we

examine how improved information a¤ects consumer search behavior. We show that

consumers search longer if the distribution becomes more dispersed such that the ex-

pected bene�t from one more search becomes greater for a given level of the best match

utility so far in terms of percentile. This de�nes �excess wealth order�in the stochastic

order literature, a requirement stronger than MPS when the mean remains unchanged.

The information improvement modelled in the aforementioned existing works leads to a

less dispersed match utility distribution and so shorter searches, but this is not always

true for a general information improvement.
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In Section 4 we study how information improvement in�uences market price. We

show that �rms price lower if the new distribution is such that the expected bene�t

from one more search becomes greater for a given level of the best match utility so

far in terms of hazard rate. A change of the match utility distribution usually has

two opposite e¤ects on pricing. For example, if the reservation match utility in the

consumer search rule were �xed, �rms would like to raise their prices if the distribution

becomes higher in terms of hazard rate, but actually consumers set a higher reservation

match utility when the search pool is better, and this makes �rms want to lower their

price. In the existing works, a clear-cut price comparison result is available because

information improvement is modelled in a particular way so that the hazard rate of the

match utility distribution remains unchanged.

In Section 5 we investigate how improved information a¤ects consumer welfare.

Consumers bene�t from information improvement in our model if it lowers market

prices. More generally, we show that information improvement bene�ts consumers if

the new distribution is such that the expected bene�t from one more search becomes

greater for a given level of the best match utility so far in terms of virtual value (which

is the match utility minus the reciprocal of the hazard rate). However, it is possible

that information improvement in�ates the market price and consumers su¤er from that.

Simpler conditions for unambiguous impacts of information improvement are avail-

able in some special cases. For instance, when the search friction is su¢ ciently small,

we show that if information improvement does not change the maximum possible match

utility, then in both cases of FOSD and MPS the market price drops and consumers

both search less and are better o¤. Also, when the new distribution is a truncation of

the original one from below, information improvement bene�ts consumers regardless of

its impact on price (provided that the search market remains active).

Our model is built on the search framework developed in Wolinsky (1986) and

Anderson and Renault (1999).1 This framework has now become the workhorse model

for many recent works on consumer search. They include, for example, prominence

1The other well-known branch of the consumer search literature considers homogeneous products

and focuses on price search. The classic works include Diamond (1971), Varian (1980), Burdett and

Judd (1983), and Stahl (1989). However, the frameworks there are not suitable for studying product

information improvement which motivates this paper.
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and ordered search (e.g. Armstrong et al., 2009), attention-grabbing advertising (e.g.

Haan and Moraga-Gonzalez, 2011), product design and the long-tail phenomenon (e.g.

Bar-Isaac et al., 2012), multiproduct search and retail market structure (e.g. Zhou,

2014, and Rhodes and Zhou, 2019), price directed search (e.g. Choi et al., 2018), and

paid recommendation by intermediaries (e.g. Teh and Wright, 2020). Our paper o¤ers

a comparative static analysis of this classic setup with respect to the match utility

distribution, a question which is important in many applications but which has not

been studied systematically in the literature.2

As pointed out before, there are existing related works on information quality and

search markets. Eliaz and Spiegler (2011) study how a pro�t-maximizing search engine

controls the quality of the search pool. It is shown that the search engine has an in-

centive to encourage the entry of low-relevance �rms by using a low per-click fee. This

leads to longer searches and higher market prices. de Corniere (2016) investigates how

sellers or a search engine choose the degree of targeting in the context of search adver-

tising. He shows that targeting or an improved search pool makes consumers search less

but intensi�es price competition among sellers. The �nal market price, though, may

become higher because the per-click fee in�ates sellers�cost. Zhong (2020) studies how

an online retail platform chooses the match precision in personalized recommendation

in a search environment. He shows a similar result that a higher match precision leads

to more intense price competition among sellers (whenever consumer search remains

active).3 All these works are built on the Wolinsky framework or a close variant, but

they focus on a particular type of information quality change as detailed below.

2Section 4 in Anderson and Renault (1999) discusses how the degree of product di¤erentiation

a¤ects search and price competition. They consider the case with a �nite number of �rms and capture

the degree of product di¤erentiation by a multiplicative parameter in front of the match utility random

variable. Given their full-market coverage assumption, the change of product di¤erentiation is a special

case of the MPS relationship.
3If the precision is too high so that consumers never search beyond the �rst encountered seller, then

monopoly pricing will arise, similar to the Diamond (1971) paradox.
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2 The model

There is a continuum of �rms, each supplying a di¤erentiated product at a constant

marginal cost normalized to zero. There is a continuum of consumers, each having at

most a unit demand for one of the products. We normalize the measure of consumers

per �rm to one. Both �rms and consumers are risk neutral, and each consumer has a

zero outside option. In the benchmark case, a product�s match utility for a consumer,

denoted by XF , is a random draw from a distribution with CDF F (x) and support

[xF ; xF ]. The realization of XF is assumed to be i.i.d. across consumers and prod-

ucts. This implies that �rms are ex ante symmetric and consumers have idiosyncratic

preferences.

In the case with improved information consumers face a new match utility distri-

bution with CDF G(x). Let XG denote the associated new random variable, and let

[xG; xG] be its support.

Assumption 1 XG is greater than XF in the increasing convex order, i.e., E[ (XG)] �
E[ (XF )] for any increasing and convex function  whenever the expectations exist.

This essentially assumes that XG is higher or more dispersed than XF . Two leading

cases are: XG is an FOSD of XF (denoted by XG �FOSD XF ), or XG is an MPS of

XF (denoted by XG �MPS XF ).4 FOSD captures the scenario when the products in

a consumer�s search pool become more relevant to the consumer. MPS captures the

scenario when the inspection of each product becomes more informative so that the

distribution of the estimated match utility becomes more dispersed. Suppose both F

and G are di¤erentiable, and their associated densities are f and g, respectively.

An implicit assumption in our model is that the improved search pool (even after

some less relevant products are removed, for example) still has many products, and the

products still appear symmetric ex ante to consumers.

4See, for example, section 4.A in Shaked and Shanthikumar (2007) for a comprehensive discussion

of the increasing convex order. It implies that a risk-seeking decision maker prefers XG over XF . An

alternative de�nition is that there exists a random variable Y such that XG �FOSD Y �MPS XF or
XG �MPS Y �FOSD XF . Note that XG �FOSD XF if G(x) � F (x) for all x, and XG �MPS XF ifR x
�1G(~x)d~x �

R x
�1 F (~x)d~x for all x and the equality holds at x = maxfxF ; xGg.
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In either case, consumers initially have imperfect information about each product�s

match utility and price. They can, however, search sequentially to gather information:

by incurring a cost s > 0 a consumer can visit a �rm and discover both its match

utility and price. During the search process, consumers know the common match util-

ity distribution across products and hold a rational belief of �rms�pricing strategy.

Since there are no common shocks across �rms, we assume that upon observing an

o¤-equilibrium price in a �rm, consumers believe that the other �rms still adopt their

equilibrium pricing strategy. Firms set their prices simultaneously to maximize their

own pro�t given their rational expectation of consumer search behavior, and consumers

search optimally given the match utility distribution and their rational expectation of

�rms�pricing strategy. In either case we look for a symmetric equilibrium where all

�rms charge the same price and consumers search actively and randomly. Note that in

our setup with a continuum of symmetric �rms, consumers will never return to retrieve

a product inspected before, and so whether consumers have free recall or not does not

matter. We aim to investigate how an improved search pool with a new distribution G

a¤ects consumer search behavior, market price and consumer welfare.

In the following, we give a few examples which help connect our model with some

existing works.

(i) Quality control by search engines. Eliaz and Spiegler (2011) consider a variant

of the Wolinsky model where each product is either a match or not for a consumer,

and conditional on being a match its match utility is a random draw from a common

continuous distribution with CDF, say, �(x). Products di¤er in their quality, denoted

by q, in terms of their chance of being a match for a consumer, and the quality is

unobservable to consumers.5 The trade can take place only via a search engine which

can control the quality of �rms displayed to consumers by setting a per-click fee. Since

a higher-quality �rm is more willing to join, only the products with a quality above

a certain threshold, say, q̂ will join and so be displayed to consumers. Consumers

search in this pool sequentially and randomly, and when they encounter a matched

product they also immediately discover its match utility. This model di¤ers from ours

5This approach of modelling �rm quality heterogeneity in a search framework is from Chen and He

(2011). A similar framework has also been used to study, for example, targeted search and product

design in Yang (2013), and search and quality investment in Chen, Li, and Zhang (2020).
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as it has ex ante �rm heterogeneity, but its feature of binary match outcomes ensures

symmetric pricing across �rms, so that it is essentially the same as our model with

F (x) = E[1� q + q�(x)] and G(x) = E[1� q + q�(x)jq � q̂], where the expectation is

taken over q. Clearly here G is an FOSD of F .

(ii) Targeted search advertising. de Corniere (2016) considers a Salop circular model

where both a continuum of �rms/advertisers and a continuum of consumers are uni-

formly (but independently) distributed on the circle. In the benchmark, when a con-

sumer enters a query which reveals her taste location, the search engine displays all

the �rms randomly to her, and the consumer then conducts a sequential search in a

random order. This is a spatial version of the Wolinsky model (and it was developed

in Wolinsky, 1983). More precisely, since the disutility of buying a non-ideal product

is assumed to be weakly convex in the distance between the consumer�s taste location

and the product location, the model is equivalent to the Wolinsky model with a weakly

increasing match utility density function f (so that 1 � F is concave). de Corniere

is interested in the scenario where either the �rms or a search engine can control the

match precision. In particular, if a �rm chooses a match broadness d, it will appear

in a consumer�s search pool only if it is within the distance of d from the consumer�s

location. This is the same as the Wolinsky model with a truncated distribution where

a consumer sees a �rm only if its match utility is above a threshold, say, x̂. If all �rms

choose the same threshold or the search engine sets the same threshold for all �rms,

consumers infer that all the �rms in their search pool have a match utility distribution

with CDF

G(x) =
F (x)� F (x̂)

1� F (x̂)
:

Here G is also an FOSD of F .6

(iii) Filtering and elimination by aspects. Suppose each product has two attributes

and the match utility of a product for a consumer is X = X1+X2, where Xj is attribute

6Zhong (2020) studies a similar search design problem in the Wolinsky model. He assumes that

personalized recommendations lead to a truncated distribution. More generally we can consider a

targeting or recommendation technology by which the platform sees a signal of each product�s match

utility for a consumer and only displays to the consumer the products with a signal above a certain

threshold. When the signal has the standard monotone likelihood ratio property, the distribution of

the expected match utility of the displayed products is an FOSD of the original distribution.

8



j�s match utility. Suppose X1 and X2 are independent of each other, and let Fj be the

CDF of Xj. A popular heuristic decision rule studied in psychology and behavioral

economics is �elimination by aspects� (e.g. Tversky, 1972). Suppose consumers are

able to �lter products (e.g. via a product comparison website) according to attribute 1

and only consider those with X1 > x̂1. Then all the products in the consumer�s search

pool have a match utility distribution

G(x) =

Z
F1(x� x2)� F1(x̂1)

1� F1(x̂1)
dF2(x2) =

F (x)� F1(x̂1)

1� F1(x̂1)
:

Here again G is an FOSD of F .

(iv) More informative product inspection. Suppose that when a consumer inspects a

product, she learns a signal of the true match utility which is distributed according to a

CDF �(x). The signal perfectly reveals the true match utility with probability � and is

a pure noise (e.g. a random draw from �(x) independent of the true match utility) with

probability 1 � �. Then conditional on a signal realization ~s, the consumer�s estimate

of the match utility is �~s + (1 � �)�, where � is the mean of the true match utility.

Suppose the inspection becomes more informative in the sense that the signal precision

rises from �F to �G > �F (e.g. because a platform starts o¤ering customer reviews or

introducing VR shopping). This �ts our model with

F (x) = �

�
x� (1� �F )�

�F

�
and G(x) = �

�
x� (1� �G)�

�G

�
:

In this example G is an MPS of F . Note that this MPS relationship remains true more

generally whenever the signal becomes more informative in the Blackwell sense.

In sum, in examples (i)-(iii) information improvement leads to a more �selective�

(random) search pool, and in example (iv) information improvement leads to a more

�informative�(random) search pool.

For convenience, for a random variable X with CDF H(x), we write

E[(X � u)+] �
Z x

x

maxf0; x� ugdH(x) =
Z x

u

[1�H(x)]dx ; (1)

where the second equality is from integration by parts. This expression captures the

expected bene�t from an additional search when the match utility distribution is H

and the best match utility so far is u. We call the price which maximizes p[1 �H(p)]

the standard monopoly price associated with the match utility distribution H.
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For our analysis below we make the following technical assumptions:

Assumption 2 Both 1�F and 1�G are �1-concave (i.e., both 1=(1�F ) and 1=(1�G)
are convex), and the search cost s is less than mini=F;G E[(Xi� pMi )+], where pMi is the

standard monopoly price associated with distribution i.

It is ready to check that the assumption of �1-concavity is equivalent to both x �
1�F (x)
f(x)

and x � 1�G(x)
g(x)

being increasing functions. As we will see, this ensures that

the equilibrium price in each case is determined by the �rst-order condition. Notice

also that the �1-concavity condition is weaker than the often assumed condition in
the literature that 1 � F and 1 � G are log-concave (or equivalently their hazard rate

functions are increasing),7 and it is satis�ed by many often-used distributions. As we

will explain later, the search cost condition ensures an active search market in each

case.

2.1 Some preliminaries

We now characterize the equilibrium in the case of distribution F . (The analysis for

the case of G is analogous.) Let pF denote the symmetric equilibrium price, and let rF

denote the reservation match utility which uniquely solves

E[(XF � rF )+] =

Z xF

rF

[1� F (x)]dx = s : (2)

When �rms charge the same price, a consumer will then cease her search if and only if

the best match utility so far is greater than rF . Note that rF is interior (i.e. rF > xF )

under our search-cost assumption, and so some consumers will search beyond the �rst

encountered �rm.

It is convenient to denote by

�F � F (rF )

the probability that in equilibrium a consumer will continue to search after visiting a

�rm. We call it the �search propensity�. By changing the variable in (2) from x to

7Log-concavity is 0-concavity, and �-concavity is more stringent than �0-concavity when � > �0.

See, e.g., Caplin and Nalebu¤ (1991) for the concept of �-concavity.
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t = F (x), we can also de�ne the search propensity as the solution toZ 1

�F

1� t

f(F�1(t))
dt = s : (3)

Suppose now that a �rm unilaterally deviates to price p. If a consumer comes to

visit it, she will stop searching and buy its product immediately if its match utility is

such that XF �p > rF �pF , where the latter is the continuation surplus if the consumer
chooses to search on (which is also the equilibrium consumer surplus). Hence, the �rm�s

deviation pro�t will be proportional to p[1� F (rF � pF + p)]. In equilibrium the �rm

should have no incentive to deviate, which requires

pF =
1� F (rF )

f(rF )
: (4)

This �rst-order condition is also su¢ cient for de�ning the equilibrium price when 1�F
is �1-concave.8 We can also express pF as a function of search propensity:

pF =
1� �F

f(F�1(�F ))
: (5)

Both expressions (4) and (5) for pF will be useful in the subsequent analysis.

Consumers are willing to participate into the market if rF � pF > 0, or equivalently
if rF � 1�F (rF )

f(rF )
> 0. Since the standard monopoly price pMF solves p = 1�F (p)

f(p)
, this

is equivalent to rF > pMF given the �1-concavity assumption. Therefore, from the

de�nition of rF we know that the primitive condition for an active market is s <

E[(XF � pMF )+], where the right-hand side is the consumer surplus in the monopoly

case.9 This is the search cost condition stated in Assumption 2. In this range of

search costs, when s increases, the reservation match utility rF becomes smaller and so

does the search propensity. This increases the price if the hazard rate function f
1�F is

increasing (or if 1�F is log-concave), but decreases the price if the hazard rate function
is decreasing (or if 1 � F is log-convex). Under the �1-concavity condition, however,
an increase of s always lowers consumer surplus rF � pF , regardless of how price varies.

8When 1� F is �1-concave, x� 1�F (x)
f(x) is an increasing function, and then it is easy to check that

a �rm�s pro�t is single-peaked at p = pF .
9When s is above this threshold, there will be no equilibrium with an active market. One way to

avoid that uninteresting outcome is to assume that the �rst search is free. In that case, consumers will

always buy from the �rst �rm they encounter and each �rm charges the monopoly price pMF .
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An analogous analysis for the case of G applies when s < E[(XG � pMG )+]. In

particular, the reservation match utility rG in the new case solves E[(XG � rG)+] = s

and the search propensity is �G � G(rG). Then the new market price is

pG =
1�G(rG)

g(rG)
=

1� �G
g(G�1(�G))

: (6)

3 Consumer search behavior

We �rst examine how information improvement a¤ects consumer search behavior and

in particular consumer search duration. Search duration is often the only observable

related to consumer search behavior, and is also relevant to platform design if a platform,

say, a search engine makes money from charging �rms per-click fees.

Given XG is greater than XF in the increasing convex order, we have

E[(XG � u)+] � E[(XF � u)+] for any u (7)

since (X � u)+ is an increasing and convex function of X.10 That is, for any given

best match utility so far, the expected bene�t from one more search is greater in the

case of G than in the case of F . From the de�nition of rF and rG, it is immediate that

consumers become choosier and set a higher reservation match utility in the case of G

(i.e., rF � rG).

This, however, does not mean that consumers necessarily search longer in the case

of G since the distribution changes at the same time. For example, when G is higher

than F in the sense of FOSD, consumers are also more able to �nd a high match utility

at each �rm. More precisely, the (expected) consumer search duration is determined

by the search propensity:

lF �
1

1� �F
and lG �

1

1� �G
; (8)

but how an information improvement a¤ects the search propensity is not clear. The

following result reports conditions for a clear-cut comparison of search duration.

10In fact (7) is an alternative de�nition of the increasing convex order, as any increasing convex

function can be approximated by a linear combination of (X � u)+ with di¤erent u�s.
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Proposition 1 (i) Consumers search longer in search pool G (i.e. lF � lG) if XG is

greater than XF in the �excess wealth order�, i.e. if

E[(XG �G�1(�))+] � E[(XF � F�1(�))+] for any � 2 (0; 1) . (9)

(ii) Suppose both f(xF ) and g(xG) are strictly positive. Then there exists ŝ such that

for s < ŝ, consumers search longer in search pool G if and only if g(xG) < f(xF ).

The �rst result is ready to see from the de�nition of search propensity. From (3)

and its counterpart for G, we haveZ 1

�F

1� t

f(F�1(t))
dt =

Z 1

�G

1� t

g(G�1(t))
dt :

Then �F � �G (i.e. consumers search longer in the case of G) ifZ 1

�

1� t

f(F�1(t))
dt �

Z 1

�

1� t

g(G�1(t))
dt (10)

for any � 2 (0; 1). This is equivalent to (9) by changing variable from x to t = F (x) or

G(x). The second result is proved in the appendix.

A result similar to result (i) has been shown in Chateauneuf, Cohen and Meilijson

(2004) (see its section 2.3.4). Excess wealth order is one way to compare the degree

of variability of two random variables. It is location-free as only percentiles matter.11

Notice that E[(XF �F�1(�))+] is the expected bene�t from one more search in the case
of F when the best match utility so far has reached the 100�th percentile. So (9) means

that when the best match utility so far has reached a given percentile, the consumer

has a higher incentive to search in the case of G than in the case of F . When XF and

XG have the same mean, excess wealth order implies MPS, the more familiar concept

for comparing dispersion.12 But MPS is not su¢ cient for a clear-cut comparison result

11See Section 3.C in Shaked and Shanthikumar (2007) for a comprehensive discussion of the excess

wealth order.
12When two random variables have the same mean, excess wealth order therefore implies increasing

convex order. This, however, may not be true if they have di¤erent means. For example, suppose XF

is uniform on [0; 1] and XG is uniform on [k; 1] with k 2 (0; 1). It is easy to verify that XF is greater
than XG in the excess wealth order (i.e. XF is more dispersed), but XG is clearly greater than XF in

the increasing convex order since XG �FOSD XF .
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concerning search duration.13

Result (ii) is intuitive to understand. When s is close to zero, consumers will cease

their search only if they �nd a match utility close to the upper bound of the distribution.

Then basically the density of match utility at the upper bound determines the likelihood

of ceasing search. If F and G share the same upper bound x, both FOSD and MPS

imply that G(x) � F (x) for x close to x and so g(x) � f(x). Therefore, result (ii)

implies that G will induce consumers to search less when the search friction is small.

A su¢ cient condition for (9) or (10) is f(F�1(t)) � g(G�1(t)). One can check this

is equivalent to that G�1(t)�F�1(t) increases in t, i.e., the quantile di¤erence between
XG and XF increases in t. This is the de�nition of XG being greater than XF in the

�dispersive order�.14 Then we have the following result:

Corollary 1 Consumers search longer in search pool G (i.e. lF � lG) if XG is greater

than XF in the �dispersive order�(i.e. if G�1(t)� F�1(t) increases in t).

A similar result is also shown in Choi and Smith (2019). Dispersive order is another

way to compare dispersion. It is a stronger requirement than excess wealth order but

is also easier to check. One special case of dispersive order is that �X + � is greater

than X in dispersive order for any constant � whenever � � 1. This implies, for

example, that if both F and G are normal distributions, consumers search longer in G

if it has a greater variance. (The way how Anderson and Renault, 1999, model product

di¤erentiation also belongs to this dispersive order relationship.)

We now discuss whether consumers search longer or shorter in the four examples

introduced before. In the �rst three examples, it can be shown that G is smaller

(greater) than F in the dispersive order if 1 � F is log-concave (log-convex), while in

13Here is one counterexample: Suppose F has a triangle density on [0; 1] (i.e. F (x) = 2x2 for

x 2 [0; 12 ] and 1 � 2(1 � x)
2 for x 2 [ 12 ; 1]). Suppose G is the uniform distribution on [0; 1] and so it

is an MPS of F . When s < 1
12 , one can check that rF = 1 � ( 32s)

1=3 and rG = 1 � (2s)1=2. Then
lF = [2(1� rF )2]�1 < lG = [1� rG]�1 if and only if s > 1

81 . In other words, whether consumers search

longer or not in the case of G depends on the magnitude of the search cost.
14Dispersive order has been used to study various economics problems. See, for example, Ganuza

and Penalva (2010) for its application in information disclosure in auctions, Zhou (2017) and Choi,

Dai, and Kim (2018) for its application in oligopolistic competition.
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the fourth example, G is always greater than F in the dispersive order. Hence, we have

the following result. (All omitted proofs can be found in the appendix.)

Corollary 2 In examples (i)-(iii), consumers search shorter in search pool G if 1� F
is log-concave and longer if 1 � F is log-convex. In example (iv), consumers always

search longer in search pool G.

One implication of Corollary 2 is that if a platform such as a search engine aims to

maximize consumer search duration (e.g. because it makes money from per-click fees),

it has an incentive to make the search pool more �informative�as in example (iv), but

not more �selective�as in examples (i)-(iii) if the match utility distribution is regular

in terms of log-concavity.

4 Market price

We now examine how information improvement a¤ects the market price. (Pro�t com-

parison is the same as price comparison since pro�t is proportional to price in our

model given all consumers buy in equilibrium.) In our model each �rm acts as a lo-

cal monopolist facing consumers who regard the continuation value of search as their

outside option. As we have seen, the equilibrium price is the reciprocal hazard rate

of the match utility distribution (which re�ects the demand composition) evaluated at

the reservation match utility (which captures consumer search incentive). A change of

the match utility distribution often has opposite e¤ects on these two components. For

example, suppose information improvement leads to a higher distribution in terms of

hazard rate (i.e. g(x)
1�G(x) �

f(x)
1�F (x)). From (4) it is ready to see that this increases the

market price for a given reservation match utility. However, as this improvement is a

case of FOSD, we also have rG � rF and this is an opposite force to lower the mar-

ket price if the hazard rate functions are increasing. The price expression in (5) helps

illustrate a similar trade-o¤ when information improvement leads to a more dispersed

distribution in terms of dispersive order (i.e. g(G�1(t)) � f(F�1(t))). This increases

the price for a given search propensity, but as this change induces a greater search

propensity as shown in Corollary 1, there is also an opposite force to lower the price if
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the hazard rate functions are increasing.15 For this reason, it is often hard to obtain a

clear-cut result on how a change of the match utility distribution a¤ects price in the

Wolinsky model.

The following result reports conditions for an unambiguous price comparison result.

For convenience, let

�F (x) �
1� F (x)

f(x)
and �G(x) �

1�G(x)

g(x)

be the reciprocal hazard rate in the case of F and G, respectively. They are decreasing

(increasing) functions if and only if 1� F and 1�G are log-concave (log-convex).

Proposition 2 (i) Suppose both of the reciprocal hazard rates �F and �G are monotonic.

Price is higher in search pool G (i.e. pF � pG) if

E[(XG � ��1G (p))+] � E[(XF � ��1F (p))+] for any p (11)

and at least one of the reciprocal hazard rates is decreasing. The opposite is true if one

of the two conditions is reversed.

(ii) Suppose both f(xF ) and g(xG) are strictly positive. Then there exists ŝ such that

for s < ŝ, price is higher in search pool G if and only if g(xG) < f(xF ).

Notice that E[(XF � ��1F (p))+] is the expected bene�t from one more search in the

case of F when the best match utility so far has reached a certain level in terms of hazard

rate. There are no existing stochastic order concepts which imply (11). A simple case

where the opposite of (11) holds is when information improvement does not change the

hazard rate of the match utility distribution (which is true in examples (i)-(iii) as we

show below). The second result for a small s is intuitive. When the search friction is

small, consumers will not stop searching until �nding an almost perfect match. In other

words, for each �rm their marginal consumers have a match utility close to the upper

bound. The density of these marginal consumers essentially determines �rms�pricing

incentive.

The second result has two implications: First, together with result (ii) in Proposition

1, we can conclude that when s is small, search duration and price move in the same

15In these two cases, if the hazard rate functions are decreasing, then the two forces work in the

same direction and the market price will increase.
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direction, which is opposite to the usual intuition from search models that price is

higher (lower) when consumers search less (more). Intuitively, when the match utility

distribution becomes, for example, more concentrated around the upper bound, it is as

if products become less di¤erentiated. This induces consumers to search less, but at

the same time price competition is intensi�ed.16 (This is not always true if the search

cost is not small.) Second, if F and G share the same upper bound x, both FOSD

and MPS imply g(x) � f(x), and so when s is small, G must induce a lower market

price. However, when F and G have di¤erent upper bounds (e.g. in example (iv)), the

outcome can be reversed as shown in the corollary below.

Corollary 3 In examples (i)-(iii), price and pro�t are lower in search pool G if 1� F
is log-concave and higher if 1 � F is log-convex. In example (iv), price and pro�t are

higher in search pool G at least when the search cost is su¢ ciently small.

In examples (i)-(iii), G(x) = kF (x) + 1� k for x in the support of G, where k > 1

is a constant. Then

1�G(x)

g(x)
=
k(1� F (x))

kf(x)
=
1� F (x)

f(x)
;

i.e. the two distributions have the same hazard rate. This special property leads to

a clear-cut price and pro�t comparison result given rG � rF .17 When this property

does not hold, however, information improvement with XG �FOSD XF can induce a

higher market price even in the regular case with log-concavity. For example, consider

F (x) = x and G(x) = x10. One can check, for instance, when s = 0:1, we have

pG � 0:52 > pF � 0:45. (But given g(1) > f(1) > 0 in this example, price must go

down with G if the search cost is su¢ ciently small.)

16A related observation is that if G induces a higher price for any permitted s, it must also induce

consumers to search longer. To see that, notice that di¤erentiating both (3) and its counterpart for

�G with respect to s yields pF (�d�F
ds ) = pG(�

d�G
ds ) = 1, and so pF � pG implies �

d�G
ds � �d�F

ds . Since

�F = �G = 1 at s = 0 and both decrease in s, this leads to �G � �F and so search duration is longer
in the case of G for any permitted s.
17Note that when 1 � F is log-convex, it must be the case that f(xF ) = 0 and so result (ii) in

Proposition 2 does not apply. Thus, the result that price rises in the case of G in the �rst three

examples does not contradict with Proposition 2.
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In example (iv), G is an MPS of F with a broader support. We have xi = �ix+(1�
�i)�, and so g(xG) = �(x)=�G < f(xF ) = �(x)=�F , where � is the density function of �.

The result when s is small then follows from result (ii) in Proposition 2. (This is opposite

to the case when G is an MPS of F and they share the same upper bound.) The same

result can hold even for a larger search cost. Consider the uniform example with �(x) =

x. Then when the signal precision is �, the CDF is 1
�

�
x� 1��

2

�
and it has support

[1��
2
; 1+�
2
]. One can check that the reservation match utility is 1

2
(1 + �)�

p
2�s and the

equilibrium price is
p
2�s when s < minf �

2
; (1+�)

2

32�
g (which is required by Assumption

1). Therefore, in this example price always increases as information improves as long

as the search market is active.

If a platform such as a product comparison website aims to maximize industry pro�t

(e.g. because it earns a percentage of sellers�pro�t by charging commission fees), it

has no incentive to make the search pool more �selective�as in examples (i)-(iii) when

the distribution is regular,18 but often has an incentive to make the search pool more

�informative�as in example (iv).

5 Consumer surplus

In our setup total welfare is simply the reservation match utility. Hence, information

improvement must enhance total welfare when G is greater than F in the increasing

convex order. Given consumer surplus equals the reservation match utility minus price,

information improvement must also bene�t consumers if it induces a lower price.

More generally, let us de�ne two �virtual value�functions:

�F (x) � x� 1� F (x)

f(x)
and �G(x) � x� 1�G(x)

g(x)
:

Then consumer surplus is �F (rF ) and �G(rG), respectively. (Recall that both of the

� functions are increasing given the �1-concavity assumption.) Similar results as in
Proposition 2 follow if we replace the � functions there by the � functions.

18Notice, however, that the market is fully covered in our model due to the existence of an in�nite

number of �rms, so the potential e¤ect of information improvement on consumer participation is

ignored.
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Proposition 3 (i) Consumers are better o¤ in search pool G if

E[(XG � ��1G (v))+] � E[(XF � ��1F (v))+] for any v : (12)

(ii) Suppose both f(xF ) and g(xG) are strictly positive. Then there exists ŝ such that

for s < ŝ, consumers are better o¤ in search pool G if and only if

xG � 2
s

2s

g(xG)
> xF � 2

s
2s

f(xF )
:

Note that E[(XF � ��1F (v))+] is the expected bene�t from one more search in the

case of F when the best match utility so far has reached a given level in terms of the

virtual value �(x). There are no existing stochastic order concepts which imply (12).

As in the case of price comparison, a simple case where (12) holds is when information

improvement does not change the hazard rate. Result (ii) follows immediately from the

proofs of result (ii) in both Proposition 1 and Proposition 2. It implies that when the

search cost is small and both F and G have the same upper bound, consumer surplus

comparison is simply the reverse of price comparison. However, the outcome can be

very di¤erent if F and G have di¤erent upper bounds. For instance, in example (iv)

information improvement can enhance both pro�t and consumer surplus.

Corollary 4 In examples (i)-(iii), consumers are better o¤ in search pool G. In ex-

ample (iv), consumers are better o¤ in search pool G at least when the search cost is

su¢ ciently small.

In examples (i)-(iii), we have known that 1�F (x)
f(x)

= 1�G(x)
g(x)

. Then �F (x) = �G(x) and

so consumers must bene�t from information improvement given rF � rG and �F (x) is

increasing. This is true regardless of how information improvement a¤ects the price.

In example (iv), when s � 0 one can check that consumer surplus with signal

precision � is approximately �x+(1� �)�� 2
p
2s��(x). This is increasing in � when s

is small. This result, however, is not robust to a larger s. Consider the uniform example

with �(x) = x. Following the analysis before, one can check that consumer surplus in

this example, when the signal precision is �, is 1
2
(1 + �) � 2

p
2�s, which increases in

� if and only if s < �
8
. Recall that our solution is valid when s < minf �

2
; (1+�)

2

32�
g, and

this search cost cap is greater than �
8
for any �. Therefore, in this example, starting
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from any � improving information bene�ts consumers if s � �
8
but harms consumers if

�
8
< s < minf �

2
; (1+�)

2

32�
g. That is, the negative price e¤ect dominates when the search

cost is relatively high.

One implication of Corollary 4 is that if a platform aims to improve consumer

surplus (e.g. because it faces strong competition from other platforms), it has an

incentive to make the search pool more �selective� as in examples (i)-(iii) and also

more �informative�as in example (iv) at least when the search cost is small.

6 Conclusion

This paper has studied how product information improvement a¤ects consumer search

duration, market price, and consumer welfare. Although in general the impact on each

variable can go either direction, we have derived conditions for an unambiguous assess-

ment. In particular, we show that when the search friction is small, search duration and

market price tend to move in the same direction, and information improvement bene�ts

consumers if it does not change the maximum possible match utility. Our setup also

provides a uni�ed perspective to consider various types of information improvement

which have been separately studied in the literature. This paper regards the infor-

mation improvement as exogenous. In practice, however, information improvement is

often strategically chosen by �rms or information platforms. This lack of endogenous

information in our model clearly limits the relevance of our welfare assessments.

There are other possible ways to model improved information in a search market. For

example, Anderson and Renault (2000) model information improvement by assuming

that in the Wolinsky model some consumers become informed (i.e. they know the match

utilities of all the products) before search. Since these consumers have no incentives

to search beyond the best matched product which they already know, their presence

relaxes price competition and harms other uninformed consumers. This is similar as

making some consumers informed of their best matched products (e.g. due to a perfect

personalized recommendation). If all consumers are informed of their best matched

products, then they will not search beyond the recommended product, and due to

Diamond (1971)�s argument each �rm will act as a monopolist conditional on being the
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best matched supplier.19 A more general approach is to assume that consumers are

informed of several top matched products (but without their ranking). Since the top

matched products have an improved conditional match utility distribution, the situation

is similar to the FOSD case in this paper. There is an extra complication, however, when

the total number of �rms is �nite: the (conditional) match utilities of the top products

are correlated and this causes signi�cant complexity in the demand analysis.20 It is also

possible to consider information design in a search market. For example, Dogan and Hu

(2019) consider the same search framework and study how informative the inspection

of each product should be if we want to maximize consumer surplus. This is related

to example (iv) in Section 2 if we allow for a general signal structure. More broadly,

information design in a search market can consider not only the informativeness of

each product inspection, but also the disclosure of relative valuations across products,

and even the control of which sellers to display to consumers in the spirit of Eliaz and

Spiegler (2011) and de Corniere (2016).

Appendix

Proof of Proposition 1: Here we prove result (ii). It su¢ ces to show the result when

s � 0. Recall that �F solves
R 1
�F

1�t
f(F�1(t))dt = s. When s is close to zero, �F is close

to 1. Using the (second-order) Taylor expansion and f(F�1(1)) = f(xF ) > 0, we can

approximate the integral term on the left-hand side as 1
2
(�F � 1)2=f(xF ). Then

1� �F �
p
2sf(xF ) : (13)

19More precisely each �rm will act a multiproduct monopolist which sells all the products in the

market. With an in�nite number of �rms, this will lead to a price equal to the maximum match utility

and so the market will collapse unless the �rst search is free. The outcome, however, will be very

di¤erent if each consumer is informed of the product with the highest surplus (i.e. match utility minus

price). In that case the outcome will be the same as in the perfect information case. See, e.g., Teh

and Wright (2020) for a model of recommendation with consumer search in this vein.
20A tractable case is studied in Burguet and Petrikaite (2019). They consider targeted advertising

in the Wolinsky model with a �nite number of �rms. They assume that each �rm sends their ads only

to the consumers who regard their product as one of the top two products, and consumers search only

among the products from which they receive ads.
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Similarly, one can derive 1� �G �
p
2sg(xG) when s is close to zero. Then the desired

result follows immediately.

Proof of Corollary 2: We use the dispersive order result in Corollary 1 to prove this

result. In examples (i)-(iii) we have

G(x) = kF (x) + 1� k (14)

for x in the support of G, where k > 1 is a constant. Then

G�1(t) = F�1(1� 1� t

k
) (15)

for any t 2 (0; 1). One can check that F�1(t) � G�1(t) increases in t if kf(G�1(t)) >

f(F�1(t)) for k > 1, and otherwise decreases in t. Notice that kf(G�1(t)) = f(F�1(t))

at k = 1, and one can check that the derivative of kf(G�1(t)) with respect to k is

f(z) + k
f 0(z)

f(z)

1� t

k2
= f(z) +

f 0(z)

f(z)
[1� F (z)] ; (16)

where z = G�1(t) and the equality used (15). When 1 � F is log-concave, we have

f 2+(1�F )f 0 � 0 and so (16) is positive. Then F�1(t)�G�1(t) increases in t and so F
is greater than G in the dispersive order. The opposite is true if 1� F is log-convex.21

In example (iv),XG can be written as kXF+(1�k)�, where k = E[�j� � �̂]=E[�] > 1.

Since dispersive order is location-free, XG is greater than XF in dispersive order and

so consumers search longer in the case of G.

Proof of Proposition 2: (i) It is more convenient to prove this result by using the

price expression with the reservation match utility. Suppose �F (x) is decreasing. Since

pF = �F (rF ) and pG = �G(rG) and both �F (�) and �G(�) are monotonic functions, the
de�nitions of rF and rG imply that

E[(XG � ��1G (pG))+] = E[(XF � ��1F (pF ))+] :

21One may wonder, given F�1(t) � G�1(t) < 0 in the examples (i)-(iii) and F�1(1) � G�1(1) = 0
(if the upper bound of the distribution support is �nite), how F�1(t) � G�1(t) can be decreasing in
t. Notice, however, that the log-convexity of 1 � F requires the support of the distribution have an

in�nite upper bound, in which case limt!1[F
�1(t)�G�1(t)] should be �1.
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On the other hand, letting p = pG in (11) yields

E[(XG � ��1G (pG))+] � E[(XF � ��1F (pG))+] :

Then we have

E[(XF � ��1F (pF ))+] � E[(XF � ��1F (pG))+]

or equivalently ��1F (pF ) � ��1F (pG). This implies pF � pG given �F (x) is decreasing. (If

�G(x) is decreasing, a similar argument applies by letting p = pF in (11).)

(ii) It su¢ ces to prove the result when s � 0. Notice that when � is close to 1 and
f(xF ) > 0, we have

1� �

f(F�1(�))
� 1� �

f(xF )

by using the Taylor expansion. This, together with (13), implies that when s is close

to zero, we have

pF =
1� �F

f(F�1(�F ))
�
s

2s

f(xF )
:

Similarly,

pG �
s

2s

g(xG)
:

Then the desired result follows.
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