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Abstract

Spatial autoregressive (SAR) and related models offer flexible yet parsimonious ways to
model spatial or network interaction. SAR specifications typically rely on a particular
parametric functional form and an exogenous choice of the so-called spatial weight matrix
with only limited guidance from theory in making these specifications. The choice of a
SAR model over other alternatives, such as spatial Durbin (SD) or spatial lagged X (SLX)
models, is often arbitrary, raising issues of potential specification error. To address such
issues, this paper develops an omnibus specification test within the SAR framework that
can detect general forms of misspecification including that of the spatial weight matrix,
functional form and the model itself. The approach extends the framework of conditional
moment testing of Bierens (1982, 1990) to the general spatial setting. We derive the
asymptotic distribution of our test statistic under the null hypothesis of correct SAR
specification and show consistency of the test. A Monte Carlo study is conducted to
study finite sample performance of the test. An empirical illustration on the performance
of our test in the modelling of tax competition in Finland and Switzerland is included.
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1 Introduction

The past two decades have seen a remarkable surge in both the theoretical and empirical lit-

eratures on the class of spatial econometric models known as spatial autoregressions (SARs,

henceforth). These models were first suggested by Cliff and Ord (1968) and have since

been widely extended in directions to suit applied research. In their various specifications,

SAR models are typically characterized by parsimonious and intuitive functional forms that

employ exogenously assigned weight matrices intended to capture the structure of spatial

dependence between units up to a finite number of unknown parameters. Much of theoretical

literature has focused on parameter estimation in these models. Standard methods, such as

instrumental variables/two-stage least squares (e.g. Kelejian and Prucha (1998)), Gaussian

maximum likelihood/quasi-maximum likelihood estimation (e.g. Ord (1975) and Lee (2004))

and generalized methods of moments (e.g. Kelejian and Prucha (1999) and Lee (2007)) have

been developed to address the endogeneities inherent in SAR specifications and extended to

accommodate increasingly more complex models and data structures. At the same time, a

large body of the literature has focused on the derivation of the asymptotic theory of various

tests for lack of spatial correlation and/or for joint significance of the model parameters.

These tests have employed common approaches such as Wald, Lagrange Multiplier or Like-

lihood Ratio methods in the spatial setting. Among many others, see Burridge (1980), Cliff

and Ord (1981), Kelejian and Prucha (2001), Anselin (2001), Robinson (2008), Lee and Yu

(2012), Martellosio (2012) and Delgado and Robinson (2015).

More general specification assessment, in addition to significance testing, is of obvious

importance in this class of models, more especially in view of the extensive use of exogenously

chosen weight matrices and alternative model forms. Detection of misspecification in one pre-

specified aspect of the model while assuming the remainder of the model is correctly chosen

has often been considered in the literature. For instance Baltagi and Li (2001) offer a test

for the correct specification of a (log-) linear functional form in spatial error models against

the alternative of a Box-Cox transformation. Su and Qu (2016) extend the nonparametric

testing procedure of Fan and Li (1996) to spatial data in order to test for correct linear

functional form specification in the SAR model. Further, by means of Lagrange Multiplier

statistics, Anselin (2001) developed tests to detect misspecification arising from different types

of spatial error correlation. A general development of limit theory for this kind of residual-

based procedure that includes tests for covariance structures in SAR models as special cases

has been developed in Robinson (2008). Also, Delgado and Robinson (2015) offer a testing

procedure to discriminate non-nested models for covariance structures that can accommodate

spatial, spatio-temporal, or panel data structures. More recently, Gupta and Qu (2020)

derive a test of correct specification of the regression functional form while allowing for cross-
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sectional correlation in the error term by means of series estimation of a nonparametric

regression function. The Gupta and Qu (2020) approach includes the work of Su and Qu

(2017) on regression specification testing as a special case.

The aforementioned testing approaches enjoy favorable large and small sample properties

including good power if the practitioner has prior information about the components of the

model structure that are most likely subject to misspecification. But these methods typically

do not deliver a general methodology in the absence of such information. In addition, and

possibly more importantly, the aforementioned research does not offer a general approach to

testing the specific network dependence structure, which limits the scope for practical use in

light of the common use of an exogenously chosen weight matrix. To illustrate the possible

implications, consider a simple Lagrange Multiplier test to detect a spatial component that

might take the form of a spatial lag of the dependent variable or a spatial error structure. In

cases where the weight structure of dependence is misspecified, the practitioner might expect

the test to retain correct size, but test power is likely to be adversely affected because the

focus of the test is not directed at the real source of misspecification.

A more direct approach to tackle the choice of the weight matrix in spatial models has

been adopted by Beenstock and Felsenstein (2012), who use the sample covariance matrix

of the data to infer the network structure in a panel context. Although promising, this

approach is inevitably affected by dimension and suffers from bias when the number of sample

units has the same order of magnitude as the number of the time periods. Taking another

promising high-dimensional approach, Lam and Souza (2015, 2020) suggest estimating the

most effective weighting structure via LASSO procedures, by combining information from

multiple specifications. This approach may be employed as a useful implicit test of specific

weight structures.

In order to remedy concerns regarding the choice of a network weight matrix while avoid-

ing the challenging task of estimating high-dimensional structures, a relatively narrow branch

of the spatial econometric literature has focused on offering model selection procedures be-

tween competing models. Along these lines, Kelejian (2008) and Kelejian and Piras (2011,

2016) provide increasingly more general J-type tests which can be used to select among com-

peting choices of weight matrices in SAR models with spatially correlated errors (SARAR).

Kelejian’s (2008) procedure has been extended in Debarsy and Ertur (2019) to allow for

unknown heteroscedasticity in the error terms. A selection strategy for the correct network

structure has also been suggested by Bailey et al. (2016), who employ multiple testing to de-

duce nullity, positivity or negativity of the elements of a weight matrix, while Liu and Prucha

(2018) generalize the well-known Moran I statistic to test whether a linear combination of

pre-specified weight matrices suitably describes the data within a given spatial autoregres-

sion. Even more recently, Liu and Lee (2019) offer a more general method that chooses
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between two specifications within/between SARAR or matrix exponential spatial specifica-

tion (MESS), that can be nested or non-nested. That approach relies on a likelihood-ratio

test in the spirit of Vuong (1989) and, importantly, allows both of the competing models to

be misspecified under the null. The limit theory in Liu and Lee (2019) is derived under the

assumptions of Near Epoch Dependence (Jenish and Prucha (2009, 2012)), which limits the

scope of application to data that have a geographical interpretation and dependence that can

be defined in terms of a decreasing function of distance between observations. Accordingly,

it is not directly applicable when ‘space’ is defined according to a more general notion of

economic distance (e.g. Case (1991) and Pinske et al. (2002), among others).

The goal of the present paper is to complement the above approaches by developing an

omnibus test procedure that can detect quite general forms of misspecification related to the

model, the weight matrix and the functional form for the SAR model. The approach we adopt

is in the spirit of the Bierens (1990) conditional moment tests. The literature on consistent

conditional moment tests has been widely explored starting in the 1980s (Bierens, 1982;

Newey, 1985) and relying on orthogonality condition tests that date back to Ramsey (1969).

Under the null hypothesis of correct specification of the regression function, the moment

condition(s) holds with probability one, while consistency against general misspecification

is achieved by means of a set of weighting functions that depend on some real parameter.

The idea of consistent conditional moment tests in Bierens (1982) was originally developed

for data that are independent and identically distributed but it has been extended to time

series models in Bierens (1984, 1988), de Jong (1996) and, more recently, to non-stationary

models in Kasparis (2010). Bierens (1990) suggests a particularly appealing procedure as

the resulting test statistic has a standard limiting distribution under the null hypothesis and

does not require randomization to achieve consistency, as opposed to Bierens (1982). In this

paper we extend the Bierens (1990) test to the spatial setting, characterized by the fact that

individual outcomes are influenced not only by their own individual characteristics but also

by the characteristics of their neighbours. An extra challenge in the spatial model setup and

limit theory is the fact that the regression function is heterogeneous across individuals.

In our development we assume a SAR structure with spatial dependence as a spatial

lag since it is a significant base model of interest in the spatial literature and the kernel of

many more general formulations. Our conditional moment testing approach, with individual

outcomes depending on neighbour outcomes and heterogeneous regression functions, will be

relevant in other settings. A primary advantage in the approach is its applicability to general

‘spatial’ data, where ‘space’ is interpreted more generally than geographic, as no reliance is

placed on NED conditions to limit spatial dependence. We establish the limit distribution of

our specification test under the null of correct model specification, including the form of the

spatial weight matrix, and establish test consistency against general model misspecification.
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Simulations are conducted to explore the finite sample behavior of the test, allowing for cases

of geographic distance and random linkages in the weight matrix as well as spatial Durbin

and spatial lag X formulations. The results confirm that the test has stable size properties

across models and good power performance in distinguishing misspecification in the weight

matrix structure and in other aspects of model formulation. The methodology is applied in

an empirical study of tax competition among municipalities. The results suggest that the

specification test is helpful in guiding refinement of simple SAR models to capture dependence

structures in the data more satisfactorily.

The paper is organized as follows. The next section presents the model setup and main

assumptions. Section 3 details the extension of the Bierens (1982, 1990) model specification

work to the spatial context and discusses the formulation of relevant null and alternative

hypotheses. Sections 4 and 5 report the limit theory under the null of correct specification

and under a fixed generic alternative. The simulation findings are presented in Section 6.

Section 7 provides the tax competition illustration using the model framework and datasets

of Lyytikäinen (2012), who dealt with tax competition across Finnish municipalities and

Parchet (2019), who applied a spatial analysis to tax rates across Swiss municipalities. Some

conclusions and possible extensions are given in Section 8. Proofs and discussion of a case

not covered by our assumptions in Section 4 are given in the Appendices.

Throughout the paper, we denote by Ain and A
(i)
n the vectors formed by taking the

transpose of the ith rows of a matrix An and its inverse A−1
n , respectively, provided the

inverse exists; and aij and aij are the (i, j)th elements of A and A−1. The symbol 1 = 1n

denotes an n × 1 vector of ones, ||.|| and ||.||∞ represent spectral and uniform absolute row

sum norms, A′ is the transpose of A, and K > 0 is an arbitrary finite constant whose value

may change in each location. The symbol ≈ signifies ‘approximate equality’ and ∼ indicates

‘asymptotic equivalence’.

2 Model Set-up and Assumptions

We consider a regression model of the following form

Yin = gin(Xn) + ηin, E(ηin|Xn) = 0, i = 1, ..., n, (2.1)

where Xn = (X1n, · · · , Xnn)′ is n× k matrix of regressors of all sampled units, which may or

may not include a column of ones, with the true conditional expectation function for the ith

observation denoted by gin, viz., gin(Xn) = E(Yin|Xn), i = 1, ..., n.

By conditioning on the matrix Xn, instead of on the individual vector Xi = Xin, we

characterise the above model as a spatial one whereby individual outcomes are influenced not

only by their own individual characteristics but also by the characteristics of their neighbours.
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To allow more flexible modelling and unlike Bierens (1990) we allow for possible heterogeneity

in the regression function gin across individuals.

On the other hand, the so-called mixed regressive SAR model is given in n-vector obser-

vation form by the system

Yn = λWnYn + Xnβ + εn, (2.2)

where Wn is a sequence of pre-specified n × n weight matrices that reflect some notion

of distance between units, λ is a scalar parameter that reflects the strength of the spatial

interaction and β is the usual k×1 vector of unknown parameters. Define Sn(λ) = In−λWn

and Rn(λ) = WnS
−1
n (λ). The SAR model can be written in its reduced form as

Yn = S−1
n (λ)(Xnβ + εn). (2.3)

For individual observations i = 1, ..., n, the last displayed expression leads to a linear regres-

sion relationship of the form

Yin = min(Xn, λ, β) + uin(λ), where

min(Xn, λ, β) = S(i)
n (λ)′Xnβ =

n∑
j=1

sijn (λ)X ′jnβ, and (2.4)

uin(λ) =
n∑
j=1

sijn (λ)εjn,

where sijn (λ) denotes the (i, j)th element of S−1
n (λ) and uin is the reduced form error of the

SAR model. The unknown parameters of (2.2), denoted by θ = (λ, β′)′, can be estimated by

minimizing a suitable objective function over a compact parameter space Θ under general

assumptions as

θ̂ = argmin
θ∈Θ

Q(θ). (2.5)

The functions gin(·) and min(·), the quantities in (2.1) and (2.4), as well as most random

and deterministic sequences appearing in the sequel, are triangular arrays because of their

dependence on n. But it is convenient to suppress the affix n for notational simplicity unless

we specifically want to highlight the dependence on n. Similarly, it is convenient to do so in

other cases, such as using R(λ) in place of Rn(λ).

Our concern in the present paper is in testing whether the regression function mi(·) of

(2.4) is a correct characterization of the unknown true regression function gi(·) of (2.1), i.e.

whether gi = mi(θ) for some θ ∈ Θ with probability one. To provide a rigorous development

we introduce the following assumptions.

Assumption 1 For all n, εi are independent identically distributed (iid) random variables
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with zero mean and unknown variance σ2
0 and, for some δ > 0, E|εi|4+δ ≤ K.

Assumption 2 For i = 1, ..., n and for all n, Xi is a set of iid bounded random variables in

Rk. For i, j = 1, ..., n and all n, the elements of Xi are independent of εj.

Moment existence to order exceeding 4 is required to establish the central limit theorem

for quadratic forms, reported in Section 4. The condition on boundedness of Xi is retained

for simplicity, but the case of unbounded Xi could be dealt with by introducing a bounded

one-to-one function φ(Xi) (e.g., Bierens (1990)) and an additional trimming argument in the

spirit of the discussion in Section 3. Finally, independence across Xi and εj for all (i, j) could

be relaxed to strict exogeneity of X at expense of some modifications of the derivations in

the following sections.

As it is standard in the SAR literature, we impose some conditions on W to ensure that

(2.2) and (2.3) are well defined.

Assumption 3 λ0 ∈ Λ, where Λ is a closed subset in (−1, 1).

Assumption 4

(i) For all n, Wii = 0.

(ii) For all n, ||W || ≤ 1.

(iii) For all sufficiently large n, ||W ||∞ + ||W ′||∞ ≤ K.

(iv) For all sufficiently large n, uniformly in i, j = 1, ..., n, Wij = O(1/h), where h = hn is

a sequence bounded away from zero for all n and h/n→ 0 as n→∞.

Assumption 5 For all sufficiently large n, sup
λ∈Λ

(
||S−1(λ)||∞ + ||S−1(λ)′||∞

)
≤ K.

Let g(·) = (g1(·), · · · , gn(·))′ be the n × 1 vector of individual gi(·) = gin(·) functions and

Ωg = Var(g). Although no specific functional structure is imposed, the true conditional

expectation functions gi(·) are required to satisfy some continuity and dependence conditions,

as follows

Assumption 6 For i = 1, ..., n and all n, gi(·) are continuous functions of X1, ..., Xn and

satisfy ||Ωg||∞ < K.

Assumption 6 accommodates all the special cases of interest that are discussed later in Section

5. Additional conditions are imposed on the errors ηi of the true regression function in (2.1).

Assumption 7 For all n, ηi is independent of Xj for all i, j = 1, ..., n. For i = 1, ..., n,

E(ηi|X) = E(ηi) = 0, sup
1≤i≤n

E(η2
i ) <∞, and max

1≤i≤n

n∑
k=1

|Cov(ηi, ηk)| = O(1).

A natural implementation of the Bierens (1990) approach is to construct a test of model

specification using a sample equivalent of the moment condition
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n

n∑
i=1

E
(

(Yi −mi(θ))e
t′Xi
)

= 0, (2.6)

which would depend on the average covariance between the residuals Yi−mi(θ) and a function

of the corresponding independent variable Xi. A preliminary Monte Carlo exercise1 shows

that such a test would have good size performance and satisfactory power against common

sources of model misspecification, apart from those that are linked to W . As an example, if

g(X1, ..., Xn) is the reduced form of the Spatial Durbin model or if the spatial autoregressive

component is correct but the linear function form of X1, ..., Xn is not, a test based on (2.6)

will reject the null of correct model specification with probability that increases rapidly with

the sample size. However, a test based on (2.6) fails dramatically when the only source of

misspecification is the choice of W , with power that is close to size even for large sample

sizes.

To explore the reason for this failure a simple illustration using an omitted variable

argument is helpful. Suppose that g = (I − λV )−1Xβ, where V is a weight matrix satisfying

the standard assumptions, but the practitioner erroneously chooses W when estimating the

parameters of the model. The practitioner then effectively estimates the parameters of the

augmented model

Y = λ1WY + λ2V Y + Xβ + ε, (2.7)

but with the component V Y omitted. If the true network structure of the data is captured

by V , then λ1 is zero and W is irrelevant in describing the spatial process. Thus, if the

full model in (2.7) is estimated, we can expect to obtain an estimate of λ1 close to zero.

Further, when V Y is omitted from (2.7), we expect to obtain an estimate for λ1 close to

zero whenever the correlation between WY and V Y is small, for in that case WY would

not mimic the spatial effect of V Y . On the other hand, we expect to obtain a non-negligible

estimate of λ1 whenever the components WY and V Y display a certain degree of correlation.

By contrast, since the choice of the weight structure is strictly exogenous and uncorrelated

with the independent variables of the model, the estimates of the coefficients β in (2.7) are

expected to be almost unbiased (with the exception of the intercept coefficient when that is

present) even when V Y is omitted, as the correlation between Xj for j = 1, ..., k, and V Y is

typically small. More specifically, when the true weight structure is V , but the practitioner

estimates parameters in (2.7) without including V Y , λ̂1 ≈ 0, and, in vector form the residual

vector appearing in (2.6) would be

Y − (I − λ̂1W )−1Xβ̂ ≈ λ2V Y − (β̂ − β)X + ε ≈ λ2V Y + ε, (2.8)

1Details are available from the authors upon request.
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which covaries little with functions of Xj , for any j = 1, ..., n. Hence, when the network

structure is severely misspecified and the correlation between V Y and WY is small, a test

based on (2.6) will have almost no power. The test failure is alleviated when the misspecifi-

cation of the network structure is not as severe, and WY is able to partially mimic the true

spatial component. The latter may well be a common outcome in empirical work because

practitioners frequently obtain evidence of spatial dependence and non-zero estimates of spa-

tial parameters even though the choice of the weight matrix is almost certainly only a crude

approximation.

In practical terms, in cases where W and V share some similarities in their structures

(such as a circulant and a block diagonal matrix), the estimate of λ1 in (2.7) may well be

nonnegligible and, in turn, the power of a test based on (2.6) may be low but exceed size. On

the other hand, if W and V were two independently generated spatial structures, we would

expect that λ̂1 ≈ 0 and test power to be close to size for all n.

These difficulties pose a challenge to formulating a straightforward extension of the

Bierens test to detect misspecification in the weight matrix. As argued above, such a specifi-

cation test is often of crucial interest in practical work where there is only general guidance

in the formulation of the weight matrix. This provides a strong incentive to develop a refined

test procedure that gives direct attention to the possibility of weight matrix misspecification

in spatial autoregression.

3 Hypothesis Formulation

In view of the limitations of the standard Bierens approach, we develop a modified set of mo-

ment conditions and a new test statistic to detect general sources of misspecification in spatial

models including those associated with the weight matrix. The formulation involves some

additional complexity because it is necessary to supplement the Bierens moment condition

(2.6) with a condition designed to assess the weight matrix specification.

For all n and i = 1, ..., n, let 1i(αn) ≡ 1(|ηi| ≤ αn, max
1≤j≤n

|εj | ≤ αn), where 1(·) is the

indicator function and αn is a deterministic sequence such that αn → ∞ as n increases.

Under Assumptions 2, 5, 6 and the definition of mi in (2.4), gi(·) and sup
θ
mi(θ) are bounded,

so for i = 1, ..., n and for all sufficiently large n

1i(αn) = 1 =⇒ 1(|gi + ηi| ≤ αn) = 1 (3.1)

and

1i(αn) = 1 =⇒ 1(sup
θ
|mi(θ) + ui(λ)| ≤ αn) = 1. (3.2)

A brief remark on the definition of 1i(αn) is in order here. Even though ui(λ) and ηi are
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obviously related in case of correct regression specification so that ui(λ0) = ηi and that

(for each n) there exists a sequence of values of θ (denoted as θ#
n in the sequel) so that

ui(λ
#
n ) = gi −mi(θ

#
n ) + ηi under misspecification, this is not necessarily true for any value

of λ ∈ Λ. The indicator function is therefore formulated to include both |ηi| < αn and

supλ|ui(λ)| < αn components, so that (3.2) and the argument developed in the sequel holds

for any θ ∈ Θ.

We now define the augmented vector of moment conditions

Mn(θ, t) =
1

n


n∑
i=1

E
(

(Yi −mi(θ))e
t′Xi
)

n∑
i=1

E
(

(Yi −mi(θ))e
tY (gi+ηi1i(αn)) − E(ui(λ)etY (mi(θ)+ui(λ)1i(αn))|Xn)

)
 = 0,

(3.3)

where 1i(αn) guarantees that all moments are well defined for each θ ∈ Θ.

In expression (3.3), Mn(θ, t) augments the Bierens moment condition (2.6) with a condi-

tion that directs attention to the weight matrix formulation. The first element of Mn(θ, t) is

the average of the standard moment condition discussed in Section 2. The second element is

the average of the (centred) conditional covariances between each unit’s reduced-form resid-

ual and an exponential function of the unit’s dependent variable, subject to the tail trimming

condition 1i(αn). By construction the dependent variable involves the independent variables

weighted by the true networking structure which then plays a direct role in the moment

condition. Each term of the second element of (3.3) is centred so that it is zero in the limit

when the regression model is correctly specified. But when the weight matrix in the model

is misspecified, the centering is lost because the misspecification involves the true reduced

form which covaries with the exponential function of the dependent variable, as in the simple

illustration leading to (2.8). We therefore expect a test based on a sample analogue of (3.3)

to be more powerful against general misspecification that involves use of an inappropriate

weight matrix than a simpler statistic of the Bierens type that is based on the first component

only.

Let

vin(θ) = vi(θ) = Yi −mi(θ) = gi −mi(θ) + ηi, (3.4)

where the second equality follows from (2.1), and

υin(θ, tY ) = υi(θ, tY ) = vi(θ)e
tY (gi−mi(θ)+ηi1i(αn)) − E(ui(λ)etY ui(λ)1i(αn)). (3.5)

After standard manipulations, each term of the second component of (3.3) can be written as

E
(
υi(θ, tY )etYmi(θ)

)
, (3.6)
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outlining that mi takes on the role of conditioning variable in the new component of our

test. Having a non-zero expectation of vin conditional on Xi in the first component when the

moment condition (3.3) is violated is readily translated into misspecification ofmi. However, a

non-zero expectation of υin conditioning onmi calls for clarification regarding which aspects of

model misspecification it implies. The exposition below aims to provide precise and intuitive

one-to-one correspondences between moment conditions and almost sure equalities given in

Corollary 1, which will then be used to formulate hypotheses.

Define the conditional expectations

din(θ,Xn) = di(θ) = E(vi(θ)|Xn) = gi −mi(θ), (3.7)

as E(ηi|X1, ..., Xn) = 0, and

ῡin(mi(θ), tY ) = ῡi(mi(θ), tY ) = E(υi(θ, tY )|mi(θ))

=e−tYmi(θ)
(
E(etY ηi1i(αn))

(
E(gie

tY gi |mi(θ))−mi(θ)E(etY gi |mi(θ))
))

+e−tYmi(θ)
((

E(ηie
tY ηi1i(αn))E(etY gi |mi(θ))− E(ui(λ)etY ui(λ)1i(αn))etYmi(θ)

))
=e−tYmi(θ)

(
E(etY ηi1i(αn))

(
E(gie

tY gi |mi(θ))−mi(θ)E(etY gi |mi(θ))
))

+e−tYmi(θ)
(
E(ηie

tY ηi1i(αn))
(
E(etY gi |mi(θ))− etYmi

))
+
(
E(ηie

tY ηi1i(αn))− E(ui(λ)etY ui(λ)1i(αn))
)
. (3.8)

From (3.8), we deduce that on the support of (ηi, ε1, ..., εn) such that 1i(αn) = 1,

Pmi(gi = mi(θ)) = 1 ∧ P(ui(λ) = ηi) = 1 =⇒ Pmi(ῡi(mi(θ), tY ) = 0) = 1, (3.9)

where Pmi denotes the probability induced by mi(·) only, which is in fact a particular linear

combination of the random vectors {X1, ..., Xn}, and PYi = P is the probability induced by

Yi. For the implication in (3.9) to hold we would only need a weaker condition on equality of

ui(λ) and ηi in distribution. However, a.s. equality is needed for Corollary 2 in the sequel and

so it is used here. In order to guarantee the opposite implication, we introduce the following

condition.

Assumption 8 For all sufficiently large n and for all i = 1, ..., n such that

Pmi(mi(θ) = gi) < 1 ∨ P(ui(λ) = ηi) < 1

11



hold, then

Pmi
(
E
(
etgi |mi(θ)

)
= etmi(θ)

)
< 1 ∨ E

(
ηie

tηi
)
6= E

(
ui(λ)etui(λ)

)
for all t ∈ R apart from a set with Lebesgue measure zero, on the support of (ηi, ε1, ..., εn)

such that 1i(αn) = 1, for any deterministic divergent sequence αn.

Assumption 8 is required to rule out the possibility of Pmi(ῡi(mi(θ), tY ) = 0) = 1 if either

Pmi(mi(θ) = gi) < 1 or P(ui(λ) = ηi) < 1. With these conditions we deduce the following

proposition which elucidates what the second moment condition of (3.3) implies about model

specification.

Proposition 1 Let Assumptions 1-8 hold. For all sufficiently large n and for all i = 1, ..., n

we have the following equivalences

Pmi(di(θ) = 0) = 1 ∧ P(ui(λ) = ηi) = 1 ⇔ Pmi(ῡi(θ) = 0) = 1

Pmi(di(θ) = 0) < 1 ∨ P(ui(λ) = ηi) < 1 ⇔ Pmi(ῡi(θ) = 0) < 1

for all θ ∈ Θ, on the support of (ηi, ε1, ..., εn) such that 1i(αn) = 1, for any deterministic

sequence αn.

With this framework we may now extend Lemma 1 of Bierens (1990).

Theorem 1 Let Assumptions 1-8 hold.

a) For all sufficiently large n and all i = 1, ..., n such that PXi(di(θ) = 0) < 1, the set of t ∈
Rk values for which vi(θ) and et

′Xi are orthogonal, i.e. S = {t ∈ Rk : E(vi(θ)e
t′Xi) = 0}

has Lebesgue measure zero.

b) For all sufficiently large n and all i = 1, ..., n so that Pmi(ῡi(mi, θ) = 0) < 1, the set

of tY ∈ R values for which υi(θ) and etYmi(θ) are orthogonal, i.e. S = {tY ∈ R :

E(υie
tYmi(θ)) = 0} has Lebesgue measure zero, for all deterministic sequences αn such

that αn →∞ as n→∞,

where di(θ) = din(θ,Xn), ῡi(mi(θ)) = ῡin(mi(θ)), vi(θ) = vin(θ) and υi(θ, tY ) = υin(θ, tY )

are defined according to (3.7), (3.8), (3.4) and (3.5).

The proof of Theorem 1 follows with minor modifications to the proof of Lemma 1 in Bierens

(1990) and is reported in Appendix 1. From Theorem 1 we deduce the following confirmation

of the moment conditions.

Corollary 1 Let Assumptions 1-8 hold. For all sufficiently large n and for i = 1, ..., n

E
(

vi(θ)e
t′Xi
)

= 0 ∀t ∈ Rk up to zero-measured sets ⇔ PXi(di(θ) = 0) = 1 (3.10)

12



E
(
υi(θ, tY )etYmi(θ)

)
= 0 ∀tY ∈ R up to zero-measured sets

⇔ Pmi(di(θ) = 0) = 1 ∧ P(ui(λ) = ηi) = 1 (3.11)

for all θ ∈ Θ and all deterministic sequences αn.

For all sufficiently large n, we define the set

Jn(θ) =J(θ) = {i : PXi
(
gi = mi(θ)

)
< 1 ∨ Pmi(gi = mi(θ)) < 1 ∨ P(ui(λ) = ηi) < 1},

(3.12)

and let card(J(θ)) denote its cardinality, which measures the extent to which the model

equivalence gi = mi(θ) fails among the observed units. Correspondingly, in view of the results

given in Theorem 1 and Corollary 1, we define the following explicit null and alternative

hypotheses.

H0 : PXi(gi = mi(θ0)) = 1 ∧ Pmi(gi = mi(θ0)) = 1 ∧ P(ui(λ0) = ηi) = 1 (3.13)

for some θ0 ∈ Θ and for sufficiently many i such that card(J(θ0))/
√
n = o(1) as n→∞;

H1 : PXi(mi(θ
#) = gi) < 1 ∨ Pmi(mi(θ

#) = gi) < 1 ∨ P(ui(λ
#) = ηi) < 1 (3.14)

for sufficiently many i = 1, ..., n such that card(J(θ#)) ∼ n as n → ∞, where θ#
n = θ# =

(λ#, β#′)′ is the sequence of pseudo-true values that maximizes the objective function in (2.5)

under H1.

These hypotheses consist of multiple statements that arise from the two moment condi-

tions used to construct the test. The first component based on E
(

vi(θ)e
t′Xi
)

= 0 from the

orthogonality between Xi and ηi corresponds to the first statement in H0, which is typically

given elsewhere in other models as P(gi = mi(θ0)) = 1 for some θ0. However our state-

ment in H0 more precisely involves PXi(·) rather than P(·) and allows for distinction between

the roles played by the two components in the statistic. The second component based on

E
(
υi(θ, tY )etYmi(θ)

)
= 0 in the spatial setup gives rise to the second and third statements

in H0, which rely in turn on the equivalences provided in Corollary 1. Thus, we test for

almost sure equality of gi and mi(θ0) conditioning separately on Xi and mi. In addition, it

is necessary to include the almost sure equality of ηi and the SAR reduced-form error ui(λ0)

in H0. The inclusion of this equality is not surprising given that the reduced form of SAR

generates by construction a particular functional structure for the errors and not just for the

regression component of the model. Finally, the formulation of H0 requires that the number

(card(J(θ0)) of model equivalence failures, i.e., gi 6= mi(θ0), among the observed units be of

smaller order than
√
n as n → ∞, thereby ensuring that the behavior of the test statistic
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under the null is dominated by valid specifications with gi = mi(θ0) rather than failures

through misspecification.

As previously discussed, the test cannot detect departures in the direction of weight matrix

spatial misspecification of the model when conditioning on Xi alone, i.e. by employing only

the first moment condition in (3.3). On the other hand, the obvious choice of multiple

conditioning variables, viz. the increasing set {X1, ..., Xn}, does not lead to a consistent test

in the spirit of Bierens (1990). Instead, Theorem 1 together with Corollary 2 in the sequel

show that the new framework delivers a sound basis for testing if we condition specifically

on the most relevant linear combination of {X1, ..., Xn} as in (3.11), that is on the known

functional form mi(θ) – the relevant linear combination of {X1, ..., Xn} under the null H0.

Our test of H0 against H1 relies on asymptotic arguments and is therefore designed

to detect an increasing number of potentially misspecified (reduced form) SAR regression

functions mi(θ). In order to have a well defined limit distribution theory that reflects the null

hypothesis H0, the number of misspecified regression functions must be small enough so as

not to influence the limit theory under the null, leading to the requirement that card(J(θ0)) =

o(
√
n) in the definition of H0. On the other hand, to achieve a consistent test against any

direction of violation of H0 the condition card(J(θ#)) ∼ n under H1 is used to ensure that

the number of units for which misspecification does occur (i.e., the specified function mi(θ)

is violated in the data) grows as fast as the number of units n. It seems likely that this latter

condition might be weakened somewhat and the test may have good practical performance

and power for some forms of misspecification, but this possibility is not pursued in the present

work.

The following Corollary makes precise what the null hypothesis H0 in (3.13) implies about

the correct generating mechanism.

Corollary 2 Let Assumptions 1-8 hold. H0 in (3.13) implies model (2.4) for sufficiently

many i such that card(J(θ0))/
√
n = o(1).

It follows that the model implied by H0 is SAR in (2.4) up to an error smaller than K/
√
n,

which maintains the null limit theory developed in the next section. As is evident from the

proof of Corollary 2 in the Appendix, general misspecification in the SAR regression functions

would be detected even omitting PXi(gi = mi(θ0)) = 1 in (3.13) (and thus omitting the first

moment condition in (3.3)). However, inclusion of the first component of (3.3) positively

impacts test power and is well suited to detect misspecification in the regressor set as well as

their functional form, without having to weight them by the network transformation implied

by S−1(·).
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4 Test Statistic and Limit Theory Under H0

In view of the theory presented in Section 3, we construct a statistic for testing the null H0 in

(3.13) against H1 in (3.14) based on a sample analogue of (3.3) and using the Gaussian quasi-

maximum likelihood (QML) estimator θ̂ of θ. Other estimators of θ may be employed with

minor algebraic modifications without affecting the following results. To ensure consistency

of θ̂ to θ0 under H0 we need to impose extra conditions, such as those in Lee (2004). Let

eigi(A) be the ith eigenvalue of a positive semi-definite matrix A. Let c be an arbitrary,

small, positive constant.

Assumption 9 For all sufficiently large n, uniformly in (λ, β′)′

eig

(
1

n

(
R(λ)Xβ X

)′ (
R(λ)Xβ X

))
> c > 0, (4.1)

where eig(A) = min
i

(eigi(A)), eig(A) = max
i

(eigi(A)) for a positive semidefinite matrix A,

and c is an arbitrarily small constant.

To establish the limit distribution under H0 Assumption 9 need only hold at (λ0, β
′
0)′. But

uniformity of the condition over (λ, β′)′ is useful in establishing test consistency in the fol-

lowing section.

Let r̄ij = (R(λ0) +R(λ0)′)ij/2, µs = E(εs) and

r̄d =
σ2

0

2
tr

((
R(λ0) +R(λ0)′ − 2

n
tr(R(λ0)In)

)2
)
.

To simplify notation in what follows we write R = R(λ0) and S−1 = S−1(λ0). Let Ω = Ω(θ0)

be a (k + 1)× (k + 1) matrix partitioned as

Ω =

[
ω11 ω12

ω21 ω22

]
=

1

nσ2
0

[
(r̄d + β′0X′R′RXβ0) β′0X′R′X

X′RXβ0 X′X

]
. (4.2)

Under Assumption 9, eig(Ω) > c > 0, so the inverse Ω−1 exists for all sufficiently large n.

Let ωij be the conformable (i, j)-th block of Ω−1 for i, j = 1, 2. Let ω(1) be the (k + 1) × 1

vector defined as the transpose of the first row of Ω−1. Now define

Q = Q(θ0) = S−1

(
In −

1

nσ2
0

(
RXβ0 X

)
Ω−1

(
β′0X′R′

X′

))
. (4.3)

Under Assumption 5 and by Lemma 1 (reported in Appendix 2), ||Q||∞ + ||Q′||∞ ≤ K. Set

Ȳ =
∑n

i Yi/n, the 1 × n vector of the column averages of S−1 as S̄−1′ =
∑n

i=1 S
(i)′/n, and
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the column-demeaned version of S−1 as

Sd = S−1 − 1S̄−1′ . (4.4)

Let e(t) = (et
′X1 , ..., et

′Xn)′, f(t) = (e(t)′, 1′), the 2× n matrix

Ψ(t, tY ) = Ψ(t, tY , λ0, β0,X) = f(t)′Q, (4.5)

and the 2× 1 vector

ψ(t, tY ) = ψ(t, tY , λ0, β0,X) = − 1

nσ2
0

f(t)′S−1
(
RXβ0 X

)
ω(1). (4.6)

Using this notation we indicate the estimated counterparts (evaluated at θ̂) of the previously

defined quantities by (̂·). As with previous notation let (Ψ′i)
′ be the i−th row of Ψ(t, tY )′.

We now proceed to derive a sample analogue of (3.3) that can be used to form a test

statistic. The goal is to develop a statistic that has a standard pivotal limit distribution

pointwise in (t, tY ). The following steps assist by simplifying the limit behavior of the statistic.

We introduce a deterministic, positive sequence pn satisfying the conditions

pn →∞,
pn
n

= o(1) and

√
n

p2
n

= o(1) as n→∞, (4.7)

which enable a formal Taylor expansion of the exponential function under some additional

technical conditions reported in the proof of the Theorem 2 below. We then derive the sample

equivalent of a centered sequence based on the leading terms of this expansion. The resulting

sample analogue of the vector of moment conditions in (3.3) has the following explicit form

Mn(θ̂, t, tY ) = M(θ̂, t, tY ) =
1

n


n∑
i=1

(
Yi −mi(θ̂)

)
et
′Xi

n∑
i=1

(
Yi −mi(θ̂)

)
e
tY

Yi−Ȳ
pn − tY σ̂

2

pn
tr(Ŝd

′
Q̂)

 , (4.8)

which leads to a statistic for testing H0 in (3.13) against H1 in (3.14) based on the quadratic

form

T̂ (t, tY ) = nM(θ̂, t, tY )′Â−1(t, tY )M(θ̂, t, tY ), (4.9)

where Â(t, tY ) is a consistent estimate of A(t, tY ) = lim
n→∞

Var(
√
nM(θ̂, t, tY )). To ensure

pointwise existence and non-singularity of A(θ̂, t, tY ), as well as existence of M(θ̂, t, tY ), we

impose the following conditions.
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Assumption 10 Conditionally on X, the limit lim
n→∞

n−1Ψ(t, tY )Ψ(t, tY )′ exists pointwise in

(t, tY )′ and a.s. as n→∞, and is positive definite.

Assumption 11 Conditionally on X, the limits

lim
n→∞

ψ(t, tY )ψ(t, tY )′

n
tr
(
(R+R′)2

)
, lim
n→∞

1

n
ψ(t, tY )

n∑
i=1

r̄ii(Ψi(t, tY )′)′, lim
n→∞

ψ(t, tY )ψ(t, tY )′

n

n∑
i=1

r̄2
ii

exist pointwise in (t, tY )′ and a.s. as n→∞.

In general, Assumption 10 holds as long as n → ∞, rank(Q) ∼ n and W does not have

constant column sums. More specifically, since S−1 is non singular under Assumptions 2 and

3, Assumption 10 requires full rank in the limit of(
In −

1

nσ2
0

(
RXβ0 X

)
Ω−1

(
β′0X′R′

X′

))
,

which holds when the number of regressors k is finite (or grows slower than n). Assumption 10

is violated when W has constant column sums, which amounts to each individual having the

same magnitude of influence on others overall. In such a case, the variance matrix A(t, tY )

of Theorem 2 below suffers from singularity and one cannot carry out inference based on

the following theorem. The case where W has constant column sums, although unnatural

in practical applications, needs to be studied separately and is analyzed and discussed in

Appendix 3.

Assumption R Let pn and αn be deterministic, positive sequences satisfying (4.7), αn →∞
as n→∞, and

αn
pn
→ 0,

n

α4+δ
n

→ 0,
n3/2

pnα
4+δ
n

→ 0 (4.10)

as n→∞, where δ > 0 is determined by Assumption 1.

Assumption R is a technical condition on relative expansion rates among the sequences αn

and pn, as n→∞. The relative rates among pn, αn and n depend also on the distributional

assumption in Assumption 1, i.e. on the positive parameter δ. For instance, if εi, for i =

1, ..., n, are distributed as either N (0, σ2) or as t5 (e.g. as the two extreme cases compatible

with Assumption 1), the choice of pn = n1/3 (adopted in the simulation exercise) and αn =

n1/4 is acceptable since (4.7) and (4.10) are satisfied as long as δ > 2/3. The relative rates of

pn, αn and n on one hand, and δ implied by Assumption 1 on the other, determine the error of

the approximation entailed by the central limit theorem. On the other hand, a slow-diverging

pn typically leads to higher power, since it helps to assure relevance to the second component

of (4.8) via substantial co-variation between the residuals and the exponential term tY
Yi−Ȳ
pn

.
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The optimal choice of pn requires an analysis of local power, which exceeds the scope of the

present paper and will be addressed in separate work.

The following result provides asymptotics that lead to the null limit distribution of the

specification test suggested in (4.9).

Theorem 2 Let Assumptions 1-5, 9-11 and R hold. Let pn be a non-negative sequence

satisfying (4.7). Under H0 in (3.13), as n→∞

√
nM(θ̂, t, tY )→d N (0, A(t, tY )) , (4.11)

pointwise in (t, tY )′, conditionally on X, where the standardizing variance-covariance matrix

of
√
nM(θ̂, t, tY ) is given by A(t, tY ) = lim

n→∞
An(t, tY ), with

An(t, tY ) =
σ2

0

n
Ψ(t, tY )Ψ(t, tY )′ +

σ4
0tr
(
(R+R′)2

)
2n

ψ(t, tY )ψ(t, tY )′ +
2µ(3)

n
ψ(t, tY )

n∑
i=1

r̄ii(Ψi(t, tY )′)′

+
(µ(4) − 3σ4

0)

n
ψ(t, tY )ψ(t, tY )′

n∑
i=1

r̄2
ii. (4.12)

The proof of Theorem 2 is reported in Appendix 1.

The matrix A(t, tY ) exists pointwise in (t, tY )′ a.s. under Assumptions 10 and 11 and is

non singular under Assumptions 3, 4, 9 and 10. Since (A.3.8) holds for every realisation of

X, as long as A(t, tY ) exists pointwise in (t, tY ) a.s., Theorem 2 also holds unconditionally,

giving the unconditional distribution of the statistic with A(t, tY ) = plimn→∞An(t, tY ) . To

form the test statistic defined in (4.9), A(t, tY ) is replaced by the consistent estimate Â(t, tY )

obtained by replacing the unknown parameters λ, β, σ2, µ3 and µ4 with their sample versions

based on consistent QML estimates θ̂ = (λ̂, β̂′)′ and corresponding residuals. From Theorem

2 it follows directly that the test statistic

T̂ (t, tY )→d χ
2
2 (4.13)

pointwise in (t, tY )′ as n → ∞. Finite sample size and power performance of this test are

reported in Section 6.

5 Behavior of T̂ (t, tY ) under misspecification

This section explores the behaviour of the test statistic T̂ (t, tY ) under H1. In order to allow

for a general misspecification structure that allows for a generic functional form of the true

conditional expectation function gin(·) = gi(·) for each n we need to impose some high-level

Assumptions. These Assumptions can be made more primitive if we are willing to impose
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more structure on gi(·), e.g. in case gi(·) is assumed to display an additive structure in

X1,...,Xn. Let zn(X, t) = z(X, t) = (z1n(X, t), · · · , znn(X, t))′ be the n × 1 vector whose

components are the individual zin(X, t) = zi(X, t) = gi(X)et
′Xi functions. Also, let Ωz(t) =

Var(z(X, t)). We need to integrate the weak dependence condition reported in Assumption

6 with an additional condition.

Assumption 6 (b) For all t ∈ Rk apart from a zero-measured set, ||Ωz(t)||∞ < K.

We report below some popular examples of functional structures for g(·), which are often

erroneously misspecified and/or simplified by practitioners to the standard SAR in (2.3) with

network structure W .

1. The true weight matrix structure is given by V and the practitioner usesW in estimation

of the model, i.e. W is misspecified. Thus,

g(X) = (I − λ0V )−1Xβ0.

2. The weight matrix W is correctly specified, but the exogenous component of the re-

gression is non-linear in X1, ..., Xn and/or in the parameters β1, ..., βk, so that

g(X) = (I − λ0W )−1ρ(X, β0), for some function ρ.

3. The data generating process is a Spatial Durbin (SD) model with weight matrices

W1,W2, so that

g(X) = (I − λ0W1)−1Xβ0 + (I − λ0W1)−1W2Xγ0 (5.1)

where γ0 is a k × 1 vector of parameters.

4. The endogenous spatial lag is irrelevant, and thus the data generating process is a

spatial lagged X (SLX) model, so that

g(X) = Xβ0 +WXγ0. (5.2)

All four cases above can be represented by an additive functional form specification

gaddi (X) =
∑n

j=1(a1ijρ1(Xj) + a2ijρ2(Xj)). Assumption 6(b) can be shown to hold for

this additive gadd(X) if the n × n matrices A1 = A1n = (a1ij), A2 = A2n = (a2ij) sat-

isfy ||A1||∞ + ||A′1||∞ + ||A2||∞ + ||A′2||∞ ≤ K for all sufficiently large n, and the functions

ρ1(·), ρ2(·) : Rk ⇒ R satisfy Eρ4
1(X1) + Eρ4

2(X1) < ∞. In the four cases of misspecification

given above these conditions are implied by Assumptions 2, 4 and 5.
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To establish consistency of the test based on (4.8) we need to prescribe the behavior of

the estimator θ̂ under H1, which is assured by the following high level condition.

Assumption 12 There exists a sequence of deterministic vectors θ] = θ]n of order O(1) such

that θ̂ − θ] = op(1) under H1.

In line with the previous section, θ] can be interpreted as the (pseudo-true) value that

maximises the (misspecified) pseudo log-likelihood function under H1 in (3.14) and thus θ̂ is

the QMLE of θ] under H1. Under H0, θ] = θ0. Proposition 2 in Appendix 2 shows that,

under some standard regularity conditions, λ̂− λ] = op(1) and therefore β̂ − β# = op(1) and

σ̂2 − σ]2 = op(1) as n → ∞, where β̂ = (X′X)−1X′S(λ̂)Y and β] = plim(X′X)−1X′S(λ̂)Y ,

while σ̂2 = Y ′S(λ̂)′S(λ̂)Y/n and σ]2 = plimY ′S(λ̂)′S(λ̂)Y/n, as n→∞.

From (3.14) and from Theorem 1, for (almost) all t ∈ Rk and tY ∈ R , either

E
(

(Yi −mi(θ
#)et

′Xi)
)
6= 0

or

E
(

(Yi −mi(θ
#)etY Yi)− E

(
ui(λ

])etY (mi(θ
])+ui(λ

]))
))
6= 0

for sufficiently many i such that card(J(θ#)) ∼ n as n → ∞. However, the sample statistic

in (4.8) considers the average across units of a sample analogue of expectations. Therefore,

we need to rule out the case in which individual misspecifications in the regression functions

offset each other (e.g. in presence of an unlikely systematic symmetry in the mispecification

form and direction), so that the average amount of misspecification is not negligible in the

limit. A similar exclusion was used and discussed in Bierens (1984), where nonstationarity

in the time series setting may lead to a regression function that varies across time. The

following condition achieves this objective in the spatial setting.

Assumption 13 As n→∞, in the setting of Theorem 1a)

lim
n→∞

1

n

∣∣∣∣ n∑
i=1

E
((
gi(X)−mi(X, θ])

)
et
′Xi
) ∣∣∣∣ = κ(t) > 0, (5.3)

with κ(·) being a generic positive function, pointwise in t ∈ Rk, or in the setting of Theorem

1b)

lim
n→∞

1

n

∣∣∣∣ n∑
i=1

E
(
gi(X)−mi(X, θ])

) ∣∣∣∣ > 0 (5.4)

Additionally, we assure non-singularity in the limit of Ân(t, tY ) in (4.9) under H1 by

modifying Assumption 10 as follows.
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Assumption 10’ Conditionally on X, lim
n→∞

An(t, tY ) exists and is positive definite uniformly

in θ, pointwise in (t, tY ) and a.s., where An(t, tY ) is defined in (4.12).

Under these conditions we have test consistency.

Theorem 3. Under H1 in (3.14), and Assumptions 2-5, 6, 6b), 7,8, 9,10’ and 12-13, for

all c > 0,

Pr
(
T̂ (t, tY ) > c

)
→ 1 as n→∞,

pointwise in (t, tY ).

6 Simulations

We report the results of a Monte Carlo experiment to examine the finite sample perfor-

mance of tests for model misspecification based on the T̂ (t, tY ) statistic in (4.9), explor-

ing both size and power. We generate data from the SAR specification in (2.3), with an

intercept and two regressors that are iid random variables Xid ∼ Unif(0, 4), d = 1, 2,

εi ∼ N(0, 1), for i = 1, ..., n, with parameter setting β = (1, 1, 1)′, λ = 0.4, and sample

sizes n ∈ {100, 200, 300, 400, 500, 600, 700}. Two different weight matrices are used:

1) Exponential distance weights, i.e. wij = exp(−|`i − `j |)1(|`i − `j | < log n) where `i is

location of i along the interval [0, n] which is generated from Unif [0, n].

2) W is randomly generated as an n × n matrix of zeros and ones, where the number of

“ones” is restricted at 10% of the total number of elements in W .

These weight structures are empirically motivated as they mimic a distance-based matrix

generated from real data and a structure based on a contiguity criterion among units. Both

matrices are normalized by their respective spectral norm. We generate each matrix once

for each n and we keep them fixed across 1000 replications and across different experimental

scenarios.

It is straightforward to verify numerically that under both structures 1) and 2) satisfy

Assumption 10 for each n. The choice of pn and tY drives the trade-off between size and

power for small n but is less important for test performance as n increases. The choice

of t does not seem to have an impact on the performance of the test. We set pn = n1/3,

t = (1.5, 1.5, 1.5)′ and tY = 0.4. Also, similar to Bierens (1990), we replace the exponential

function in the first component of M(θ̂, t, tY ) in (4.8) with t′arctg(Xi−X̄) for each i = 1, ..., n,

where arctg(Xi − X̄) = (arctg(Xi1 − X̄1), ..., arctg(Xik − X̄k))
′ and X̄j denotes sample mean

for j = 1, ..., k. Given the support of X in this simulation exercise, the arctg(·) contribution

turns out to be virtually irrelevant.
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We first examine the performance of the test statistic in (4.9) under H0 in (3.13), and

report in Table 1 empirical size for nominal significance levels s = 0.1, 0.05, 0.01 and both

weight matrix models 1) and 2). For both matrices there is a slight size distortion for small

n, but this quickly improves for n > 300. Overall, the size performance is very satisfactory.

Table 1: Empirical size of the test of H0 in (3.13) based on T̂ (t, tY ) in (4.9) for nominal
significance levels s ∈ {10%, 5%, 1%} and with W chosen as in 1) and 2).

1) 2)
n\s 10% 5% 1% 10% 5% 1%

200 0.149 0.081 0.018 0.124 0.056 0.010
300 0.090 0.037 0.007 0.106 0.049 0.006
400 0.116 0.055 0.009 0.103 0.065 0.015
500 0.080 0.030 0.005 0.097 0.052 0.016
600 0.082 0.039 0.006 0.110 0.052 0.011
700 0.083 0.040 0.006 0.108 0.058 0.006

The empirical power of the test T̂ (t, tY ) was explored in several experiments covering

different models, significance levels, and sample sizes. The first scenario aims to show test

performance under functional form misspecification. In place of a linear function, the true

spatial regression model is assumed to be

Yi = λ

n∑
j=1

wijYj + β0 + β1Xi1 + β2Xi2 +
1

2
X2
i1 + εi, i = 1, ..., n, (6.1)

and the misspecified linear SAR model with no quadratic term was estimated. Again, we set

λ = 0.4 and (β0, β1, β2)′ = (1, 1, 1)′. Test power is reported in Table 2 and is evidently close

to unity for all sample sizes. Table 2 reports results for the weight matrix model 1). Results

for W in model 2) were similar and are not reported.

Table 2: Empirical power of the test of H0 in (3.13) against H1 in (3.14) when the true model
is (6.1) with nominal significance levels s ∈ {10%, 5%, 1%} and W chosen as in 1).

n\s 10% 5% 1%

200 0.996 0.990 0.967
300 0.998 0.996 0.980
400 0.998 0.995 0.981
500 1.000 0.997 0.986
600 0.999 0.999 0.991
700 1.000 1.000 1.000

To address weight matrix misspecification, the following two models were considered:
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a) Both true and misspecified matrices are generated as in 1) but with two independent

sets of locations;

b) The true matrix is 2) but the practitioner erroneously estimates parameters in (2.3)

using W as in 1).

For both these scenarios the functional specification of the model is (2.3), but the prac-

titioner selects the wrong weight matrix structure. The results are reported in Table 3. For

both settings a) and b) the reported empirical power is excellent even for n = 200. For both

scenarios and all sample sizes the power exceeds 0.90, suggesting a highly satisfactory per-

formance of our test for detecting misspecification of the weight matrix, owing to the second

component of (4.8).

Table 3: Empirical power of the test of H0 in (3.13) against H1 in (3.14) under scenarios a)
and b), with nominal significance levels s ∈ {10%, 5%, 1%}.

a) b)
n\s 10% 5% 1% 10% 5% 1%

200 0.984 0.979 0.965 0.969 0.964 0.954
300 0.980 0.971 0.951 0.950 0.937 0.915
400 0.998 0.997 0.994 0.962 0.960 0.939
500 0.978 0.967 0.951 0.957 0.949 0.930
600 0.971 0.958 0.925 0.963 0.957 0.936
700 0.985 0.977 0.962 0.961 0.950 0.935

Finally, we consider test power against misspecification of the model itself by generating

data based on the SD and SLX models (defined in (5.1) and (5.2)), with parameter values

β = (1, 1, 1)′, λ = 0.4 and γ = (1, 1)′ in (5.1), and β = (1, 1, 1)′, λ = 0.4 and γ = (1.5, 1.5)′ for

the parameters in (5.2). The settings for γ are two dimensional vectors as the spatial lag of

the intercept is not included. In both cases the same exponential distance weight described

in 1) is used for the true and misspecified models. Results reported in Table 4 show that

empirical power is close to unity even for n as small as 200 when the true model is SD. When

the true model is SLX, empirical power is not so high for smaller values of n, but power

improves quickly with sample size.

7 Empirical Application

Investigating the possible existence and nature of interaction between neighboring government

tax-setting decisions is a question of much importance at both national and international

levels. Many countries have witnessed a common trend of decreasing corporate tax rates over
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Table 4: Monte Carlo power of the test of H0 in (3.13) against H1 in (3.14) when the true
models are SD in (5.1) and SLX in (5.2), with nominal significance level s.

model SD SLX
n\s 0.1 0.05 0.01 0.1 0.05 0.01

200 0.998 0.997 0.991 0.583 0.405 0.148
300 0.998 0.995 0.981 0.686 0.528 0.222
400 1.000 1.000 1.000 0.951 0.909 0.698
500 0.999 0.999 0.993 0.969 0.935 0.759
600 1.000 1.000 0.998 0.977 0.949 0.811
700 1.000 1.000 0.999 0.974 0.933 0.781

recent decades, which has been typically attributed to competition between neighbouring

governments in their attempts to attract mobile business ventures. This phenomenon has

generated policy debates on the desirability of intervention to curb tax competition between

local and national governments. Chirinko and Wilson (2017) provide some recent examples

in the US and EU. Spatial econometric modelling has been widely applied to investigate

the presence of such fiscal interaction. Empirical results have frequently found evidence of

positive dependence in neighbouring government tax rates; see Allers and Elhost (2005) and

the references therein for an extensive list of empirical papers and results. Findings in these

studies broadly support the commonly held view that competition for mobile tax bases has

led to a harmful “race to the bottom” in tax rates and subsequent under-provision of public

goods.

Some recent empirical papers, concerned by possible endogeneities and model misspecifi-

cation in previous work, have applied alternative estimation strategies for the spatial inter-

action in tax rates, aiming to mitigate the effects of endogeneity due to misspecification and

present findings that contrast with the earlier literature. Two papers of particular interest are

Lyytikäinen (2012) and Parchet (2019), who used policy-based instrumental variables (IV) to

estimate the spatial autoregressive parameter in SAR models. They found this parameter to

be insignificant and negative significant, respectively, and therefore presented evidence that

contrasts with the preceeding iterature (e.g. Allers and Elhorst (2005)). Both Lyytikäinen

(2012) and Parchet (2019) additionally report spatial parameter estimates based on conven-

tional methods (such as QMLE) that are positive and highly significant in their data, the

contradiction suggesting that caution should be exercised in accepting the findings of pre-

vious work showing positive spatial dependence in neighbouring government tax rates. The

common ground that casts doubts on the reliability of estimates of the spatial parameters

obtained with standard methods is the fact that it is unlikely that the fitted SAR model

is correctly specified in practice and that the resulting residual spatial correlation in the

errors may result in regressor endogeneity and biased findings. Neither Lyytikäinen (2012)
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nor Parchet (2019) consider explicitly the problem of misspecification of W . But both arti-

cles stress that standard techniques are likely to fail to deliver credible inference if the SAR

models are not correctly specified.

The following sub-sections present empirical applications of our specification test to data

from these two papers (Lyytikäinen, 2012, and Parchet, 2019) with the aim of assessing the

suitability of SAR specifications in analyzing the tax competition data. We find that careful

consideration of model specification, similar to that obtained from policy-based IV estimation,

helps to mitigate significantly the disparity in the conclusions drawn from the QML and

policy-based IV estimators. These findings highlight the usefulness of specification testing.

The test procedure developed in the present paper may therefore provide a valid starting point

towards developing a suitable SAR specification when alternative models and/or estimation

techniques (such as policy-based IV) are not immediately available in practical work to deal

with potential endogeneities induced by misspecification.

7.1 Municipality-level tax setting in Finland

Finland’s municipalities have autonomy to set their own property tax rates within limits set

by the central government. In order to investigate the nature of possible inter-municipality

interaction in the determination of Finnish property tax rates, Lyytikäinen (2012) used a

SAR model with fixed effects such that

tit = λ

n∑
j=1

wijtjt +X ′itβ + µi + τt + εit (7.1)

where tit denotes either municipality i’s general property tax rates or residential building tax

rates in year t, the regressors Xit include the municipality’s socio-economic attributes and

µi and τt are municipality and year fixed effects, respectively. Table 5 reports the variables

contained in Xit. We refer to Lyytikäinen (2012) for a detailed description of the data and

setting.

Table 5: List of variables in Xit of model (7.1).

per capita income per capita grants unemployment rate

percent of Age 0-16 percent of Age 61-75 percent of Age 75+

In order to alleviate possible endogeneity sources arising from unobservable time-invariant

characteristics, Lyytikäinen (2012) focused on one-year differenced data, with ∆ti = ti,2000−
ti,1999 and ∆Xi = Xi,2000−Xi,1999, where year 2000 coincides with a policy intervention that

raised the common statutory lower limit to the property tax rates, and i indexes municipalities
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that range from 1 to 141. Lyytikäinen used this exogenous policy change to construct a

suitable instrument and estimate parameters of the model

∆ti = λ

n∑
j=1

wij∆tj + ∆X ′iβ + γ0 + γ1Pi + γ2Mi + ∆εi, i = 1, ..., 141, (7.2)

where ∆εi = εi,2000 − εi,1999, Pi is dummy variable indicating whether the 1999 tax rate

level for municipality i was below the new lower limit imposed in 2000, and Mi indicates

the magnitude of the imposed increase for municipality i. Pi and Mi were included to

ensure exogeneity of the instrument being used. He found the spatial AR parameter λ to be

insignificant for both sets of regressions with either general property tax rate or residential

building tax rate, and hence concluded the absence of substantial tax competition between

municipalities in Finland.

To complement this analysis, we consider the following two variants of model (7.1) for

year 2000:

ti = λ
n∑
j=1

wijtj +X ′iβ + γ0 + γ1Pi + γ2Mi + εi, (7.3)

and

ti = λ
n∑
j=1

wijtj +X ′iβ + γ0 + γ1Pi + γ2Mi + γ′3Di + εi, (7.4)

where Di is a vector of county dummies for municipality i : there are 19 counties in our data

and model (7.4) includes county-specific controls to partially account for the possibility of

omitted variables at the county level. As in Lyytikäinen (2012) we adopt a contiguity matrix

with wij = 1 if municipalities i and j share a border and zero otherwise, and apply a row

normalising transformation to obtain W . We stress that we need to control for the direct

impact of the policy on municipality i (in addition to the socio-economic variables of Xit)

when using data from post-policy intervention to avoid spuriously inflated estimates of λ as

spatial correlation in tax rates means that a municipality whose neighbours are affected by

the policy is also likely to experience imposed increase in tax rate.

As in our simulation design, we set pn = n1/3. We calibrate the choice of the vector t

and the scalar tY so that the modulus of the magnitude of exponentials appearing in (4.8)

matches roughly with that of our simulation set up. This strategy results in choosing t as a

vector with entries equal to 0.1 and tY = 0.03. Further, in the first component of M(θ̂, t, tY )

of (4.8), we consider exp(t′arctg(Xi− X̄)), as discussed in the simulation section, rather than

exp(t′Xi), for i = 1, ..., n.

Table 6 reports our estimates of λ in models (7.3) and (7.4), for both the general property

tax rate (left panel) and the residential building tax rate (right panel). Our test does not
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reject any of the two specifications in (7.3) and (7.4), for either choice of the dependent

variable. The QML estimate for λ is significant for general property tax rate but not for the

residential building tax. We observe that including the county dummies somewhat reduces

the value of the estimate of λ for both tax rates although it does not affect its statistical

significance.

Table 6: Left panel: columns (1) and (2) report QML estimates of λ and their t−statistics (in brackets), and

the value of the test T̂ (t, tY ) in (4.9) for model (7.3) and (7.4), respectively, with the general property tax rate

as dependent variable. Right panel: columns (3) and (4) report results for model (7.3) and (7.4), respectively,

with the residential business tax rate as dependent variable. Row-normalized weight matrices are used.

* p− value < 0.1; ** p− value < 0.05; *** p− value < 0.01.

general property tax residential building tax

(1) (2) (3) (4)

λ̂ 0.2909
(6.0198)

∗∗∗ 0.2691
(5.2782)

∗∗∗ 0.0985
(1.5977)

−0.0342
(−0.5151)

T̂ (t, tY ) 3.4041 3.1006 0.7912 1.0108

Since municipality fixed effects are not included in models (7.3) and (7.4), for compara-

bility with the policy-based IV estimator in Lyytikäinen (2012), we also consider the model

based on differenced data, i.e. model (7.2) with differences taken between 2000 and 1999

(i.e. the year of the policy change and the year before), and model (7.2) with quantities

re-defined as ∆ti = ti,2001− ti,2000 and ∆Xi = Xi,2001−Xi,2000 and ∆εi = εi,2001− εi,2000, and

the set of Xit defined in Table 5. Results for both general and residential building property

tax rates are reported in columns 1-4 of Table 7, where columns 1 and 2 contain results with

differences calculated between 2001 and 2000 and between 2000 and 1999, respectively, for

general property tax rates, and columns 3 and 4 contain corresponding results for residential

business tax rates.
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Table 7: Left panel: columns (1) and (2) report QML estimates of λ and their t−statistics (in brackets),

and the value of the test T̂ (t, tY ) in (4.9) for model (7.2) with differences taken between 2001 and 2000 and

between 2000 and 1999, respectively, with general property tax rate as the dependent variable. Right panel:

columns (3) and (4) report results for model (7.2) with differences taken between 2001 and 2000 and between

2000 and 1999, respectively, with residential business tax rate as the dependent variable. Row-normalized

weight matrices are used.

* p− value < 0.1; ** p− value < 0.05; *** p− value < 0.01.

general property tax residential building tax

(1) (2) (3) (4)

λ̂ 0.0858
(1.1555)

−0.0139
(−0.3193)

0.1462
(2.0222)

∗∗ 0.0610
(1.0910)

T̂ (t, tY ) 0.1640 1.1189 2.0383 0.1497

Allowing for municipality fixed effects changes the significance level of the spatial param-

eter λ, which is now always statistically insignificant for the general property rate regression,

as opposed to the results displayed in Table 6, whereas the spatial parameter becomes signif-

icant for residential business property tax rates when differences are taken between 2001 and

2000. In both cases, the model is not rejected, suggesting that SAR might be an adequate

specification to describe the network dependence in these data. We also observe that the

QML estimator for λ in the differenced data remains close to the policy-based IV estimator

reported in Lyytikäinen (2012). Although a full replication of the results in Lyytikäinen

(2012) is not attempted in this illustration, the specification test findings and the empirical

results in Tables 6 and 7 suggest that QML estimates of standard SAR models deliver results

that are mostly in line with the policy-based IV estimator of Lyytikäinen (2012), as long as

SAR specifications are carefully tailored to account for the policy change (i.e. once Pi, Mi,

Di and municipality fixed effects are accounted for).

We extend the results obtained in Tables 6 and 7 by choosing a different normalization

for W . More specifically we impose a weight structure via the same contiguity criterion

discussed above but now normalized by its spectral norm rather than by dividing elements

in each row by their respective row sums. We report the new results in Tables 8 and 9.

Comparing columns 1 and 2 of Table 8 with their counterparts in Table 6, we notice that

λ remains significant, although it is much smaller in absolute value. However, when W is

chosen as a spectral norm-normalised contiguity structure, our test clearly rejects the SAR

specification. A similar pattern is observed when comparing columns 3 and 4 with their

counterparts in Table 6, although SAR is rejected for specification (7.4) but not for (7.3).

This discrepancy between results obtained by different normalization of the same contiguity

structure is not surprising, when one considers that the empirical spatial econometric lit-
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erature has a long-standing debate on the suitability of row-normalization. In the specific

context of spatial analysis with political economy/political science data, row normalization

imposes homogenous total exposure to spatial stimulus, without allowing some central mu-

nicipalities to have a more prominent role compared to more peripheral ones (e.g. Neumayer

and Plümper (2016)). Spectral norm normalization, instead, has the advantage of preserving

the heterogeneity across different rows as all elements of the contiguity matrix are scaled by

the same factor.

For completeness, in Table 9 we report results corresponding to Table 7 for a spectral

norm-normalised W . The pattern of results is similar to that reported in Table 7, with the

exception of the loss of statistical significance of λ for model (7.2) with differences taken

between 2001 and 2000, and residential business property tax rate as the dependent variable.

The SAR specification seems adequate for the four cases, similar to Table 7.

Table 8: Left panel: columns (1) and (2) report QML estimates of λ and their t−statistics (in brackets),

and the value of the test T̂ (t, tY ) in (4.9) for model (7.3) and (7.4), respectively, with the general property

tax rate as dependent variable. Right panel: columns (3) and (4) report results for model (7.3) and (7.4),

respectively, with the residential business tax rate as dependent variable. Spectral norm normalized weight

matrices are used.

* p− value < 0.1; ** p− value < 0.05; *** p− value < 0.01.

general property tax residential building tax

(1) (2) (3) (4)

λ̂ −0.0376
(−1.6902)

∗ −0.0446
(−2.0155)

∗∗ 0.0061
(0.2531)

0.0004
(0.0164)

T̂ (t, tY ) 13.6353∗∗∗ 6.9837∗∗ 3.7663 50.8116∗∗∗

Table 9: Left panel: columns (1) and (2) report QML estimates of λ and their t−statistics (in brackets), and

the value of the test T̂ (t, tY ) in (4.9) for model (7.2) with differences taken between 2001 and 2000 and between

2000 and 1999, respectively, with general property tax rate as the dependent variable. Right panel: columns

(3) and (4) report results for model (7.2) with differences taken between 2001 and 2000 and between 2000

and 1999, respectively, with residential business tax rate as the dependent variable. Spectral norm normalized

weight matrices are used.

* p− value < 0.1; ** p− value < 0.05; *** p− value < 0.01.

general property tax residential building tax

(1) (2) (3) (4)

λ̂ 0.0930
(1.0225)

−0.0317
(−0.6944)

0.1129
(1.2541)

0.0278
(0.4135)

T̂ (t, tY ) 1.3613 2.3674 1.4379 0.1549
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7.2 The Swiss case: a multi-tier federal system

The tax system in Switzerland has a special character and is highly decentralized. The to-

tal (denoted as “consolidated” in Parchet, 2019) personal income tax rate for a resident in

municipality i belonging to canton c, denoted by ti in the sequel, is composed by Ti + Tc,

where Tc and Ti are tax rates levied by canton c and municipality i, respectively. For addi-

tional details about the Swiss personal income tax system, as well as on the general Swiss

federal structure we refer to Parchet (2019) and the references therein. The baseline model

considered in Parchet (2019) is a panel version of the following spatial autoregression, where

the consolidated tax rate of municipality i is possibly related to a weighted average of con-

solidated tax rates of neighboring municipalities, with no restriction on whether “neighbors”

belong to the same canton as municipality i or not, i.e.

ti = λ
n∑
j=1

wijtj + β′Xi + εi, i = 1, ..., n, (7.5)

whereXi is a 37×1 vector that contains a unit constant, various characteristics of municipality

i, as well as canton-specific dummies (denoted as Dci in the sequel). In addition to Dci, Xi

contains dummies that indicate whether municipality i is an urban area and/or center of an

urban area and whether it has a lake shore. A list of the non-binary variables contained in

Xi, which capture population, political orientation, economic data, and geographic features,

is reported in Table 10, and for additional details we refer the reader to Parchet (2019).

Table 10: List of variables in Xi of model (7.5).

population (in 1,000) % foreign national
% youth (≤ 20) % elderly (≥ 80)
% working in primary sector % working in secondary sector
unemployment rate total employment per capita
% votes for left-of-center parties altitude
number of movie theaters within 10 km

The results reported in Parchet (2019) refer to a panel of observations spanning the period

from 1983 to 2012. In this paper we report estimated parameters for model (7.5) using data

only from year 2012, although similar results to those presented here were found to hold for

the other years. Heuristically, we expect that the theoretical properties of our test hold for

the static model (7.5) with data pooled over multiple years. However, robustness of our test

in a static panel model has not been formally studied and we therefore use a cross-sectional

analysis instead. The 2012 sample used here has n = 2389 observations. Following Parchet

(2019), the weight matrix is set so that wij = 1 if the road distance between municipalities i
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and j does not exceed 10 km, and wij = 0 otherwise, and wii = 0, as is standard.

We report the estimate of λ in (7.5) and the value of our test statistic for two different

normalizations of W : column (1) of Table 11 reports results obtained by a row-normalized

version of W (i.e. each element wij is scaled so that elements of each row of the resulting

matrix sum to 1), as adopted in Parchet (2019), while column (2) presents the corresponding

results obtained when W is normalized by its spectral norm. Henceforth, we denote by

W r and W s, respectively, the case of row-normalized and spectral-norm-normalized weight

matrices.

The QML estimate of λ reported in column (1) is positive and statistically significant.

This is in line with Table 2 in Parchet (2019), as well as with Allers and Elhost (2005).

Nonetheless, the SAR specification is rejected by our T̂ (t, tY ) test in (4.9) at the 5% level,

confirming that some alternative specification is needed in order to perform reliable inference.

The inadequacy of the SAR specification supports the policy-based IV strategy discussed

in Parchet (2019), at least so far as mitigating possible endogeneity effects arising from

misspecification. Interestingly, the estimate of λ becomes negative and significant when W s,

as opposed to W r, is adopted. The negative, significant λ is consonant with the policy-

based IV estimate of λ displayed in Table 3 in Parchet (2019). However, our test strongly

rejects SAR also for W s. These results suggest that, although SAR is inadequate in both

cases, spectral normalization instead of the common row normalization is enough to account

for the negative sign in Parchet (2019). This discrepancy in sign across the two different

normalization is not surprising, and we refer the reader to the discussion about the effects of

different normalizations reported in Section 7.1.

Table 11: Columns (1) and (2) report estimates of λ and their t-statistics (in brackets), and the value of

the test statistic T̂ (t, tY ) in (4.9) for model (7.5), with W r and W s, respectively, for data pertaining to 2012.

Columns (3) and (4) report corresponding results for model (7.6), with W r and W s, respectively.

* p− value < 0.1; ** p− value < 0.05; *** p− value < 0.01.

Model (7.5) Model (7.6)

(1): W r (2): W s (3): W r (4): W s

λ̂ 0.2271
(11.1581)

∗∗∗ −0.0214
(−4.4371)

∗∗∗ 0.1371
(5.0666)

∗∗∗ 0.0380
(1.0177)

T̂ (t, tY ) 8.1890∗∗ 126.7315∗∗∗ 3.6558 5.6807∗

To assess whether some of the issues with SAR are linked to omitting relevant fixed-effects

in the one-period model in (7.5), we re-estimate a SAR model with data differenced across

two periods. We define ∆ti = ti,2012 − ti,2007, where the same notation applies to the other

quantities appearing in (7.5)2. Controlling explicitly for canton-dummies and including an

2We take differences over a 5-year time span to ensure sufficient variation in the Xi, which contain several
observables with little change over consecutive years.
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intercept, we have the model

∆ti = λ

n∑
j=1,j 6=i

wij∆tj + γ + β′∆Xi + δ′Dci + ∆εi, i = 1, ..., n, (7.6)

where ∆Xi is a 4 × 1 vector containing differenced data on size of the population, unem-

ployment rate, total employment per capita and percent of votes for left-of-center parties,

since all other variables reported in Table 10 do not display significant time variation and are

omitted from the model.

Estimates of λ in (7.6) and their associated t−ratios as well as the value of the speci-

fication test T̂ (t, tY ) in (4.9) for W r and W s are reported in columns (3) and (4) of Table

11. Under row normalization, λ appears to be positive and significant at the 1% level, a

result that is consistent with Allers and Elhorst (2005) and with Table 2 in Parchet (2019).

More importantly, the specification test fails to reject SAR even at the 10% level, suggest-

ing that mispecification issues detected in model (7.5) and reported in column (1) of Table

11 are resolved by differencing the data and thereby removing potential endogeneity due to

fixed-effects. However, under spectral norm normalization, λ is no longer significant, and the

adequacy of SAR is weakly rejected at 10% level. This finding reveals that although differenc-

ing alleviates some of the model misspecification issues, the SAR specification with spectral

norm normalization W s seems much less well suited than row normalization for modeling the

spatial structure of these data.

8 Concluding remarks

This paper develops a substantial modification of the Bierens conditional moment test de-

signed to suit the needs of spatial modeling. The test statistic has a convenient standard chi

square limit theory and is consistent against general alternatives including those that involve

functional form, the spatial/network specification, and weight matrix formulation. In view

of the complications arising from the presence of both spatial interactions and systematic re-

gressor components in spatial models, the test framework is formulated with careful attention

to the multiple component nature of the null and alternative hypotheses. In particular, the

framework elucidates precisely the different forms of misspecification in the model for which

the test has discriminatory power and for which the test statistic is explicitly constructed to

address.

Since the test has a standard pivotal limit distribution under H0 it is straightforward

to implement using asymptotic critical values and simulations reveal that its practical per-

formance is highly satisfactory with stable size and good power against multiple sources of

misspecification. The application of our test to the municipality-level tax competition data
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from two recent studies by Lyytikäinen (2012) and Parchet (2019) sheds some light on the

much-contested suitability of SAR modeling with conventional estimation methods (such as

QML) in the tax competition literature. In particular, the specification tests conducted here

corroborate the need for careful refinement of the specification or methods designed to ad-

dress induced endogeneity from misspecification similar to the methods Lyytikäinen (2012)

and Parchet (2019) have used with their policy-based IV estimation.

This paper has focused on specification testing in the basic SAR model with homoskedastic

errors. More general applicability requires adaptations in both cross-sectional and panel data

settings to accommodate broader maintained conditions. We expect that similar methods and

results will apply in more sophisticated models, such as those with error heterogeneity and

endogeneities, by modifications that address heterogeneities and robust estimation methods

such as IV that address endogeneities. For instance, Theorem 2 continues to hold with minor

modifications for IV estimation as the basic structure of the existing proof involves linear

and quadratic forms in the errors that are preserved with only minor adjustments to account

for the relevant projection operators. A heteroskedasticity-robust version of the test and its

practical application is currently under investigation in separate work.

Appendix 1

Proof of Theorem 1. For each i satisfying Pmi(ῡi(mi, θ) = 0) < 1 and for all sufficiently

large n, the proof of part b) of Theorem 1 follows directly from that of Lemma 1 in Bierens

(1990). The proof of part a) follows again from Bierens (1990), once we can show that for

every i = 1, ..., n and for sufficiently large n

PXi(E(vi(θ)|X1, ..., Xn) = 0) < 1→ E(vi(θ)e
t′Xi) 6= 0 for at least one t ∈ Rk. (A.1.1)

Recall that

din(θ,X1, ..., Xn) = di(X1, ..., Xn) = E(vi(θ)|X1, ..., Xn),

where in this context we drop the dependence from θ for the sake of notational simplicity,

with a similar convention for vin(θ) = vi. We define the functions

d1i(·) = max{di(·), 0}, d2i(·) = max{−di(·), 0},

the expected values

cis = E(dis(X1, ..., Xn)), s = 1, 2,
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and probability measures

νis(Bi) =
1

cis

∫
Bi

∫
Rk
...

∫
Rk
dis(x1, ..., xn)dF (x1)...dF (xn), s = 1, 2, i = 1, ..., n, (A.1.2)

where Bi is a Borel set in Rk and is the range of integration of the variable Xi, and F (x)

is the cumulative distribution function of each of the iid random vectors Xj , j = 1, ..., n.

Define the joint probability measure

νis(B1, ..., Bn) =
1

cis

∫
B1

∫
B2

...

∫
Bn

dis(x1, ..., xn)dF (x1)...dF (xn). (A.1.3)

We have

E(vie
t′Xi) = E(et

′Xidi(X1, ..., Xn)) =

=

∫
Rk
...

∫
Rk
di1(x1, ..., xn)et

′xidF (x1)...dF (xn)−
∫
Rk
...

∫
Rk
di2(x1, ..., xn)et

′xidF (x1)...dF (xn)

= ci1

∫
Rk
et
′xidνi1(xi)− ci2

∫
Rk
et
′xidνi2(xi),

from the definitions of ν1j(Bj) and ν2j(Bj). Note that
∫
Rk e

t′xidν1i(xi) and
∫
Rk e

t′xidν2i(xi)

are the moment generating functions of the probability measures νi1(Bi) and νi2(Bi).

We proceed by contradiction. If E(vie
t′Xi) = 0 for all t ∈ Rk, substituting t = 0 in the

equation ci1
∫
Rk e

t′xidνi1(xj)− ci2
∫
Rk e

t′xidνi2(xi) = 0 yields

ci1 = ci2. (A.1.4)

Thus, for each t ∫
Rk
et
′xidνi1(xi) =

∫
Rk
et
′xidνi2(xi), (A.1.5)

implying

νi1(Bi) = νi2(Bi) ∀Bi ∈ Rk, i = 1, ..., n. (A.1.6)

Therefore ∫
Bi

∫
Rk
...

∫
Rk
di(x1, ..., xn)dF (x1)...dF (xn) = 0 ∀Bi. (A.1.7)

implying di(x1, ..., xn) = 0 almost surely with respect to PXi . �

Proof of Corollary 1. The “⇒” implication in ii) follows directly from part b) of Theorem 1.

The “⇐” part in ii) trivially follows from Proposition 1 and the law of iterated expectations.

Similarly, the “⇒” implication in i) follows from part a) of Theorem 1. To establish the “⇐”
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implication in i) we observe that

PXi(E(vi(θ)|X1, ..., Xn) = 0) = 1 =⇒ PXi(E(vi(θ)|Xi) = 0) = 1 (A.1.8)

since

E(vi(θ)|X1, ..., Xn) = 0 =⇒ E(vi(θ)|Xi) = 0 (A.1.9)

by the law of iterated expectations. Thus

1 = PXi(E(vi(θ)|X1, ..., Xn) = 0) ≤ PXi(E(vi(θ)|X1) = 0), (A.1.10)

implying that PXi(E(vi(θ)|X1) = 0) = 1 and the result follows by the law of iterated expec-

tations. �

Proof of Corollary 2. Recall that, for all i = 1, ..., n and for all n, Yi = gi(X1, ..., Xn) + ηi,

where gi = E(Yi|X1, ..., Xn) and so ηi = Yi − E(Yi|X1, ..., Xn). On the other hand we can

always write, for all i = 1, ..., n and for all n,

Yi = E(Yi|mi(θ0)) + ξi(θ0) = E(gi|mi(θ0)) + ξi(θ0), ξi = Yi − E(Yi|mi(θ0)), (A.1.11)

since E(ηi|mi(θ0)) = 0. Then, by independence of ηi and mi,

Pmi(gi = mi(θ0)) = 1 =⇒ PYi(gi = mi(θ0)) = 1, (A.1.12)

and so, under H0,

1 = PYi(gi = mi(θ0)) = PYi(ηi = ξi(θ0)). (A.1.13)

In view of (3.13), we have PYi(ui(λ0) = ηi) = 1 and thus PYi(ui(λ0) = ξi(θ0)) = 1. Collecting

these results under H0, we obtain

Yi = E(gi|mi(θ0)) + ξi(θ0) = mi(θ0) + ui(λ0). (A.1.14)

�

Proof of Theorem 2 For ease of notation we frequently omit the subscript n and when

there is no risk of confusion use R = R(λ0), S−1 = S−1(λ0), M̂(t, tY ) = M(θ̂, t, tY ), and

M(t, tY ) = M(θ0, t, tY ). By the mean value theorem (MVT),

√
nM̂(t, tY ) =

√
nM(t, tY ) +

dM(t, tY )

dθ
|θ=θ̄
√
n(θ̂ − θ0)

=
√
nM(t, tY ) +

dM(t, tY )

dθ
|θ=θ0

√
n(θ̂ − θ0) +Op

(
1√
n

)
, (A.1.15)
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where

||θ̄ − θ0|| < ||θ̂ − θ0||, (A.1.16)

and θ̂ is a consistent estimator of θ0, converging at rate
√
n to the true value under the null.

We have

√
n(θ̂ − θ0) = Ω−1

(
1

σ2
√
n
β′0X′R′ε

1
σ2
√
n
X′ε

)
+ Ω−1

(
1

σ2
√
n

(ε′Rε− σ2tr(R))

0

)
+Op

(
1√
n

)
, (A.1.17)

where Ω is defined according to (4.2).

Formally, we approximate the exponential component in M(θ̂, t, tY ) as follows

e
tY (Yi−Ȳ )

pn =1 +
tY (Yi − Ȳ )

pn
P
(

sup
i
|εi| ≤ Kαn

)
+
tY (Yi − Ȳ )

pn

(
1− P(sup

i
|εi| ≤ Kαn)

)
+
t2Y (Yi − Ȳ )2

2p2
n

P
(

sup
i
|εi| ≤ Kαn

)
+
t2Y (Yi − Ȳ )2

2p2
n

(
1− P(sup

i
|εi| ≤ Kαn)

)
+ ...,

(A.1.18)

where αn satisfies Assumption R.

We stress that under H0, Yi − Ȳ =
∑

t

∑
j s

d,itxtjβj +
∑

j s
d,ijεj , where sd,ij denote the

(i− j)th element of Sd = S−1− 1S̄−1′ , with S̄−1′ =
∑n

i=1 S
i′/n. Thus, given Assumptions 2,

5 and the functional form of mi in (2.4), P
(

sup
i
|εi| ≤ Kαn

)
≤ P

(
sup
i
|Yi − Ȳ | ≤ Kαn

)
.

Now, under Assumption 1 and by Markov’s inequality,

P
(

sup
i
|εi| ≤ Kαn

)
= (P (|εi| ≤ Kαn))n = (1− P(|εi| > Kαn))n

=1 +O

(
n

α4+δ
n

E|εi|4+δ

)
= 1 +O

(
n

α4+δ
n

)
(A.1.19)

for δ > 0, under Assumption 0. Therefore (A.1.18) can be written as

1 +
tY (Yi − Ȳ )

pn
P
(

sup
i
|εi| ≤ Kαn

)
+
tY (Yi − Ȳ )

pn
O

(
n

α4+δ
n

)
+
t2Y (Yi − Ȳ )2

2p2
n

P
(

sup
i
|εi| ≤ Kαn

)
+
t2Y (Yi − Ȳ )2

2p2
n

O

(
n

α4+δ
n

)
+ . . . . (A.1.20)

By simple algebra using (A.1.17) and (A.1.20), (A.1.15) becomes

1√
n

 e(t)′S−1ε(
1′ + tY

pn
P(sup

i
|εi| ≤ Kαn)(Y ′ − Ȳ 1′)

)
S−1ε− tY

pn
σ2

0tr(S
d′Q)
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− 1

n

 e(t)′

1′ + tY
pn
P(sup

i
|εi| ≤ Kαn)(Y ′ − Ȳ 1′)

S−1
(
RXβ0 X

)
Ω−1

(
1

σ2
√
n
β′0X′R′ε

1
σ2
√
n
X′ε

)

− 1

n

 e(t)′

1′ + tY
pn
P(sup

i
|εi| ≤ Kαn)(Y ′ − Ȳ 1′)

S−1
(
RXβ0 X

)
Ω−1

(
1

σ2
√
n

(ε′Rε− σ2tr(R))

0

)

+Op

(
max

(
1√
n
,

√
n

p2
n

,
n3/2

pnα
4+δ
n

))
, (A.1.21)

where Q is defined in (4.3). Under Assumption R, Op
(
max

(
1/
√
n,
√
n/p2

n, n
3/2/(pnα

4+δ
n )

))
=

op(1). In addition to the usual 1/
√
n error (as displayed in (A.1.15)), the error of the ap-

proximation depends on two extra terms: (i) the error resulting from linearization, i.e. that

obtained when fourth (and fifth) terms in (A.1.20) are dropped, is bounded by
√
n/p2

n; and

(ii) the error that is generated by neglecting the (small) probability that Yi − Ȳ (for some

i = 1, ..., n) might assume an extreme value is bounded by n3/2/(pnα
4+δ
n ). The stated rates are

straightforward to derive after locating the dominant terms upon using Y − Ȳ 1 = SdXβ+Sdε

in the expressions.

With simple manipulations (A.1.21) becomes

1√
n

(
e(t)′

1′

)
Qε+

1√
n

 01×n
tY
pn
P(sup

i
|εi| ≤ Kαn)β′0X′d

′

Qε

+
1√
n

 01×1

tY
pn
P(sup

i
|εi| ≤ Kαn)ε′d

′
Qε− tY

pn
σ2

0tr(S
d′Q)


− 1

n

(
e(t)′

1′

)
S−1

(
RXβ0 X

)
Ω−1

(
1

σ2
√
n

(ε′Rε− σ2tr(R))

0k×1

)

− 1

n

 01×n
tY
pn
P(sup

i
|εi| ≤ Kαn)β′0X′d

′

S−1
(
RXβ0 X

)
Ω−1

(
1

σ2
√
n

(ε′Rε− σ2tr(R))

0k×1

)

− 1

n

 01×n
tY
pn
P(sup

i
|εi| ≤ Kαn)ε′d

′

S−1
(
RXβ0 X

)
Ω−1

(
1

σ2
√
n

(ε′Rε− σ2tr(R))

0k×1

)

+Op

(
max

(
1√
n
,

√
n

p2
n

,
n3/2

pnα
4+δ
n

))
. (A.1.22)

Under Assumptions 1-5 and 9, we can show by standard arguments that the second and fifth

terms in (A.1.22) are bounded by 1/pn, the third is bounded by max(1/pn, n
3/2/(pnα

4+δ
n ))

and the sixth term is bounded by 1/(
√
npn).

Let Ψ(t, tY ) and ψ(t, tY ) be the 2× n matrix and 2× 1 vector defined in (4.5) and (4.6).
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Henceforth, we drop the dependence on (t, tY ) in these expressions to simplify notation, i.e.

Ψ = Ψ(t, tY ) and ψ = ψ(t, tY ). From (A.1.22),

√
nM̂(t) =

1√
n

Ψε+
1√
n
ψ(ε′Rε− σ2

0tr(R)) +Op

(
max

(
1√
n
,

1

pn
,

√
n

p2
n

,
n3/2

pnα
4+δ
n

))
=

1√
n

Ψε+
1√
n
ψ(ε′Rε− σ2

0tr(R)) + op(1) (A.1.23)

under Assumption R. Now let b be any deterministic 2× 1 vector such that b′b = 1 and write
√
nb′M̂(t, tY ) =

n∑
i=1
ui, where

ui = uin(t, tY ) =
1√
n

2∑
s=1

bsΨsiεi +
1√
n
b′ψr̄ii(ε

2
i − σ2

0) +
2b′ψ√
n
εi
∑
j<i

r̄ijεj , (A.1.24)

with r̄ij = (R+R′)ij/2. Conditional on {X}∞i=1 and for each t, {ui(t), i = 1, ..., n;n = 1, 2, ...}
is a triangular array of martingale differences with respect to the filtration formed by εj ,

j < i.

We therefore have

Var(
√
nb′M̂(t, tY )) ≡ an(t, tY ) = a =

n∑
i=1

Var(ui) =
n∑
i=1

E(u2
i )

=
σ2

0

n
b′ΨΨ′b+

σ4
0tr ((R+R′)2)

2n
b′ψψ′b+

2µ(3)

n
b′ψ

n∑
i=1

r̄ii(Ψ
′
i)
′b

+
(µ(4) − 3σ4

0)

n
b′ψψ′b

n∑
i=1

r̄2
ii, (A.1.25)

where Ψ′i is the transpose of the i−th row of Ψ′. The leading term of (A.1.25) is the first and

by Lemma 1 is non zero as n→∞.

Let zi = zin(t) = a−1/2ui. From Scott (1973), if (conditional on X)

n∑
i=1

E(z2
i |εj ; j < i)→

p
1, (A.1.26)

and for each ζ > 0
n∑
i=1

E(z2
i 1(|zi > ζ|))→

p
0, (A.1.27)

then
∑n

i=1 zi →d N (0, 1) pointwise in (t, tY ). Thus, the claim in Theorem 2 follows straight-
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forwardly, with

A = lim
n→∞

{
σ2

0

n
ΨΨ′ +

σ4
0tr
(
(R+R′2

)
2n

ψψ′ +
2µ(3)

n
ψ

n∑
i=1

r̄ii(Ψ
′
i)
′ +

(µ(4) − 3σ4
0)

n
ψψ′

n∑
i=1

r̄2
ii

}
.

(A.1.28)

We start by showing (A.1.26). We can equivalently show that, conditional on X and

pointwise in (t, tY ),
n∑
i=1

(
E(z2

i |εj ; j < i)− E(z2
i )
)
→
p

0. (A.1.29)

By standard algebra,

n∑
i=1

(
E(z2

i |εj ; j < i)− E(z2
i )
)

=
4b′ψ

na

(
η′ψ

(
σ2

0

n∑
i=1

∑
j<i

∑
s<i

r̄ij r̄isεjεs − σ4
0

n∑
i=1

∑
j<i

r̄2
ij

)

+σ2
0

n∑
i=1

2∑
p=1

bpΨpi

∑
j<i

r̄ijεj + b′ψµ
(3)
0

n∑
i=1

r̄ii
∑
j<i

r̄ijεj

)
. (A.1.30)

Since a = O(1) and is non-zero for each (t, tY ) by Lemma 1 and trivially each component of

ψ = O(1), result (A.1.26) holds if, pointwise in (t, tY ) and conditional on X,

1

n

σ2
n∑
i=1

∑
j<i

∑
s<i

r̄ij r̄isεjεs − σ4
n∑
i=1

∑
j<i

r̄2
ij

→
p

0, (A.1.31)

1

n

n∑
i=1

2∑
p=1

ηpΨpi

∑
j<i

r̄ijεj →
p

0, (A.1.32)

and
1

n

n∑
i=1

r̄ii
∑
j<i

r̄ijεj →
p

0. (A.1.33)

The LHS of (A.1.31) can be written as

σ2

n

( n∑
i=1

∑
j<i

r̄2
ij(ε

2
j − σ2) +

n∑
i=1

∑
j,s<i

j 6=s

r̄ij r̄isεjεs
)
. (A.1.34)

The first term of the last displayed expression has mean zero and variance bounded by

K

n2

∑
i,k

∑
j<i,k

r̄2
ij r̄

2
kj ≤

K

n2

∑
i,j,k

r̄2
ij r̄

2
kj ≤

K

n2

(
max
j

∑
i

r̄2
ij

)∑
k,j

r̄2
kj = O

(
1

nh

)
, (A.1.35)
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since ∑
k,j

r̄2
kj =

1

4
tr((R+R′2) = O

(n
h

)
, (A.1.36)

and, denoting by ej the n× 1 vector with 1 in the j−th place and zeros otherwise,

max
j

∑
i

r̄2
ij = max

j

1

4
e′j(R+R′2)ej ≤ K‖R+R′2‖ ≤ K, (A.1.37)

under Assumptions 3, 4 and 5. The second term in (A.1.34) has again mean zero and variance

bounded by

K

n2
|
∑
i,k

∑
j<i,k

∑
s<i,k

r̄ij r̄isr̄kj r̄ks| ≤
K

n2

∑
i,k,j,s

|r̄ij r̄isr̄kj r̄ks| ≤
K

n2

∑
i,k,j,s

|r̄ij r̄is|(r̄2
kj + r̄2

ks)

≤ K

n2

(
max
j

∑
i

|r̄ij |

)(
max
i

∑
s

|r̄is|

)∑
k,j

r̄2
kj +

K

n2

max
i

∑
j

|r̄ij |

(max
s

∑
i

|r̄is|

)∑
k,s

r̄2
ks

= O

(
1

nh

)
, (A.1.38)

under Assumptions 3, 4 and 5 and by (A.1.36). Thus, collecting (A.1.35) and (A.1.38) we

deduce (A.1.31) by the Markov inequality.

The LHS of (A.1.32) has mean zero and variance bounded by

K

n2

∑
i

∑
s

∑
j<i,s

|

 2∑
p=1

bpΨpi

 2∑
q=1

bqΨqs

 r̄ij r̄sj |

≤ K

n2

∑
i

∑
s

∑
j

|r̄ij ||r̄sj |

 2∑
p=1

bpΨpi

2

+

 2∑
q=1

bqΨqs

2
≤ K

n2

(
max
i

∑
j

|r̄ij |
)(

max
j

∑
s

|r̄sj |
)∑

i

 2∑
p=1

bpΨpi

2

+
K

n2

(
max
j

∑
i

|r̄ij |
)(

max
s

∑
j

|r̄sj |
)∑
s

 2∑
q=1

bqΨqs

2

= O

(
1

n

)
(A.1.39)

pointwise in (t, tY ) under Assumptions 3,4 and 5 and by Lemma 1. Then (A.1.32) follows by

Markov inequality.

Similarly, (A.1.33) follows by Markov inequality after observing that the LHS has mean

zero and variance bounded by

K

n2

∑
i

∑
k

∑
j

|r̄ij ||r̄kj |(r̄2
ii + r̄2

kk)
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≤ K

n2

(
max
i

∑
j

|r̄ij |
)(

max
j

∑
k

|r̄kj |
)∑

i

r̄2
ii +

K
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(
max
i

∑
j

|r̄ij |
)(

max
k

∑
j

|r̄kj |
)∑
k

r̄2
kk

= O

(
1

nh

)
, (A.1.40)

since ∑
i

r̄2
ii ≤

∑
i,j

r̄2
ij = O

(n
h

)
. (A.1.41)

We prove (A.1.27) by verifying the sufficient Lyapunov condition that pointwise in (t, tY )

and conditional on X
n∑
i=1

E|zi|2+δ → 0. (A.1.42)

Since a = O(1) and is non-zero pointwise in (t, tY ), we consider equivalently
∑

i E|ui|2+δ. We

use
∑

i E|ui|2+δ =
∑

i E(E|ui|2+δ|εj , j < i). By the cr inequality and since ψ = O(1) for each

(t, tY ), we have

n∑
i=1

E|ui|2+δ ≤
(

1

n

)1+δ/2

K
∑
i

|
2∑
s=1

bsΨsi|2+δ +

(
1

n

)1+δ/2

K
∑
i

|r̄ii|2+δ

+

(
1

n

)1+δ/2

K
∑
i

E|
∑
j<i

r̄ijεj |2+δ. (A.1.43)

The first term on the RHS of (A.1.43) is bounded by

K

(
1

n

)1+δ/2

max
i
|

2∑
s=1

bsΨsi|δ
∑
i

(
2∑
s=1

bsΨsi

)2

≤ K 1

nδ/2
max
i
|

2∑
s=1

bsΨsi|δ = o(1), (A.1.44)

since
∑

i(
∑2

s bsΨsi)
2/n = b′ΨΨ′b/n = O(1) and non-zero by Lemma 1, and for each i, s

|Ψsi| = O(1). Similarly, the second term on the RHS of (A.1.43) is bounded by

K
1

nδ/2
max
i
|r̄ii|δ

1

n

∑
i

r̄2
ii = o(1), (A.1.45)

since

|r̄ii| ≤ K||R+R′||∞ ≤ K, (A.1.46)

and by virtue of (A.1.41). By the Burkholder and von Bahr/Esseen inequalities the last term
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at the RHS of (A.1.43) is bounded by

K

(
1

n

)1+δ/2∑
i

E|
∑
j<i

r̄2
ijε

2
j |1+δ/2 ≤ K

(
1

n

)1+δ/2∑
i

∑
j<i

|r̄ij |2+δ

= K

(
1

n

)1+δ/2∑
i

(∑
j<i

r̄2
ij

)1+δ/2 ≤ K
(

1

n

)1+δ/2 (
max
i

∑
j

r̄2
ij

)δ/2∑
i,j

r̄2
ij = o(1) (A.1.47)

by (A.1.36) and (A.1.37). Thus, collecting (A.1.44), (A.1.45) and (A.1.47) we conclude that

(A.1.27) holds pointwise in t. �

Proof of Theorem 3

In order to prove the claim in Theorem 3, and thus consistency of the test based on (4.8),

we show that
√
nM̂ →p ±∞ under Assumption 13. Then, under Assumption 10’, T̂ (t, tY ) =

nM(θ̂, t, tY )′Â−1(t, tY )M(θ̂, t, tY )→∞.

Write M̂(t, tY ) = (M̂1(t), M̂2(tY ))′. We aim to show that under H1 in (3.14), either

plimn→∞M̂1(t) 6= 0 or/and plimn→∞M̂2(tY ) 6= 0. We have

M̂1(t) =
1

n

n∑
i=1

E
((
gi(X)−mi(X, θ])

)
et
′Xi
)

+
1

n

n∑
i=1

ηie
t′Xi +

1

n

n∑
i=1

(
gi(X)et

′Xi − E
(
gi(X)et

′Xi
))

− 1

n

n∑
i=1

(
mi(X, θ])et

′Xi − E
(
mi(X, θ])et

′Xi
))
− 1

n

n∑
i=1

(
mi(X, θ̂)−mi(X, θ])

)
et
′Xi . (A.1.48)

The first term in (A.1.48) is strictly non-zero as n increases under Assumption 13. In order

to ensure
√
nM̂1(t)→p ±∞, we show that the remaining terms in (A.1.48) are op(1).

Under Assumptions 2 and 7, the second term in (A.1.48) has mean zero and variance

equal to

1

n2
|
n∑
i=1

n∑
j=1

E(ηiηj)E
(
et
′Xiet

′Xj
)
| ≤ K

n
sup
i

n∑
j=1

|Cov(ηi, ηj)| = O

(
1

n

)
. (A.1.49)

The third term in (A.1.48) has again mean zero and variance bounded by

1

n2

n∑
i=1

n∑
j=1

|Cov
(
gie

t′Xi , gje
t′Xj
)
| = O

(
1

n

)
, (A.1.50)

under Assumption 6b). The fourth term in (A.1.48) can be decomposed as

1

n

n∑
i=1

sii
(
X ′iβ

]et
′Xi − E

(
X ′iβ

]et
′Xi
))

+
1

n

n∑
i=1

n∑
j=1,j 6=i

sijE
(
X ′jβ

#
)(

et
′Xi − E

(
et
′Xi
))
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+
1

n

n∑
i=1

n∑
j=1,j 6=i

sijE
(
et
′Xi
)(

X ′jβ
# − E

(
X ′jβ

#
))

+
1

n

n∑
i=1

n∑
j=1,j 6=i

sij
(
et
′Xi − E

(
et
′Xi
))(

X ′jβ
# − E

(
X ′jβ

#
))

. (A.1.51)

Under Assumption 2, all terms in (A.1.51) have mean zero and involve sums of independent,

zero-mean random quantities. Under Assumption 2, the variance of the first term in (A.1.51)

is bounded by

K

n2

n∑
i=1

(sii)2 = O

(
1

n

)
, (A.1.52)

under Assumptions 4-5. Similarly, under Assumption 2 the variance of the last term in

(A.1.51) is bounded by

K

n2
|
n∑
i=1

n∑
j=1
j 6=i

(
(sij)2 + sijsji

)
| ≤ K

n2

n∑
i=1

n∑
j=1
j 6=i

(
(sij)2 + |sij ||sji|

)

≤K
n

sup
i,j
|sij |sup

j

n∑
i=1

(|sij |+ |sji|) = O

(
1

n

)
, (A.1.53)

under Assumptions 4-5. The second and third terms in (A.1.51) under Assumption 2 have

variance bounded by

K

n2
|
n∑
i

n∑
j=1
j 6=i

n∑
q=1
q 6=i

sijsiq| ≤ K

n2

n∑
i

n∑
j=1
j 6=i

n∑
q=1
q 6=i

|sij ||siq| ≤ K

n
sup
i

n∑
j=1

|sij |sup
i

n∑
q=1

|siq| = O

(
1

n

)
,

(A.1.54)

under Assumption 5. By Markov’s inequality, we conclude that the second, third and fourth

terms on the RHS of (A.1.48) are all Op(1/
√
n).

The last term in (A.1.48), by the mean value theorem, can be written as

1

n

n∑
i=1

et
′Xi

dmi(X, θ̄)
dθ

(θ̂ − θ#) =
1

n

n∑
i=1

et
′XiS(i)′(λ̄)

(
R(λ̄)Xβ̄ X

)
(θ̂ − θ#), (A.1.55)

where λ̄ and β̄ satisfy, respectively, |λ̄ − λ#| < |λ̂ − λ#| and ||β̄ − β#|| < ||β̂ − β#||. Under

Assumption 12, θ̂ − θ# = op(1). Therefore the last term in (A.1.48) is op(1) as long as we
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can show that each component of the (k + 1)× 1 vector

1

n

n∑
i=1

et
′XiS(i)′(λ̄)

(
R(λ̄)Xβ̄ X

)
(A.1.56)

is Op(1). For simplicity of notation, in order to assess the rate of (A.1.56), let A(λ) be equal

to either S−1(λ) or S−1(λ)R(λ), its (i, j)−th element being aij(λ). Under Assumption 2, the

modulus of the typical element of (A.1.56) has expectation bounded by

Ksup
i

n∑
j=1

|aij(λ̄)| = O(1), (A.1.57)

under Assumptions 4 and 5. By Markov’s inequality, the last term in (A.1.48) is op(1).

We now deal with the second component of the test statistic M̂2(tY ). We can write

M̂2(tY ) =
1

n

n∑
i=1

(
gi(X)−mi(X, θ])

)
etY (Yi−Ȳ )/pn +

1

n

n∑
i=1

ηie
tY (Yi−Ȳ )/pn

− 1

n

n∑
i=1

(
mi(X, θ̂)−mi(X, θ])

)
etY (Yi−Ȳ )/pn − tY

npn
(σ̂2tr(ŜdQ̂)) (A.1.58)

Under Assumptions 6, and 7, under H1, we have sup
i

(Yi− Ȳ ) = Op(1). The first term in

(A.1.58) is

1

n

n∑
i=1

(
gi(X)−mi(X, θ])

)
+

1

n

n∑
i=1

(
gi(X)−mi(X, θ])

)(
etY (Yi−Ȳ )/pn − 1

)
(A.1.59)

Under Assumption 13,

1

n

n∑
i=1

(
gi(X)−mi(X, θ])

)
→
p

lim
n→∞

1

n

n∑
i=1

E
(
gi(X)−mi(X, θ])

)
6= 0, (A.1.60)

where the limit on the RHS of the last displayed expression exists under Assumption 2, 6

and (2.4). The modulus of the second term in (A.1.59) is bounded by

sup
i

∣∣∣∣etY (Yi−Ȳ )/pn − 1

∣∣∣∣ 1n
n∑
i=1

|gi(X)−mi( X, θ])|,

which is op(1) as n → ∞ since
n∑
i=1
|gi(X)−mi(θ

])|/n = Op(1) under H1 in (3.14). Similarly,

we can show that the second and the third term in (A.1.58) are op(1). The details are omitted

to avoid repetition. The last term in (A.1.58) is Op

(
1
pn

)
= op(1) under Assumptions 2, 4, 5
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and 9 and by (4.7). �

Appendix 2: Additional Lemma and Propositions

Lemma 1 Conditional on X and under Assumptions 2, 4, 5 and 9,

||Q||∞ + ||Q′||∞ < K (A.2.1)

for all sufficiently large n.

Proof of Lemma 1. Under Assumption 4, the claim follows as long as

1

n
||ZΩ−1Z ′||∞ < K, (A.2.2)

where (limited to the scope of this Lemma) we set Z =
(
RXβ0 X

)
.

Under Assumptions 2-5, ||R||∞ + ||R′||∞ < K, and thus all elements of Z are O(1),

conditionally on X. Under Assumption 9, eig(Ω) > c > 0 and then

1

n
||ZΩ−1Z ′||∞ =

1

n
sup
i

n∑
j=1

|Z ′iΩ−1Zj | ≤
1

n
sup
i

n∑
j=1

||Z ′i||||Zj ||||Ω−1||

≤Ksup
i,j
||Z ′i||||Zj ||||Ω−1|| ≤ K,

since supi ||Zi|| = supi (Z ′iZi)
1/2 = O(1) and

||Ω−1|| = eig(Ω−1) =
1

eig(Ω)
<

1

c
< K. (A.2.3)

�

We introduce some additional technical assumptions that are used in Proposition 2. Let

Nδ = {λ : |λ− λ]| < δ} and N̄δ = Λ/Nδ for some δ > 0. Define σ̂2(λ) = 1
ny
′S(λ)′MXS(λ)y,

MX = I − X(X′X)−1X′ and σ̃2 := E1(σ̂2(λ)), with E1(·) denoting expectation under H1.

Assumption A For all sufficiently large n, λ] ∈ Λ and there exists δ > 0 such that

limn→∞ inf
λ∈N̄δ

( σ̃2(λ)

σ̃2(λ])
|S(λ])′S−1(λ)′S−1(λ)S(λ])|1/n

)
> 1

Assumption A is an identification condition on λ] under H1, akin to Assumption 5 of Delgado

and Robinson (2015).
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Assumption B Setting g = (g1(X1, ..., Xn), · · · , gn(X1, ..., Xn))′ we have

limn→∞ inf
Λ
σ̃2(λ) = limn→∞ inf

Λ

1

n

(
E(g′S(λ)′MXS(λ)g) + E(η′S(λ)′MXS(λ)η)

)
> 0.

Assumption C sup
1≤i≤n

E(η4
i ) < K.

We mention that existence of the fourth moment of ηi, uniformly over i, was not required in

Assumption 7, which only imposed uniform boundedness of the row sums of E(ηη′).

Assumption D For any λ† ∈ Λ and any ε > 0, there exists δ > 0 such that

plimn→∞ sup
λ:|λ−λ†|<δ;λ∈Λ

||N(λ)−N(λ†)|| < ε.

where N(λ) := S(λ)′MXS(λ).

Sufficient conditions for Assumption D are ‖W‖ < K, supλ‖S(λ)‖ < K which follow from

Assumption 4 (ii), and ‖MX‖ = Op(1), which follows from Assumptions 2 and 9. To see this,

note that
dN(λ)

dλ
= −WMXS(λ)′ − S(λ)MXW

′, (A.2.4)

and by the mean value theorem with λ̄ such that |λ̄− λ†| < |λ− λ†| we obtain

‖N(λ)−N(λ†)‖ ≤ |λ− λ†| sup
λ̄:|λ̄−λ†|<|λ−λ†|

‖dN(λ)

dλ

∣∣
λ=λ̄
‖,

where uniformly over λ̄

‖dN(λ)

dλ

∣∣
λ=λ̄
‖ = 2‖S(λ̄)MXW

′‖ ≤ 2‖S(λ̄)‖‖MX‖‖W‖ < K.

Hence ‖N(λ)−N(λ†)‖ ≤ K|λ− λ†| and setting δ = ε/K with ε > 0 satisfies Assumption D.

Let µg = E(g) and Ωg = Var(g), as defined in Assumption 6. Both µg and Ωg exist under

Assumption 6, and higher order moments of g exist as well under the assumption that g(·)
is a continuous function of bounded random variables. Let ζ(λ) = MXS(λ)g and denote by

µζ(λ) and Ωζ(λ) the mean and variance matrix of ζ(λ), both of which exist for each λ ∈ Λ

under Assumptions 2, 6 and 9. We make the following condition on Ωζ(λ).

Assumption E sup
λ∈Λ
||Ωζ(λ)||∞ < K.

Since ζ(λ) is a null vector under H0, i.e. when g = S−1(λ)Xβ, ζ(λ) may be interpreted as

a measure of misspecification in the regression function, conditional on X1, ..., Xn. Thus,

Assumption E imposes a condition that the degree of misspecification of the function g is
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bounded in probability.

Proposition 2 Define a sequence of pseudo true values as λ]n = λ] := arg min
λ∈Λ

L̃(λ) where

L̃(λ) = log(σ̃2(λ)) +
1

n
log |S−1(λ)′S−1(λ)|. (A.2.5)

Under Assumptions A-E, 2-7 and 9, λ̂− λ] = op(1) under H1.

Proof of Proposition 2.

We follow the arguments in the proof of Theorem 1 of Delgado and Robinson (2015). We

proceed with the concentrated likelihood λ̂ = arg min
λ∈Λ

(L(λ)), where

L(λ) = log(σ̂2(λ)) +
1

n
log |S−1(λ)′S−1(λ)|. (A.2.6)

Using independence between Xi and ηj for each i, j = 1, ..., n, and since Y = g+ η under H1,

we have

σ̃2(λ) = E1(σ̂2(λ)) =
1

n
E(g′S(λ)′MXS(λ)g) +

1

n
E(η′S(λ)′MXS(λ)η),

giving

L̃(λ)− L̃(λ]) = log
( σ̃2(λ)

σ̃2(λ])
|S(λ])S(λ])′S−1(λ)′S−1(λ)|1/n

)
= log

( σ̃2(λ)

σ̃2(λ])
|S(λ])′S−1(λ)′S−1(λ)S(λ])|1/n

)
,

L(λ)− L̃(λ) = log σ̂2(λ)− log σ̃2(λ) = log
σ̂2(λ)

σ̃2(λ)
.

Let P1 denote probability under H1 and define the neighbourhood Nδ = {λ : |λ − λ]| ≤ δ}
and N̄δ = Λ\Nδ. The following chain of inequalities holds

P1(λ̂ ∈ N̄δ) ≤ P1

(
inf
N̄δ
L(λ) < L(λ])

)
≤ P1

(
sup

Λ
|L(λ)− L̃(λ)| ≥ inf

N̄δ
|L̃(λ)− L̃(λ])|

)
.

To see the last step above note that from the definition of λ] we have inf
N̄δ
L̃(λ) > L̃(λ]).

Therefore, for inf
N̄δ
L(λ) ≤ L(λ]) to hold, it must be that at λ∗ = argmin

N̄δ
L(λ) the magnitude

of |L(λ∗)− L̃(λ∗)| dominates that of |L̃(λ∗)− L̃(λ])|, implying

sup
N̄δ
|L(λ)− L̃(λ)| ≥ inf

N̄δ
|L̃(λ)− L̃(λ])|,
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which in turn implies

sup
Λ
|L(λ)− L̃(λ)| ≥ inf

N̄δ
|L̃(λ)− L̃(λ])|.

To complete the proof of Proposition 2 it suffices to verify the following two statements:

inf
N̄δ

(
L̃(λ)− L̃(λ])

)
> ε, for all sufficiently large n and for some ε > 0, (A.2.7)

sup
Λ
|L(λ)− L̃(λ)| → 0, as n→∞. (A.2.8)

(A.2.7) follows from Assumption A. The LHS of (A.2.8) is bounded by

sup
Λ

log
σ̂2(λ)

σ̃2(λ)
≤ sup

Λ
|σ̂2(λ)− σ̃2(λ)|/ inf

Λ
σ̃2(λ),

and so (A.2.8) follows as long as

sup
Λ
|σ̂2(λ)− σ̃2(λ)| → 0, (A.2.9)

limn→∞ inf
Λ
σ̃2(λ) > 0. (A.2.10)

Assumption B implies (A.2.10). To establish (A.2.9), we first verify pointwise convergence in

probability of σ̂2(λ)− σ̃2(λ). Under H1,

σ̂2(λ)− σ̃2(λ) =
1

n

(
η′S(λ)′S(λ)η − E(η′S(λ)′S(λ)η)

)
− 1

n2

(
η′S(λ)′X

(
X′X
n

)−1

X′S(λ)η − E

(
η′S(λ)′X

(
X′X
n

)−1

X′S(λ)η

))
+

1

n

(
g′N(λ)g − E(g′N(λ)g)

)
+

2

n
η′N(λ)g

=
1

n

(
η′S(λ)′S(λ)η − E(η′S(λ)′S(λ)η)

)
+

1

n

(
g′N(λ)g − E(g′N(λ)g)

)
+

2

n
η′N(λ)g + op(1), (A.2.11)

where the last step follows by observing that X′X/n converges to a non-singular k × k non-

random matrix under Assumptions 2 and 9, X′S(λ)η/n = op(1) under Assumptions 2, 4 and

7 and X′S(λ)g/n = Op(1) under Assumptions 2, 4 and 6. Thus, σ̂2(λ)− σ̃2(λ) has zero mean

and variance bounded by

KE
(

1

n
η′S(λ)′S(λ)η − E

(
1

n
η′S(λ)′S(λ)η

))2

+KE
(

1

n
g′N(λ)g − E

(
1

n
g′N(λ)g

))2

+KE
(

2

n
g′N(λ)η)

)2

, (A.2.12)
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by the cr inequality. Let E(ηη′|X) = E(ηη′) = Ωη, where ||Ωη||∞ < K under Assumption 7.

The first term in (A.2.12) is bounded by

K

n2
tr
(
(S(λ)′S(λ)Ωη)

2
)
≤ K

n
, (A.2.13)

under Assumptions 4, 7 and C. Recall ζ(λ) = MXS(λ)g and let ζ̄(λ) = Ω
−1/2
ζ ζ(λ). The

second term in (A.2.12) is thus

1

n2

(
E(ζ̄(λ)′Ωζ(λ)ζ̄(λ))2 − (E(ζ̄(λ)′Ωζ(λ)ζ̄(λ)))2

)
≤ K

n2

(
µζ(λ)′Ωζµζ(λ) + 2tr(Ωζ(λ)2)

)
≤ K

n
(A.2.14)

under Assumption E. By the law of iterated expectations, the third term in (A.2.12) can be

written as

4

n2
E
(
g′S(λ)′MXS(λ)ηη′S(λ)′MXS(λ)g

)
=

4

n2
E
(
g′S(λ)′MXS(λ)ΩηS(λ)′MXS(λ)g

)
=

4

n2
E
(
ζ(λ)′S(λ)ΩηS(λ)′ζ(λ)

)
=

4

n2
E(ζ̄(λ)′Ωζ(λ)1/2ΩηΩζ(λ)1/2ζ̄(λ))

=
4

n2
µζ(λ)′Ωηµζ(λ) +

4

n2
tr(ΩηΩζ(λ)) ≤ K

n
(A.2.15)

under Assumptions 7 and E. Collecting (A.2.13), (A.2.14) and (A.2.15), pointwise conver-

gence to zero of σ̂2 − σ̃2 follows by Markov’s inequality.

The uniform convergence in (A.2.9) follows from compactness of Λ and noting that for any

λ† ∈ Λ and small enough ε > 0, we can find δ > 0 such that for N†δ = {λ : |λ− λ†| ≤ δ}

E1 sup
N†δ
|(σ̂2(λ)− σ̃2(λ))− (σ̂2(λ†)− σ̃2(λ†))| = O(ε) (A.2.16)

The LHS of (A.2.16) is bounded by

K

(
E1 sup
N†δ
|σ̂2(λ)− σ̂2(λ†)|+ sup

N†δ
|E1(σ̂2(λ)− σ̂2(λ†))|

)

≤ K

(
E1 sup
N†δ
|σ̂2(λ)− σ̂2(λ†)|+ sup

N†δ
E1|σ̂2(λ)− σ̂2(λ†)|

)
≤ KE1 sup

N†δ
|σ̂2(λ)− σ̂2(λ†)|.
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The last displayed term is

K

n
E1 sup
N†δ
|y′(N(λ)−N(λ†))y| = K

n
E1 sup
N†δ
|tr((N(λ)−N(λ†))yy′)|, (A.2.17)

which in turn is bounded by

K

n
E1 sup
N†δ

(
||N(λ)−N(λ†)||tr(yy′)

)
=
K

n
E1

(
y′y sup

N†δ
||N(λ)−N(λ†)||

)

≤ K

n

(
E1(y′y)2

)1/2(E1(sup
N†δ
||N(λ)−N(λ†)||)2

)1/2

,

where the second factor is O(ε) for δ = ε/K as illustrated in the argument reported after

Assumption D, and observing that E1 sup
N†δ
||N(λ) − N(λ†)|| exists for each λ ∈ Λ under

Assumptions 2, 4 and 9. On the other hand

1

n2
E1(y′y)2 = O(1) (A.2.18)

under Assumptions 2, 6, 7, C and E.

Appendix 3: Extension to a Singular Case

This section analyzes a special case that cannot be accommodated under the Assumptions

and framework of Section 4. In particular, we outlined in Section 4 that Assumption 10 is

violated when the sum of the elements in each column of Q in (4.3) is zero. This happens, for

instance, when elements in each column of W sum to the same constant, such as in a block

diagonal or in a circulant structure. Incidentally, in case W has constant column sums, the

second row of Ψ(t, tY ) in (4.5) is a 1×n vector of zeros, and the second component of ψ(t, tY )

in (4.6) equals zero. In order to accommodate the case of W having constant column sums,

which, although unpopular among practitioners, might be of some interest, we re-define the

building block of our test statistic M(θ̂, t, tY ) to allow the two components to have different

normalization rates as

M s
n(θ̂, t, tY ) =


1
n

n∑
i=1

(
Yi −mi(θ̂)

)
et
′Xi

pn
n

n∑
i=1

(
Yi −mi(θ̂)

)
e
tY

Yi−Ȳ
pn − tY σ̂

2

n
tr(Ŝd

′
Q̂),

 (A.3.1)
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where Q and Sd are again defined according to (4.3) and (4.4), and with the sequence pn

satisfying

pn →∞,
pn
n

= o(1) and

√
n

pn
= o(1). (A.3.2)

The statistic in (A.3.1) with pn in (A.3.2) and the limit theory in the sequel, can in

principle be applied even when Assumption 10 with Ψ defined as in (4.5) is not violated.

But a fast divergent pn together with a slow convergence rate of the second component in

(A.3.1) may compromise the power of the specification test unnecessarily. Some preliminary

numerical work could be done to assess whether the model under H0 falls within the scope

of Assumption 10, and hence of Theorem 2, or whether the statistic needs modification as in

(A.3.1).

Similar to what defined in Section 4, we set the 2× n matrix

Ψs(t, tY ) = Ψs(t, tY , λ0, β0,X) =

(
e(t)′

tY β
′
0X′Sd′

)
Q, (A.3.3)

the 2× 1 vectors

ψs1(t, tY ) = ψs1(t, tY , λ0, β0,X) = − 1

nσ2
0

(
e(t)′

tY β
′
0X′Sd′

)
S−1

(
RXβ0 X

)
ω(1) (A.3.4)

and

ψs2(t, tY ) =

(
01×1

tY

)
. (A.3.5)

For notational convenience, we define s̄q = (Sd′Q+Q′Sd′)/2. Also, we modify Assumptions

10 and 11 as follows.

Assumption 10s Conditionally on X, lim
n→∞

1
nΨs(t, tY )Ψs(t, tY )′ exists pointwise in (t, tY )′

and a.s. as n→∞, and is positive definite.

Assumption 11s Conditionally on X, the limits

lim
n→∞

ψs1(t, tY )ψs1(t, tY )′

n
tr
(
(R+R′)2

)
, lim
n→∞

1

n
tr
(

(Sd′Q+Q′Sd)2
)
,

lim
n→∞

ψs1(t, tY )ψs2(t, tY )′

n
tr
(

(Sd′Q+Q′Sd)(R+R′)
)
, lim
n→∞

ψs1
n

n∑
i=1

r̄ii(Ψ
s
i (t, tY )′)′, lim

n→∞

1

n

n∑
i=1

s̄qii(Ψ
s
i (t, tY )′)′,

lim
n→∞

ψs1ψ
s′
1

n

n∑
i=1

r̄2
ii, lim

n→∞

1

n

n∑
i=1

s̄q2
ii, lim

n→∞

ψs1ψ
s′
2

n

n∑
i=1

r̄iis̄qii

exist pointwise in (t, tY )′ and a.s. as n→∞.
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In order to prove the following Theorem 4, we modify Assumption R to

Assumption R’ Let pn and αn be deterministic, positive sequences satisfying (A.3.2), αn →
∞ as n→∞, and

αn
pn
→ 0,

n3/2

α4+δ
n

→ 0 (A.3.6)

as n→∞, where δ > 0 is determined by Assumption 1.

Assumption R’ is satisfied, for instance, with pn = n2/3 and αn = n1/3, as long as δ > 1/2.

Now let

Asn(t, tY ) =
σ2

0

n
Ψs(t, tY )Ψs(t, tY )′ +

σ4
0tr
(
(R+R′)2

)
2n

ψs1(t, tY )ψs1(t, tY )′

+
σ4

0tr
(
(Sd′Q+Q′Sd)2

)
2n

ψs2(t, tY )ψs2(t, tY )′ +
σ4

0tr
(
(Sd′Q+Q′Sd)(R+R′)

)
2n

ψs1(t, tY )ψs2(t, tY )′

+
2µ(3)

n

(
ψs1(t, tY )

n∑
i=1

r̄ii(Ψ
s
i (t, tY )′)′ + ψs2(t, tY )

n∑
i=1

s̄qii(Ψ
s
i (t, tY )′)′

)

+
(µ(4) − 3σ4

0)

n

(
ψs1(t, tY )ψs1(t, tY )′

n∑
i=1

r̄2
ii + ψs2(t, tY )ψs2(t, tY )′

n∑
i=1

s̄q2
ii + 2ψs1(t, tY )ψs2(t, tY )′

n∑
i=1

r̄iis̄qii

)
.

(A.3.7)

With these modifications the limit behavior of M s
n(θ̂, t, tY ) can now be obtained.

Theorem 4 Let Assumptions 1-5, 9, 10s, 11s and R’ hold. Let pn be a non-negative sequence

satisfying (A.3.2). Under H0 in (3.13), as n→∞

√
nM s(θ̂, t, tY )→d N (0, As(t, tY )) , (A.3.8)

pointwise in (t, tY )′, conditionally on X, where the standardizing variance-covariance matrix

of
√
nM s(θ̂, t, tY ) is given by As(t, tY ) = lim

n→∞
Asn(t, tY ), where Asn(t, tY ) is defined in (A.3.7).

The corresponding limit theory for the test statistic T̂ s(t, tY ) under H0 is

T̂ s(t, tY ) = nM s(θ̂, t, tY )′Âs −1(t, tY )M s(θ̂, t, tY )→d χ
2
2. (A.3.9)

In addition, Theorem 3 in Section 5 goes through with T̂ (t, tY ) replaced by T̂ s(t, tY ) under

the same set of Assumptions as those in Theorem 3. In particular, the second part of the

proof of Theorem 3 (in the Appendix) holds with minor modifications to the rates of the

component terms in the limit. The dominance of the relevant term concerning the second

component of M s(θ̂, t, tY ), which is needed for the consistency of the test in (A.3.9), is assured
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by the second part of Assumption 13.

Proof of Theorem 4

The proof follows closely that of Theorem 2, and we only report the few necessary modifica-

tions to avoid repetition. By a Taylor expansion as in (A.1.18) - (A.1.20) and by a similar

argument to that adopted in the proof of Theorem 1, (A.1.21) becomes 1√
n
e(t)′S−1ε

pn√
n

(
1′ + tY

pn
P(sup

i
|εi| ≤ Kαn)(Y ′ − Ȳ 1′)

)
S−1ε− tY

n σ
2
0tr(S

d′Q)


−

 1
ne(t)

′

pn
n

(
1′ + tY

pn
P(sup

i
|εi| ≤ Kαn)(Y ′ − Ȳ 1′)

)S−1
(
RXβ0 X

)
Ω−1

(
1

σ2
√
n
β′0X′R′ε

1
σ2
√
n
X′ε

)

−

 1
ne(t)

′

pn
n

(
1′ + tY

pn
P(sup

i
|εi| ≤ Kαn)(Y ′ − Ȳ 1′)

)S−1
(
RXβ0 X

)
Ω−1

(
1

σ2
√
n

(ε′Rε− σ2tr(R))

0

)

+Op

(
max

(
1√
n
,

√
n

pn
,
n3/2

α4+δ
n

))
= Op

(
max

(√
n

pn
,
n3/2

α4+δ
n

))
. (A.3.10)

By substituting the expression for Y ′ − Ȳ 1′, using 1′Q = 01×n and

1′S−1
(
RXβ0 X

)
ω(1) = 0,

(A.1.22) becomes

1√
n

Ψsε+
1√
n
ψs1(ε′Rε− σ2

0tr(R)) +
1√
n
ψs2(ε′d′Qε− σ2

0tr(S
d′Q)) +Op

(
max

(√
n

pn
,
n3/2

α4+δ
n

))
.

(A.3.11)

The rest of the proof follows that of Theorem 2 and is omitted. �
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