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Abstract

This paper examines methods of inference concerning quantile treatment effects

(QTEs) in randomized experiments with matched-pairs designs (MPDs). We derive

the limit distribution of the QTE estimator under MPDs, highlighting the difficulties

that arise in analytical inference due to parameter tuning. We show that the naive

weighted bootstrap fails to approximate the limit distribution of the QTE estimator

under MPDs because it ignores the dependence structure within the matched pairs.

To address this difficulty we propose two bootstrap methods that can consistently ap-

proximate the limit distribution: the gradient bootstrap and the weighted bootstrap

of the inverse propensity score weighted (IPW) estimator. The gradient bootstrap is

free of tuning parameters but requires knowledge of the pair identities. The weighted

bootstrap of the IPW estimator does not require such knowledge but involves one tun-

ing parameter. Both methods are straightforward to implement and able to provide

pointwise confidence intervals and uniform confidence bands that achieve exact limiting

coverage rates. We demonstrate their finite sample performance using simulations and

provide an empirical application to a well-known dataset in microfinance.

Keywords: Bootstrap inference, matched pairs, quantile treatment effect, randomized

control trials

JEL codes: C14, C21
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1 Introduction

Matched-pairs designs (MPDs) have recently seen widespread and increasing use in various

randomized experiments conducted by economists. By MPD we mean a randomization

scheme that first pairs units based on the closeness of their baseline covariates and then

randomly assigns one unit in the pair to be treated. In development economics, researchers

routinely pair villages, neighborhoods, micro-enterprises, or townships in their experiments

(Banerjee, Duflo, Glennerster, and Kinnan, 2015; Crepon, Devoto, Duflo, and Pariente, 2015;

Glewwe, Park, and Zhao, 2016; Groh and Mckenzie, 2016). In labor economics, especially in

the field of education, researchers pair schools or students to evaluate the effects of various

education interventions (Angrist and Lavy, 2009; Beuermann, Cristia, Cueto, Malamud,

and Cruzaguayo, 2015; Fryer, 2017; Fryer, Devi, and Holden, 2017; Bold, Kimenyi, Mwabu,

Nganga, and Sandefur, 2018; Fryer, 2018). Bruhn and McKenzie (2009) surveyed leading

experts in development field experiments and reported that 56% of them explicitly match

pairs of observations on baseline characteristics.

Researchers often use randomized experiments to estimate quantile treatment effects

(QTEs) as well as average treatment effects (ATEs). Quantile effects can capture hetero-

geneity in both the sign and magnitude of treatment effects, which may vary according to

position within the distribution of outcomes. A common practice in conducting inference on

QTEs is to use bootstrap rather than analytical methods because the latter usually require

tuning parameters in implementation. However, the treatment assignment in MPDs intro-

duces negative dependence because exactly half of the units are treated. Standard bootstrap

inference procedures that rely on cross-sectional independence are therefore conservative

and lack power. This difficulty raises the question of how to conduct bootstrap inference for

QTEs in MPDs in a manner that mitigates these shortcomings.

The present paper addresses this question by showing that both the gradient bootstrap

and the weighted bootstrap of the inverse propensity score weighted (IPW) estimator can
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consistently approximate the limit distribution of the original QTE estimator under MPDs,

thereby eliminating asymptotic size distortion in inference. In particular, for testing null hy-

potheses that the QTEs equal some pre-specified values involving single or multiple quantile

indexes (or some pre-specified function over a compact set of quantile indexes), the usual

pointwise confidence interval or uniform confidence band constructed by using the corre-

sponding bootstrap standard errors achieves a limiting rejection probability under the null

equal to the nominal level.

Our starting point is to derive the limit distribution of the two-sample-difference type

QTE estimator in MPDs uniformly over a compact set of quantile indexes. Analytic com-

putation of the variance of the QTE estimator using this limit theory requires estimation

of two infinite dimensional nuisance parameters. By implication two tuning parameters are

needed for every quantile index of interest. This procedure is inevitably cumbersome and

provides the motivation to develop bootstrap methods of inference that reduce the need for

tuning parameters.

As noted above, observations under MPDs are generally dependent within the pairs,

whereas the usual bootstrap counterparts are asymptotically independent conditional on the

data. In accord with this contrasting property of the bootstrap we show that the naive

weighted bootstrap fails to approximate the limit distribution of the QTE estimator. Con-

sequently, usual bootstrap tests of the null hypothesis that the QTE equals a pre-specified

value are conservative and lack power.

To tackle this shortcoming we propose a gradient bootstrap method and show that it

can consistently approximate the limit distribution of the QTE estimator under MPDs uni-

formly over a compact set of quantile indexes. Hagemann (2017) proposed using the gradient

bootstrap for the cluster-robust inference in linear quantile regression models. Like Hage-

mann (2017), we rely on the gradient bootstrap to avoid estimating the Hessian matrix that

involves the infinite-dimensional nuisance parameters. The gradient bootstrap procedure

is therefore free of tuning parameters. On the other hand and differing from Hagemann
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(2017), we construct a specific perturbation of the score based on pair and adjacent pairs of

observations, which can capture the dependence structure in the original data.

To implement our gradient bootstrap method, researchers need to know the identities of

pairs. Such information may not be available when they are using an experiment that was

run by someone else in the past and the randomization procedure may not have been fully

described. To address this issue, we propose a weighted bootstrap of the IPW QTE estima-

tor, which can be implemented without such knowledge. We show that such a bootstrap can

consistently estimate the asymptotic distribution of the QTE estimator under MPDs. There

is a cost to not using information about pair identities as the method requires one tuning pa-

rameter for the nonparametric estimation of the propensity score. In spite of this additional

cost, this weighted bootstrap method still has an advantage over direct analytic inference

because practical implementation of the latter requires more than one tuning parameter.

The contributions in the present paper relate to other recent research. Bai, Shaikh, and

Romano (2019) first pointed out that in MPDs the two-sample t-test for the null hypothesis

that the ATE equals a pre-specified value is conservative. They then proposed adjusting

the standard error of the estimator and studied the validity of the permutation test. This

paper complements those results by considering the QTEs and by developing new methods of

bootstrap inference. Unlike the permutation test, our methods of bootstrap inference do not

require studentization, which is cumbersome in the QTE context. In addition, our weighted

bootstrap method complements their results by providing a way to perform inference relating

to both ATEs and QTEs when pair identities are unknown. In other work, Bai (2019)

investigated the optimality of MPDs in randomized experiments. Zhang and Zheng (2020)

considered bootstrap inference under covariate-adaptive randomization. A key difference

in our contribution is that in MPDs the number of strata is proportional to the sample

size, whereas in covariate-adaptive randomization that number is fixed. In consequence,

the present work uses fundamentally different asymptotic arguments and bootstrap methods

from those employed by Zhang and Zheng (2020). The present paper also fits within a
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growing literature that studies inference in randomized experiments (e.g., Hahn, Hirano,

and Karlan (2011), Athey and Imbens (2017), Abadie, Chingos, and West (2018), Bugni,

Canay, and Shaikh (2018), Tabord-Meehan (2018), and Bugni, Canay, and Shaikh (2019),

among others).

The remainder of the paper is organized as follows. Section 2 describes the model setup

and notation. Section 3 develops the asymptotic properties of our QTE estimator. In Section

4 we study the naive weighted bootstrap, the gradient bootstrap, and the weighted bootstrap

of the IPW estimator. Section 5 provides computational details and recommendations for

practitioners. Section 6 reports simulation results. Section 7 gives an empirical applicaiton

of our methods of bootstrap inference to the data in Banerjee et al. (2015), examining both

the ATEs and QTEs of microfinance on the take-up rates of microcredit. Section 8 concludes.

Proofs of all results are in the supplement appendix.

2 Setup and Notation

Denote the potential outcomes for treated and control groups as Y (1) and Y (0), respectively.

The treatment status is written as A, where A = 1 means treated and A = 0 means

untreated. The researcher can only observe {Yi, Xi, Ai}2n
i=1 where Yi = Yi(1)Ai+Yi(0)(1−Ai),

and Xi ∈ <dx is a collection of baseline covariates, where dx is the dimension of X. The

parameter of interest is the τth QTE, denoted as

q(τ) = q1(τ)− q0(τ),

where q1(τ) and q0(τ) are the τth quantiles of Y (1) and Y (0), respectively. The testing

problems of interest involve single, multiple, or even a continuum of quantile indexes, as in
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the following null hypotheses

H0 : q(τ) = q versus q(τ) 6= q,

H0 : q(τ1)− q(τ2) = q versus q(τ1)− q(τ2) 6= q, and

H0 : q(τ) = q(τ) ∀τ ∈ Υ versus q(τ) 6= q(τ) for some τ ∈ Υ,

for some pre-specified value q or function q(τ), where Υ is some compact subset of (0, 1).

The units are grouped into pairs based on the closeness of their baseline covariates, which

will be made clear next. We denote the pairs of units as

(π(2j − 1), π(2j)) for j ∈ [n],

where [n] = {1, · · · , n} and π is a permutation of 2n units based on {Xi}2n
i=1 as specified in

Assumption 1(iv) below. Within the pair, one unit is randomly assigned to treatment and

the other to control. Specifically, we make the following assumption on the data generating

process (DGP) and the treatment assignment rule.

Assumption 1. (i) {Yi(1), Yi(0), Xi}2n
i=1 is i.i.d.

(ii) {Yi(1), Yi(0)}2n
i=1 ⊥⊥ {Ai}2n

i=1|{Xi}2n
i=1.

(iii) Conditionally on {Xi}2n
i=1, (π(2j − 1), π(2j)) for j ∈ [n], are i.i.d. and each uniformly

distributed over the values in {(1, 0), (0, 1)}.

(iv) 1
n

∑n
j=1

∥∥Xπ(2j) −Xπ(2j−1)

∥∥r
2

p−→ 0 for r = 1, 2.

Assumption 1 is used in Bai et al. (2019) to which we refer readers for more discussion.

In Assumption 1(iv), || · ||2 denotes Euclidean distance. However, all our results hold if || · ||2

is replaced by any distance that is equivalent to it, such as L∞ distance, L1 distance, and

the Mahalanobis distance when all the eigenvalues of the covariance matrix are bounded and
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bounded away from zero. Later in Section 4 and following Assumption 4 we provide two

cases for which Assumption 1(iv) holds.

3 Estimation

Let q̂1(τ) and q̂0(τ) be the τth percentiles of outcomes in the treated and control groups,

respectively. Then, the τth QTE estimator we consider is just

q̂(τ) = q̂1(τ)− q̂0(τ).

To facilitate further analysis and motivate our bootstrap procedure, we note that q̂(τ) can

be equivalently computed by direct quantile regression. Let

(β̂0(τ), β̂1(τ)) = arg min
b

2n∑
i=1

ρτ (Yi − Ȧ′b),

where Ȧi = (1, Ai)
T and ρτ (u) = u(τ − 1{u ≤ 0}). Then, q̂(τ) = β̂1(τ) and q̂0(τ) = β̂0(τ).

Assumption 2. For a = 0, 1, denote Fa(·), Fa(·|x), fa(·), and fa(·|x) as the CDF of Yi(a),

the conditional CDF of Yi(a) given Xi = x, the PDF of Yi(a), and the conditional PDF of

Yi(a) given Xi = x, respectively.

(i) fa(qa(τ)) is bounded and bounded away from zero uniformly over τ ∈ Υ, and fa(qa(τ)|x)

is uniformly bounded for (x, τ) ∈ Supp(X)×Υ.

(ii) There exists a function C(x) such that

sup
τ∈Υ
|fa(qa(τ) + v|x)− fa(qa(τ)|x)| ≤ C(x)|v| and EC(Xi) <∞.

(iii) Let N0 be a neighborhood of 0. Then, there exists a constant C such that for any
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x, x′ ∈ Supp(X)

sup
τ∈Υ,v∈N0

|fa(qa(τ) + v|x′)− fa(qa(τ) + v|x)| ≤ C||x′ − x||2

and

sup
τ∈Υ,v∈N0

|Fa(qa(τ) + v|x)− Fa(qa(τ) + v|x′)| ≤ C||x− x′||2.

Assumption 2(i) is the standard regularity condition widely assumed in quantile es-

timation. The Lipschitz conditions in Assumptions 2(ii) and 2(iii) are similar in spirit

to those assumed in Bai et al. (2019, Assumption 2.1) and ensure that units that are

“close” in terms of their baseline covariates are suitably comparable. For a = 0, 1, let

ma,τ (x, q) = E(τ − 1{Y (a) ≤ q}|X = x) and ma,τ (x) = ma,τ (x, qa(τ)).

Theorem 3.1. Suppose Assumptions 1 and 2 hold. Then, uniformly over τ ∈ Υ,

√
n(q̂(τ)− q(τ)) B(τ),

where B(τ) is a Gaussian process with covariance kernel Σ(·, ·) such that

Σ(τ, τ ′) =
min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X)

f1(q1(τ))f1(q1(τ ′))
+

min(τ, τ ′)− ττ ′ − Em0,τ (X)m0,τ ′(X)

f0(q0(τ))f0(q0(τ ′))

+
1

2
E
(
m1,τ (X)

f1(q1(τ))
− m0,τ (X)

f0(q0(τ))

)(
m1,τ ′(X)

f1(q1(τ ′))
− m0,τ ′(X)

f0(q0(τ ′))

)
.

Several remarks are in order. First, the asymptotic variance of q̂(τ) under MPDs is

Σ(τ, τ) =
τ − τ 2 − Em2

1,τ (X)

f 2
1 (q1(τ))

+
τ − τ 2 − Em2

0,τ (X)

f 2
0 (q0(τ))

+
1

2
E
(
m1,τ (X)

f1(q1(τ))
− m0,τ (X)

f0(q0(τ))

)2

.

Further note that the asymptotic variance of q̂(τ) under simple random sampling is

Σ†(τ, τ) =
τ − τ 2

f 2
1 (q1(τ))

+
τ − τ 2

f 2
0 (q0(τ))

.
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It is clear that

Σ†(τ, τ)− Σ(τ, τ) =
1

2
E
(
m1,τ (X)

f1(q1(τ))
+
m0,τ (X)

f0(q0(τ))

)2

≥ 0. (3.1)

Equality in the last expression holds when both m1,τ (X) and m0,τ (X) are zero, which implies

that X is irrelevant to the τth quantiles of Y (0) and Y (1).

Second, the asymptotic variance Σ(τ, τ) coincides with the semiparametric efficiency

bound of the QTE estimator established in Firpo (2007) and Donald and Hsu (2014) for

observational data under unconfoundedness.1 Hahn (1998) pointed out that, even in the

case of simple random sampling, to achieve the semiparametric efficiency bound one needs

to use the IPW estimator with a nonparametrically estimated propensity score. We view

the MPD as an alternative to achieving such efficiency without nonparametric estimation.2

Third, to provide an analytic estimate of the asymptotic variance Σ(τ, τ) it is necessary

at least to estimate the infinite dimensional nuisance parameters f1(q1(τ)) and f0(q0(τ)),

which requires two tuning parameters. Hence, if a researcher is interested in testing a null

hypothesis that involves G quantile indexes, 2G tuning parameters are needed to estimate

2G densities, a cumbersome task in practical work; and to construct a uniform confidence

band for the QTE analytically, two tuning parameters are needed at each grid point of the

quantile indexes. Moreover, if pair identities are unknown, analytic methods of inference

potentially require nonparametric estimation of the quantities ma,τ (·) for a = 0, 1 as well.

There are other practical difficulties. Nonparametric estimation is sometimes sensitive to the

choice of tuning parameters and rule-of-thumb tuning parameter selection may not be ap-

propriate for every data generating process (DGP) or every quantile. Use of cross-validation

in selecting the tuning parameters is possible in principle but in practice time-consuming.

1The propensity score is just a constant of 1/2.

2Whether the efficiency bound remains the same under MPDs is still an open question and is an interesting

topic for future research.
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These practical difficulties of analytic methods of inference provide a strong motivation to

investigate bootstrap inference procedures are much less reliant on tuning parameters.

4 Bootstrap Inference

This section examines three bootstrap inference procedures for the QTEs in MPDs. We first

show that a naive weighted bootstrap method fails to approximate the limit distribution of

the QTE estimator derived in Section 3. We then propose two bootstrap methods that can

consistently estimate the asymptotic distribution of the QTE estimator.

4.1 Naive Weighted Bootstrap Inference

We first consider the naive weighted bootstrap estimators of β̂0(τ) and β̂1(τ). Let

(β̂w0 (τ), β̂w1 (τ)) = arg min
b

2n∑
i=1

ξiρτ (Yi − Ȧ′b),

where ξi is the bootstrap weight defined in the next assumption.

Assumption 3. Suppose {ξi}2n
i=1 is a sequence of nonnegative i.i.d. random variables with

unit expectation and variance and a sub-exponential upper tail.

Denote q̂w(τ) = β̂w1 (τ) and recall that q̂(τ) = β̂1(τ).

Theorem 4.1. If Assumptions 1–3 hold, then conditional on the data and uniformly over

τ ∈ Υ,

√
n(q̂w(τ)− q̂(τ)) Bw(τ),

where Bw(τ) is a Gaussian process with covariance kernel Σ†(·, ·) such that

Σ†(τ, τ ′) =
min(τ, τ ′)− ττ ′

f1(q1(τ))f1(q1(τ ′))
+

min(τ, τ ′)− ττ ′

f0(q0(τ))f0(q0(τ ′))
.
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Three remarks are in order. First, Σ†(τ, τ ′) is just the covariance kernel of the QTE

estimator when simple random sampling (instead of the MPD) is used as the treatment

assignment rule. It follows that the naive weighted bootstrap fails to approximate the limit

distribution of q̂(τ) (β̂1(τ)). The intuition is straightforward. Given the data, the bootstrap

weights are i.i.d. and thus unable to mimic the cross-sectional dependence in the original

sample.

Second, it is possible to consider the conventional nonparametric bootstrap in which the

bootstrap sample is generated from the empirical distribution of the data. If the observations

are i.i.d., van der Vaart and Wellner (1996, Section 3.6) showed that the conventional boot-

strap is first-order equivalent to a weighted bootstrap with Poisson(1) weights. However, in

the current setting, {Ai}i∈[2n] are dependent. It is technically challenging to show rigorously

that the above equivalence still holds and this is left for future research.

Third, an alternative procedure is to bootstrap the pairs of observations, i.e., to use

the same bootstrap weights for observations indexed by π(2j − 1) and π(2j). But such a

bootstrap alone is unable to mimic the dependence structure in the original sample. In fact,

the gradient bootstrap procedure proposed below follows this idea and uses the same weight

for the observations in the same pair to construct the score S∗n,1 defined in (4.5). But in

order to construct a final score that can mimic the dependence in the data we need an extra

score S∗n,2, which is defined in (4.6).

4.2 Gradient Bootstrap Inference

We now approximate the asymptotic distribution of the QTE estimator via the gradient

bootstrap. Let u =
√
n(b − β(τ)) be a localizing estimation error parameter. From the

derivations in Theorem 3.1, we see that

√
n(β̂(τ)− β(τ)) = arg min

u

2n∑
i=1

ρτ

(
Yi − ȦTβ(τ)− ȦTu√

n

)
,
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where

2n∑
i=1

[
ρτ (Yi − ȦTβ(τ)− ȦTu√

n
)− ρτ (Yi − ȦTβ(τ))

]
≈ −u′

1 1

1 0

Sn(τ) +
uTQ(τ)u

2
, (4.1)

Sn(τ) =

 ∑2n
i=1

Ai√
n

(τ − 1{Yi(1) ≤ q1(τ)})∑2n
i=1

(1−Ai)√
n

(τ − 1{Yi(0) ≤ q0(τ)})

 ,

and

Q(τ) =

f1(q1(τ)) + f0(q0(τ)) f1(q1(τ))

f1(q1(τ)) f1(q1(τ))

 .

Minimizing the right side of (4.1) gives

√
n(β̂(τ)− β(τ)) ≈ Q−1(τ)

1 1

1 0

Sn(τ). (4.2)

The gradient bootstrap proposes to perturb the objective function by some random error

S∗n(τ), which will be specified later. This error in turn perturbs the score function Sn(τ).

The corresponding bootstrap estimator β̂∗(τ) solves the following optimization problem

β̂∗(τ) = arg min
b

2n∑
i=1

ρτ (Yi − Ȧ′b)−
√
nbT

1 1

1 0

S∗n(τ). (4.3)

By a change of variable and (4.1) we have

√
n(β̂∗(τ)− β(τ)) ≈ arg min

u
−u′

1 1

1 0

 [Sn(τ) + S∗n(τ)] +
uTQ(τ)u

2
,
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which implies

√
n(β̂∗(τ)− β(τ)) ≈ Q−1(τ)

1 1

1 0

 [Sn(τ) + S∗n(τ)]. (4.4)

Taking the difference between (4.2) and (4.4), we have

√
n(β̂∗(τ)− β̂(τ)) ≈ Q−1(τ)

1 1

1 0

S∗n(τ).

The second element of β̂∗(τ) in (4.3) is the bootstrap version of the QTE estimator, which

is denoted q̂∗(τ). By solving (4.3) we avoid estimating the Hessian Q(τ), which involves the

infinite-dimensional nuisance parameters. Then, for the gradient bootstrap to consistently

approximate the limit distribution of the original estimator β̂(τ), we need only construct

S∗n(τ) in such a way that its weak limit given the data coincides with that of the original

score Sn(τ).

Accordingly, we now show how to specify S∗n(τ). Let {ηj}nj=1 and {η̂k}bn/2ck=1 be two mu-

tually independent i.i.d. sequences of standard normal random variables. Use the indexes

(j, 1), (j, 0) to denote the indexes in (π(2j − 1), π(2j)) with A = 1 and A = 0, respectively.

For example, if Aπ(2j) = 1 and Aπ(2j−1) = 0, then (j, 1) = π(2j) and (j, 0) = π(2j − 1).

Similarly, use indexes (k, 1), · · · , (k, 4) to denote the first index in (π(4k − 3), · · · , π(4k))

with A = 1, the first index with A = 0, the second index with A = 1, and the second index

with A = 0, respectively. Now let

S∗n(τ) =
S∗n,1(τ) + S∗n,2(τ)

√
2

,
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where

S∗n,1(τ) =
1√
n

∑n
j=1 ηj

(
τ − 1{Y(j,1) ≤ q̂1(τ)}

)
∑n

j=1 ηj
(
τ − 1{Y(j,0) ≤ q̂0(τ)}

)
 (4.5)

and

S∗n,2(τ) =
1√
n

∑bn/2ck=1 η̂k
[(
τ − 1{Y(k,1) ≤ q̂1(τ)}

)
−
(
τ − 1{Y(k,3) ≤ q̂1(τ)}

)]
∑bn/2c

k=1 η̂k
[(
τ − 1{Y(k,2) ≤ q̂0(τ)}

)
−
(
τ − 1{Y(k,4) ≤ q̂0(τ)}

)]
 . (4.6)

In Section 5 we show how to compute the bootstrap estimator β̂∗(τ) directly from the

sub-gradient condition of (4.3). This method avoids the optimization inherent in (4.3) and

computation is fast. The following assumption imposes the condition that baseline covariates

in adjacent pairs are also ‘close’.

Assumption 4. Suppose that 1
n

∑bn/2c
k=1

∥∥X(k,l) −X(k,l′)

∥∥r
2

p−→ 0 for r = 1, 2 and l, l′ ∈ [4].

Assumption 4 and Assumption 1(iv) are jointly equivalent to Bai et al. (2019, Assumption

2.4). We refer readers to Bai et al. (2019) for further discussion of this assumption. In

particular, Bai et al. (2019, Theorems 4.1 and 4.2) established two cases under which both

Assumption 4 and Assumption 1(iv) hold. We repeat their results below for completeness.

Case (1). Suppose X is a scalar and EX2 < ∞. Let π be any permutation of 2n

elements such that Xπ(1) ≤ · · · ≤ Xπ(2n). Then, both Assumption 4 and Assumption 1(iv)

hold.

Case (2). Suppose Supp(X) ⊂ [0, 1]dx . Let π̆ be any permutation of 2n elements

minimizing 1
n

∑n
j=1 ||Xπ̆(2j−1) − Xπ̆(2j)||2, let Xj = 1

2

(
Xπ̆(2j−1) +Xπ̆(2j)

)
, and let π be any

permutation of n elements minimizing 1
n

∑n
j=1 ||Xπ(j)−Xπ(j−1)||2. Then, the permutation π

with π(2j) = π̆(2π(j)) and π(2j− 1) = π̆(2π(j)− 1) satisfies Assumption 4 and Assumption

1(iv).
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Denote q̂∗(τ) = β̂∗1(τ) and recall that q̂(τ) = β̂1(τ). We now have the following result.

Theorem 4.2. Suppose Assumptions 1, 2, and 4 hold. Then, conditional on the data and

uniformly over τ ∈ Υ,
√
n(q̂∗(τ) − q̂(τ))  B(τ), where B(τ) is the same Gaussian process

defined in Theorem 3.1.

Three remarks on Theorem 4.2 are in order. First, the bootstrap estimator q̂∗(τ) has the

following objectives: (i) to avoid estimating densities; and (ii) to mimick the distribution of

the original estimator β̂(τ) under MPDs. Objective (i) relates to the Hessian (Q) and (ii) to

the score (Sn) of the quantile regression. The gradient bootstrap provide a flexible approach

to achieve both goals.

Second, Bai et al. (2019) showed that adjacent pairs can be used to construct a valid

standard error for the ATE estimator under MPDs. Our approach follows their lead and boot-

straps pairs and adjacent pairs of units. Theorem 4.2 shows that the limit distribution of the

resulting bootstrapped perturbation S∗n(τ) given that the data can consistently approximate

that of the original score Sn(τ) uniformly over τ ∈ Υ. For inference concerning the ATE, it

is not necessary to use the gradient bootstrap as the Hessian does not contain any infinite-

dimensional nuisance parameters. In fact, the way we compute the perturbation S∗n(τ) leads

directly to a variance estimator ν̂2
n for the ATE estimator ∆̂ = 1

n

∑n
j=1(Y(j,1) − Y(j,0)), where

ν̂2
n =

1

2n

n∑
j=1

(Y(j,1) − Y(j,0) − ∆̂)2 +
1

2n

bn/2c∑
k=1

[
(Y(k,1) − Y(k,3))− (Y(k,2) − Y(k,4))

]2
.

By some manipulation, one can show that ν̂2
n is numerically the same as the estimate used

in the adjusted t-test of Bai et al. (2019, Section 3.3).

Third, to implement the gradient bootstrap, researchers need to know pair identities.

That information may not be available when the base experiment was run by others and

the randomization procedure not fully detailed. In such cases, we propose bootstrapping the

IPW estimator of the QTE, whose validity is established in the next section.
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4.3 Weighted Bootstrap of Inverse Propensity Score Weighted Es-

timator

As indicated in Section 3, the QTE estimator under MPDs achieves the semiparametric

efficiency bound established for independent observational data. If we use independent

bootstrap weights and seek to maintain efficiency, we need to bootstrap an estimator that

can achieve the semiparametric efficiency bound under independent data. As pointed out

by Hahn (1998) and Firpo (2007), the IPW estimator with a nonparametrically estimated

propensity score satisfies this requirement. Accordingly, we now propose a weighted boot-

strap version of the IPW estimator to approximate the limit distribution of the QTE esti-

mator in MPDs.

The sieve method is used to estimate the propensity score. Let b(X) be theK-dimensional

sieve basis on X and and Âi the estimated propensity score for the ith individual. Then,

Âi = b(Xi)
′θ̂, (4.7)

where ξi is the bootstrap weight defined in Assumption 3 and θ̂ = arg minθ
∑2n

i=1 ξi(Ai −

b(Xi)
′θ)2.

Because the true propensity score is 1/2, by setting the first component of b(X) to

unity, we have 1/2 = b′(X)θ0 where θ0 = (0.5, 0, · · · , 0)T . The linear probability model for

the propensity score is correctly specified. It is possible to use sieve logistic regression to

compute the propensity score, as done by Hirano, Imbens, and Ridder (2003), Firpo (2007),

and Donald and Hsu (2014). The main benefit of using logistic regression is to guarantee

that the estimated propensity score lies between zero and one. For simplicity, we use a linear

sieve regression here.

The weighted bootstrap IPW estimator can be computed as

q̂wipw(τ) = q̂wipw,1(τ)− q̂wipw,0(τ),
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where

q̂wipw,1(τ) = arg min
q

2n∑
i=1

ξiAi

Âi
ρτ (Yi − q) and q̂wipw,0(τ) = arg min

q

2n∑
i=1

ξi(1− Ai)
1− Âi

ρτ (Yi − q).

(4.8)

Assumption 5. (i) The support of X is compact. The first component of b(X) is 1.

(ii) maxk∈[K] Eb2
k(Xi) ≤ C <∞ for some constant C > 0. supx∈Supp(X) ||b(x)||2 = ζ(K).

(iii) K2ζ(k)2 log(n) = o(n).

(iv) With probability approaching one, there exist constants C and C such that

0 < C ≤ λmin

(
1

n

2n∑
i=1

ξib(Xi)b(Xi)
′

)
≤ λmax

(
1

n

2n∑
i=1

ξib(Xi)b(Xi)
′

)
≤ C <∞,

where λmin(M) and λmax(M) denote the minimum and maximum eigenvalues of matrix

M.

(v) There exist γ1(τ) ∈ <K and γ0(τ) ∈ <K such that

Ba,τ (x) = ma,τ (x)− b′(x)γa(τ), a = 0, 1,

and supa=0,1,τ∈Υ,x∈Supp(X) |Ba,τ (x)| = o(1/
√
n).

Two remarks are in order. First, requiring X to have a compact support is common in

nonparametric sieve estimation. Second, the quantity ζ(K) depends on the choice of basis

functions. For example, ζ(K) = O(K1/2) for B-splines and ζ(K) = O(K) for power series3.

Taking B-splines as an example, Assumption 5(iii) requires K = o(n1/3). Assumption 5(iv) is

standard because K � n. Assumption 5(v) requires that the approximation error of ma,τ (x)

via a linear sieve function is sufficiently small. For instance, suppose ma,τ (x) is s-times

3See Chen (2007) for a full discussion of the sieve method.
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continuously differentiable in x with all derivatives uniformly bounded by some constant C,

then supa=0,1,τ∈Υ,x∈Supp(X) |Ba,τ (x)| = O(K−s/dx). Assumptions 5(iii) and 5(v) imply that

K = nh for some h ∈ (dx/(2s), 1/3), which implicitly requires s > 3dx/2. The choice of K

reflects the usual bias-variance trade-off and is the only tuning parameter that researchers

need to specify when implementing this bootstrap method.

Theorem 4.3. Suppose Assumptions 1–3 and 5 hold, then conditionally on the data and

uniformly over γ ∈ Υ,
√
n(q̂wipw(τ)− q̂(τ)) B(τ), where B(τ) is the same Gaussian process

as defined in Theorem 3.1.

The benefit of the weighted bootstrap of the IPW estimator is that it does not require

knowledge of the pair identities. The cost is that we have to nonparametrically estimate the

propensity score, which requires one tuning parameter and is subject to the usual curse of

dimensionality. Nonetheless, we still prefer this bootstrap method of inference to the ana-

lytic approach. Analytic estimation of the standard error of the QTE estimator without the

knowledge of pair identities requires nonparametric estimation of {ma,τ (X), fa(qa(τ))}a=0,1,

which involves four tuning parameters. The number of tuning parameters further increases

with the number of quantile indexes involved in the null hypothesis and uniform confidence

bands for QTE over τ requires 4G tuning parameters for grid size G. By contrast, implemen-

tation of the weighted bootstrap for the IPW estimator requires estimation of the propensity

score only once, requiring use of a single tuning parameter.

Inference concerning the ATE in MPDs can also be accomplished via the weighted boot-

strap of the IPW ATE estimator. A similar argument shows that such a bootstrap can

consistently approximate the asymptotic distribution of the ATE estimator under MPDs.

This result complements that established by Bai et al. (2019) because it provides a way to

make inferences about the ATE in MPDs when information on pair identities is unavailable.

That pair identity information is required by Bai et al. (2019) in computing standard errors

for their adjusted t-test.
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5 Computation and Guidance for Practitioners

5.1 Computation of the Gradient Bootstrap

In practice, the order of pairs in the dataset is usually arbitrary and does not satisfy As-

sumption 4. To apply the gradient bootstrap, researchers first need to re-order the pairs.

For the jth pair with units indexed by (j, 1) and (j, 0) in the treatment and control groups,

let Xj = 1
2
{X(j,1) +X(j,0)}. Then, let π be any permutation of n elements that minimizes

1

n

n∑
j=1

||Xπ(j) −Xπ(j−1)||2.

The pairs are re-ordered by indexes π(1), · · · , π(n). With an abuse of notation, we still

index the pairs after re-ordering by 1, · · · , n. Note that the original QTE estimator q̂(τ) =

q̂1(τ)− q̂0(τ) is invariant to the re-ordering.

For the bootstrap sample, we directly compute β̂∗(τ) from the sub-gradient condition of

(4.3). Specifically, we compute β̂∗0(τ) as Y 0
(h0) and q̂∗(τ) ≡ β̂∗1(τ) as Y 1

(h1) − Y 0
(h0), where Y 0

(h0)

and Y 1
(h1) are the h0th and h1th order statistics of outcomes in the treatment and control

groups, respectively,4 and h0 and h1 are two integers satisfying

nτ + T ∗n,a(τ) + 1 ≥ ha ≥ nτ + T ∗n,a(τ), a = 0, 1, (5.1)

withT ∗n,1(τ)

T ∗n,0(τ)

 =
√
nS∗n(τ) =

1√
2

[∑n
j=1 ηj

(
τ − 1{Y(j,1) ≤ q̂1(τ)}

)
∑n

j=1 ηj
(
τ − 1{Y(j,0) ≤ q̂0(τ)}

)


+

∑bn/2ck=1 η̂k
[(
τ − 1{Y(k,1) ≤ q̂1(τ)}

)
−
(
τ − 1{Y(k,3) ≤ q̂1(τ)}

)]
∑bn/2c

k=1 η̂k
[(
τ − 1{Y(k,2) ≤ q̂0(τ)}

)
−
(
τ − 1{Y(k,4) ≤ q̂0(τ)}

)]
].

4We assume Y a
(1) ≤ · · · ≤ Y a

(n) for a = 0, 1.
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As the probability of nτ + T ∗n,a(τ) being an integer is zero, ha is uniquely defined with

probability one.

We summarize the steps in the bootstrap procedure as follows.

1. Re-order the pairs.

2. Compute the original estimator q̂(τ) = q̂1(τ)− q̂0(τ).

3. Let B be the number of bootstrap replications. Let G be a grid of quantile indexes. For

b ∈ [B], generate {ηj}j∈[n] and {η̂k}k∈bn/2c. Compute q̂∗b(τ) = Y 1
(h1) − Y 0

(h0) for τ ∈ G,

where h0 and h1 are computed in (5.1). Obtain {q̂∗b(τ)}τ∈G.

4. Repeat the above step for b ∈ [B] and obtain B bootstrap estimators of the QTE,

denoted as {q̂∗b(τ)}b∈[B],τ∈G.

5.2 Computation of the Weighted Bootstrap of the IPW estimator

We first provide more details on the sieve basis. Let b(x) ≡ (b1(x), · · · , bK(x))′, where

{bk(·)}Kk=1 are K basis functions of a linear sieve space B. Given that all dx elements of X

are continuously distributed, the sieve space B can be constructed as follows.

1. For each element X(l) of X, l = 1, · · · , dx, let Bl be the univariate sieve space of

dimension Jn. One example of Bl is the linear span of the Jn dimensional polynomials

given by

Bl =

{ Jn∑
k=0

αkx
k, x ∈ Supp(X(l)), αk ∈ <

}
;

Another is the linear span of r-order splines with Jn nodes given by

Bl =

{ r−1∑
k=0

αkx
k +

Jn∑
j=1

bj[max(x− tj, 0)]r−1, x ∈ Supp(X(l)), αk, bj ∈ <
}
,

where the grid −∞ = t0 ≤ t1 ≤ · · · ≤ tJn ≤ tJn+1 = ∞ partitions Supp(X(l)) into
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Jn + 1 subsets Ij = [tj, tj+1)∩ Supp(X(l)), j = 1, · · · , Jn− 1, I0 = (t0, t1)∩ Supp(X(l)),

and IJn = (tJn , tJn+1) ∩ Supp(X(l)).

2. Let B be the tensor product of {Bl}dxl=1, which is defined as a linear space spanned by

the functions
∏dx

l=1 gl, where gl ∈ Bl. The dimension of B is then K ≡ dxJn.

Given the sieve basis, we can estimate the propensity score following (4.7). We then

obtain q̂wipw,1(τ) and q̂wipw,0(τ) by solving the sub-gradient conditions for the two optimizations

in (4.8). Specifically, we have q̂wipw,1(τ) = Yh′1 and q̂wipw,0(τ) = Yh′0 , where the indexes h′0 and

h′1 satisfy Ah′a = a, a = 0, 1,

τ

(
2n∑
i=1

ξiAi

Âi

)
−
ξh′1
Âh′1
≤

2n∑
i=1

ξiAi

Âi
1{Yi < Yh′1} ≤ τ

(
2n∑
i=1

ξiAi

Âi

)
, (5.2)

and

τ

(
2n∑
i=1

ξi(1− Ai)
1− Âi

)
−

ξh′0
1− Âh′0

≤
2n∑
i=1

ξi(1− Ai)
1− Âi

1{Yi < Yh′0} ≤ τ

(
2n∑
i=1

ξi(1− Ai)
1− Âi

)
. (5.3)

In the implementation, we set {ξi}i∈[2n] as i.i.d. standard exponential random variables. In

this case, all the equalities in (5.2) and (5.3) hold with probability zero. Thus, h′1 and h′0 are

uniquely defined with probability one.

We summarize the bootstrap procedure as follows.

1. Compute the original estimator q̂(τ) = q̂1(τ)− q̂0(τ).

2. Let B be the number of bootstrap replications. Let G be a grid of quantile indexes.

For b ∈ [B], generate {ξi}i∈[2n] as a sequence of i.i.d. exponential random variables.

Estimate the propensity score following (4.7). Compute q̂w,bipw(τ) = Yh′1 − Yh′0 for τ ∈ G,

where h′0 and h′1 are computed in (5.2) and (5.3), respectively. Obtain {q̂w,bipw(τ)}τ∈G.

3. Repeat the above step for b ∈ [B] and obtain B bootstrap estimators of the QTE,

denoted as {q̂w,bipw(τ)}b∈[B],τ∈G.
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For comparison, we also consider the naive weighted bootstrap in our simulations. Its

computation follows a procedure similar to the above with only one difference: the nonpara-

metric estimate Âi of the propensity score is replaced by the truth, that is, 1/2.

5.3 Bootstrap Confidence Intervals

Given the bootstrap estimates, we discuss how to conduct bootstrap inference for the null

hypotheses with single, multiple, and a continuum of quantile indexes. We take the gradient

bootstrap as an example. If the IPW bootstrap is used, one can just replace {q̂∗b(τ)}b∈[B],τ∈G

by {q̂w,bipw(τ)}b∈[B],τ∈G in the following cases.

Case (1). We aim to test the single null hypothesis that H0 : q(τ) = q vs. q(τ) 6= q.

Let G = {τ} in the procedures described above. Further denote Q(ν) as the νth empirical

quantile of the sequence {q̂∗b(τ)}b∈[B]. Let α ∈ (0, 1) be the significance level. We suggest

using the bootstrap estimator to construct the standard error of q̂(τ) as σ̂ = Q(0.975)−Q(0.025)
C0.975−C0.025

,

where Cµ is the µth standard normal critical value. Then the valid confidence interval and

Wald test using this standard error are

CI1(α) = (q̂(τ)− C1−α/2σ̂, q̂(τ) + Cα/2σ̂),

and 1{
∣∣∣ q̂(τ)−q

σ̂

∣∣∣ ≥ C1−α/2}, respectively.

Further denote the standard and percentile bootstrap confidence intervals as CI2 and

CI3, respectively, where

CI2(α) = (2q̂(τ)−Q(1− α/2), 2q̂(τ)−Q(α/2))

and

CI3(α) = (Q(α/2),Q(1− α/2)).
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Theoretically, CI1, CI2, and CI3 are all valid. When α = 0.05, CI1, CI2, and CI3 are

centered at q̂(τ), 2q̂(τ)− 1
2
{Q(0.975)+Q(0.025)}, and 1

2
{Q(0.975)+Q(0.025)}, respectively,

but share the same length Q(0.975) − Q(0.025). In (unreported) simulations, we found

that in small samples, CI1 usually has the best size control while CI2 over-rejects and CI3

under-rejects.

Case (2). We aim to test the null hypothesis thatH0 : q(τ1)−q(τ2) = q vs. q(τ1)−q(τ2) 6=

q. In this case, let G = {τ1, τ2}. Further, let Q(ν) denote the νth empirical quantile of the

sequence {q̂∗b(τ1) − q̂∗b(τ2)}b∈[B], and let α ∈ (0, 1) be the significance level. For the same

reason discussed in case (1), we suggest using the bootstrap standard error to construct the

valid confidence interval and Wald test as

CI1(α) = (q̂(τ1)− q̂(τ2)− C1−α/2σ̂, q̂(τ1)− q̂(τ2) + Cα/2σ̂),

and 1{
∣∣∣ q̂(τ1)−q̂(τ2)−q

σ̂

∣∣∣ ≥ C1−α/2}, respectively, where σ̂ = Q(0.975)−Q(0.025)
C0.975−C0.025

.

Case (3). We aim to test the null hypothesis that

H0 : q(τ) = q(τ) ∀τ ∈ Υ vs. q(τ) 6= q(τ) ∃τ ∈ Υ.

In theory, we should let G = Υ. In practice, we let G = {τ1, · · · , τG} be a fine grid of Υ

where G should be as large as computationally possible. Further, let Qτ (ν) denote the νth

empirical quantile of the sequence {q̂∗b(τ)}b∈[B] for τ ∈ G. Compute the standard error of

q̂(τ) as

σ̂τ =
Qτ (0.975)−Qτ (0.025)

C0.975 − C0.025

.
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The uniform confidence band with an α significance level is constructed as

CB(α) = {q̂(τ)− Cασ̂τ , q̂(τ) + Cασ̂τ : τ ∈ G},

where the critical value Cα is computed as

Cα = inf

{
z :

1

B

B∑
b=1

1

{
sup
τ∈G

∣∣∣∣ q̂∗b(τ)− q̃(τ)

σ̂τ

∣∣∣∣ ≤ z

}
≥ 1− α

}

and q̃(τ) is first-order equivalent to q̂(τ) in the sense that supτ∈Υ |q̃(τ)−q̂(τ)| = op(1/
√
n). We

suggest choosing q̃(τ) = 1
2
{Qτ (0.975)+Qτ (0.025)} over other choices such as q̃(τ) = Qτ (0.5)

and q̃(τ) = q̂(τ) due to its better finite-sample performance. We rejectH0 at an α significance

level if q(·) /∈ CB(α).

5.4 Practical Recommendations

Our practical recommendations are straightforward. If pair identities are known, we suggest

using the gradient bootstrap for inference. If pair identities are unknown, we suggest using

the weighted bootstrap of the IPW estimator with a nonparametrically estimated propensity

score for inference.

6 Simulation

In this section, we assess the finite-sample performance of the methods discussed in Section

4 with a Monte Carlo simulation study. In all cases, potential outcomes for a ∈ {0, 1} and

1 ≤ i ≤ 2n are generated as

Yi(a) = µa +ma (Xi) + σa (Xi) εa,i, a = 0, 1, (6.1)
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where µa,ma (Xi) , σa (Xi), and εa,i are specified as follows. In each of the specifications

below, n ∈ {50, 100} and (Xi, ε0,i, ε1,i) are i.i.d. The number of replications is 10,000. For

bootstrap replications we set B = 5, 000.

Model 1 Xi ∼ Unif[0, 1]; m0 (Xi) = 0; m1 (Xi) = 10
(
X2
i − 1

3

)
; εa,i ∼ N(0, 1) for a = 0, 1;

σ0 (Xi) = σ0 = 1 and σ1 (Xi) = σ1.

Model 2 As in Model 1, but σ0 (Xi) = (1 +X2
i ) and σ1 (Xi) = (1 +X2

i )σ1.

Model 3 Xi = (Φ (Vi1) ,Φ (Vi2))′, where Φ(·) is the standard normal cumulative distribution

function and

Vi ∼ N


 0

0

 ,

 1 ρ

ρ 1


 ,

m0 (Xi) = γ′Xi − 1; m1 (Xi) = m0 (Xi) + 10 (Φ−1 (Xi1) Φ−1 (Xi2)− ρ); εa,i ∼ N(0, 1)

for a = 0, 1; σ0 (Xi) = σ0 = 1 and σ1 (Xi) = σ1. We set γ = (1, 1)′, σ1 = 1, ρ = 0.2.

Model 4 As in Model 3, but with γ = (1, 4)′, σ1 = 2, ρ = 0.7.

Pairs are determined similarly to those in Bai et al. (2019). Specifically, if Xi is a scalar,

then pairs are determined by sorting {Xi}i∈[2n] as described in Case (1) in Section 4.2. If

Xi is multi-dimensional, then the pairs are determined by the permutation π described in

Case (2) in Section 4.2, which can be obtained by using the R package nbpMatching. After

forming the pairs, we assign treatment status within each pair through a random draw from

the uniform distribution over {(0, 1), (1, 0)}.

We examine the performance of various tests for ATEs and QTEs at the nominal level

α = 5%. For the ATE, we consider the hypothesis that

E(Y (1)− Y (0)) = truth + ∆ vs. E(Y (1)− Y (0)) 6= truth + ∆.

26



For the QTE, we consider the hypotheses that

q(τ) = truth + ∆ vs. q(τ) 6= truth + ∆,

for τ = 0.25, 0.5, and 0.75,

q(0.25)− q(0.75) = truth + ∆ vs. q(0.25)− q(0.75) 6= truth + ∆, (6.2)

and

q(τ) = truth + ∆ ∀τ ∈ [0.25, 0.75] vs. q(τ) 6= truth + ∆ ∃τ ∈ [0.25, 0.75]. (6.3)

To illustrate size and power of the tests, we set H0 : ∆ = 0 and H1 : ∆ = 1/2. The true value

for the ATE is 0, whereas the true values for the QTEs are simulated with a 10, 000 sample

size and replications. The computational procedures described in Section 5 are followed to

perform the bootstrap and calculate the test statistics. To test the single null hypothesis

involving one or two quantile indexes, we use the Wald tests specified in Section 5.3. To test

the null hypothesis involving a continuum of quantile indexes, we use the uniform confidence

band CB(α) defined in Case (3) in the same section.

The results for the ATEs appear in Table 1. Each row presents a different model and

each column reports the rejection probabilities for the various methods. The column ‘Naive’

refers to the two-sample t-test and ‘Adj’ refers to the adjusted t-test in Bai et al. (2019);

the column ‘IPW’ corresponds to the t-test with standard errors generated by the weighted

bootstrap of the IPW ATE estimator. In all cases, we find that (i) the two-sample t-test

has rejection probability under H0 far below the nominal level and is the least powerful test

among the three, and (ii) the adjusted t-test has rejection probability under H0 close to the

nominal level and is not conservative. These results are consistent with those in Bai et al.

(2019). The IPW t-test proposed in this paper has performance similar to the adjusted t-
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test.5 Under H0, the test has rejection probability close to 5%; under H1, it is more powerful

than the naive method and has power similar to the adjusted t-test. These findings indicate

that the IPW t-test provides an alternative to the adjusted t-test when pair identities are

unknown.

Table 1: The Empirical Size and Power of Tests for ATEs

Model
H0: ∆ = 0 H1: ∆ = 1/2

n = 50 n = 100 n = 50 n = 100

Naive Adj IPW Naive Adj IPW Naive Adj IPW Naive Adj IPW
1 1.32 5.47 5.44 1.22 5.75 6.00 11.80 29.10 29.44 27.67 49.79 50.46
2 1.85 5.35 5.59 1.64 5.63 5.89 10.43 23.26 24.24 23.72 40.42 41.68
3 1.20 4.76 4.92 0.77 4.68 5.16 1.31 5.66 5.91 1.92 8.13 8.74
4 2.32 6.47 6.01 1.25 5.33 4.74 1.08 5.16 4.35 0.93 5.65 4.89

Notes: The table presents the rejection probabilities for tests of ATEs. The columns ‘Naive’
and ‘Adj’ correspond to the two-sample t-test and the adjusted t-test in Bai et al. (2019),
respectively; the column ‘IPW’ corresponds to the t-test using the standard errors estimated
by the weighted bootstrap of the IPW ATE estimator.

The results for QTEs are summarized in Tables 2 and 3. Each table has four panels

(Models 1-4). Each row in the panel displays the rejection probabilities for the tests using

the standard errors estimated by various bootstrap methods. Specifically, the rows ‘Naive

weight’, ‘Gradient’, and ‘IPW’ respectively correspond to the results of the naive weighted

bootstrap, the gradient bootstrap, and the weighted bootstrap of the IPW QTE estimator.

Table 2 reports empirical size and power of the tests with a single null hypothesis involving

one or two quantile indexes. Columns ‘0.25’, ‘0.50’, and ‘0.75’ correspond to tests with

quantiles at 25%, 50%, and 75%. Column ‘Dif’ corresponds to the test with null hypothesis

(6.2). As expected given Theorem 4.1, the test with standard errors estimated by the naive

5Throughout this section, we use B-splines to nonparametrically estimate the propensity score in the

weighted bootstrap of the IPW estimator. If dim(Xi)=1, we choose the bases {1, X, [max(X − qx0, X −

qx0.5)]2} where qx0 and qx0.5 are quantiles of X at 0 and 50%, respectively; if dim(Xi)=2, we choose the

bases {1,max(X1 − qx1,0, X1 − x1,0.5),max(X2 − qx2,0, X2 − qx2,0.5), X1X2}. The choices of the sieve basis

functions and K are adhoc. It is possible to use data-driven methods to select them but a rigorous analysis

of the validity of various data-driven methods is beyond the scope of this paper.

28



method performs poorly in all cases. It is conservative under H0 and lacks power under H1.

In contrast, the test using the standard errors estimated by either the gradient bootstrap

or the IPW method has a rejection probability under H0 that is close to the nominal level

in almost all specifications. When the number of pairs is 50, the tests in the ‘Dif’ column

constructed based on either the gradient or the IPW method are slightly conservative. Sizes

approach the nominal level when n increases to 100.

Table 3 reports empirical size and power of the uniform confidence bands for the hypothe-

sis specified in (6.3) with a grid G = {0.25, 0.27, · · · , 0.47, 0.49, 0.5, 0.51, 0.53, · · · , 0.73, 0.75}.

The test using standard errors estimated by the naive method has rejection probabilities un-

derH0 far below the nominal level in all specifications. In Models 1-2, the test using standard

errors estimated by either the gradient bootstrap or the IPW bootstrap yields a rejection

probability under H0 that is very close to the nominal level even when the number of pairs

is as small as 50. Nonetheless, in Models 3-4, the tests constructed based on both methods

are conservative when the number of pairs equals 50. When the number of pairs increases to

100, both tests perform much better and have a rejection probability under H0 that is close

to the nominal level. Under H1, the tests based on both the gradient and IPW methods are

more powerful than those based on the naive method.

In summary, the simulation results in Tables 2 and 3 are consistent with the results in

Theorems 4.2 and 4.3: both the gradient bootstrap and the IPW bootstrap provide valid

pointwise and uniform inference for QTEs under MPDs. The findings also show that when

the information on pair identities is unavailable the IPW method continues to provide a

sound basis for inference.
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Table 2: The Empirical Size and Power of Tests for QTEs

H0: ∆ = 0 H1: ∆ = 1/2
n = 50 n = 100 n = 50 n = 100

0.25 0.50 0.75 Dif 0.25 0.50 0.75 Dif 0.25 0.50 0.75 Dif 0.25 0.50 0.75 Dif
Model 1
Naive weight 3.00 2.00 2.22 1.98 3.12 2.06 1.93 1.73 16.67 6.05 5.56 3.96 34.93 11.56 8.11 7.35
Gradient 5.13 4.82 4.92 3.66 5.07 5.62 5.30 4.04 23.76 13.03 11.27 8.18 42.92 22.91 17.30 14.57
IPW 5.47 5.31 6.17 4.24 5.26 5.83 5.65 3.95 24.81 13.48 12.12 8.40 43.93 23.33 17.21 13.91

Model 2
Naive weight 3.08 2.32 2.55 1.96 3.64 2.53 2.08 1.87 14.82 6.54 4.71 3.68 30.29 11.50 7.46 6.88
Gradient 4.57 4.63 4.39 3.44 5.00 5.42 5.28 3.68 19.51 12.25 8.76 6.57 35.38 20.86 14.79 12.25
IPW 4.93 5.12 5.78 4.45 5.17 5.73 5.88 4.00 20.29 12.90 10.40 7.35 36.38 21.53 15.14 12.53

Model 3
Naive weight 2.11 1.03 2.10 0.92 1.56 1.37 1.58 0.86 4.98 2.85 1.92 0.98 6.57 7.14 1.73 1.43
Gradient 5.24 3.06 3.14 1.76 4.83 4.20 4.27 3.01 9.71 7.43 3.22 2.39 13.80 16.72 5.67 4.40
IPW 4.76 3.19 5.61 2.60 4.77 3.71 4.95 3.02 8.75 7.81 5.35 3.09 13.04 15.42 6.06 4.21

Model 4
Naive weight 2.59 1.71 1.98 1.65 2.65 1.66 1.55 1.23 6.09 1.94 1.76 1.28 9.85 2.98 1.19 1.18
Gradient 4.75 4.00 3.33 2.82 4.70 4.74 5.06 3.88 9.37 5.76 3.35 2.87 14.67 8.88 5.27 4.25
IPW 3.97 3.97 4.91 3.68 4.23 4.51 5.01 3.48 8.08 5.37 4.79 3.26 13.50 8.33 5.17 3.51

Note: The table presents the rejection probabilities for tests of QTEs. The columns ‘0.25’, ‘0.50’, and ‘0.75’ correspond to
tests with quantiles at 25%, 50%, and 75%, respectively; the column ‘Dif’ corresponds to the test with the null hypothesis
specified in (6.2). The rows ‘Naive weight’, ‘Gradient’, and ‘IPW’ correspond to the results of the naive weighted bootstrap,
the gradient bootstrap, and the weighted bootstrap of the IPW QTE estimator, respectively.
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Table 3: The Empirical Size and Power of Uniform Inferences for QTEs

H0: ∆ = 0 H1: ∆ = 1/2

n = 50 n = 100 n = 50 n = 100
Model 1
Naive weight 1.07 1.52 7.50 18.12
Gradient 4.08 4.64 17.88 33.30
IPW 4.49 4.94 16.30 32.40

Model 2
Naive weight 1.37 1.85 6.73 16.50
Gradient 3.66 4.57 14.30 27.64
IPW 4.25 4.91 14.27 27.47

Model 3
Naive weight 0.63 0.63 1.43 3.50
Gradient 1.90 3.07 5.19 13.33
IPW 2.19 2.99 4.25 11.34

Model 4
Naive weight 0.99 1.00 1.40 3.05
Gradient 2.87 3.72 4.47 8.57
IPW 2.78 3.36 3.18 6.98

Notes: The table presents the rejection probabilities of the uniform confidence bands for
the hypothesis specified in (6.3). The rows ‘Naive weight’, ‘Gradient’ and ‘IPW’ correspond
respectively to the results of the naive weighted bootstrap, the gradient bootstrap, and the
weighted bootstrap of the IPW QTE estimator.

7 Empirical Application

Questions surrounding the effectiveness of microfinance as a development tool has sparked

a great deal of interest from both policymakers and economists. To answer such questions a

growing number of studies have implemented randomized experiments in different settings

(see Banerjee, Karlan, and Zinman, 2015, and the references therein). In particular, Banerjee

et al. (2015) adopted MPD in their randomization. In this section, we apply the bootstrap

methods of inference developed in this paper to their data to examine both the ATEs and
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QTEs on the take-up rates of microcredit to assess the effectiveness of microfinance.6

The sample consists of 104 areas in the city of Hyderabad in India. Based on average per

capita consumption and per-household outstanding debt, the areas were grouped into pairs

of similar neighborhoods. This segmentation gives 52 pairs in the sample; one area in each

pair was randomly assigned to the treatment group and the other to the control group. In

the treatment areas, a group-lending microcredit program was implemented. Banerjee et al.

(2015) then examined the impacts of expanding access to microfinance on various outcome

variables at two endlines.

Table 4: Summary Statistics

Total Treatment group Control group
Loan take-up rate
Spandana 0.128(0.140) 0.193(0.131) 0.062(0.117)
Any MFI 0.224(0.152) 0.265(0.151) 0.182(0.143)

Matching variable
Consumption 1026.4(184.4) 1047.8(195.7) 1005.0(171.5)
Debt 36184.7(36036.5) 32694.1(17755.5) 39675.3(47776.8)

Observations 104 52 52

Notes: Unit of observation: area. The table presents the means and standard deviations
(in parentheses) of two outcome variables: the take-up rate of loans from Spandana and the
take-up rate of loans from any MFI, and two pair-matching variables: average per capita
consumption and per-household debt.

Here we focus on the impacts of microfinance on two area-level outcome variables at the

first endline. One is the area’s take-up rate of loans from Spandana, a microfinance orga-

nization that implemented the group-lending microcredit program. The other is the area’s

take-up rate of loans from any microfinance institutions (MFIs). Table 4 gives descriptive

statistics (means and standard deviations) for these two outcome variables as well as the

matching variables used by Banerjee et al. (2015) to form the pairs in their experiments.

6The public-use data provided by the authors does not contain information on pair assignment. We thank

Esther Duflo and Cynthia Kinnan for providing us with this information.

32



Table 5: ATEs of Micofinance on Take-up Rates of Microcredit

Naive Adj IPW
Spandana 0.131(0.024) 0.131(0.022) 0.131(0.022)
Any MFI 0.083(0.029) 0.083(0.024) 0.083(0.027)

Notes: The table presents the ATE estimates of the effect of microfinance on the takeup
rates of microcredit. Standard errors are in parentheses. The columns “Naive” and “Adj”
correspond to the two-sample t-test and the adjusted t-test in Bai et al. (2019), respectively.
The column “IPW” corresponds to the t-test using the standard errors estimated by the
weighted bootstrap of the IPW ATE estimator.

Table 5 reports the results on the ATE estimates of the effect of microfinance on the

take-up rates of microcredit with the standard errors (in parentheses) calculated by three

methods. Specifically, the columns ‘Naive’ and ‘Adj’ correspond to the two-sample t-test

and the adjusted t-test in Bai et al. (2019), respectively; the column ‘IPW’ corresponds

to the t-test using standard errors estimated by the weighted bootstrap of the IPW ATE

estimator.7 The results lead to the following observations. First, consistent with the findings

in Banerjee et al. (2015), the ATE estimates show that expanding access to microfinance has

highly significant average effects on the take-up rates of microcredit from both Spandana

and any MFIs. Second, the standard errors in the adjusted t-test are lower than those in the

naive t-test. This result is consistent with the finding in Bai et al. (2019). More importantly,

the standard errors estimated by the IPW weighted bootstrap are also lower than those in

the naive t-test and similar to those for the adjusted t-test. For example, in the test of

the ATE on the take-up rate of microcredit from Spandana, the IPW method reduces the

standard error by 8% compared with the naive one. The magnitude of the reduction is the

same as that in the adjusted t-test. These results corroborate our earlier finding that the

IPW method is an alternative to the approach adopted in Bai et al. (2019), especially when

the information on pair identities is unavailable.

7Throughout this section, to nonparametrically estimate the propensity score in the IPW weighted boot-

strap, we first standardize the data to have mean zero and variance one and then fit the standardized data

via the sieve estimation based on the B-splines with the same basis as used in Section 6.
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Table 6: QTEs of Micofinance on Take-up Rates of Microcredit

Naive weight Gradient IPW
Panel A. Spandana
25% 0.082(0.021) 0.082(0.026) 0.082(0.020)
50% 0.182(0.024) 0.182(0.021) 0.182(0.023)
75% 0.229(0.047) 0.229(0.046) 0.229(0.047)

Panel B. Any MFI
25% 0.056(0.045) 0.056(0.043) 0.056(0.042)
50% 0.082(0.040) 0.082(0.034) 0.082(0.040)
75% 0.141(0.054) 0.141(0.054) 0.141(0.049)

Notes: The table presents the QTE estimates of the effect of microfinance on the take-up
rates of microcredit at quantiles 25%, 50%, and 75%. Standard errors are in parentheses.
The columns “Naive weight,” “Gradient,” and “IPW” correspond to the results of the naive
weighted bootstrap, the gradient bootstrap, and the weighted bootstrap of the IPW QTE
estimator, respectively.

Next, we estimate the QTEs of microfinance on the take-up rates of microcredit and

estimate their standard errors by the three methods discussed in Section 4. Table 6 presents

the results on the QTE estimates at quantile indexes 0.25, 0.5, and 0.75 with the standard

errors (in parentheses) estimated by three different methods. Specifically, the columns ‘Naive

weight’, ‘Gradient’, and ‘IPW’ correspond to the results of the naive weighted bootstrap, the

gradient bootstrap,8 and the weighted bootstrap of the IPW QTE estimator, respectively.

These results lead to the following two observations.

First, consistent with the theory in Section 4, the standard errors estimated by the

gradient bootstrap or the IPW weighted bootstrap are mostly lower than those estimated

by the naive weighted bootstrap. For example in Panel A, at the median, compared with

the naive weighted bootstrap, the gradient bootstrap reduces the standard errors by 12.5%

and the IPW weighted bootstrap reduces the standard errors by over 4%. In Panel B, all

the standard errors computed using methods Gradient and IPW are smaller than those

8Using the original pair identities and matching variables in Banerjee et al. (2015), we can re-order the

pairs according to the procedure described in Section 5.1. We follow Banerjee et al. (2015) in using Euclidean

distance to measure the distance between the covariates in distinctive pairs.
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computed using the naive method.

Second, there seem to be considerable heterogeneity in the effects of microfinance. Specif-

ically, the treatment effects of microfinance on the take-up rates of microcredit increase as

the quantile indexes increase and the increases are economically substantial. For example,

in Panel A, the treatment effect increases by about 122% from the 25th percentile to the

median and by about 26% from the median to the 75th percentile. In Panel B, the treat-

ment effect at the 25th percentile is positive but not statistically significantly different from

zero. The treatment effect increases by over 46% from the 25th percentile to the median

and by about 72% from the median to the 75th percentile. These findings may imply that

expanding access to microfinance has small, if not negligible, effects on the take-up rates

of microcredit for areas in the lower tail of the distribution but that these effects become

stronger for upper-ranked areas, thereby exhibiting the so-called Matthew effect.

The second observation in Table 6 indicates that the heterogeneous effects of microfinance

on the take-up rates of microcredit are economically substantial. Are they statistically

significant too? In Table 7, we provide statistical tests for the heterogeneity of the QTEs.

Specifically, we test the null hypotheses that q(0.50)− q(0.25) = 0 and q(0.75)− q(0.50) = 0.

We find that only the difference between the 25th and median QTEs in Panel A is statistically

significant. This finding implies that the statistical evidence of heterogeneous treatment

effects of microfinance is strong only for the areas in the lower tail of the distribution and

when the loans are from Spandana.

8 Conclusion

This paper has studied estimation and inference of QTEs under MPDs and developed new

bootstrap methods to improve statistical performance. Derivation of the limit distribution of

QTE estimators under MPDs reveals that analytic methods of inference based on asymptotic

theory requires estimation of two infinite-dimensional nuisance parameters for every quantile
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Table 7: Tests for the Difference between Two QTEs of Micofinance

Naive weight Gradient IPW
Panel A. Spandana
q(0.50)− q(0.25) 0.099(0.023) 0.099(0.024) 0.099(0.022)
q(0.75)− q(0.50) 0.047(0.046) 0.047(0.046) 0.047(0.045)

Panel B. Any MFI
q(0.50)− q(0.25) 0.026(0.043) 0.026(0.044) 0.026(0.044)
q(0.75)− q(0.50) 0.059(0.049) 0.059(0.046) 0.059(0.046)

Notes: The table presents tests for the difference between two QTEs of microfinance on
the take-up rates of microcredit. Standard errors are in parentheses. The columns ‘Naive
weight’, ‘Gradient’, and ‘IPW’ correspond to the results of the naive weighted bootstrap, the
gradient bootstrap, and the weighted bootstrap of the IPW QTE estimator, respectively.

index of interest. A further limitation is that the naive weighted bootstrap fails to approx-

imate the limit distribution of the QTE estimator as it does not preserve the dependence

structure in the original sample. Instead, we propose a gradient bootstrap approach that can

consistently approximate the limit distribution of the original estimator and is free of tuning

parameters. Implementation of the gradient bootstrap requires knowledge of pair identities.

So when such information is unavailable we propose a weighted bootstrap procedure based

on the IPW estimator of the QTE and show that it can consistently approximate the limit

distribution of the original QTE estimator. Simulations provide finite-sample evidence of

these procedures that support the asymptotic findings. In our empirical application of these

bootstrap methods to the real dataset in Banerjee et al. (2015) we find considerable evidence

of heterogeneity in the effects of microfinance on the take-up rates of microcredit. In both

the simulations and the empirical application, the two recommended bootstrap methods of

inference perform well in the sense that they usually provide smaller standard errors and

greater inferential accuracy than those obtained by naive bootstrap methods.
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