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Abstract

Price bubbles in multiple assets are sometimes nearly coincident in occurrence. Such
near-coincidence is strongly suggestive of co-movement in the associated asset prices and
likely driven by certain factors that are latent in the financial or economic system with
common effects across several markets. Can we detect the presence of such common
factors at the early stages of their emergence? To answer this question, we build a fac-
tor model that includes I(1), mildly explosive, and stationary factors to capture normal,
exuberant, and collapsing phases in such phenomena. The I(1) factor models the pri-
mary driving force of market fundamentals. The explosive and stationary factors model
latent forces that underlie the formation and destruction of asset price bubbles, which
typically exist only for subperiods of the sample. The paper provides an algorithm for
testing the presence of and date-stamping the origination and termination of price bub-
bles determined by latent factors in a large-dimensional system embodying many markets.
Asymptotics of the bubble test statistic are given under the null of no common bubbles
and the alternative of a common bubble across these markets. We prove consistency of a
factor bubble detection process for the origination and termination dates of the common
bubble. Simulations show good finite sample performance of the testing algorithm in
terms of its successful detection rates. Our methods are applied to real estate markets
covering 89 major cities in China over the period January 2003 to March 2013. Results
suggest the presence of three common bubble episodes in what are known as China’s
Tier 1 and Tier 2 cities over the sample period. There appears to be little evidence of a
common bubble in Tier 3 cities.
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1 Introduction

Financial bubbles are conventionally defined as explosive deviations of asset prices from

market fundamentals followed by a subsequent collapse (Blanchard 1979, Diba & Grossman

1988, Evans 1991). There is now considerable accumulated empirical evidence of bubbles

in historical records of financial asset prices, including equity, commodity, and real estate

markets.1 In a large-dimensional financial system, bubbles may arise concurrently in many

of the variables in the system. For instance, using univariate bubble testing methods Pavlidis

et al. (2016) found evidence of bubble presence in 22 international housing markets between

1975 and 2013, observing high synchronization in three of the bubble episodes. In a similar

way using a univariate bubble detection technique, Narayan et al. (2013) discovered abundant

evidence of bubbles in 589 firms listed on the NYSE over the period from 1998 to 2008. The

detected bubble episodes were observed to appear in clusters according to financial sector.

Related work by Greenaway-McGrevy et al. (2019) found evidence supporting the presence

of a common explosive factor in house prices for 16 cities in two countries (Australia and

New Zealand) over the period 1986-2015.

The focus of the current paper is the econometric detection of a common factor underlying

the presence of bubbles that appear in a large-dimensional financial system. While evidence

of a potential common bubble factor appeared in the empirical work of Greenaway-McGrevy

et al. (2019) such phenomena have not been analyzed in the factor modeling literature. In

consequence, there are no formal tests, dating schemes, or asymptotic theory available for

use in estimation and inference concerning bubble factor detection. A common bubble factor

refers to the circumstance that the dynamics of asset prices within a financial system are

dominated by a pervasive common explosive factor, in the sense that the number of nonzero

loadings for the common explosive factor passes to infinity as the number of assets N →∞.

This formulation allows for a finite number (or small infinity) of assets in the system to

have zero loading on the explosive factor, so these assets are unaffected by the common

bubble. The concept of a common bubble factor is related to the idea of co-explosiveness in

autoregressive models (with either distinct or common explosive roots) that has been studied

in Magdalinos & Phillips (2009), Chen et al. (2017), Nielsen (2010), Phillips & Magdalinos

(2013). But unlike the concept of a common bubble factor, the number of variables in co-

explosive systems is finite and all variables in these systems display explosive dynamics. The

goal of the present paper is to provide econometric methods to test for the presence of a

common bubble factor that may be determining dominant time series behavior in a large-

dimensional system and to date-stamp the origination of this common bubble.

The presence of asset price bubbles and potential commonality in bubble behavior across

1Amongst a large and growing literature, see Phillips et al. (2011), Phillips & Yu (2011), Gutierrez (2012),
Phillips & Yu (2013), Etienne et al. (2014a,b), Phillips et al. (2015a,b), Caspi et al. (2015), Adämmer & Bohl
(2015), Figuerola-Ferretti et al. (2015), Pavlidis et al. (2016), Figuerola-Ferretti et al. (2019), Caspi (2016),
Shi et al. (2016), Shi (2017), Greenaway-McGrevy & Phillips (2016), Hu & Oxley (2017a,b,c, 2018a,b), Phillips
& Shi (2018a), Milunovich et al. (2019), Phillips & Shi (2020).
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assets have important policy implications. Markets subject to common bubbles are extremely

vulnerable to negative shocks and are exposed to the risk of system-wide failure, thereby en-

tailing higher systemic risk (Brunnermeier & Oehmke 2013). In contrast, bubbles that occur

independently in different markets without linkage or contamination seem likely to cause less

system-wide damage. The procedures proposed in the present paper are intended to enable

early identification of speculative behavior governed by a common latent factor that may ex-

pose financial markets to such system-wide risk. In addition, estimates of common explosive

factors facilitate investigation of the underlying driving forces which produce this behavior

and thereby offer potential guidance to governments and financial institution regulators in

crafting policy to maintain economic and financial stability.

The identification of common bubble behavior also has important implications for the

conduct of inference. Nielsen (2010) and Phillips & Magdalinos (2013) showed that maxi-

mum likelihood estimation of a vector autoregressive model is inconsistent when there are

common explosive roots. Furthermore, the maximum likelihood estimator of co-explosive

VAR models follows a mixed-normal limit distribution with Cauchy-type tail behavior rather

than a normal distribution. To address the inconsistency, Phillips & Magdalinos (2013) pro-

pose an instrumental variable procedure for the consistent estimation of VAR models when

the system contains co-explosive variables.

It is always possible to run univariate tests separately for bubble identification in each

individual time series. But the presence of a common bubble characteristic across several time

series, such as real estate prices in multiple regions or different metropolitan areas, is collective

information of importance in understanding the phenomena and in assisting regulators to

frame discretionary monetary policy. Cross section information from multiple time series

is also necessary for identifying common bubbles. Furthermore, it is well known that the

probability of making a false positive inference increases dramatically when univariate tests

are applied repeatedly (in this case to a large number of assets), a phenomenon that is referred

to as the multiplicity issue in the statistics literature.

The econometric procedure we propose here uses a factor model framework and involves

two steps in the process of detecting a latent common bubble in the panel. In the first step we

estimate the dominant common factor using a principal component (PC hereafter) approach.

Factor estimation methods have been extensively used in applied economic research and

asymptotic theory has been developed for stationary factor models in Bai & Ng (2002), Bai

(2003), the I(1) factor model in Bai (2004), and most recently a mixed dynamic factor model

with explosive, I(1), and stationary components in Chen, Li & Phillips (2019). The latter

work is most relevant for the present study.

The second step in our procedure applies the recursive explosive root testing algorithm

of Phillips, Shi and Yu (2015a&2015b, PSY hereafter) to the estimated dominant factor.

The PSY procedure is a commonly used bubble detection technique and has the capacity

to consistently estimate bubble origination and termination dates (Phillips et al. 2015b).
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The test statistic used here to detect a common factor bubble and provide date-stamping

is referred to as a PSY-factor testing algorithm. Under the null hypothesis that there is no

common bubble, asset prices are assumed to be driven by an I(1) factor and an idiosyncratic

error term. The limit distribution of the PSY-factor test statistic under this null is shown

to be the same as that of the original PSY statistic, although the derivation of this result is

complicated by the additional step of factor estimation.

The alternative hypothesis allows for the presence of a common bubble factor in a sub-

sample of the panel. In this formulation the initial trajectory is governed by an I(1) factor,

representing a period of market normalcy. The middle trajectory is driven by an explosive

factor and an I(1) factor. This phase represents a period of market abnormality in relation to

fundamentals that is characterized by speculative behavior. The last part of the trajectory is

governed by a stationary process, which represents the phase following the speculative bubble

collapse. The estimated dominant first factor turns out to be a weighted average of the I(1),

the explosive factor, the stationary factor, and idiosyncratic errors, with weightings that de-

pend on the estimated factor loadings. Under certain regularity conditions, we show that the

PSY-factor test statistic diverges to positive infinity for observations in the expansion phase.

During the collapsing phase, the test statistic diverges to either positive or negative infinity

(depending on the relative ‘strength’ of expansion and collapse) at a rate that is slower than

that in the bubble expansion phase. So the presence of a common speculative component in

the data that is embodied in the explosive factor is identified and the procedure is shown to

consistently estimate the origination and termination dates of the common bubble.

Simulations are used to compare the asymptotic and finite sample distributions of the

test statistic and investigate the successful detection2 rate, and the estimation accuracy of the

common bubble origination and collapse dates under various parameter settings. The results

suggest satisfactory performance of the procedure in finite samples of the size typically used

in empirical studies. As an empirical illustration of the methodology, we apply the common

bubble detection procedure to real estate markets of 89 cities in China over the time period

2003 to 2013. Three episodes of common explosive behavior in real estate prices are detected

in 30 so-called Tier 1 and Tier 2 Chinese cities, whereas little evidence of a common bubble

is found among the remaining 59 Tier 3 cities.

The rest of the paper is organized as follows. Section 2 describes the model specifications

used for the null and alternative hypotheses. The econometric procedure for common bubble

detection is introduced in Section 3. Section 4 provides the asymptotic properties of the test

statistic under both the null and the alternative and shows the consistency of the estimated

bubble origination and collapsing dates. Section 5 reports the results of the simulations

investigating the finite sample performance of the procedure. The application to real estate

markets in China is conducted in Section 6. Section 7 concludes. Proofs are collected in

Appendices A, B, and C. Appendix D contains tables and figures.

2Successful detection occurs when the test indicates the presence of a common bubble in the data and the
estimated origination date occurs on or after the true origination date.
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2 Model Specifications

A commonly used definition of bubble phenomena in financial markets is given by the present

value identity

Pt =
∞∑
s=0

ρsEt (Rt+s) +Bt, (2.1)

where Pt is the price of the asset, Rt is the payoff received from the asset (i.e., rent for houses

and dividends for stocks), and ρ ∈ (0, 1) is the discount factor. The bubble component Bt

satisfies the submartingale property

Et (Bt+1) =
1

ρ
Bt. (2.2)

Asset prices are governed by the payoff and the unobservable variables in the absence of

bubbles and hence are commonly believed to be at most I(1). Conversely, in the presence

of bubbles, Bt dominates the dynamics of asset prices and leads to explosive behavior of the

data series Pt.

We start the analysis with a simple model specification that differentiates normal and

abnormal market behavior. In the absence of a common bubble factor, asset prices are

assumed to be driven by an I(1) common factor and an idiosyncratic error, whereas in the

presence of common speculative behavior prices are determined by an I(1) factor, a mildly

explosive factor, and an idiosyncratic term. The mildly explosive factor allows for mild

deviations from unit root I(1) behavior in the explosive direction and have been found useful

in analyzing potentially explosive processes. Autoregressive models with such mildly explosive

roots have been extensively studied and utilized in empirical research following Phillips &

Magdalinos (2007a).

2.1 Under the Null: No Common Bubble

In this case with no common bubble, dynamics for the asset price processes Xit are governed

by market fundamentals so that

Xit = f0,tλ0,i + eit, (2.3)

where f0,t follows a unit root process

f0,t = f0,t−1 + u0,t. (2.4)

The factor f0,t is assumed to capture the fundamental drivers of asset prices in normal market

conditions subject to idiosyncratic errors eit, which represent market variations.

In observation matrix form the model (2.3) can be rewritten as

X = F 0Λ0′ + E, (2.5)
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where X = (X1 . . . , XN ) is an T ×N matrix of the observed data with Xi = (Xi1, . . . , XiT )′,

F 0 = (f0,1 . . . , f0,T )′ is a T × 1 vector, Λ0 = (λ0,1 . . . , λ0,N )′ is an N × 1 vector of loading

coefficients, and E = (e1 . . . , eN ) is an T × N matrix of idiosyncratic errors with ei =

(ei1, . . . , eiT )′. At time t

Xt = Λ0f0,t + et, (2.6)

where Xt = (X1t, . . . , XNt)
′ and et = (e1t, . . . , eNt)

′. For each i, we have

Xi = F 0λ0,i + ei.

2.2 Under the Alternative: Common Bubble Presence

Under the alternative hypothesis that there is a common bubble episode during the period

of observation, asset prices are assumed to follow the factor dynamic mechanism

Xit =


f0,tλ0,i + eit if t ∈ A
f1,tλ1,i + f0,tλ0,i + eit if t ∈ B
f2,tλ2,i + eit if t ∈ C

, (2.7)

for i = 1, . . . , N and t = 1, . . . , T , where A = [1, Te], B = [Te+1, Tc], and C = [Tc+1, T ] with

Te = bτeT c and Tc = bτcT c. The {f0,t}T1 factor follows a unit root process as in (2.4), and

the speculative-phase factor {f1,t}TcTe+1 is assumed to follow an autoregressive process with a

mildly explosive root (Phillips & Magdalinos 2007a) such that

f1,t = ρT f1,t−1 + u1,t, (2.8)

where ρT = 1 + d1
Tα with rate parameter α ∈ (0, 1) and localizing coefficient d1 > 0. The

larger the value α, the slower the rate of bubble expansion. The factor {f2,t}TT1 follows an

autoregressive process with a mildly stationary root (Phillips & Magdalinos 2007a) such that

f2,t = φT f2,t−1 + u2,t (2.9)

where φT = 1− d2
Tβ

with β ∈ (0, 1) and d2 > 0. The smaller the value β, the faster the bubble

collapses. When α > β (respectively α < β), the rate of bubble expansion is slower (faster)

than the rate of the bubble collapse.

The initial value f0,0 is assumed to be Op (1). The bubble factor f1,t is assumed to emerge

at some period Tr = br0T c with r0 ∈ [0, τe] and represents emergent positive sentiment about

the market that translates into market exuberance when this sentiment enters into the price

determination system at Te + 1. Similar assumptions on the initiation of second regimes

are commonly made in structural break models (e.g. Perron & Zhu (2005)). This market

exuberance impact on prices lasts until Tc, at which point negative market sentiment overtakes

the price determination process, producing a bubble collapse regime that runs from Tc + 1 to
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the end of the sample period T .

The initial value f1,Tr of the bubble factor is assumed to be F1,rT
α/2 for some Op(1)

random variable F1,r so that f1,Tr = Op
(
Tα/2

)
. It can easily be verified from the analysis

in Phillips & Magdalinos (2007a) that the order of magnitude of the explosive factor at the

break point f1,Te is then Op

(
Tα/2ρTe−TrT

)
, which reduces to Op

(
Tα/2

)
if the initial point

coincides with the break date (i.e., Te = Tr). This setting of the initial value is similar to but

slightly less restrictive than that of Phillips & Magdalinos (2007a), where the order of the

initial value of the mildly explosive process is assumed to be op
(
Tα/2

)
. As in Phillips & Shi

(2018b), the initial value of the collapse factor f2,Tc is set to be the same order of magnitude

as the termination of the bubble factor Op

(
Tα/2ρTc−TrT

)
, i.e., f2,Tc = F2,cT

α/2ρTc−TrT for some

Op(1) random variable F2,c.

The idiosyncratic errors eit in (2.7) may be serially correlated for each i. The factor

specification error vector ut = (u0,t, u1,t, u2,t)
′ is taken to be iid(0,Σu), in accordance with

market efficiency in the first regime, followed by market exuberance and bubble collapse in

the last two regimes. Further details on the error conditions are given in the assumptions in

Section 4, where broader conditions are discussed.

It is convenient to represent the model (2.7) in matrix form as

X = GΓ′ + E, (2.10)

where G = [g1, g2, . . . , gT ]′ is a T × 3 matrix, with

g′t = [g1t, g2t, g3t] =


[0, 0, f0,t] , if t ∈ A

[0, f1,t, f0,t] , if t ∈ B

[f2,t, 0, 0] , if t ∈ C

(2.11)

and N × 3 matrix Γ = [γ1, γ2, . . . , γN ]′ with γi = (γi1, γi2, γi3)′ for i = 1, . . . , N . The matrix

G can be rewritten as G = [G1, G2, G3] with

G1 = (g11, . . . , g1T )′ = (0, . . . , 0, 0, . . . , 0, f2,T1+1, . . . , f2,T )′ ,

G2 = (g21, . . . , g2T )′ = (0, . . . , 0, f1,T0+1, . . . , f1,T1 , 0, . . . , 0)′ ,

G3 = (g31, . . . , g3T )′ = (f0,1, . . . , f0,T0 , f0,T0+1, . . . , f0,T1 , 0, . . . 0)′ .

The factor loading matrix is Γ = [Γ1,Γ2,Γ3] with Γ1 = Λ2, Γ1 = Λ1, and Γ3 = Λ0.

3 Econometrics of Common Bubble Identification

With the above model specification, the first factor is at most I(1) under the null of no

common bubbles and is explosive in the presence of speculative behaviour. As such, detecting

common bubbles is equivalent to distinguishing a martingale first factor from an explosive
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process. The proposed procedure consists of two steps. First, the leading common factor

is estimated by principal components. In the second step we apply the PSY procedure to

the estimated first factor to ascertain whether the leading factor manifests mildly explosive

behavior.

3.1 Estimation of the First Common Factor

We estimate the first common factor using the following procedure. Assume the true number

of factors is r for the data {Xit} with i = 1, . . . , N , and t = 1, . . . , T . Denote the common

factors by the vector ξt (r × 1) and the corresponding factor loadings by li (r × 1). The

objective function in the PC analysis is

min
Ξ,L

1

NT

N∑
i=1

T∑
t=1

(
Xit − l′iξt

)2
, (3.1)

where Ξ = (ξ1, . . . , ξT )′ is a T ×r matrix and L = (l1, . . . , lN )′ is an N×r matrix. We impose

a normalization condition on the loadings such that

1

N
L′L = Ir. (3.2)

The resulting solution for the factor loading, denoted by L̃, is
√
N times the eigenvectors

corresponding to the largest r eigenvalues (denoted by v) of the N × N matrix X ′X. The

estimated r factors, denoted by Ξ̃ =
(
ξ̃1, . . . , ξ̃T

)′
, are

Ξ̃ = XL̃
(
L̃′L̃

)−1
= XL̃/N.

It is sufficient3 to obtain the first common factor for the purpose of bubble identification. For

easy reference, we denote the estimated first common factor by ỹ = (ỹ1, . . . , ỹT )′. Let L̃1 be

the estimated factor loading corresponding the first common factor. We then have

ỹ = XL̃1/N.

3.2 The PSY Procedure

We apply the recursive evolving procedure of PSY to the estimated first common component

ỹt to identify explosive behavior and characterize its nature, in particular to date-stamp the

origination of any bubble that may be present. The regression model used for this purpose is

∆ỹt = δ + γỹt−1 + vt, (3.3)

3Lemma 4.4 below demonstrates that the estimated first common factor is a linear combination of the
common factors in the system. Consistency of the estimated bubble origination and collapse dates is established
in Theorems 4.5-4.8.
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where vt is the equation residual. The coefficient γ = 0 under the null of no common bubble

and γ > 0 under the alternative.

In describing the PSY mechanism it is conventional to use fractional notation to repre-

sent observations within the sample. Suppose the observation of interest is τ . To infer the

presence of a common bubble characteristic at period τ , PSY suggest applying regression

(3.3) recursively to a group of structured subsamples. Let τmin be the minimum sample size

required to initiate the regression. The starting date of the subsample regressions τ1 varies

between 0 and τ − τmin, while the termination date τ2 of all subsamples is fixed on the obser-

vation of interest (i.e., τ2 = τ). The DF statistics obtained from these subsample regressions

are represented in the sequence {DFτ1,τ2} and defined as

DFτ1,τ2 = γ̂τ2,τ2

 Tw
∑T2

t=T1
ỹ2
t−1 −

(∑T2
t=T1

ỹt−1

)2

∑T2
t=T1

(
∆ỹt − δ̂τ1,τ2 − γ̂τ2,τ2 ỹt−1

)2


1/2

, (3.4)

where T1 = bTτ1c, T2 = bTτ2c, Tw = T2 − T1 = bTτwc with the floor function b.c returning

the integer part of the argument, and where δ̂τ1,τ2 and γ̂τ2,τ2 are subsample estimates of δ and

γ obtained by OLS regression. Inference concerning the presence of a common bubble is then

based on the supremum of the DF statistic sequence, which is denoted PSYτ and defined as

PSYτ = sup
τ1∈[0,τ−τmin],τ2=τ

{DFτ1,τ2} .

Let βT be the significance level and cvβT be the 100(1 − βT )% critical value of the test.

If a common bubble is detected, then its origination date, τ̂0, is identified to be the first

chronological observation where the test statistic sequence exceeds the critical value. That

is,

τ̂0 = inf
τ∈[τmin,1]

{τ : PSYτ > cvβT } .

The termination date, τ̂1, is the first chronological observation after τ̂0 that the test statistic

falls below the critical value, i.e.,

τ̂1 = inf
τ∈[τ̂0,1]

{τ : PSYτ < cvβT } .

4 Asymptotics

We start by stating assumptions on the common factors, loadings, and errors which assist in

the development of the asymptotic theory. Throughout, the notation M is used to denote

a (possibly large) constant whose value may change in each location, and =⇒ signifies weak

convergence on the relevant probability space. We assume that N and T pass to infinity at

the same rate, so that N/T → k for some constant k > 0.
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4.1 Model Assumptions

Assumption 4.1 (Common factors): Define the filtration Ft = σ{ut, ut−1, ...} where

ut = (u0,t, u1,t, u2,t)
′ , and let {ut,Ft} be a martingale difference sequence (mds) with E(utu

′
t|Ft−1) =

Σu,

Σu =

 σ00 · ·
σ10 σ11 ·
σ20 σ21 σ22

 > 0

and supt E ‖ut‖
2+ς 6M for some ς > 0 and for all t 6 T .

Assumption 4.2 (Factor loadings):

(1) Under the null of no bubble factor, as in (2.3), deterministic loadings {λ0,i} are

assumed to satisfy |λ0,i| 6 M and stochastic loadings to satisfy supi E |λ0,i|4 6 M , both with

Λ0′Λ0/N →p ΣΛ as N →∞ where ΣΛ > 0 is nonrandom.

(2) Under the alternative of a bubble factor, as assumed in model (2.10), deterministic

loadings {γi} are assumed to satisfy |γii| 6M , stochastic loadings to satisfy supi E |γi|
4 6M ,

and the loading moment matrix

Γ′Γ/N =
1

N

 Λ′2Λ2 · ·
Λ′1Λ2 Λ′1Λ1 ·
Λ′0Λ2 Λ′0Λ1 Λ′0Λ0

→p Π :=

 Π22 · ·
Π12 Π11 ·
Π02 Π01 Π00

 ,
which is positive definite. Here, 1

NΛ′kΛl = 1
N

∑N
i=1 ΛikΛil → Πkl as N →∞.

Assumption 4.3 (Time and cross section dependence and heteroskedasticity): For

some number M <∞,

(1) E (eit) = 0, supi,t E |eit|
8 6M ;

(2) E
(
e′iej/T

)
= E

(
1
T

∑T
t=1 eitejt

)
= γT (i, j) with supT>1 supi,j |γT (i, j)| 6M , and

sup
N>1

1

N

N∑
i,j=1

|γT (i, j)| 6M ;

(3) E (eitejt) = τij,t with |τij,t| ≤ |τij | for some τij and for all t, and 1
N

∑N
i,j=1 |τij | 6M ;

(4) E (eitejs) = τij,ts and supN>1,T>1
1
NT

∑N
i,j=1

∑T
s,t=1 |τij,ts| 6M ;

(5) For every (i, j), supT>1 E
∣∣∣T−1/2

∑T
t=1 [eitejt − E (eitejt)]

∣∣∣4 6M.

Assumption 4.4 supi>1 | 1T
∑T

t=1 f0,t−1eit| = Op (1) as T →∞.

Assumption 4.5 {λi} , {ut}, and {eit} are mutually independent.
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Assumption 4.1 concerns the common factor errors ut = {u0,t, u1,t, u2,t} which are as-

sumed to be mds with uniform 2 + ζ moments. This condition is convenient, treating the

component errors {u0,t, u1,t, u2,t} in the three periods commonly. It may be relaxed to allow

(i) mds errors {u0,t} during the efficient market period, and (ii) more general weak depen-

dence for {u1,t} during the explosive period and for {u2,t} during the collapse period, as in

Phillips & Magdalinos (2007b), Magdalinos & Phillips (2009). No distributional assumptions

are needed and the uniform moment condition is weak, so the methods proposed can be

applied widely in empirical work, including to financial market data.

Assumption 4.2 concerns the loading coefficients, whose moment matrices Λ0′Λ0/N ,

Γ′Γ/N are assumed to converge to positive definite matrices as N → ∞, a condition which

helps to ensure identifiability of the factor structures. So, if a factor had only a finite number

of nonzero loadings, it would not be treated as a common factor in our framework but would

instead be absorbed within the idiosyncratic errors eit.

Assumption 4.3 allows for time and cross section dependence and conditional heteroskedas-

ticity, as in Bai (2004). Assumption 4.4 requires the uniform boundness over i of the time

series sample covariances between f0,t−1 and eit and is stronger than simply requiring weak

convergence of such sample covariances for all i as in Bai (2004). The independence between

ut and eit in Assumption 4.5 eliminates endogeneity in our framework, just as in the coin-

tegrated factor model of Bai (2004). Under the null hypothesis, the situation is analogous

to that of Bai (2004) with an integrated factor. In such cases, the model can be rewritten

as a dynamic factor model by projection of eit on ut and suitably augmenting the regression

equation, leading to a dynamic factor model as discussed in Bai (2004).4 However, in our

case under the alternative, the presence of a mildly explosive factor accommodates depen-

dence between ut, and eit as shown in the cointegrating regression analysis of Magdalinos

& Phillips (2009) with mildly explosive regressors. We therefore expect that the procedures

for identifying and estimating the explosive factor in our framework retain validity under

endogeneity, although formal analysis of this extension is not pursued in the present paper

and left for subsequent work.

Additional assumptions used in the general setting of Bai (2004) are not required in the

present paper. This is because in the model structure employed here there is no need to

estimate the number of factors or to show uniform consistency of the estimated first factor.

4.2 Asymptotics Under the Null Hypothesis

The following Lemma shows consistency of the estimated first factor. This result is useful in

developing an asymptotic theory of inference for quantities that relate to this estimated factor

ỹt. In particular, the theory is employed in deriving asymptotics for the bubble identification

4In other work that does not involve explosive or nonstationary processes, Pesaran (2006) allows for en-
dogeneity between the factor and the residuals by using cross section averages in a multifactor regression
model.
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procedure.

Lemma 4.1 Under the data generating process (2.3) and Assumptions 4.1-4.5, we have

δ2
NT

(
1

T

T∑
t=1

∣∣ỹt −H0f0,t

∣∣2) = Op (1) (4.1)

where δNT = min
(√

N,T
)

and H0 = λNT

(
F 0′F 0

T 2

)−1 (
Λ0′L̃1
N

)−1
with λNT being the largest

eigenvalue of 1
NT 2X

′X.

Lemma 4.1 reveals that the first factor can be identified up to a transformation given

by H0. The proof of 4.1 follows directly as in Bai (2004) and Chen, Li & Phillips (2019)

and is given for convenience in the Online Supplement (Chen, Phillips & Shi 2019). While

Bai (2004) shows consistency of factor estimates in the presence of I(1) factors (and uniform

consistency under stronger moment conditions) subject to a normalization condition for the

factors of the form Ξ′Ξ/T 2 = Ir, Chen, Li & Phillips (2019) provide consistency results under

a factor model specification that includes an explosive factor as well as I(1) and stationary

factors.

Next, we develop asymptotics for a standard unit root test constructed from the first

estimated factor, ỹt, under the null (2.3).

Theorem 4.2 Under the null specification (2.3) and Assumptions 4.1, 4.2(1), 4.3, 4.4, and

4.5, as N,T →∞,

DFτ1,τ2 ⇒
τw
∫ τ2
τ1
W (r) dW (r)− [W (τ2)−W (τ1)]

∫ τ2
τ1
W (r) dr

τ
1/2
w

[
τw
∫ τ2
τ1
W (r)2 dr −

[∫ τ2
τ1
W (r) dr

]2
]1/2

(4.2)

where τw = τ2 − τ1 and W (·) denotes standard Brownian motion.

Derivation of the asymptotic behavior of the DF statistic (3.4) follows standard lines.

Although complicated by the fact that the test relies on the estimated factor, the derivation

proceeds as usual because the fast convergence of ỹt to H0f0,t ensures that the limit distribu-

tion is unaffected by factor estimation and is identical to that of the DF statistic computed

from the original data, as in Phillips et al. (2015a). An outline of the derivations is provided

in Appendix A. With this result in hand, the limit behavior of the PSY test applied to the

fitted factor also follows in the standard manner (Phillips et al. 2015a,b).

Theorem 4.3 Under the null specification of model (2.3) and Assumption 4.1, 4.2(1), 4.3,

12



4.4, and 4.5, as N,T →∞,

PSYτ ⇒ sup
τ1∈[0,τ−τmin],τ2=τ


τw
∫ τ2
τ1
W (r) dW (r)− [W (τ2)−W (τ1)]

∫ τ2
τ1
W (r) dr

τ
1/2
w

[
τw
∫ τ2
τ1
W (r)2 dr −

[∫ τ2
τ1
W (r) dr

]2
]1/2

 ≡ Υτ .

(4.3)

The proof applies functional limit theory of the component elements of the statistic under

the null and a version of continuous mapping applied to certain indexed functionals of these

elements, just as in theorem 1 of Phillips et al. (2015a). The limit result (4.3) for the PSY-

factor test statistic is then identical to that of the original PSY statistic (i.e., Fr2 (W, r0) in

Phillips et al. (2015a)). The details of the proof are omitted.

4.3 Asymptotics Under the Alternative

We start with a useful representation of the first common factor under the alternative.

Lemma 4.4 Under the alternative (2.7) and Assumptions 4.1, 4.2(2), 4.3, 4.4, and 4.5, the

estimated first common factor has the form

ỹt = aN,T f2,t + bN,T f1,t + cN,T f0,t +
1

N

N∑
i=1

l̃i1eit, (4.4)

where the l̃i1 are the estimated loadings of the first factor, aN,T = 1
N

∑N
i=1 l̃i1λ2,i, bN,T =

1
N

∑N
i=1 l̃i1λ1,i, and cN,T = 1

N

∑N
i=1 l̃i1λ0,i. Further, aN,T = Op(1), bN,T = Op (1), cN,T =

Op (1), and 1
N

∑N
i=1 l̃i1eit = Op (1).

Under the alternative (2.7), the estimated first factor is therefore a weighted average of

the three factors f0,t, f1,t, and f2,t and the idiosyncratic errors. The weights depend on the

estimated factor loadings l̃i1 and the true loading coefficients λ0,i, λ1,i, and λ2,i and are shown

to have order Op (1). In what follows, it is convenient to assume that these weights have finite

probability limits as N,T →∞, which can be assured by primitive conditions on the factor

loadings.

Assumption 4.6 As N,T →∞ the following limits are finite: aN,T →p a := plimN→∞
1
N

∑N
i=1 li1λ2,i,

bN,T →p b := plimN→∞
1
N

∑N
i=1 li1λ1,i, and cN,T →p c := plimN→∞

1
N

∑N
i=1 li1λ0,i.

Next, we derive the asymptotic properties of the unit root statistic DFτ1,τ2 under three

regime settings: (1) τ1 ∈ A and τ2 ∈ B; (2) τ1 ∈ A and τ2 ∈ C; (3) τ1, τ2 ∈ C. The subsample

in Case (1) starts from the normal regime and ends in the bubble expansion regime. In Case

(2), the sample spans across all three regimes and includes two structrual break points (τe
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and τc). In Case (3), the subsample falls completely in the collapse regime. The derivation

of the limit properties are based on results in Lemma C.1, C.2, and C.3 of Appendix C.

Theorem 4.5 Under the alternative (2.7) the following asymptotics hold as N,T → ∞:

when τ1 ∈ A and τ2 ∈ B,

γ̂τ1,τ2 =
d1

Tα
+Op

(
T−1

)
and

DFτ1,τ2 = Op

(
T 3/2−α

)
→ +∞. (4.5)

According to Theorem 4.5, although there is a structural break within the subsample

in Case (1), the bubble regime B dominates the normal regime and γ̂τ1,τ2 can be regarded

as consistent for the deviation ρT − 1 in (2.8). The order of magnitude of the DF statistic

depends asymptotically on the power parameter α ∈ (0, 1) that defines the magnitude of

this local alternative and thereby the explosive strength of the factor transmitted through

the autoregressive coefficient ρT = 1 + d1T
−α, with explosive strength rising as α decreases

towards zero. Correspondingly, the DF statistic diverges to positive infinity at the rate

Op
(
T 3/2−α) which increases according to explosive strength, measured by α.

Theorem 4.6 Under the alternative (2.7) and the additional Assumption 4.6, the following

asymptotics hold as N,T →∞: when τ1 ∈ A and τ2 ∈ C,

γ̂τ1,τ2 =


[
d1
Tα −

a2

b2
d2
Tβ

∑T2
t=Tc+1 f

2
2,t−1∑Tc

t=Te+1 f
2
1,t−1

]
[1 + op (1)] if α > β[

− d2
Tβ

+ b2

a2
d1
Tα

∑Tc
t=Te+1 f

2
1,t−1∑T2

t=Tc+1 f
2
2,t−1

]
[1 + op (1)] if α < β

∼


d1
Tα

[
1− a2

b2
F 2
2,c

(F1,r+Nc)
2

]
= Op (T−α) if α > β

− d2
Tβ

[
1− b2

a2
(F1,r+Nc)

2

F 2
2,c

]
= Op

(
T−β

)
if α < β

where Nc ∼ N
(
0, σ112c

)
. The DF statistic

DFτ1,τ2 =

{
Op
(
T (1−α+β)/2

)
if α > β

Op
(
T (1+α−β)/2

)
if α < β

. (4.6)

The sign of the DF statistic is the same as that of γ̂τ1,τ2.

When the sample period includes all three regimes, the limit properties including the sign

of γ̂τ1,τ2 and DFτ1,τ2 depend on the relative rates of bubble expansion α and bubble collapse

β. The estimated coefficient γ̂τ1,τ2 in the DF regression equation is a linear combination

of the deviations of the autoregressive coefficients from unity in the bubble expansion and

collapse regimes, i.e., ρT −1 = d1
Tα and φT −1 = − d2

Tβ
. This regression coefficient has order of
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magnitude Op (T−α) when α > β and Op
(
T−β

)
when α < β. Moreover, when the condition

a2F 2
2,c > b2 (F1,r +Nc)

2 (4.7)

is satisfied, the DFτ1,τ2 statistic diverges to negative infinity at rate Op
(
T (1−|α−β|)/2); other-

wise it diverges to positive infinity at rate Op
(
T (1−|α−β|)/2). This condition matches the intu-

ition that the collapsing regime plays a more prominent role in determining asymptotic behav-

ior of the bubble test when the weight of the collapse factor, a2 = plimN→∞

(
1
N

∑N
i=1 li1λ2,i

)2
,

and the (squared) initial value of the collapse regime, F 2
2,c, are large relative to the correspond-

ing parameters of the expansion regime. In the opposite case where a2F 2
2,c < b2 (F1,r +Nc)

2

the bubble test statistic DFτ1,τ2 diverges to positive infinity and the the expansion regime

dominates asymptotic behavior. In effect, the asymptotic outcome of the test depends on the

strength of the collapse period parameters relative to those of the explosive period measured

by the balancing of these parametric strengths via the inequality (4.7).

Theorem 4.7 Under the alternative (2.7) the following asymptotics hold as N,T → ∞:

when τ1, τ2 ∈ C,

γ̂τ1,τ2 = − d2

T β
+Op

(
T−1

)
and

DFτ1,τ2 = Op

(
T 1/2

)
→ −∞. (4.8)

When the subsample falls within the collapse regime, the DF statistic diverges to negative

infinity. Under the alternative of model (2.7), the sample period has three regimes: A, B and

C, as defined in (2.7). Apart from Cases (1)-(3), there are potentially three other types of

subsample regressions for the PSY procedure: (4) τ1, τ2 ∈ A; (5) τ1 ∈ B and τ2 ∈ C; and (6)

τ1, τ2 ∈ B. From Theorem 4.2, the order of magnitude of DFτ1,τ2 for Case (4) is Op (1). For

Case (5), the estimated γ̂τ1,τ2 is again a weighted average of d1
Tα and − d2

Tβ
, with slight changes

in the weights. The orders of magnitude of DFτ1,τ2 under these scenarios are identical to

those in (4.6). The order of magnitude of the DF statistic under Case (6) is identical to that

of (4.5). The proofs for Case (5) and Case (6) follow directly from those of Theorem 4.6 and

Theorem 4.5, and are omitted. Consequently, we have the following asymptotic behavior of

the PSY statistic

PSYτ =


Op (1) if τ ∈ A
Op
(
T 3/2−α) if τ ∈ B

Op
(
T (1−α+β)/2

)
if τ ∈ C and α > β

Op
(
T (1+α−β)/2

)
if τ ∈ C and α < β

.

We are now able to deduce the limit behavior of the bubble origination date estimator τ̂e

and the collapse date estimator τ̂c in the factor model (2.7).
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Theorem 4.8 Under the alternative (2.7), τ̂e → τe and τ̂c → τc if the divergence rate of the

PSY critical value cvβT →∞ satisfies the following conditions:

T (1−α+β)/2

cvβT
+

cvβT
T 3/2−α → 0 if α > β

T (1+α−β)/2

cvβT
+

cvβT
T 3/2−α → 0 if α < β

.

Theorem 4.8 provides rate conditions on the localizing power cofficient α under which

the bubble origination and collapse dates may be consistently estimated. The proof follows

directly from Phillips et al. (2015b) and is omitted. We draw attention to the fact that

the orders of magnitude of the DF statistic under the various cases and conditions for the

consistency of τ̂e and τ̂c differ slightly from those given in Phillips et al. (2015b). These

differences arise from the distinct assumptions regarding the initialization of the explosive

regime/factor. In the present work, the emergence of explosive sentiment is allowed to pre-

date its impact on market prices, and for the reasons explained earlier, it is here assumed

that f1,Tr = Op(T
α/2), whereas the explosive regime of Phillips et al. (2015b) is assumed

(implicitly) to start from a value of Op(T
1/2). These differences lead to the results given in

Theorem 4.8.

5 Simulations

We first compare the asymptotic and finite sample distributions of the test statistic PSYτ .

The asymptotic distribution is simulated from Υτ in (4.2) with 2,000 replications and stan-

dard Brownian motion is approximated using independent increments over 2, 000 steps. To

obtain finite sample distributions, we generate data from (2.3)-(2.4). The factor loadings λ0,i

are drawn randomly from a uniform distribution between 0 and 2. The standard deviation

of the idiosyncratic error σe is set to 0.1. These parameter settings are compatible with our

later empirical application to Chinese housing markets.5 Note that under the null hypothesis

the parameter settings of f0,0, σe, and σ00 do not affect the distribution of the ADF statis-

tic, consistent with the results of Theorem 4.2. The common bubble detection procedure is

applied to the simulated data. The process is repeated for 2,000 replications.

Figure 1 graphs the asymptotic and finite sample distributions (kernel density) of PSYτ

for T = 60, 100, 140 and with N varying from 20 to 100. We set τ to unity in all graphs.

Similar patterns are observed with other choices of τ . There is a small but visible gap

between the finite sample distribution for N = 20 and the asymptotic distribution. Also, the

finite sample distribution lies to the left of the asymptotic, which implies slight undersizing

if asymptotic critical values are employed in bubble testing. The finite sample distribution

evidently converges rapidly to Υ1 as the number of cross sectional units N increases and the

sample period T grows longer. We use finite sample critical values (at the 5% significance

5The estimated loadings range between 0.3 and 1.7, while the estimated standard deviation of the idiosyn-
cratic error term is around 0.1 for both Group I (Tier 1 and 2 cities) and Group II (Tier 3 cities).
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Figure 1: Asymptotic and finite sample distributions of PSYτ under the null hypothesis with
τ = 1 and T ∈ {60, 100, 140}.
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(b) T = 100
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level) for investigating the performance of the common bubble testing procedure.

The data generating process (DGP) is (2.7) - (2.9) under the alternative. As in the

DGP under the null, the factor loadings λ0,i and λ1,i are drawn randomly from U [0, 2] and

σe = 0.1. We set σ00 = 0.01, σ11 = 0.1, and σ22 = 0.1. The standard errors are calibrated

to our Chinese housing market application. Specifically, we calibrate the f0,t process to the

normal periods in the estimated first factor from February 2005 onwards for Group II, the

f1,t process to the fast expansion period (from May 2009 to December 2010) in Group I, and

the f2,t process to the collapse period from Jan 11 onwards in Group I. The selections of the

sample periods for f0,t, f1,t, and f2,t are guided by the empirical results. We estimate (2.8)

and (2.9) by the indirect inference approach to reduce autoregressive biases as in Phillips

et al. (2011). We fix the bubble origination date τe = 0.4 and the bubble collapse date

τc = 0.7.

The initial values of the I(1) and explosive factors are set to unity (i.e., f0,0 = 1 and

f1,Tr = 1). To avoid sudden dramatic jumps at the break point Te + 1, we subtract the

simulated f1,t for t ∈ [Tr, Tc] by the value of f1,Te so that the explosive factor takes value zero

at period Te. Together with the simulated loadings and idiosyncratic noises, we can generate

the data Xt from equation (2.7) for the period running from 1 to Tc. Then, we set the initial

value of the collapsing factor f2,Tc to be f1,Tc and simulate a data sequence
{
X0
t

}T
t=Tc

using

(2.7) with X0
t in place of Xt. The remaining sequence of Xt, where t = Tc + 1, · · · , T , is

generated as

Xt = X0
t −

(
X0
Tc −XTc

)
so that there is no discontinuity in the sequence. Figure 2 displays one typical realization of

the data generating process under the specified alternatives with α = 0.8, β = 0.7, N = 30,

and T = 80.

We report the successful detection rates (SDR) and the average bias of the estimated

bubble origination (i.e., 1
2000

∑2000
s=1 τ̂

s
e − τe) and collapse dates (i.e., 1

2000

∑2000
s=1 τ̂

s
c − τc) under

the alternative. The number of replications is 2,000 in all simulations. In Figure 3, we
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Figure 2: One typical realization of the data generating process under the alternative. Pa-
rameter settings are: f0,0 = f1,Tr = 1, σe = 0.1, σ0 = 0.01, σ1 = σ2 = 0.1, τe = 0.4, τc =
0.7, α = 0.8, β = 0.7, r0 = τe − 0.05, N = 30 and T = 80. The vertical lines indicate the start
and collapse dates of the common bubble episode.
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allow the time period T and the number of assets N to take various values. Specifically, we

have T = {60, 80, 100, 120, 140} and N = {20, 40, 60, 80, 100}. The bubble expansion α and

collapsing rates β are fixed and set to be 0.8 and 0.7, respectively.

The following comments are in order. First, as the time span T lengthens, the SDR

of the PSY-factor procedure increases and the bias of τ̂e reduces substantially. Additional

time dimension information therefore lends considerable assistance in identifying explosive

dynamics. Second, the SDR declines and the bias of τ̂e becomes more significant as N

increases. The more cross-sectional units, the noisier the data and hence the harder for the

PSY-factor procedure to identify the origination date of the common bubble. Third, the bias

of the termination date is more considerable when there are fewer assets and the time span is

longer. As an example, the bias of the estimated collapse date is 0.7% of the sample period

when N = 100 and T = 60, while it is 17% when N = 20 and T = 140.

Figure 3: The successful detection rates and bias of the estimated bubble origination and
termination points. Parameter settings: τe = 0.4, r0 = τe − 0.05, τc = 0.7, α = 0.8, and
β = 0.7.
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In Figure 4, we fix T and N but allow the explosive rate α and the collapse rate β to
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take various values. The rate α changes from 0.7 (i.e., ρT = 1.040) to 0.95 (i.e., ρT = 1.013)

with increments of 0.05, while β takes value between 0.4 (i.e., γT = 0.842) and 0.9 (i.e.,

γT = 0.984) with increments of 0.1. The rates of bubble expansion and collapse increase as

α and β decrease, respectively.

As expected, it is much easier to detect episodes that expand at a greater rate (i.e., when

α is further below unity). From panel (a) and (b), we see that as α becomes smaller, the

SDR rises rapidly and the bias of the estimated origination date reduces. The collapse rate

β does not seem to have any obvious impact on SDR and the estimation accuracy of bubble

origination. The bias of the origination date ranges between 0.06 and 0.13. Interestingly,

we see a nonlinear pattern for the bias of the estimated termination date τ̂c, which varies

between 0.005 and 0.14. The most accurate estimate of termination is obtained when the

bubble expands fast and collapses rapidly (i.e., α = 0 and β = 0.4).

Figure 4: The successful detection rates and bias of the estimated bubble origination and
termination. Parameter settings: τe = 0.4, r0 = τe − 0.05, τc = 0.7, N = 30, and T = 80.
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Next, we consider a real-time implementation of the PSY-factor procedure. Specifically,

instead of estimating the first factor from the entire sample, for each observation of interest

τ we compute the factor from a sample starting with the first available observation and

ending with the current observation at τ using only historical information up to this point

in time. The SDRs and estimation accuracy of the bubble origination and collapse dates by

the recursive procedure are presented in Figure 1 in the Online Supplement (Chen, Phillips

& Shi 2019). No major differences between the finite sample performance of the PSY-factor

procedure and this real-time implementation are observed.
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6 Empirical Application: China Real Estate Markets

6.1 Data Description

We study housing markets in 89 major Chinese cities.6 The sample includes 4 Tier 1, 26

Tier 2, and 59 Tier 3 cities. A list of these cities is given in Table 1. Monthly house

prices are compiled by Fang et al. (2016), based on sequential sales of new homes within the

same housing development. The longest available period contains 123 observations, running

from January 2003 to March 2013. Underlying market fundamentals are proxied by urban

disposable income per capita, which measures per capita income received by urban residents

within each of the cities. The data are obtained from the China City Yearbook and are

normalized to unity at the beginning of the sample period.

The sample is split into two groups. The first group includes all Tier 1 and 2 cities (group

I), while the second group contains Tier 3 cities (group II). Figure 5 presents the housing

price-to-income ratios (PIR) of group I (left panel) and group II (right panel). The variation

within group I is larger than group II. We observe a dramatic increase of the price-to-income

ratio in group I around 2007-2008 and again during 2010-2011. The 2007-2008 episode was led

by cities Wenzhen, Shenzhen and Ningbo. The rise during 2010-2011 has larger magnitude.

The price-to-income ratio reaches 3.95 in Wenzhou in December 2010 and 2.74 in Beijing

in early 2011, followed by Shenzhen (2.5) and Ningbo (2.2) in 2010. The most outstanding

cities within group II are Baoding and Ningde, especially after 2007. Figure 7 displays the

average PIR over the sample period for each city. Similar to what is observed in Figure 5,

the average PIR of Wenzhou is the highest and is well above the national average.

Figure 5: The price-to-income ratios of 89 cities in China.
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6The number of cities included in this empirical analysis is mainly constrained by the availability of dis-
posable income data.
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6.2 Implementation Details

We apply the PSY-factor procedure to the price-to-income ratios in each group. To implement

the PSY test, we set the minimum window size to be 21 observations, based on the suggested

rule in Phillips et al. (2015a), so the evolving test recursion begins in September 2004. The

DF regression model in (3.3) is augmented with lags and lag order is selected by BIC with a

maximum lag order setting of 4.

To account for potential heteroskedasticity in the monthly price-to-income ratios and

the multiplicity issue7 of recursive testings, we use a composite bootstrap procedure for

calculating critical values as developed in Phillips & Shi (2020). The empirical size is 5%,

controlled over a one-year period. Suppose Tb is the number of observations in the control

window. The probability of making at least one false positive rejection over the period with

Tb = 12 observations is 5%. The procedure is detailed in full below.

Step 1: Estimate the regression model (3.3) under the restriction of γ = 0 (null hypothesis)

using ỹt (the first common factor estimated from the PIRs). The estimated coefficient

and residuals are denoted, respectively, by δ̂ and et.

Step 2: Generate a bootstrap sample with T0 + Tb − 1 observations using the formula

ỹbt = δ̂ + ỹbt−1 + ebt (6.1)

with initial values ỹb1 = ỹ1. The residual ebt = wtel, where wt follows standard normal

distribution and el is bootstrapped from the residuals obtained in Step 1.

Step 3: Compute

Mb
t = max

t∈[T0,T0+Tb−1]

(
PSY b

t

)
,

from the bootstrap sample

Step 4: Repeat Steps 2-3 for B = 5, 000 times.

Step 5: The 95% percentiles of the
{
Mb

t

}B
b=1

sequence serves as the critical value of the

PSY-factor procedure.

6.3 Common Bubbles

Figure 6 presents the estimated first common components (black lines) and the identified

bubble periods (green shaded areas). Overall, the two estimated first common components

show similar dynamics but the fluctuations in group I are far more dramatic. There are three

7The probability of making a Type I error rises with the number of hypotheses in a recursive test sequence,
which is referred to as the multiplicity issue in testing. This tendency towards oversizing may be controlled
by using a familywise critical value. See PSY for discussion and for the development of a bootstrap procedure
which assists in controlling size in such cases.
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periods of rapid expansion in the first factor of both groups, which occur around 2004-2005,

2007-2008 and 2010.

We apply the PSY procedure to the estimated first factors. Consistent with our obser-

vations from the estimated factors, we find more evidence of common bubbles in the Group

I cities than Group II. The PSY procedure suggests three explosive episodes in Group I and

two explosive periods in Group II. The first episode occurs at the beginning of the sample

period from 2004M10-2005M02 in Group I. This episode terminates one month earlier in

Group II.

The second episode in Group I runs from August 2007 to February 2008. By comparison,

the evidence of speculative behavior in the Group II markets is not as strong and only occurs

in two months: October 2007 and February 2008. We observe an additional episode of

speculation in Tier 1 and 2 cities from March 2010 to January 2011, whereas no evidence of

speculation is detected in the Tier 3 housing markets over this period.

Figure 6: The identified bubble periods. The solid (black) lines are the estimated first factors
from respective groups. The shaded (green) areas, with dates, show the periods when the
PSY-factor test rejects the null hypothesis of a unit root against the explosive alternative for
the first common factor.
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In addition, we consider a pseudo real-time implementation of the PSY-factor procedure

on these real estate markets, i.e., using only information up to the observation of interest for

estimation of the primary common factor in the first step. The identified bubble episodes are

displayed in Figure 8 (Appendix D). For Group I, the identified episodes are almost identical

to those in Figure 6(a), with one small exception: the starting date of the last episode is

found to be three months later. For Group II, the first episode is exactly the same but no

bubbles are detected around 2007-2008.

Interestingly, the identified collapse time of the first bubble episode is one month ahead

of the “Circulation on Stabilising Housing Price” document (GOSC [2005] No. 8) issued by

the General Office of the State Council (GOSC). This document (known as the old “Guo

Ba Tiao”) underlines the importance of housing price stability in the form of administrative
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accountability and is followed by a new “Guo Ba Tiao” document (GOSC [2005] No. 26)

issued by seven ministries in May 2005. The new “Guo Ba Tiao” delivers a series of cooling-

measure policies aimed at restraining housing demand, including raising the preferential

mortgage interest rate from 5.31% to 6.12%, raising the down payment from 20% to 30%,

and imposing a sales tax of 5.5% on the gross re-sale price for house owners who resold their

houses within 2 years of occupancy. The government launched a second round of supply-side

regulations and a foreign investment regulations in 2006 (GOSC [2006] No. 37). For example,

on the supply side one of the regulations requires that at least 70% of newly registered or

constructed units are to have floor areas no larger than 90 square meters and accelerating the

construction of low cost rental housing for low income families; and on foreign investment,

the new regulations restricted, inter alia, foreign purchases of apartments to institutions and

individuals with established branches and residency.

The origination date of the second episode is one month before the “927 Housing Mortgage

Policy” by the People’s Bank of China (September 2007). This policy requires that the down

payment for first home buyers be no lower than 20% for units less than 90 square meters and

no lower than 30% for units above 90 square meters. For those who apply for a second loan,

the down payment should not be lower than 40% and the interest rate for such a loan should

not be lower than 1.1 times the benchmark interest rate.

The empirical findings on dating the emergence of explosive real estate market behavior

match well the introduction of government housing policies designed to cool housing market

prices. For instance, the identified origination date of the third episode is three months behind

“The Circular on Promoting the Stable and Healthy Development of the Real Estate Market”

(SC [2010] No. 4) issued by the State Council (January 2010), and actually coincides with

“The Notification Regarding the Steady and Healthy Development of the Real Estate Market”

(SC [2010] No. 10). These two documents are followed by the “Notice of Issues Relating to

Standardising Different Residential Mortgage Loan Policies” (MOHUR and MF [2010] No.

179) issued by the Ministry of housing and urban and rural development, Ministry of Finance,

People’s Bank of China and China Banking Regulatory Commission. Several measures were

imposed in the sequence of documents to cool the impact on prices of rising housing demand.

For example, the down payment for first home buyers was raised to 30%, at least 40% of total

construction area was required to be allocated for affordable and moderate-sized units, and

commercial banks were required to suspend loans to customers for the purchase of a third or

subsequent residence.

In summary, some coincidence is observed between observed bubble behavior and enacted

regulatory cooling policies. In particular, as the first bubble episode collapsed, the State

Council issued a nation-wide cooling policy, which in this case was in retard of the market;

then, soon after the second bubble origination, the central bank imposed further cooling

measures; yet further measures were enacted three months before the third episode, showing

continuing concerns by regulators of housing prices. In short, the Chinese government reg-

ulators became steadily more active and aggressive in implementing price-cooling measures
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throughout this period. The date-stamping mechanism for the presence of an exuberant

factor in housing prices therefore helps to provide a context for the timing of government

policies intended to reduce market exuberance.

7 Conclusion

Price bubbles in the financial system and asset markets such as those in real estate pose a

significant threat to economic and financial stability. Such disturbances from normal market

behavior have led to the introduction in many countries of macroprudential and micropru-

dential policy regulations that are designed to moderate market behavior. In many cases,

emergent speculative elements in financial and real estate asset markets are influenced by

driving factors of the behavioral kind that are not directly observed. It is therefore partic-

ularly useful to have econometric methods that enable the detection of such behavior via

the estimation and testing of the unobserved factors that may be driving speculative activ-

ity. Based on earlier methods in Phillips et al. (2015a,b) that were designed for observed

data, this paper provides tools that enable such identification and empirical detection of an

unobserved common explosive factor influencing market behavior coupled with a real-time

mechanism for their dating and identification.

The factor methods developed here may be applied to large dimensional financial data

sets and simulation results show good performance in the detection of unobserved common

bubble factors in terms of successful detection rates, and the estimation accuracy of bubble

origination and termination dates. The empirical application to real estate markets in major

Chinese cities reveals strong evidence of a common driving factor affecting markets in the

leading Tier 1 cities with three common bubble episodes identified in the periods 2004-

2005, 2007-2008, and 2010-2011. Real time dating exercises show results that match well

against government regulatory policies that were introduced as cooling measures to mitigate

housing price bubble activity in the real estate market. Unobserved factor methods of the

typed developed here therefore seem to offer some promise as a potential guide to regulatory

authorities faced with emergent speculative behavior.
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A Appendix A: Preliminary Lemmas

Lemma A.1 Under Assumption 4.1 and 4.3, as T →∞, we have the following:

(1)
∑T2

t=T1
eit−1 = Op

(
T 1/2

)
and

∑T2
t=T1

(eit − eit−1) = Op (1);

(2)
∑T2

t=T1
eiteit−1 = Op (T ) and

∑T2
t=T1

e2
it−1 = Op (T ) ;

(3)
∑T2

t=T1
u0,t = Op

(
T 1/2

)
;
∑T2

t=T1
u2

0,t = Op (T ) ;

(4)
∑T2

t=T1
u1,t = Op

(
T 1/2

)
;
∑T2

t=T1
u2

1,t = Op (T ) ;

(5)
∑T2

t=T1
u2,t = Op

(
T 1/2

)
;
∑T2

t=T1
u2

2,t = Op (T ) ;

(6)
∑Tc

t=Te
u1,teit−1 = Op (T ) ;

∑T
t=Tc+1 u2,teit−1 = Op (T ) .

Proof. The results follow directly from Assumptions 4.1 and 4.3 by application of suitable

laws of large numbers and central limit theory, as in Bai (2004).

Lemma A.2 Under Assumption 4.1 and 4.3, as T →∞ we have

1

T 2

T2∑
t=T1

f2
0,t−1 ⇒

∫ τ2

τ1

B (r)2 dr;

1

T 3/2

T2∑
t=T1

f0,t−1 ⇒
∫ τ2

τ1

B (r) dr;

1

T

T2∑
t=T1

f0,t−1u0,t ⇒
∫ τ2

τ1

B (r) dB (r) ;

where B (r) is Brownian motion with variance σ00.

Proof. The proofs follow standard methods, e.g. Phillips (1987) and Phillips & Perron

(1988).

Lemma A.3 Under Assumption 4.1, 4.4, and 4.3, as N,T → ∞, for any Ts = bTsc ∈
(Te, Tc],

(1) f1,t = Op

(
Tα/2ρt−TrT

)
(2)

Ts∑
t=Te+1

f1,t−1u0,t = Op

(
TαρTs−TrT

)
,

Ts∑
t=Te+1

f1,t−1u1,t = Op

(
TαρTs−TrT

)
,

Ts∑
t=Te+1

f1,t−1ei,t = Op

(
TαρTs−TrT

)
;

(3)

Ts∑
t=Te+1

f1,t−1 = Op

(
T 3α/2ρTs−TrT

)
;

(4)

Ts∑
t=Te+1

f2
1,t−1 = Op

(
T 2αρ

2(Ts−Tr)
T

)
;
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(5)

Ts∑
t=Te+1

f1,t−1f0,t−1 = Op

(
T (1+3α)/2ρTs−TrT

)
;

(6)

Ts∑
t=Te+1

f1,t−1 (eit − eit−1) = Op

(
TαρTs−TrT

)
.

Proof. (1) By definition,

f1,t = f1,Trρ
t−Tr
T +

t∑
j=Tr+1

ρt−jT u1,j .

Since f1,Tr = Op
(
Tα/2

)
and T−α/2

∑t
j=Tr+1 ρ

Tr−j
T u1,j ⇒ Nc = N

(
0, σ112c

)
from Lemma 4.2 of

Phillips & Magdalinos (2007a),

f1,Ts

Tα/2ρt−TrT

=
f1,Tr

Tα/2
+

1

Tα/2

t∑
j=Tr+1

ρTr−jT u1,j ⇒ F1,r +Nc.

Thus, f1,t = Op

(
Tα/2ρt−TrT

)
.

(2) This follows directly from Phillips & Magdalinos (2007a).

(3) Since f1,t = ρT f1,t−1 + u1,t, we have

Ts∑
t=Te+1

f1,t = ρT

Ts∑
t=Te+1

f1,t−1 +

Ts∑
t=Te+1

u1,t.

It follows that

(1− ρT )

Ts∑
t=Te+1

f1,t−1 = −f1,Ts + f1,Te +

Ts∑
t=Te+1

u1,t = −f1,Ts [1 + op (1)]

since f1,Te = Op

(
Tα/2ρTe−TrT

)
and f1,Ts = Op

(
Tα/2ρTs−TrT

)
from Lemma A.3 (1) and∑Ts

t=Te+1 u1,t = Op
(
T 1/2

)
from Lemma A.1. Therefore,

Ts∑
t=Te+1

f1,t−1 =
Tα

d1
f1,Ts [1 + op (1)] = Op

(
T 3α/2ρTs−TrT

)
.

(4) By squaring equation f1,t = ρT f1,t−1 + u1,t, substracting f2
1,t−1 from both sides,

summing from Te + 1 to Ts, reorganizing the equation, and dividing by ρ2
T − 1, we have

Ts∑
t=Te+1

f2
1,t−1 =

1

ρ2
T − 1

[
f2

1,Ts − f
2
1,Te −

Ts∑
t=Te+1

u2
1,t − 2ρT

Ts∑
t=Te+1

f1,t−1u1,t

]

=
1

ρ2
T − 1

f2
1,Ts [1 + op (1)] = Op (1)
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since f2
1,Ts

= Op

(
Tαρ

2(Ts−Tr)
T

)
, f2

1,Te
= Op

(
Tαρ

2(Te−Tr)
T

)
, and

∑Ts
t=Te+1 f1,t−1u1,t = Op

(
TαρTs−TrT

)
from Lemma A.3 (1)-(2),

∑Ts
t=Te+1 u

2
1,t = Op (T ) from Lemma A.1, and 1

Tα
1

ρ2T−1
= Op (1).

Therefore,
Ts∑

t=Te+1

f2
1,t−1 = Op

(
T 2αρ

2(Ts−Tr)
T

)
.

(5) The sum of the cross product between f1,t−1 and f0,t−1 over [Te + 1, Ts] is

Ts∑
t=Te+1

f1,t−1f0,t−1 = T (1+α)/2
Ts∑

t=Te+1

f1,t−1

Tα/2ρt−TrT

f0,t−1

T 1/2
ρt−TrT

≤ T (1+α)/2 max
t∈[Te+1,Ts]

{
f1,t−1

Tα/2ρt−TrT

}
max

t∈[Te+1,Ts]

{
f0,t−1

T 1/2

} Ts∑
t=Te+1

ρt−TrT

= Op

(
T (1+3α)/2ρTs−TrT

)
.

(6) From Assumption 4.3, E (eit − eit−1) = 0 and V ar (eit − eit−1) <∞, we have
∑Ts

t=Te+1 f1,t−1 (eit − eit−1) =

Op

(
TαρTs−TrT

)
, which follows directly from Phillips & Magdalinos (2007a).

Lemma A.4 Under Assumption 4.1, as N,T →∞, for any T2 ∈ (Tc, T ], we have

(1) f2,t =

{
Op
(
T β/2

)
if α > β

Op

(
Tα/2ρTc−TrT φt−TcT

)
if α < β

for t > Tc;

(2)

T2∑
t=Tc+1

f2,t−1ei,t = Op

(
T (α+β)/2ρTc−TrT

)
and

T2∑
t=Tc+1

f2,t−1u2,t = Op

(
T (α+β)/2ρTc−TrT

)
;

(3)

T2∑
t=Tc+1

f2,t−1 = Op

(
Tα/2+βρTc−TrT

)
;

(4)

T2∑
t=Tc+1

f2
2,t−1 = Op

(
Tα+βρ

2(Tc−Tr)
T

)
;

(5)

T2∑
t=Tc+1

ρt−1−Tr
T f2,t−1 =

 Op

(
Tα/2+βρ

2(Tc−Tr)
T

)
if α > β

Op

(
T 3α/2ρ

(Tc−Tr)+(T2−Tr)
T φT2−TcT

)
if α < β

;

Proof. (1) By definition,

f2,t = φt−TcT f2,Tc +
t∑

j=Tc+1

φt−jT u2,j .
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By assumption, f2,Tc = Op

(
Tα/2ρTc−TrT

)
and φt−TcT f2,Tc = Op

(
Tα/2ρTc−TrT φt−TcT

)
. Since

E

 1

T β/2

t∑
j=Tc+1

φt−jT u2,j

2 =
1

T β

t∑
j=Tc+1

φ
2(t−j)
T E

(
u2

2,j

)
→ σ22

2d2
,

from Lemma B.1(3) in Phillips & Shi (2018b),

1

T β/2

t∑
j=Tc+1

φt−jT u2,j ⇒ Xd2 = N
(

0,
σ22

2d2

)
.

That is,
∑t

j=Tc+1 φ
t−j
T u2,j = Op

(
T β/2

)
. Therefore,

f2,t =

{ ∑t
j=Tc+1 φ

t−j
T u2,j [1 + op (1)] = Op

(
T β/2

)
if α > β

φt−TcT f2,Tc [1 + op (1)] = Op

(
Tα/2ρTc−TrT φt−TcT

)
if α < β

.

(2) We have

T2∑
t=Tc+1

f2,t−1ei,t =

T2∑
t=Tc+1

φt−1−Tc
T f2,Tc +

t−1∑
j=Tc+1

φt−jT u2,j

 ei,t

= T β/2f2,Tc

T−β/2 T2∑
t=Tc+1

ei,tφ
t−1−Tc
T

+ T β/2
T2∑

t=Tc+1

ei,t

 1

T β/2

t−1∑
j=Tc+1

φt−jT u2,j


= T β/2f2,Tc

T−β/2 T2∑
t=Tc+1

ei,tφ
t−1−Tc
T

+Op

(
T (1+β)/2

)
= Op

(
T (α+β)/2ρTc−TrT

)
since f2,Tc = Op

(
Tα/2ρTc−TrT

)
, 1
Tβ/2

∑t−1
j=Tc+1 φ

t−1−j
T u2,j ⇒ Xd2 , and from Phillips & Shi

(2018b),

T−β/2
T2∑

t=Tc+1

φt−1−Tc
T ei,t = T−β/2

T2−Tc−1∑
j=0

φjT ei,j+Tc+1 ⇒ N
(
0, σ2

e/2d2

)
.

Similarly, we can show that

T2∑
t=Tc+1

f2,t−1u2,t = Op

(
T (α+β)/2ρTc−TrT

)
.

31



(3) Since f2,t = φT f2,t−1 + u2,t, we have

T2∑
t=Tc+1

f2,t = φT

T2∑
t=Tc+1

f2,t−1 +

T2∑
t=Tc+1

u2,t.

It follows that

(1− φT )

T2∑
t=Tc+1

f2,t−1 = −f2,T2 + f2,Tc +

T2∑
t=Tc+1

u2,t.

Since f2,T2 = Op
(
T β/2

)
if α > β and f2,T2 = Op

(
Tα/2ρTc−TrT φT2−TcT

)
if α < β from Lemma

A.4(1), f2,Tc = Op

(
Tα/2ρTc−TrT

)
, and

∑T2
t=Tc+1 u2,t = Op

(
T 1/2

)
from Lemma A.1, we have

T2∑
t=Tc+1

f2,t−1 =
T β

d2
f2,Tc [1 + op (1)] = Op

(
Tα/2+βρTc−TrT

)
.

(4) By squaring equation f2,t = φT f2,t−1 + u1,t, subtracting f2
2,t−1 from both sides, summing

from Tc + 1 to T2, reorganizing the equation, and dividing by φ2
T − 1, we have

T2∑
t=Tc+1

f2
2,t−1 =

1

φ2
T − 1

[
f2

2,T2 − f
2
2,Tc −

T2∑
t=Tc+1

u2
2,t − 2φT

T2∑
t=Tc+1

f2,t−1u2,t

]

=
1

1− φ2
T

f2
2,Tc [1 + op (1)] = Op

(
Tα+βρ

2(Tc−Tr)
T

)
,

since f2
2,Tc

= Op

(
Tαρ

2(Tc−Tr)
T

)
,
∑T2

t=Tc+1 u
2
2,t = Op (T ), 1−φ2

T = 2d2T
−β [1 + op (1)],

∑T2
t=Tc+1

f2,t−1ui,t =

Op

(
T (α+β)/2ρTc−TrT

)
, and

f2
2,T2 =

{
Op
(
T β
)

if α > β

Op

(
Tαρ

2(Tc−Tr)
T φ

2(T2−Tc)
T

)
if α < β

.

(5) Since f2,t = φT f2,t−1 + u2,t, we have

T2∑
t=Tc+1

ρt−1−Tr
T f2,t = φT

T2∑
t=Tc+1

ρt−1−Tr
T f2,t−1 +

T2∑
t=Tc+1

ρt−1−Tr
T u2,t.

Re-organizing the equation and adding
∑T2

t=Tc+1 ρ
t−1−Tr
T f2,t−1 to both sides, we have

(1− φT )

T2∑
t=Tc+1

ρt−1−Tr
T f2,t−1

=

T2∑
t=Tc+1

ρt−1−Tr
T f2,t−1 −

T2∑
t=Tc+1

ρt−1−Tr
T f2,t +

T2∑
t=Tc+1

ρt−1−Tr
T u2,t
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= ρTc−TrT f2,Tc − ρ
T2−1−Tr
T f2,T2 +

T2∑
t=Tc+2

ρt−1−Tr
T f2,t−1 −

T2−1∑
t=Tc+1

ρt−1−Tr
T f2,t +

T2∑
t=Tc+1

ρt−1−Tr
T u2,t

= ρTc−TrT f2,Tc − ρ
T2−1−Tr
T f2,T2 +

ρT − 1

ρT

T2∑
t=Tc+2

ρt−1−Tr
T f2,t−1 +

T2∑
t=Tc+1

ρt−1−Tr
T u2,t

= ρTc−TrT f2,Tc − ρ
T2−1−Tr
T f2,T2 −

ρT − 1

ρT
ρTc−TrT f2,Tc +

ρT − 1

ρT

T2∑
t=Tc+1

ρt−1−Tr
T f2,t−1 +

T2∑
t=Tc+1

ρt−1−Tr
T u2,t.

It follows that(
1− φT −

ρT − 1

ρT

) T2∑
t=Tc+1

ρt−1−Tr
T f2,t−1 = ρTc−TrT f2,Tc−ρ

T2−1−Tr
T f2,T2−

ρT − 1

ρT
ρTc−TrT f2,Tc+

T2∑
t=Tc+1

ρt−1−Tr
T u2,t.

We have ρTc−TrT f2,Tc = Op

(
Tα/2ρ

2(Tc−Tr)
T

)
, ρT−1

ρT
ρTc−TrT f2,Tc = Op

(
T−α/2ρ

2(Tc−Tr)
T

)
,

ρT2−1−Tr
T f2,T2 =

 Op

(
T β/2ρT2−TrT

)
if α > β

Op

(
Tα/2ρ

(Tc−Tr)+(T2−Tr)
T φT2−TcT

)
if α < β

,

Tα/2ρT2−1−Tr
T

(
T−α/2

T2∑
t=Tc+1

ρt−T2T u2,t

)
= Op

(
Tα/2ρT2−TrT

)
,

Tα/2ρ
(Tc−Tr)+(T2−Tr)
T φT2−TcT

Tα/2ρ
2(Tc−Tr)
T

= (ρTφT )T2−Tc →∞,

and
1

1− φT − ρT−1
ρT

=

{
Op
(
T β
)

if α > β

Op (Tα) if α < β
.

Therefore,

T2∑
t=Tc+1

ρt−1−Tr
T f2,t−1 =

 Op

(
Tα/2+βρ

2(Tc−Tr)
T

)
if α > β

Op

(
T 3α/2ρ

(Tc−Tr)+(T2−Tr)
T φT2−TcT

)
if α < β

.

B Appendix B: Proofs Under the Null Hypothesis

Lemma B.1 Under the null specification of model (2.3) and Assumption 4.1, 4.2(1), 4.3,

4.4, and 4.5, we have:

(1)

T2∑
t=T1

ỹt−1 =

T2∑
t=T1

H0f0,t−1 [1 + op (1)] = Op

(
T 3/2

)
;
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(2)

T2∑
t=T1

ỹ2
t−1 =

(
H0
)2 T2∑

t=T1

f2
0,t−1 [1 + op (1)] = Op

(
T 2
)

;

(3)

T2∑
t=T1

∆ỹtỹt−1 =
(
H0
)2 T2∑

t=T1

f0,t−1u0,t [1 + op (1)] = Op (T ) ;

(4)

T2∑
t=T1

∆ỹ2
t =

(
H0
)2 T2∑

t=T1

u2
0,t [1 + op (1)] = Op (T ) ;

(5)

T2∑
t=T1

∆ỹt = H0
T2∑
t=T1

u0,t [1 + op (1)] = Op

(
T 1/2

)
.

Proof. (1) The quantity

1

T 3/2

T2∑
t=T1

ỹt−1 =
1

T 3/2

T2∑
t=T1

(
ỹt−1 −H0f0,t−1

)
+H0 1

T 3/2

T2∑
t=T1

f0,t−1.

By the Cauchy-Schwarz inequality and Lemma 4.1, we have T2∑
t=T1

(
ỹt−1 −H0f0,t

)2

6
T2∑
t=T1

(
ỹt−1 −H0f0,t

)2 ≤ T∑
t=1

(
ỹt−1 −H0f0,t

)2
= Op

(
Tδ−2

NT

)
and hence

1

T 3/2

T2∑
t=T1

(
ỹt−1 −H0f0,t−1

)
= Op

(
T−1/2δ−1

NT

)
.

From Lemma A.2, T−3/2
∑T2

t=T1
f0,t−1 = Op (1) and H0 = Op(1), from Lemma S.1 in the

Online Supplement. Therefore,

T2∑
t=T1

ỹt−1 = H0
T2∑
t=T1

f0,t−1 [1 + op (1)] = Op

(
T 3/2

)
.

(2) Similarly,

1

T 2

T2∑
t=T1

ỹ2
t−1 =

1

T 2

T2∑
t=T1

(
ỹt−1 −H0f0,t−1 +H0f0,t−1

)2
=

1

T 2

T2∑
t=T1

(
ỹt−1 −H0f0,t−1

)2
+

2

T 2
H0

T2∑
t=T1

(
ỹt−1 −H0f0,t−1

)
f0,t−1 +

1

T 2

(
H0
)2 T2∑

t=T1

f2
0,t−1.

(B.1)

By Lemma 4.1, the first term of (B.1) is 1
T 2

∑T2
t=T1

(
ỹt−1 −H0f0,t−1

)2
= Op

(
T−1δ−2

NT

)
. The
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second term is

1

T 2

∣∣∣∣∣∣H0
T2∑
t=T1

(
ỹt−1 −H0f0,t−1

)
f0,t−1

∣∣∣∣∣∣ 6 1

T 1/2

∣∣H0
∣∣ 1

T

T2∑
t=T1

∣∣ỹt−1 −H0f0,t−1

∣∣21/2 1

T 2

T2∑
t=T1

f2
0,t−1

1/2

= Op

(
T−1/2δ−1

NT

)
.

The last term is Op (1) from Lemma A.2 and Lemma S.1 in the Online Supplement. Com-

bining the above we have

T2∑
t=T1

ỹ2
t−1 =

(
H0
)2 T2∑

t=T1

f2
0,t−1 [1 + op (1)] = Op

(
T 2
)
.

(3) The quantity

T2∑
t=T1

∆ỹtỹt−1 =

T2∑
t=T1

ỹtỹt−1 −
T2∑
t=T1

ỹ2
t−1

=

T2∑
t=T1

(
ỹt −H0f0,t

)
ỹt−1 +H0

T2∑
t=T1

f0,tỹt−1 −
(
H0
)2 T2∑

t=T1

f2
0,t−1 [1 + op (1)]

(B.2)

=

T2∑
t=T1

(
ỹt −H0f0,t

) (
ỹt−1 −H0f0,t−1

)
+H0

T2∑
t=T1

(
ỹt −H0f0,t

)
f0,t−1 (B.3)

+H0
T2∑
t=T1

f0,t

(
ỹt−1 −H0f0,t−1

)
+
(
H0
)2 T2∑

t=T1

f0,tf0,t−1 −
(
H0
)2 T2∑

t=T1

f2
0,t−1.

The first component of (B.3) is∣∣∣∣∣∣
T2∑
t=T1

(
ỹt −H0f0,t

) (
ỹt−1 −H0f0,t−1

)∣∣∣∣∣∣ ≤ T
 1

T

T2∑
t=T1

∣∣ỹt −H0f0,t

∣∣21/2 1

T

T2∑
t=T1

∣∣ỹt−1 −H0f0,t−1

∣∣21/2

= Op
(
Tδ−2

NT

)
,

using (4.1). Similarly, the second component of (B.3) is∣∣∣∣∣∣H0
T2∑
t=T1

(
ỹt −H0f0,t

)
f0,t−1

∣∣∣∣∣∣ ≤ T 3
2

∣∣H0
∣∣ 1

T

T2∑
t=T1

∣∣ỹt −H0f0,t

∣∣21/2 1

T 2

T2∑
t=T1

f2
0,t−1

1/2

= Op

(
T

3
2 δ−1
NT

)
.

By the same argument, the third component of equation (B.3) is at most Op

(
T

3
2 δ−1
NT

)
. The
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fourth component is of order Op
(
T 2
)

since
∣∣H0

∣∣ = Op (1) and

T2∑
t=T1

f0,tf0,t−1 =

T2∑
t=T1

f2
0,t−1 +

T2∑
t=T1

f0,t−1u0t =

T2∑
t=T1

f2
0,t−1 [1 + op (1)] = Op

(
T 2
)
.

The fifth component is Op
(
T 2
)
. Therefore, we have

T2∑
t=T1

∆ỹtỹt−1 =

(H0
)2 T2∑

t=T1

f0,tf0,t−1 −
(
H0
)2 T2∑

t=T1

f2
0,t−1

 [1 + op (1)]

=
(
H0
)2 T2∑

t=T1

f0,t−1u0,t [1 + op (1)] = Op (T ) .

(4) The quantity

1

T

T2∑
t=T1

∆ỹ2
t =

1

T

T2∑
t=T1

ỹ2
t −

2

T

T2∑
t=T1

ỹtỹt−1 +
1

T

T2∑
t=T1

ỹ2
t−1

=
1

T

(
H0
)2 T2∑

t=T1

(
f2

0,t − 2f0,tf0,t−1 + f2
0,t−1

)
[1 + op (1)]

=
1

T

(
H0
)2 T2∑

t=T1

(f0,t − f0,t−1)2 [1 + op (1)] =
1

T

(
H0
)2 T2∑

t=T1

u2
0,t [1 + op (1)] = Op (1) .

using Lemma A.1. (5) The quantity

T2∑
t=T1

∆ỹt =

T2∑
t=T1

H0 (f0,t − f0,t−1) [1 + op (1)] = H0
T2∑
t=T1

u0,t [1 + op (1)] = Op

(
T 1/2

)
using Lemma A.1.

Proof of Theorem 4.2

Proof. We first derive the limiting distribution of T γ̂τ1,τ2 . Let Tw = T2 − T1 + 1 = [Tτw].

The OLS estimator γ̂τ1,τ2 is

γ̂τ1,τ2 =
Tw
∑T2

t=T1
∆ỹtỹt−1 −

∑T2
t=T1

∆ỹt
∑T2

t=T1
ỹt−1

Tw
∑T2

t=T1
ỹ2
t−1 −

(∑T2
t=T1

ỹt−1

)2 . (B.4)

The denominator of (B.4) is

Tw

T2∑
t=T1

ỹ2
t−1 −

 T2∑
t=T1

ỹt−1

2

=
(
H0
)2 Tw T2∑

t=T1

f2
0,t−1 −

 T2∑
t=T1

f0,t−1

2 [1 + op (1)]
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using Lemma B.1. The numerator is

Tw

T2∑
t=T1

∆ỹtỹt−1−
T2∑
t=T1

∆ỹt

T2∑
t=T1

ỹt−1 =
(
H0
)2 Tw T2∑

t=T1

f0,t−1u0,t −
T2∑
t=T1

u0,t

T2∑
t=T1

f0,t−1

 [1 + op (1)] .

Thus,

T γ̂τ1,τ2 = T
Tw
∑T2

t=T1
f0,t−1u0,t −

∑T2
t=T1

u0,t
∑T2

t=T1
f0,t−1

Tw
∑T2

t=T1
f2

0,t−1 −
(∑T2

t=T1
f0,t−1

)2 [1 + op (1)]

⇒
τw
∫ τ2
τ1
B (r) dB (r)− [B (τ2)−B (τ1)]

∫ τ2
τ1
B (r) dr

τw
∫ τ2
τ1
B (r)2 dr −

[∫ τ2
τ1
B (r) dr

]2 , (B.5)

where B (·) is Brownian motion with variance σ00. Next we find the limit distribution of the

least squares estimate

δ̂τ1,τ2 =

(∑T2
t=T1

ỹ2
t−1

)(∑T2
t=T1

∆ỹt

)
−
(∑T2

t=T1
∆ỹtỹt−1

)(∑T2
t=T1

ỹt−1

)
Tw
∑T2

t=T1
ỹ2
t−1 −

(∑T2
t=T1

ỹt−1

)2 . (B.6)

The denominator of (B.6) is identical to that of (B.4). The numerator is T2∑
t=T1

ỹ2
t−1

 T2∑
t=T1

∆ỹt

−
 T2∑
t=T1

∆ỹtỹt−1

 T2∑
t=T1

ỹt−1


=
(
H0
)3  T2∑

t=T1

f2
0,t−1

T2∑
t=T1

u0,t −
T2∑
t=T1

f0,t−1u0,t

T2∑
t=T1

f0,t−1

 [1 + op (1)] , (B.7)

using Lemma B.1. Therefore, we have

T 1/2δ̂τ1,τ2 = T 1/2H0

∑T2
t=T1

f2
0,t−1

∑T2
t=T1

u0,t −
∑T2

t=T1
f0,t−1u0,t

∑T2
t=T1

f0,t−1

Tw
∑T2

t=T1
f2

0,t−1 −
(∑T2

t=T1
f0,t−1

)2 [1 + op (1)]

⇒ H0

∫ τ2
τ1
B (r)2 dr [B (τ2)−B (τ1)]−

∫ τ2
τ1
B (r) dB (r)

∫ τ2
τ1
B (r) dr

τw
∫ τ2
τ1
B (r)2 dr −

[∫ τ2
τ1
B (r) dr

]2 ,

using Lemma A.2. Since H0 = Op (1), we have

T 1/2δ̂τ1,τ2 = Op (1) . (B.8)
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The sum of squared errors
∑T2

t=T1

(
∆ỹt − δ̂τ1,τ2 − γ̂τ1,τ2 ỹt−1

)2
can be written as

T2∑
t=T1

(
∆ỹt − δ̂τ1,τ2 − γ̂τ1,τ2 ỹt−1

)2
=

T2∑
t=T1

∆ỹ2
t + Twδ̂

2
τ1,τ2 + γ̂2

τ1,τ2

T2∑
t=T1

ỹ2
t−1 − 2δ̂τ1,τ2

T2∑
t=T1

∆ỹt

− 2γ̂τ1,τ2

T2∑
t=T1

ỹt−1∆ỹt + 2δ̂τ1,τ2 γ̂τ1,τ2

T2∑
t=T1

ỹt−1

=

T2∑
t=T1

∆ỹ2
t [1 + op (1)] =

(
H0
)2 T2∑

t=T1

u2
0,t [1 + op (1)] = Op (T ) .

The first term dominates the other terms since δ̂τ1,τ2 = Op
(
T−1/2

)
, γ̂τ1,τ2 = Op

(
T−1

)
, and

T2∑
t=T1

∆ỹ2
t = Op (T ) ;

γ̂2
τ1,τ2

T2∑
t=T1

ỹ2
t−1 = Op

(
T−2

)
Op
(
T 2
)

= Op (1) ;

2δ̂τ1,τ2

T2∑
t=T1

∆ỹt = Op

(
T−1/2

)
Op

(
T 1/2

)
= Op (1) ;

2γ̂τ1,τ2

T2∑
t=T1

ỹt−1∆ỹt = Op
(
T−1

)
Op (T ) = Op (1) ;

2δ̂τ1,τ2 γ̂τ1,τ2

T2∑
t=T1

ỹt−1 = Op

(
T−1/2

)
Op
(
T−1

)
Op

(
T 3/2

)
= Op (1) .

The limit form of the DF test statistic is then obtained as follows

DFτ1,τ2 = γ̂τ1,τ2

 Tw
∑T2

t=T1
ỹ2
t−1 −

(∑T2
t=T1

ỹt−1

)2

∑T2
t=T1

(
∆ỹt − δ̂τ1,τ2 − γ̂τ1,τ2 ỹt−1

)2


1/2

= T γ̂τ1,τ2

 1

T 2

Tw
∑T2

t=T1
f2

0,t−1 −
(∑T2

t=T1
f0,t−1

)2

∑T2
t=T1

u2
0,t


1/2

⇒
τw
∫ τ2
τ1
W (r) dW (r)− [W (τ2)−W (τ1)]

∫ τ2
τ1
W (r) dr

τ
1/2
w

[
τw
∫ τ2
τ1
W (r)2 dr −

[∫ τ2
τ1
W (r) dr

]2
]1/2

,

where W (·) is standard Brownian motion.
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C Appendix C: Proofs Under the Alternative

Proof of Lemma 4.4

Proof. Since ξ̃t = L̃′Xt/N and Xt = Γgt + et, we have

ξ̃t = L̃′ (Γgt + et) /N

=
1

N

N∑
i=1

l̃iγi1g1t +
1

N

N∑
i=1

l̃iγi2g2t +
1

N

N∑
i=1

l̃iγi3g3t +
1

N

N∑
i=1

l̃ieit,

by construction (recall that Γ1 = Λ2, Γ2 = Λ1, and Γ3 = Λ0). The estimated first common

factor

ỹt =
1

N

N∑
i=1

l̃i1λ2,if2,t +
1

N

N∑
i=1

l̃i1λ1,if1,t +
1

N

N∑
i=1

l̃i1λ0,if0,t +
1

N

N∑
i=1

l̃i1eit

= aN,T f2,t + bN,T f1,t + cN,T f0,t +
1

N

N∑
i=1

l̃i1eit, (C.1)

where aN,T := 1
N

∑N
i=1 l̃i1λ2,i, bN,T := 1

N

∑N
i=1 l̃i1λ1,i, and cN,T := 1

N

∑N
i=1 l̃i1λ0,i. By

Cauchy-Schwarz∣∣∣∣∣ 1

N

N∑
i=1

l̃i1λ2,i

∣∣∣∣∣ 6 1

N

N∑
i=1

∣∣∣l̃i1λ2,i

∣∣∣ 6 ( 1

N

N∑
i=1

l̃2i1

)1/2(
1

N

N∑
i=1

λ2
2,i

)1/2

= Op (1) ,

since 1
N

∑N
i=1 l̃

2
i1 = Op (1) from the normalization constraint, and 1

N

∑N
i=1 λ

2
2,i = Op (1) by

Assumption 4.2. Thus, aN,T = Op (1). Using the same argument, we have bN,T = Op (1),

cN,T = Op (1), and 1
N

∑N
i=1 l̃i1eit = Op (1).

Lemma C.1 Under the alternative (2.7) with Assumption 4.1, 4.2(2), 4.3, 4.4, 4.5, and 4.6

when τ1 ∈ [0, τe] and τ2 ∈ (τe, τc], we have

(a)

T2∑
t=T1

ỹt−1 = b

T2∑
t=Te+1

f1,t−1 [1 + op (1)] = Op

(
T 3α/2ρT2−TrT2

)
;

(b)

T2∑
t=T1

ỹ2
t−1 = b2

T2∑
t=Te+1

f2
1,t−1 [1 + op (1)] = Op

(
T 2αρ

2(T2−Tr)
T

)
;

(c)

T2∑
t=T1

∆ỹtỹt−1 = b2
d1

Tα

T2∑
t=Te+1

f2
1,t−1 [1 + op (1)] = Op

(
Tαρ

2(T2−Tr)
T

)
;

(d)

T2∑
t=T1

∆ỹ2
t = b2

d2
1

T 2α

T2∑
t=Te+1

f2
1,t−1 [1 + op (1)] = Op

(
ρ

2(T2−Tr)
T

)
;
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(e)

T2∑
t=T1

∆ỹt = b
d1

Tα

T2∑
t=Te+1

f1,t−1 [1 + op (1)] = Op

(
Tα/2ρT2−TrT

)
.

Proof. (a) From Lemma 4.4, we can rewrite
∑T2

t=T1
ỹt−1 as

T2∑
t=T1

ỹt−1 = bN,T

T2∑
t=Te+1

f1,t−1 + cN,T

T2∑
t=T1

f0,t−1 +
1

N

N∑
i=1

l̃i1

 T2∑
t=T1

eit−1

 .

By Cauchy-Schwarz

1

N

N∑
i=1

l̃i1

 T2∑
t=T1

eit−1

 6 T 1/2

(
1

N

N∑
i=1

l̃2i1

)1/2
 1

N

N∑
i=1

 1

T 1/2

T2∑
t=T1

eit−1

21/2

= Op

(
T 1/2

)
.

Using Lemma 4.4, A.3, and Assumption 4.6 we know that

T2∑
t=T1

ỹt−1 = b

T2∑
t=Te+1

f1,t−1 +Op

(
T 3/2

)
= Op

(
T 3α/2ρT2−TrT

)
. (C.2)

(b) The quantity
T2∑
t=T1

ỹ2
t−1 =

Te∑
t=T1

ỹ2
t−1 +

T2∑
t=Te+1

ỹ2
t−1.

The first term

Te∑
t=T1

ỹ2
t−1 =

Te∑
t=T1

(
cN,T f0,t−1 +

1

N

N∑
i=1

l̃i1eit−1

)2

= c2
N,T

 T2∑
t=T1

f2
0,t−1

+

(
1

N

N∑
i=1

l̃i1eit−1

)2

+ 2cN,T
1

N

N∑
i=1

l̃i1

 T2∑
t=T1

f0,t−1eit−1


= c2

 T2∑
t=T1

f2
0,t−1

 [1 + op (1)] = Op
(
T 2
)
.

The second term

T2∑
t=Te+1

ỹ2
t−1 =

T2∑
t=Te+1

(
bN,T f1,t−1 + cN,T f0,t−1 +

1

N

N∑
i=1

l̃i1eit−1

)2

= b2N,T

(
T2∑

t=Te+1

f2
1,t−1

)
+ c2

N,T

(
T2∑

t=Te+1

f2
0,t−1

)
+

T2∑
t=Te+1

(
1

N

N∑
i=1

l̃i1eit−1

)2

+ 2bN,T cN,T

(
T2∑

t=Te+1

f1,t−1f0,t−1

)
+ 2bN,T

1

N

N∑
i=1

l̃i1

(
T2∑

t=Te+1

f1,t−1eit−1

)
+ 2cN,T

1

N

N∑
i=1

l̃i1

(
T2∑

t=Te+1

f0,t−1eit−1

)
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= b2
T2∑

t=Te+1

f2
1,t−1 +Op

(
T (1+3α)/2ρT−TrT

)
= Op

(
T 2αρ

2(T2−Tr)
T

)
.

using Lemma 4.4 and A.3. Therefore, the second term dominates and

T2∑
t=T1

ỹ2
t−1 = b2

T2∑
t=Te+1

f2
1,t−1 [1 + op (1)] = Op

(
T 2αρ

2(T2−Tr)
T

)
. (C.3)

(c) Similarly,
T2∑
t=T1

∆ỹtỹt−1 =

Te∑
t=T1

∆ỹtỹt−1 +

T2∑
t=Te+1

∆ỹtỹt−1.

The first term

Te∑
t=T1

∆ỹtỹt−1 =

Te∑
t=T1

(
cN,Tu0,t +

1

N

N∑
i=1

l̃i1∆eit

)(
cN,T f0,t−1 +

1

N

N∑
i=1

l̃i1eit−1

)

= c2
N,T

Te∑
t=T1

u0,tf0,t−1 + cN,T

Te∑
t=T1

u0,t

(
1

N

N∑
i=1

l̃i1eit−1

)

+cN,T

Te∑
t=T1

f0,t−1

(
1

N

N∑
i=1

l̃i1∆eit

)
+

Te∑
t=T1

(
1

N

N∑
i=1

l̃i1∆eit

)(
1

N

N∑
i=1

l̃i1eit−1

)
= Op (T )

since
∑Te

t=T1
u0,tf0,t−1 = Op (T ),

∑Te
t=T1

u0,t = Op
(
T 1/2

)
, 1
N

∑N
i=1 l̃i1eit−1 = Op (1), and

Te∑
t=T1

f0,t−1
1

N

N∑
i=1

l̃i1∆eit−1 6 T

(
1

N

N∑
i=1

l̃2i1

)1/2
 1

N

N∑
i=1

 1

T

Te∑
t=T1

f0,t−1∆eit−1

21/2

= Op (T ) .

The second term

T2∑
t=Te+1

∆ỹtỹt−1

=

T2∑
t=Te+1

(
bN,T (ρT − 1) f1,t−1 + bN,Tu1,t + cN,Tu0,t +

1

N

N∑
i=1

l̃i1∆eit

)
(
bN,T f1,t−1 + cN,T f0,t−1 +

1

N

N∑
i=1

l̃i1eit−1

)

=b2N,T (ρT − 1)

T2∑
t=Te+1

f2
1,t−1 + bN,T cN,T (ρT − 1)

T2∑
t=Te+1

f1,t−1f0,t−1

+ bN,T (ρT − 1)
1

N

N∑
i=1

l̃i1

(
T2∑

t=Te+1

f1,t−1eit−1

)
+ b2N,T

T2∑
t=Te+1

f1,t−1u1,t
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+ bN,T cN,T

T2∑
t=Te+1

f0,t−1u1,t + bN,T

T2∑
t=Te+1

u1,t
1

N

N∑
i=1

l̃i1eit−1

+ bN,T cN,T

T2∑
t=Te+1

u0,tf1,t−1 + c2
N,T

T2∑
t=Te+1

u0,tf0,t−1 + cN,T

(
1

N

N∑
i=1

l̃i1

)(
T2∑

t=Te+1

u0,teit−1

)

+ bN,T

(
1

N

N∑
i=1

l̃i1

)[
T2∑

t=Te+1

f1,t−1∆eit

]
+ cN,T

(
1

N

N∑
i=1

l̃i1

)[
T2∑

t=Te+1

f0,t−1∆eit

]

+

T2∑
t=Te+1

(
1

N

N∑
i=1

l̃i1∆eit

)(
1

N

N∑
i=1

l̃i1eit−1

)
(C.4)

= b2 (ρT − 1)

T2∑
t=Te+1

f2
1,t−1 +Op

(
T (1+α)/2ρT2−TrT

)
= Op

(
Tαρ

2(T2−Tr)
T

)
, (C.5)

using Lemma 4.4 and A.3. Therefore, we have

T2∑
t=T1

∆ỹtỹt−1 = b2
d1

Tα

T2∑
t=Te+1

f2
1,t−1 [1 + op (1)] = Op

(
Tαρ

2(T2−Tr)
T

)
. (C.6)

(d) The quantity
T2∑
t=T1

∆ỹ2
t =

Te∑
t=T1

∆ỹ2
t +

T2∑
t=Te+1

∆ỹ2
t .

The first term

Te∑
t=T1

∆ỹ2
t =

Te∑
t=T1

[
cN,Tu0,t +

1

N

N∑
i=1

l̃i1 (eit − eit−1)

]2

= c2
N,T

Te∑
t=T1

u2
0,t +

Te∑
t=T1

(
1

N

N∑
i=1

l̃i1 (eit − eit−1)

)2

+ 2cN,T

Te∑
t=T1

u0,t

(
1

N

N∑
i=1

l̃i1 (eit − eit−1)

)
= Op (T ) .

The second term

T2∑
t=Te+1

∆ỹ2
t =

T2∑
t=T1

[
bN,T (f1,t − f1,t−1) + cN,Tu0,t +

1

N

N∑
i=1

l̃i1 (eit − eit−1)

]2

=

T2∑
t=T1

[
bN,T

d1

Tα
f1,t−1 + bN,Tu1,t + cN,Tu0,t +

1

N

N∑
i=1

l̃i1 (eit − eit−1)

]2

= b2N,T
d2

1

T 2α

T2∑
t=Te+1

f2
1,t−1 +

T2∑
t=T1

[
bN,Tu1,t + cN,Tu0,t +

1

N

N∑
i=1

l̃i1 (eit − eit−1)

]2

+ 2bN,T
d1

Tα

T2∑
t=Te+1

f1,t−1

[
bN,Tu1,t + cN,Tu0,t +

1

N

N∑
i=1

l̃i1 (eit − eit−1)

]
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= b2
d2

1

T 2α

T2∑
t=Te+1

f2
1,t−1 +Op

(
Tα/2ρ

(T2−Tr)
T

)
= Op

(
ρ

2(T2−Tr)
T

)
,

using Lemma 4.4 and A.3. Therefore, the second term dominates and

T2∑
t=T1

∆ỹ2
t = b2

d2
1

T 2α

T2∑
t=Te+1

f2
1,t−1 [1 + op (1)] = Op

(
ρ

2(T2−Tr)
T

)
.

(e) The quantity
T2∑
t=T1

∆ỹt =

Te∑
t=T1

∆ỹt +

T2∑
t=Te+1

∆ỹt.

The first term

Te∑
t=T1

∆ỹt =

Te∑
t=T1

[
cN,T (f0,t − f0,t−1) +

1

N

N∑
i=1

l̃i1 (eit − eit−1)

]

= cN,T

T2∑
t=T1

u0,t +
1

N

N∑
i=1

l̃i1

Te∑
t=T1

(eit − eit−1) = Op

(
T 1/2

)
.

The second term

T2∑
t=Te+1

∆ỹt =

T2∑
t=Te+1

bN,T (f1,t − f1,t−1) + cN,T (f0,t − f0,t−1) +
1

N

N∑
i=1

l̃i1

T2∑
t=T1

(eit − eit−1)

 ,
= bN,T

d1

Tα

T2∑
t=Te+1

f1,t−1 + bN,T

T2∑
t=Te+1

u1,t + cN,T

T2∑
t=Te+1

u0,t +
1

N

N∑
i=1

l̃i1

T2∑
t=Te+1

(eit − eit−1)

= b
d1

Tα

T2∑
t=Te+1

f1,t−1 +Op

(
T 1/2

)
= Op

(
Tα/2ρT2−TrT

)
,

from Lemma A.3. Therefore, the second term dominates, giving

T2∑
t=T1

∆ỹt = b
d1

Tα

T2∑
t=Te+1

f1,t−1 [1 + op (1)] = Op

(
Tα/2ρT2−TrT

)
.

Lemma C.2 Under the alternative (2.7) with Assumptions 4.1, 4.2 (2), 4.3, 4.4, 4.5, and

4.6 when τ1 ∈ [0, τe] and τ2 ∈ (τc, T ], we have

(a)

T2∑
t=T1

ỹt−1 =

 b
∑Tc

t=Te+1 f1,t−1 [1 + op (1)] = Op

(
T 3α/2ρTc−TrT

)
if α > β

a
∑T2

t=Tc+1 f2,t−1 [1 + op (1)] = Op

(
Tα/2+βρTc−TrT

)
if α < β

;
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(b)

T2∑
t=T1

ỹ2
t−1 =

 b2
∑Tc

t=Te+1 f
2
1,t−1 [1 + op (1)] = Op

(
T 2αρ

2(Tc−Tr)
T

)
if α > β

a2
∑T2

t=Tc+1 f
2
2,t−1 [1 + op (1)] = Op

(
Tα+βρ

2(Tc−Tr)
T

)
if α < β

;

(c)

T2∑
t=T1

∆ỹtỹt−1 =

[
b2
d1

Tα

Tc∑
t=Te+1

f2
1,t−1 − a2 d2

T β

T2∑
t=Tc+1

f2
2,t−1

]
[1 + op (1)] = Op

(
Tαρ

2(Tc−Tr)
T

)
;

(d)
T∑
t=1

∆ỹ2
t =

 a2 d22
T 2β

∑T2
t=Tc+1 f

2
2,t−1 [1 + op (1)] = Op

(
Tα−βρ

2(Tc−Tr)
T

)
if α > β

b2
d21
T 2α

∑Tc
t=Te+1 f

2
1,t−1 [1 + op (1)] = Op

(
ρ

2(Tc−Tr)
T

)
if α < β

;

(e)

Tc∑
t=T1

∆ỹt =

[
b
d1

Tα

T2∑
t=Te+1

f1,t−1 − a
d2

T β

T2∑
t=Tc+1

f2,t−1

]
[1 + op (1)] = Op

(
Tα/2ρTc−TrT

)
.

Proof. (a) We can rewrite
∑T2

t=T1
ỹt−1 as

T2∑
t=T1

ỹt−1 =

T2∑
t=T1

(
aN,T f2,t−1 + bN,T f1,t−1 + cN,T f0,t−1 +

1

N

N∑
i=1

l̃i1eit−1

)

= aN,T

T2∑
t=Tc+1

f2,t−1 +

bN,T Tc∑
t=Te+1

f1,t−1 + cN,T

Tc∑
t=T1

f0,t−1 +
1

N

N∑
i=1

l̃i1

 T2∑
t=T1

eit−1


= Op

(
Tα/2+βρTc−TrT

)
+Op

(
T 3α/2ρTc−TrT

)
=

 b
∑Tc

t=Te+1 f1,t−1 [1 + op (1)] = Op

(
T 3α/2ρTc−TrT

)
if α > β

a
∑T2

t=Tc+1 f2,t−1 [1 + op (1)] = Op

(
Tα/2+βρTc−TrT

)
if α < β

from Lemma C.1(a) and Lemma A.4. (b) The quantity

T2∑
t=T1

ỹ2
t−1 =

Te∑
t=T1

ỹ2
t−1 +

Tc∑
t=Te+1

ỹ2
t−1 +

T2∑
t=Tc+1

ỹ2
t−1.

From Lemma C.1, the first and second term

Te∑
t=T1

ỹ2
t−1 +

Tc∑
t=Te+1

ỹ2
t−1 = b2

Tc∑
t=Te+1

f2
1,t−1 [1 + op (1)] = Op

(
T 2αρ

2(Tc−Tr)
T

)
.

The third term

T2∑
t=Tc+1

ỹ2
t−1 =

T2∑
t=Tc+1

(
aN,T f2,t−1 +

1

N

N∑
i=1

l̃i1eit

)2

= a2
N,T

T2∑
t=Tc+1

f2
2,t−1 +

T2∑
t=Tc+1

(
1

N

N∑
i=1

l̃i1eit

)2

+ 2aN,T

T2∑
t=Tc+1

f2,t−1

(
1

N

N∑
i=1

l̃i1eit

)

= a2
T2∑

t=Tc+1

f2
2,t−1 [1 + op (1)] = Op

(
Tα+βρ

2(Tc−Tr)
T

)
.
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Therefore,

T2∑
t=T1

ỹ2
t−1 =

 b2
∑Tc

t=Te+1 f
2
1,t−1 [1 + op (1)] = Op

(
T 2αρ

2(Tc−Tr)
T

)
if α > β

a2
∑T2

t=Tc+1 f
2
2,t−1 [1 + op (1)] = Op

(
Tα+βρ

2(Tc−Tr)
T

)
if α < β

.

(c) We have

T2∑
t=T1

∆ỹtỹt−1 =

Te∑
t=T1

∆ỹtỹt−1 +

Tc∑
t=Te+1

∆ỹtỹt−1 +

T2∑
t=Tc+1

∆ỹtỹt−1.

From Lemma C.1(c),

Te∑
t=T1

∆ỹtỹt−1 +

Tc∑
t=Te+1

∆ỹtỹt−1 = b2 (ρT − 1)

Tc∑
t=Te+1

f2
1,t−1 [1 + op (1)] = Op

(
Tαρ

2(Tc−Tr)
T

)
.

The third term

T2∑
t=Tc+1

∆ỹtỹt−1 =

T2∑
t=Tc+1

[
aN,T (φT − 1) f2,t−1 + aN,Tu2,t +

1

N

N∑
i=1

l̃i1∆eit

](
aN,T f2,t−1 +

1

N

N∑
i=1

l̃i1eit−1

)

= −a2
N,Td2T

−β
T2∑

t=Tc+1

f2
2,t−1 + a2

N,T

T2∑
t=Tc+1

f2,t−1u2,t + aN,T
1

N

N∑
i=1

l̃i1

T2∑
t=Tc+1

f2,t−1∆eit

− aN,Td2T
−β

T2∑
t=Tc+1

f2,t−1

(
1

N

N∑
i=1

l̃i1eit−1

)
+ aN,T

T2∑
t=Tc+1

u2,t

(
1

N

N∑
i=1

l̃i1eit−1

)

+

T2∑
t=Tc+1

1

N

N∑
i=1

l̃i1∆eit

(
1

N

N∑
i=1

l̃i1eit−1

)

= −a2d2T
−β

T2∑
t=Tc+1

f2
2,t−1 [1 + op (1)] = Op

(
Tαρ

2(Tc−Tr)
T

)
,

using results from Lemma 4.4 and A.4. Therefore,

T2∑
t=T1

∆ỹtỹt−1 =

[
b2d1T

−α
Tc∑

t=Te+1

f2
1,t−1 − a2d2T

−β
T2∑

t=Tc+1

f2
2,t−1

]
[1 + op (1)] = Op

(
Tαρ

2(Tc−Tr)
T

)
.

(d) The quantity
T∑
t=1

∆ỹ2
t =

Te∑
t=T1

∆ỹ2
t +

Tc∑
t=Te+1

∆ỹ2
t +

T2∑
t=Tc+1

∆ỹ2
t .

From Lemma C.1(d), we have

Te∑
t=T1

∆ỹ2
t +

Tc∑
t=Te+1

∆ỹ2
t = b2

d2
1

T 2α

Tc∑
t=Te+1

f2
1,t−1 [1 + op (1)] = Op

(
ρ

2(Tc−Tr)
T

)
.
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The third term

T2∑
t=Tc+1

∆ỹ2
t =

T2∑
t=Tc+1

[
aN,T (φT − 1) f2,t−1 + aN,Tu2,t +

1

N

N∑
i=1

l̃i1∆eit

]2

= a2
N,T (φT − 1)2

T2∑
t=Tc+1

f2
2,t−1 +

T2∑
t=Tc+1

(
1

N

N∑
i=1

l̃i1∆eit

)2

+ 2a2
N,T (φT − 1)

T2∑
t=Tc+1

f2,t−1u2,t

+ a2
N,T

T2∑
t=Tc+1

u2
2,t + 2aN,T (φT − 1)

T2∑
t=Tc+1

f2,t−1

(
1

N

N∑
i=1

l̃i1∆eit

)
+ 2aN,T

T2∑
t=Tc+1

u2,t

(
1

N

N∑
i=1

l̃i1∆eit

)

= a2 (φT − 1)2
T2∑

t=Tc+1

f2
2,t−1 [1 + op (1)] = Op

(
Tα−βρ

2(Tc−Tr)
T

)
,

using Lemma 4.4 and A.4. Therefore,

T∑
t=1

∆ỹ2
t =

 a2 d22
T 2β

∑T2
t=Tc+1 f

2
2,t−1 [1 + op (1)] = Op

(
Tα−βρ

2(Tc−Tr)
T

)
if α > β

b2
d21
T 2α

∑Tc
t=Te+1 f

2
1,t−1 [1 + op (1)] = Op

(
ρ

2(Tc−Tr)
T

)
if α < β

.

(e) The quantity
T2∑
t=T1

∆ỹt =

Te∑
t=T1

∆ỹt +

Tc∑
t=Te+1

∆ỹt +

T2∑
t=Tc+1

∆ỹt.

From Lemma C.1(e),

Te∑
t=T1

∆ỹt +

Tc∑
t=Te+1

∆ỹt = b (ρT − 1)

Tc∑
t=Te+1

f1,t−1 [1 + op (1)] = Op

(
Tα/2ρTc−TrT

)
.

The third term

T2∑
t=Tc+1

∆ỹt =

T2∑
t=Tc+1

[
aN,T (φT − 1) f2,t−1 + aN,Tu2,t +

1

N

N∑
i=1

l̃i1∆eit

]

= aN,T (φT − 1)

T2∑
t=Tc+1

f2,t−1 + aN,T

T2∑
t=Tc+1

u2,t +
1

N

N∑
i=1

l̃i1

T2∑
t=Tc+1

∆eit

= a (φT − 1)

T2∑
t=Tc+1

f2,t−1 [1 + op (1)] = Op

(
Tα/2ρTc−TrT

)
,

from Lemma A.4. Therefore,

T2∑
t=T1

∆ỹt =

[
b (ρT − 1)

T2∑
t=Te+1

f1,t−1 + a (φT − 1)

T2∑
t=Tc+1

f2,t−1

]
[1 + op (1)] = Op

(
Tα/2ρTc−TrT

)
.
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Lemma C.3 Under the alternative (2.7) with Assumption 4.1, 4.2 (2), 4.3, 4.4, and 4.5,

when τ1, τ2 ∈ (τc, T ], we have

(a)

T2∑
t=T1

ỹt−1 = a

T2∑
t=T1

f2,t−1 [1 + op (1)] = Op

(
Tα/2+βρTc−TrT

)
;

(b)

T2∑
t=T1

ỹ2
t−1 = a2

T2∑
t=T1

f2
2,t−1 [1 + op (1)] = Op

(
Tα+βρ

2(Tc−Tr)
T

)
;

(c)

T2∑
t=T1

∆ỹtỹt−1 = −a2 d2

T β

T2∑
t=T1

f2
2,t−1 [1 + op (1)] = Op

(
Tαρ

2(Tc−Tr)
T

)
;

(d)
T∑
t=1

∆ỹ2
t = a2 d2

2

T 2β

T2∑
t=T1

f2
2,t−1 [1 + op (1)] = Op

(
Tα−βρ

2(Tc−Tr)
T

)
;

(e)

Tc∑
t=T1

∆ỹt = −a d2

T β

T2∑
t=T1

f2,t−1 [1 + op (1)] = Op

(
Tα/2ρTc−TrT

)
.

Proof. (a) We can rewrite
∑T2

t=T1
ỹt−1 as

T2∑
t=T1

ỹt−1 =

T2∑
t=T1

(
aN,T f2,t−1 + bN,T f1,t−1 + cN,T f0,t−1 +

1

N

N∑
i=1

l̃i1eit−1

)

= aN,T

T2∑
t=T1

f2,t−1 +
1

N

N∑
i=1

l̃i1

 T2∑
t=T1

eit−1


= a

T2∑
t=T1

f2,t−1 [1 + op (1)] = Op

(
Tα/2+βρTc−TrT

)
,

from Lemma A.4. (b) The quantity

T2∑
t=T1

ỹ2
t−1 =

T2∑
t=T1

(
aN,T f2,t−1 +

1

N

N∑
i=1

l̃i1eit

)2

= a2
N,T

T2∑
t=T1

f2
2,t−1 +

T2∑
t=T1

(
1

N

N∑
i=1

l̃i1eit

)2

+ 2aN,T

T2∑
t=T1

f2,t−1

(
1

N

N∑
i=1

l̃i1eit

)

= a2
T2∑
t=T1

f2
2,t−1 [1 + op (1)] = Op

(
Tα+βρ

2(Tc−Tr)
T

)
.

Therefore,
T2∑
t=T1

ỹ2
t−1 = a2

T2∑
t=T1

f2
2,t−1 [1 + op (1)] = Op

(
Tα+βρ

2(Tc−Tr)
T

)
.

47



(c) We have

T2∑
t=T1

∆ỹtỹt−1 =

T2∑
t=T1

[
aN,T (φT − 1) f2,t−1 + aN,Tu2,t +

1

N

N∑
i=1

l̃i1∆eit

](
aN,T f2,t−1 +

1

N

N∑
i=1

l̃i1eit−1

)

= −a2
N,Td2T

−β
T2∑
t=T1

f2
2,t−1 + a2

N,T

T2∑
t=T1

f2,t−1u2,t + aN,T
1

N

N∑
i=1

l̃i1

T2∑
t=T1

f2,t−1∆eit

− aN,Td2T
−β

T2∑
t=T1

f2,t−1

(
1

N

N∑
i=1

l̃i1eit−1

)
+ aN,T

T2∑
t=T1

u2,t

(
1

N

N∑
i=1

l̃i1eit−1

)

+

T2∑
t=T1

1

N

N∑
i=1

l̃i1∆eit

(
1

N

N∑
i=1

l̃i1eit−1

)

= −a2d2T
−β

T2∑
t=T1

f2
2,t−1 [1 + op (1)] = Op

(
Tαρ

2(Tc−Tr)
T

)
,

using results from Lemma 4.4 and A.4.

(d) The quantity

T2∑
t=T1

∆ỹ2
t =

T2∑
t=T1

[
aN,T (φT − 1) f2,t−1 + aN,Tu2,t +

1

N

N∑
i=1

l̃i1∆eit

]2

= a2
N,T (φT − 1)2

T2∑
t=T1

f2
2,t−1 +

T2∑
t=T1

(
1

N

N∑
i=1

l̃i1∆eit

)2

+ 2a2
N,T (φT − 1)

T2∑
t=T1

f2,t−1u2,t

+ a2
N,T

T2∑
t=T1

u2
2,t + 2aN,T (φT − 1)

T2∑
t=T1

f2,t−1

(
1

N

N∑
i=1

l̃i1∆eit

)
+ 2aN,T

T2∑
t=T1

u2,t

(
1

N

N∑
i=1

l̃i1∆eit

)

= a2 (φT − 1)2
T2∑
t=T1

f2
2,t−1 [1 + op (1)] = Op

(
Tα−βρ

2(Tc−Tr)
T

)
,

using Lemma 4.4 and A.4. (e) The quantity

T2∑
t=T1

∆ỹt =

T2∑
t=T1

[
aN,T (φT − 1) f2,t−1 + aN,Tu2,t +

1

N

N∑
i=1

l̃i1∆eit

]

= aN,T (φT − 1)

T2∑
t=T1

f2,t−1 + aN,T

T2∑
t=T1

u2,t +
1

N

N∑
i=1

l̃i1

T2∑
t=T1

∆eit

= a (φT − 1)

T2∑
t=T1

f2,t−1 [1 + op (1)] = Op

(
Tα/2ρTc−TrT

)
,

from Lemma A.4.
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Proof of Theorem 4.5

Proof. The OLS estimator

γ̂τ1,τ2 =
Tw
∑T2

t=T1
∆ỹtỹt−1 −

∑T2
t=T1

∆ỹt
∑T2

t=T1
ỹt−1

Tw
∑T2

t=T1
ỹ2
t−1 −

(∑T2
t=T1

ỹt−1

)2 .

The denominator

Tw

T2∑
t=T1

ỹ2
t−1−

 T2∑
t=T1

ỹt−1

2

= Twb
2

T2∑
t=Te+1

f2
1,t−1+Op

(
T 3αρ

2(T2−Tr)
T

)
= Op

(
T 1+2αρ

2(T2−Tr)
T

)
.

since
∑T2

t=T1
ỹ2
t−1 = Op

(
T 2αρ

2(T2−Tr)
T

)
and

∑T2
t=T1

ỹt−1 = Op

(
T 3α/2ρT2−TrT

)
from Lemma

C.1. The numerator is

Tw

T2∑
t=T1

∆ỹtỹt−1 −
T2∑
t=T1

∆ỹt

T2∑
t=T1

ỹt−1 = Tw

T2∑
t=T1

∆ỹtỹt−1 +Op

(
T 2αρ

2(T2−Tr)
T

)

= b2
d1

Tα
Tw

T2∑
t=Te+1

f2
1,t−1 +Op

(
T 2αρ

2(T−Tr)
T

)
,

since
∑T

t=1 ∆ỹtỹt−1 = Op

(
Tαρ

2(T2−Tr)
T

)
and

∑T
t=1 ∆ỹt

∑T
t=1 ỹt−1 = Op

(
T 2αρ

2(T2−Tr)
T

)
from

Lemma C.1. Therefore,

γ̂τ1,τ2 =
b2 d1TαTw

∑T2
t=Te+1 f

2
1,t−1 +Op

(
T 2αρ

2(T−Tr)
T

)
Twb2

∑T2
t=Te+1 f

2
1,t−1

[1 + op (1)]

=
d1

Tα
+Op

(
T−1

)
.

Next we derive the order of magnitude of δ̂. By definition, we have

δ̂ =

(∑T2
t=T1

ỹ2
t−1

)(∑T2
t=T1

∆ỹt

)
−
(∑T2

t=T1
∆ỹtỹt−1

)(∑T2
t=T1

ỹt−1

)
Tw
∑T2

t=T1
ỹ2
t−1 −

(∑T2
t=T1

ỹt−1

)2 .

The numerator is T2∑
t=T1

ỹ2
t−1

 T2∑
t=T1

∆ỹt

−
 T2∑
t=T1

∆ỹtỹt−1

 T2∑
t=T1

ỹt−1


=

[
b2

(
T2∑

t=Te+1

f2
1,t−1

)
+ 2bc

(
T2∑

t=Te+1

f1,t−1f0,t−1

)
+Op

(
Tαρ

(T2−Tr)
T

)][
b
d1

Tα

T2∑
t=Te+1

f1,t−1 +Op

(
T 1/2

)]
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−

[
b2
d1

Tα

T∑
t=Te+1

f2
1,t−1 + bc

d1

Tα

T2∑
t=Te+1

f1,t−1f0,t−1 +Op

(
Tαρ

(T2−Tr)
T

)][
b

T2∑
t=Te+1

f1,t−1 +Op

(
T 3/2

)]

= b2c
d1

Tα

(
T2∑

t=Te+1

f1,t−1f0,t−1

)(
T2∑

t=Te+1

f1,t−1

)
+Op

(
Tα+1/2ρT−TrT

)
= Op

(
T 2α+ 1

2 ρ
2(T2−Tr)
T

)
,

using Lemma 4.4. Therefore,

δ̂τ1,τ2 =
Op

(
T 2α+ 1

2 ρ
2(T2−Tr)
T

)
Op

(
T 2α+1ρ

2(T2−Tr)
T

) = Op

(
T−1/2

)
.

The quantity
∑T

t=1

(
∆ỹt − δ̂τ1,τ2 − γ̂τ1,τ2 ỹt−1

)
can be written as

T2∑
t=T1

(
∆ỹt − δ̂τ1,τ2 − γ̂τ1,τ2 ỹt−1

)2
=

T2∑
t=T1

(∆ỹt − γ̂τ1,τ2 ỹt−1)2+Twδ̂
2
τ1,τ2−2δ̂τ1,τ2

T2∑
t=T1

(∆ỹt − γ̂τ1,τ2 ỹt−1) .

Consider the term

T2∑
t=T1

(∆ỹt − γ̂τ1,τ2 ỹt−1)2 =

Te∑
t=T1

(∆ỹt − γ̂τ1,τ2 ỹt−1)2 +

T2∑
t=Te+1

(∆ỹt − γ̂τ1,τ2 ỹt−1)2 . (C.7)

Let ξ0t = cN,Tu0,t + 1
N

∑N
i=1 l̃i1∆eit − γ̂τ1,τ2 1

N

∑N
i=1 l̃i1eit−1. The first term in (C.7)

Te∑
t=T1

(∆ỹt − γ̂τ1,τ2 ỹt−1)2 =

Te∑
t=T1

(
−cN,T γ̂τ1,τ2f0,t−1 + cN,Tu0,t +

1

N

N∑
i=1

l̃i1∆eit − γ̂τ1,τ2
1

N

N∑
i=1

l̃i1eit−1

)2

=

Te∑
t=T1

(−cN,T γ̂τ1,τ2f0,t−1 + ξ0t)
2 =

Te∑
t=T1

(
c2
N,T γ̂

2
τ1,τ2f

2
0,t−1 + ξ2

0t − 2cN,T γ̂τ1,τ2f0,t−1ξ0t

)
= c2

N,T γ̂
2
τ1,τ2

Te∑
t=1

f2
0,t−1 +

Te∑
t=1

ξ2
0t − 2cN,T γ̂τ1,τ2

Te∑
t=T1

f0,t−1ξ0t = Op

(
max

{
T 2(1−α), T

})
.

Let ξ1t = bN,Tu1,t + cN,Tu0,t + 1
N

∑N
i=1 l̃i1eit − (1 + γ̂τ1,τ2) 1

N

∑N
i=1 l̃i1eit−1. The second term

in (C.7)

T2∑
t=Te+1

(∆ỹt − γ̂τ1,τ2 ỹt−1)2 =

T2∑
t=Te+1

[bN,T (ρT − 1− γ̂τ1,τ2) f1,t−1 − γ̂τ1,τ2cN,T f0,t−1 + ξ1t]
2

= b2N,T (ρT − 1− γ̂τ1,τ2)2
T2∑

t=Te+1

f2
1,t−1 + c2

N,T γ̂
2
τ1,τ2

T2∑
t=Te+1

f2
0,t−1 +

T2∑
t=Te+1

ξ2
1t

50



−2bN,T cN,T (ρT − 1− γ̂τ1,τ2) γ̂τ1,τ2

T2∑
t=Te+1

f1,t−1f0,t−1

+2bN,T (ρT − 1− γ̂τ1,τ2)

T2∑
t=Te+1

f1,t−1ξ1t − 2cN,T γ̂τ1,τ2

T2∑
t=Te+1

f0,t−1ξ1t

= b2 (ρT − 1− γ̂τ1,τ2)2
T2∑

t=Te+1

f2
1,t−1 +Op(ρ

T2−Tr
T )

= Op

(
T 2α−2ρ

2(T2−Tr)
T

)
.

since ρT − 1− γ̂τ1,τ2 = Op
(
T−1

)
. Therefore,

T2∑
t=T1

(∆ỹt − γ̂τ1,τ2 ỹt−1)2 = Op

(
T 2α−2ρ

2(T2−Tr)
T

)
.

Moreover,

2δ̂τ1,τ2

T2∑
t=T1

(∆ỹt − γ̂τ1,τ2 ỹt−1)

= 2δ̂τ1,τ2

 Te∑
t=T1

(∆ỹt − γ̂τ1,τ2 ỹt−1) +

T2∑
t=Te+1

(∆ỹt − γ̂τ1,τ2 ỹt−1)


= 2δ̂τ1,τ2

−cN,T γ̂τ1,τ2 Te∑
t=T1

f0,t−1 +

Te∑
t=T1

ξ0t + bN,T (ρT − 1− γ̂τ1,τ2)

T2∑
t=Te+1

f1,t−1

−γ̂τ1,τ2cN,T
T2∑

t=Te+1

f0,t−1 +

T2∑
t=Te+1

ξ1t

]

= 2δ̂τ1,τ2bN,T (ρT − 1− γ̂τ1,τ2)

T2∑
t=Te+1

f1,t−1 [1 + op (1)]

= Op

(
T 3(α−1)/2ρT2−TrT

)
.

Since Twδ̂
2
τ1,τ2 = Op (1),

T2∑
t=T1

(
∆ỹt − δ̂τ1,τ2 − γ̂τ1,τ2 ỹt−1

)2
=

T2∑
t=T1

(∆ỹt − γ̂τ1,τ2 ỹt−1)2 [1 + op (1)] = Op

(
T 2α−2ρ

2(T2−Tr)
T

)
.

The DF statistic is then

DFτ1,τ2 = γ̂τ1,τ2

 Tw
∑T2

t=T1
ỹ2
t−1 −

(∑T2
t=T1

ỹt−1

)2

∑T2
t=T1

(
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)2


1/2
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= Op
(
T−α

)Op
(
T 1+2αρ

2(T2−Tr)
T

)
Op

(
T 2α−2ρ

2(T2−Tr)
T

)
1/2

= Op

(
T 3/2−α

)
.

D Proof of Theorem 4.6

Proof. (1) Consider the case of α > β. The OLS estimator

γ̂τ1,τ2 =
Tw
∑T2

t=T1
∆ỹtỹt−1 −

∑T2
t=T1

∆ỹt
∑T2

t=T1
ỹt−1

Tw
∑T2

t=T1
ỹ2
t−1 −

(∑T2
t=T1

ỹt−1

)2 . (D.1)

The denominator
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T2∑
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ỹ2
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 T2∑
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2
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2

Tc∑
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f2
1,t−1+Op

(
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T

)
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(
T 1+2αρ
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T

)
,

since
∑T2

t=T1
ỹ2
t−1 = Op

(
T 2αρ

2(Tc−Tr)
T

)
and

∑T2
t=T1

ỹt−1 = Op

(
T 3α/2ρTc−TrT

)
from Lemma

C.2. The numerator is

Tw

T2∑
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∆ỹtỹt−1 −
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∆ỹt
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(
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T

)

=

[
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d1

Tα
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Tc∑
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T β
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T2∑
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f2
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]
+Op

(
T 2αρ
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T

)
,

since Tw
∑T

t=1 ∆ỹtỹt−1 = Op

(
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T

)
and

∑T
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∑T
t=1 ỹt−1 = Op

(
T 2αρ

2(Tc−Tr)
T

)
from Lemma C.2. Therefore,
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[
b2 d1TαTw

∑Tc
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2
1,t−1 − a2 d2

Tβ
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∑T2
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2
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]
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(
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2(Tc−Tr)
T

)
Twb2
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2
1,t−1

=
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Tα
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T β

∑T2
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2
2,t−1∑Tc

t=Te+1 f
2
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+Op
(
T−1

)
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(
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)
.
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Moreover, from the proof of Lemma A.3(4) and A.4(4), we have

∑T2
t=Tc+1 f

2
2,t−1∑Tc

t=Te+1 f
2
1,t−1

=

1
1−φ2T

f2
2,Tc

[1 + op (1)]

1
ρ2T−1

f2
1,Tc
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∼

1
1−φ2T

F 2
2,cT

αρ
2(Tc−Tr)
T

1
ρ2T−1

Tαρ
2(Tc−Tr)
T (F1,r +Nc)

2
= T β−α

d1

d2

F 2
2,c

(F1,r +Nc)
2 ,

with Nc ∼ N
(
0, σ112c

)
, since f2,Tc = F2,cT

α/2ρTc−TrT by virtue of the initial conditions and

f1,Tc

Tα/2ρTc−TrT

⇒ F1,r +Nc

from the proof of Lemma A.3(1). Thus,

γ̂τ1,τ2 =

[
d1

Tα
− a2
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T β
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t=Tc+1 f

2
2,t−1∑Tc

t=Te+1 f
2
1,t−1

]
[1 + op (1)] ∼ d1

Tα

[
1− a2

b2
F 2

2,c

(F1,r +Nc)
2

]
.

Next, we derive the order of magnitude of δ̂. By definition, we have

δ̂τ1,τ2 =

(∑T2
t=T1

ỹ2
t−1

)(∑T2
t=T1

∆ỹt

)
−
(∑T2
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∆ỹtỹt−1
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)
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∑T2
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ỹ2
t−1 −

(∑T2
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ỹt−1

)2 .

The numerator is T2∑
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ỹ2
t−1
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∆ỹt

−
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∆ỹtỹt−1
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=

(
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Tc∑
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f2
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b
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Tc∑
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T2∑
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]
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−
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Tc∑
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T2∑
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f2
2,t−1

](
b

Tc∑
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f1,t−1

)
[1 + op (1)]
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d2

T β

[
−b

T2∑
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Tc∑
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T2∑
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2,t−1

Tc∑
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]
[1 + op (1)]
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(
T 5α/2ρ

3(Tc−Tr)
T

)
.

Therefore,

δ̂τ1,τ2 =
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(
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3(Tc−Tr)
T

)
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(
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T

) = Op

(
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)
.
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The sum of squared errors
∑T2

t=T1

(
∆ỹt − δ̂τ1,τ2 − γ̂τ1,τ2 ỹt−1

)2
can be rewritten as

T2∑
t=T1

(
ỹt − δ̂τ1,τ2 − γ̂τ1,τ2 ỹt−1

)2
=

T2∑
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(
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+Twδ̂
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T2∑
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(
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.

The quantity

T2∑
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(
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)2
=
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+
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(
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)2
+

T2∑
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(
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)2
.

(D.2)

When α > β, φT − 1 − γ̂τ1,τ2 = Op
(
T−β

)
and ρT − 1 − γ̂τ1,τ2 = Op (T−α). The first term in

(D.2) is
Te∑
t=T1

(∆ỹt − γ̂τ1,τ2 ỹt−1)2 = Op

(
max

{
T 2(1−α), T

})
,

as in the proof of Theorem 4.5. The second term in (D.2) is

Tc∑
t=Te+1

(∆ỹt − γ̂τ1,τ2 ỹt−1)2 =

Tc∑
t=Te+1

[bN,T (ρT − 1− γ̂τ1,τ2) f1,t−1 − γ̂τ1,τ2cN,T f0,t−1 + ξ1t]
2
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Tc∑
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1,t−1 + c2

N,T γ̂
2
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Tc∑
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1t
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(
ρ

2(Tc−Tr)
T

)
.

Let ξ2t = aN,Tu2,t + 1
N

∑N
i=1 l̃i1eit − (1 + γ̂) 1

N

∑N
i=1 l̃i1eit−1. The third term in (D.2) is

T2∑
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(∆ỹt − γ̂ỹt−1)2 =

T2∑
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2
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T2∑
t=Tc+1

ξ2
2t + 2aN,T (φT − 1− γ̂)

T2∑
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(
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T

)
.
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Since α > β, the third term dominates and hence

T2∑
t=T1

(
∆ỹt − γ̂τ1,τ2 ỹt−1

)2
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(
Tα−βρ

2(Tc−Tr)
T

)
.

Since Twδ̂
2
τ1,τ2 = Op

(
Tα−1ρ
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T

)
and

2δ̂τ1,τ2
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(
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)
= 2δ̂τ1,τ2
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(
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)
+
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(
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)
+
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(
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)
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−cN,T γ̂τ1,τ2 Te∑
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Te∑
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[
b (ρT − 1− γ̂τ1,τ2)

Tc∑
t=Te+1

f1,t−1 + a (φT − 1− γ̂)

T2∑
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(
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,

we have
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(
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=

T2∑
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(
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(
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T

)
.

Therefore, the DF test statistic has the following asymptotic order

DF = γ̂τ1,τ2
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∑T2

t=T1
ỹ2
t−1 −

(∑T2
t=T1

ỹt−1

)2

∑T2
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(
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.

(2) Next, consider the case where α < β. The denominator of (D.1) is
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ỹt−1

2
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T
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,
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since
∑T2
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ỹ2
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T

)
and

∑T2
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)
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,
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T

)
and
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t=1 ∆ỹt

∑T
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.

As before, from the proof of Lemma A.3(4) and A.4(4), we have the ratio
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2
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2
2,t−1

=

1
ρ2T−1

f2
1,Tc

[1 + op (1)]

1
1−φ2T

f2
2,Tc

[1 + op (1)]
∼ Tα−β d2

d1F 2
2,c

(F1,r +Nc)
2

since f2,Tc = F2,cT
α/2ρTc−TrT and f1,Tc ∼ Tα/2ρTc−TrT (F1,r +Nc). It follows that

γ̂τ1,τ2 =

[
− d2

T β
+
b2

a2

d1

Tα

∑Tc
t=Te+1 f

2
1,t−1∑T2

t=Tc+1 f
2
2,t−1

]
[1 + op (1)] ∼ − d2

T β

[
1− b2

a2

(F1,r +Nc)
2

F 2
2,c

]
.

Next, we derive the limiting properties of δ̂τ1,τ2 . By definition, we have
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−
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T2∑
t=Tc+1

f2
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Therefore,
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The sum of squared errors
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)2
+Twδ̂

2
τ1,τ2−2δ̂τ1,τ2

T2∑
t=T1

(
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∆ỹt − γ̂τ1,τ2 ỹt−1

)2
+

T2∑
t=Tc+1

(
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(D.3)

When α < β, φT − 1− γ̂ = Op
(
T−β

)
and ρT − 1− γ̂τ1,τ2 = Op (T−α). The first term in (D.3)

is
Te∑
t=T1
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(
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{
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,

as in the proof of Theorem 4.5. The second term in (D.3) is
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.
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Therefore, the DF test statistic has the following asymptotic order

DFτ1,τ2 = γ̂τ1,τ2
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∆ỹt − δ̂τ1,τ2 − γ̂τ1,τ2 ỹt−1
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.

E Proof of Theorem 4.7

Proof. The denominator of (D.1) is
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since Tw
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Next, we derive the limiting properties of δ̂τ1,τ2 . By definition, we have
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Therefore, the DF test statistic has the following asymptotic order
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Appendix E: Tables and Figures

Table 1: Tier 1, 2 and 3 cities

Tier 1 Beijing, Shanghai, Guangzhou, Shenzhen

Tier 2 Changchun, Changsha, Chengdu, Chongqin, Dalian, Haikou, Hangzhou, Harbin,
Hefei, Hohhot, Jinan, Nanchang, Nanjing, Ningbo, Qingdao, Shenyang, Shiji-
azhuang, Suzhou, Tianjin, Wenzhou, Wuxi, Xi’an, Xiamen, Xining, Zhengzhou

Tier 3 Anqing, Anshan, Baoding, Baotou, Bengbu, Changde, Changzhou, Chuzhou, Dan-
dong, Deyang, Dongguan, Huai’an, Huzhou, Jianyan, Jiaxing, Jieyang, Jiujiang,
Kaifeng, Langfang, Leshan, Lianyungang, Luohe, Luoyang, Luzhou, Mianyang, Nan-
chong, Nantong, Nanyang, Ningde, Qinhuang, Quanzhou, Rizhao, Shangrao, Shan-
tou, Shaoxing, Songyuan, Suqian, Taizhou, Tangshan, Wuhu, Wuludao, Xingtai,
Xuancheng, Xuzhou, Yancheng, Yangzhou, Yichun, Yingkou, Zaozhuang, Zhangji-
akou, Zhangzhou, Zhaoqing, Zhenjiang, Zhongshan, Zhumadian
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Figure 7: The average price-to-income ratios of 89 cities in China. The vertical line indicates
the national average price-to-income ratio over the sample period.
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Figure 8: Pseudo real time identification of common bubbles. The black lines are the esti-
mated first factors for the last observation of interest using the whole sample. The shaded
(green) areas, shown with dates, are the periods where the PSY-factor test rejects the null
hypothesis of a unit root against the explosive alternative for the first common factor.
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