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Abstract 

Given a game with uncertain payoffs, information design analyzes the extent to which the provi-

sion of information alone can influence the behavior of the players. Information design has a literal 

interpretation, under which there is a real information designer who can commit to the choice of the 

best information structure (from her perspective) for a set of participants in a game. We emphasize 

a metaphorical interpretation, under which the information design problem is used by the analyst to 

characterize play in the game under many different information structures. 

We provide an introduction into the basic issues and insights of a rapidly growing literature in 

information design. We show how the literal and metaphorical interpretations of information design 

unify a large body of existing work, including that on communication in games (Myerson (1991)), 

Bayesian persuasion (Kamenica and Gentzkow (2011)) and some of our own recent work on robust 

predictions in games of incomplete information. 
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1 Introduction 

Players’payoffs in a game depend on their actions and also on the realization of a payoff relevant state. 

An "information designer" can commit how to provide information about the states to the players. 

"Information design" studies how the information designer, through the choice of the information pro-

vided, can influence the individually optimal behavior of the players to achieve her objective. She can 

achieve this objective even though she has no ability to change outcomes, or force the players to choose 

particular actions that determine outcomes.1 

The past decade has seen a rapidly growing body of literature in information design. An influential 

paper by Kamenica and Gentzkow (2011) phrased the optimal design of information as a "Bayesian 

persuasion" problem between a sender and single receiver. A large body of work fits this rubric, includ-

ing important contributions of Brocas and Carrillo (2007) and Rayo and Segal (2010). The economic 

applications of information design have been investigated in areas as far apart as grade disclosure and 

matching markets (Ostrovsky and Schwarz (2010)), voter mobilization (Alonso and Camara (2016)), 

traffi c routing (Das, Kamenica, and Mirka (2017)), rating systems (Duffi e, Dworczak, and Zhu (2017)) 

and transparency regulation (Asquith, Covert, and Pathak (2014)) in financial markets, price discrim-

ination (Bergemann, Brooks, and Morris (2015)) and stress tests in banking regulation (Inostroza and 

Pavan (2017)). 

One purpose of the paper is to provide an overview of information design that unifies this recent 

work with a number of literatures sometimes treated as distinct. If we assume that there are many 

players, but the information designer (or "mediator") has no informational advantage over the players, 

this problem reduces to the analysis of communication in games (Myerson (1991), Section 6.3) and, more 

generally, the literature on correlated equilibrium in incomplete information games (Forges (1993)). If 

there is only one player (or "receiver") but the information designer (or "sender") has an informational 

advantage over the player, the problem reduces to the "Bayesian persuasion" problem of Kamenica and 

Gentzkow (2011). Information design concerns the general case where there are both many players 

and the information designer has an informational advantage over the players. This case has been the 

focus of some our own work (Bergemann and Morris (2013b), (2016a)), where we show that the set of 

outcomes that can arise in this setting corresponds to a version of incomplete information equilibrium 

("Bayes correlated equilibrium") that allows outcomes to be conditioned on states that the players do 

not know. 

A second purpose of the paper is to highlight a distinction between literal information design and 

1We follow Taneva (2015) in our use of the term "information design" in this context. 
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metaphorical information design. The information design problem has a literal interpretation (given 

above): there really is an information designer (or mediator, or sender) who can commit to provide 

extra information to players to serve her own interests. While the commitment assumption may be 

problematic in many settings, it provides a useful benchmark. But the information design formulation 

might also be a metaphor that the analyst uses as a tool. For example, we might be interested in 

finding an upper bound (across information structures) on the aggregate variance of output in a given 

economy with idiosyncratic and common shocks to agents’ productivity (Bergemann, Heumann, and 

Morris (2015)). We can understand this as an information design problem, where the information 

designer is interested in choosing an information structure to maximize aggregate variance in output. 

But in this case, we do not have in mind that there is an actual information designer maximizing 

aggregate variance. We will discuss this application, and other applications where information design 

is metaphorical, below. 

This survey reviews the pure information design problem where a designer can commit to a certain 

information structure for the players but has no control over outcomes. This problem is a special case 

of the more general mechanism design problem where a mechanism designer can control outcomes but 

may also be able to manipulate information in the course of doing so.2 We study the case where all 

information structures are available to the designer. It is thus possible to appeal to the revelation 

principle from the general mechanism design problem, and without loss of generality restrict attention 

to information structures where the signals that the information designer sends to a player can be 

identified with action recommendations. This revelation principle / mechanism design approach to 

information design thus contrasts with work where there is no commitment to the information structure 

or attention is restricted to a parameterized class of information structures. 

We use a family of two player, two action, and two state examples to survey the literature, and to 

provide some graphical illustrations. We start with the leading example of Bayesian persuasion (with 

a single player/receiver with no prior information) from the work of Kamenica and Gentzkow (2011). 

We can use extensions of this example - with many players and prior information - to illustrate many 

of the key ideas in the survey. Three key substantive general insights are illustrated in these examples. 

First, it is often optimal for the information designer to selectively obfuscate information. This 

insight is familiar from the case of one player without prior information. 

2Myerson (1982), (1991) describes the problem of "communication in games" where the designer cannot control outcomes 

but can elicit information from players and pass it to other players. Thus what we are defining as the "information design" 

problem can be viewed as Myerson’s "communication in games" problem with the important new feature that the designer 

may have access to information that is not available to the players. 
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Second, the information designer has less ability to manipulate outcomes in his favor if players have 

more prior information: if the players are endowed with their own information, the designer has less 

influence over the information structure that they end up with. This insight can already be illustrated 

in the one player case. But we will also describe a general partial order on information structures -

generalizing the Blackwell order for the one player case - which characterizes the right definition of 

"more information" in this context (Bergemann and Morris (2016a)). 

Third, we can ask whether the information designer prefers to give the information to players in 

a public or in a private message. Of course, this last question only arises once we have multiple 

players. Public information is optimal if the information designer wants perfect correlation between 

players’ actions; otherwise private information will be optimal. While the information designer may 

have intrinsic preferences over whether players’actions are correlated (or not), the designer may care 

about correlation for purely instrumental reasons: if there are strategic complementarities between the 

players’actions, she may want to correlate players’actions to relax the obedience constraints on her 

ability to attain specific outcomes. The converse holds for strategic substitutability. We will illustrate 

the case when there are only instrumental preferences over correlation. 

The examples also illustrate a methodological point. The information design problem can be solved 

in two steps. First, we can identify the set of outcomes that could be induced by the information designer. 

Second, we can identify which of these outcomes would be preferred by the information designer. This 

too parallels the mechanism design literature: we can first identify which outcomes are implementable, 

and then identify the one most preferred by the designer. As noted above, in the information design 

problem, the set of implementable outcomes corresponds to the set of Bayes correlated equilibria. This 

approach reduces the problem to a linear program. 

The information designer is assumed to be able to commit to an information structure that maps 

payoff-relevant states of the world and private information of the agents (types) into possibly stochastic 

signals to the players.3 As the mapping essentially recommends actions to the players, we refer to it as 

a decision rule. We will initially focus on what we will sometimes call the omniscient case, where the 

information designer faces no constraints on her ability to condition the signals on the payoff-relevant 

states of the world and all the players’ prior information (i.e. their types). But we also consider 

3Whether or not the information designer will observe the payoff relevant state is irrelevant — what is important is 

whether she can condition the signals she sends on the realization of the state and the players’ private signals. For 

example, a prosecutor might never know whether the defendant is guilty or innocent, but can nevertheless set up an 

investigation process which would provide different evidence depending on the actual guilt or innocence of the subject and 

the information of the judge. We thank an anonymous referee who stressed the distinction between conditioning on a 

state, and actually knowing the realization of the state. 
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information design constrained by private information, where the prior information of the players is 

not accessible to the information designer, even though she can condition on the payoff-relevant states. 

There are two cases to consider here: an information designer may be able to condition on the reported 

realizations of the players’signals even if she does not observe them (information design with elicitation) 

or she may be unable to do so (information design without elicitation). If the information designer cannot 

condition on the payoff state at all, and has to rely entirely on the private information of the players, 

then these three scenarios (omniscient, private information with elicitation and private information 

without elicitation) correspond to versions of incomplete information correlated equilibrium: in the 

terminology of Forges (1993), the Bayesian solution, communication equilibrium, and strategic form 

correlated equilibrium, respectively. 

Once the information designer has picked the information structure, the players decide how to play 

the resulting game of incomplete information. There may be multiple Bayes Nash equilibria of the 

resulting game. In our treatment of the information design problem, we have been implicitly assuming 

that the designer can pick which equilibrium is played. Under this maintained assumption, we can appeal 

to the revelation principle, and focus attention on information structures where the signal space is set 

equal to the action space, and the signals have the interpretation that they are action recommendations. 

In the single player case, this maintained equilibrium selection assumption is without loss of generality. 

But just as the revelation principle breaks down in mechanism design if the designer does not get to pick 

the best equilibrium (as in Maskin (1999)), it similarly breaks down for information design.4 We follow 

Mathevet, Perego, and Taneva (2017) in formally describing a notion of maxmin information design, 

where an information designer gets to pick an information structure but the selected equilibrium is the 

worst one for the designer. We note how some existing work can be seen as an application of maxmin 

information design, in particular, an extensive literature on "robustness to incomplete information" 

(Kajii and Morris (1997)). 

Other assumptions underlying the revelation principle — and maintained throughout this paper — 

are that (i) all information structures are feasible, (ii) there is zero (marginal) cost of using information, 

(iii) there is a single information designer and (iv) the setting is static. Of course, there are many 

(static) settings where the impact of different information structures has been studied, without allowing 

all information structures. Two classic examples would be information sharing in oligopoly (a literature 

beginning with Novshek and Sonnenschein (1982)) and the revenue comparison across different auction 

formats in auction theory (Milgrom and Weber (1982)). In the former, there is a restriction to normally 

distributed signals, and in the latter there is the restriction to affi liated signals. 

4This point has been highlighted by Carroll (2016) and Mathevet, Perego, and Taneva (2017). 
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Optimal information design in dynamic settings has been studied recently in Ely, Frankel, and 

Kamenica (2015), Passadore and Xandri (2016), Doval and Ely (2016), Ely (2017), Ely and Szydlowski 

(2017), Ball (2017) and Makris and Renou (2017). A new aspect to information design that appears 

in these dynamic settings is that information can be used as an incentive device to reward behavior 

over time. Horner and Skrzypacz (2016) surveys work on information design in dynamic settings. 

Kamenica and Gentzkow (2014) consider the case of costly information and Gentzkow and Kamenica 

(2017) allow for multiple information designers. This paper provides a conceptual synthesized guide to 

the literature; we discuss applications when they are relevant for this purpose, but make no attempt to 

provide a comprehensive survey of the many applications of information design. 

We describe the basic information design problem in Section 2. We illustrate the main notions and 

ideas with an investment example in Section 3. We discuss key ideas from information design in the 

investment example in Section 4. Here we discuss private versus public signals, intrinsic versus instru-

mental preferences over correlation, the two step procedure for solving information design problems, 

ordering information, and the use of concavification in information design (instead of pure linear pro-

gramming methods). Section 5 describes in more detail two applications of information design, with a 

microeconomic and macroeconomic perspective, respectively: limits of price discrimination, and the link 

between information and volatility. These two applications emphasize the relevance of the metaphor-

ical interpretation of information design. In Section 6, we describe what happens when players’prior 

information is not known by the information designer; this discussion allows us to locate the informa-

tion design problem within mechanism design and within a larger literature on incomplete information 

correlated equilibrium reviewed by Forges (1993). In Section 7, we discuss the role of equilibrium 

selection. 

Given the synthetic treatment of the literature, there is much terminology that has been introduced 

and used in different contexts (including by us in prior work), and which is at times inconsistent or 

redundant. To give one example, what we are calling an "information designer" has in previous work 

been called a sender, a mediator, a principal and a mechanism designer. We are attempting throughout 

to use a unified and consistent language, but compromising at times between the use of a consistent 

terminology and precedents set by earlier work. 

2 The Information Design Problem 

We begin by describing the general setting and notation that we maintain throughout the paper. We 

will fix a finite set of players and a finite set of payoff states of the world. There are I players, 1, 2, ..., I, 
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and we write i for a typical player. We write Θ for the payoff states of the world and θ for a typical 

element of Θ. 

A "basic game" G consists of (1) for each player i, a finite set of actions Ai and an (ex-post) utility 

function 

ui : A × Θ → R, 

where we write A = A1 × · · · × AI , and a = (a1, ..., aI ) for a typical element of A; and (2) a full 

support prior ψ ∈ Δ (Θ) which is shared by all players and the information designer. Thus G = � � 
(Ai, ui)

I
i=1 , Θ, ψ . We define the ex post objective of the information designer by: 

v : A × Θ → R. 

An "information structure" S consists of (1) for each player i, a finite set of types ti ∈ Ti; and (2) a � � 
type distribution π : Θ → Δ(T ), where we write T = T1 × · · · × TI . Thus S = (Ti)

I , π .i=1 

Together, the "payoff environment" or "basic game" G and the "belief environment" or "information 

structure" S define a standard "incomplete information game" (G, S). While we use different notation, 

this division of an incomplete information game into the "basic game" and the "information structure" 

is a common one in the literature, see, for example, Gossner (2000). 

We are interested in the problem of an information designer who has the ability to commit to a 

provide the players with additional information, in order to induce them to make particular action 

choices. In this section, we will consider the leading case where the designer can condition on the 

state and on all the players’types —their prior information —if they have any. We will sometimes refer 

to this setting as omniscient information design. In Section 6, we will consider the case where prior 

information of the players is truly private to them, and hence the information designer cannot condition 

on their prior information unless she is able to induce them to reveal it. 

If viewed as an extensive form game between the information designer and the players, the timing 

is as follows: 

1. the information designer picks and commits to a rule for providing the players with extra messages; 

2. the true state θ is realized; 

3. each agent’s type ti is privately realized; 

4. the players receive extra messages according to the information designer’s rule; 

5. the players pick their actions based on their prior information and the messages provided by the 

information designer; 
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6. payoffs are realized. 

We emphasize that the information designer commits to a decision rule before the realization of 

the state and type profile. This structure in the timing sets the information design problem apart 

from informed principal, cheap talk or signalling environments where the informed party commits to a 

message only after the state has been revealed. 

In general, the information designer could follow any rule for generating messages. However, a "rev-

elation principle" argument implies that it is without loss of generality to assume that the information 

designer sends only "action recommendations" that are obeyed. The argument is that any message 

will give rise to an action in equilibrium and we might as well label messages by the actions to which 

they give rise. We discuss the revelation principle in more detail below. Given this restriction, the 

information designer is choosing among decision rules 

σ : T × Θ → Δ(A) . (1) 

The information designer can condition the recommended action profile on the true state θ ∈ Θ and 

the type vector t ∈ T . We stress that the designer does not need to know the true realization of the 

state or the type profile —it is suffi cient that the decision rule can condition on these. For example, in 

a medical test, the information designer, the doctor, may not know the true condition of the patient, 

but can choose a diagnostic test that reveals the condition of the patient to the desired precision and 

accuracy. 

The decision rule encodes the information that the players receive about the realized state of the 

world, the types and the actions of the other players. The conditional dependence of the recommended 

action a on state of the world θ and type profile t represent the information conveyed to the players. 

The key restriction on the decision rule is a notion of obedience that we now define. Obedience 

is the requirement that the information privately communicated to player i in the form of an action 

recommendation ai according to σ is such that each player i would want to follow his recommendation 
0action ai rather than choose any other available action ai. 

Definition 1 (Obedience) 

Decision rule σ : T × Θ → Δ(A) is obedient for (G, S) if, for each i, ti ∈ Ti and ai ∈ Ai, we have X 
ui ((ai, a−i) , θ) σ ((ai, a−i) | (ti, t−i) , θ) π ((ti, t−i) |θ) ψ (θ) (2) 

a−i∈A−i,t−i∈T−i,θ∈Θ X �� � �0≥ ui ai, a−i , θ σ ((ai, a−i) | (ti, t−i) , θ) π ((ti, t−i) |θ) ψ (θ) , 
a−i∈A−i,t−i∈T−i,θ∈Θ 
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for all a0 ∈ Ai.i 

The obedience inequality requires that each player i, after receiving his recommendation ai, finds 
0that no other action a could yield him a strictly higher utility. We emphasize that each player when i 

computing his expected utility is indeed using the information contained in the action recommendation 

ai, and thus the above inequality is written from an interim perspective (conditioning on ti and ai). We 

can state the above inequality explicitly in terms of the interim beliefs that agent i holds given his type 

ti and his action recommendation ai, thus using Bayes’rule: X σ ((ai, a−i) | (ti, t−i) , θ) π ((ti, t−i) |θ) ψ (θ) 
ui ((ai, a−i) , θ) P �� � � � � �� � � � � 

00 ∈T−i,θ00∈Θ σ ai, a00 | ti, t00 , θ00 π ti, t00 |θ00 ψ θ00a ∈A−i,t00 −i −i −ia−i∈A−i,t−i∈T−i,θ∈Θ −i −i

≥ X �� � � σ ((ai, a−i) | (ti, t−i) , θ) π ((ti, t−i) |θ) ψ (θ)0 ui ai, a−i , θ P �� 00 � � � � �� � 
|θ00

� � 
θ00

� . 
00 σ ai, a | ti, t00 , θ00 π ti, t00 ψ a ∈A−i,t00 ∈T−i,θ00∈Θ −i −i −ia−i∈A−i,t−i∈T−i,θ∈Θ −i −i

We observe that the belief of agent i updates independently of whether he is following the recom-
0mendation ai or deviating from it to ai. Moreover, the denominator in Bayes rule sums up over all 

00possible profiles a ∈ A−i, t00 ∈ T−i, θ00 ∈ Θ, and hence is constant across all possible realizations −i −i 

of a−i ∈ A−i, t−i ∈ T−i, θ ∈ Θ. Hence we can multiply through to obtain the earlier inequality (2), 

provided that the denominator is strictly positive. 

Bergemann and Morris (2016a) define a Bayes correlated equilibrium (BCE) to be any decision rule 

σ satisfying obedience. An important aspect of this solution concept is that the decision rule σ enters 

the obedience constraints, as stated above in (2), in a linear manner as a probability. Thus, an obedient 

decision rule can be computed as the solution to a linear program. 

Proposition 1 (Revelation Principle) 

An omniscient information designer can attain decision rule σ if and only if it is a Bayes correlated 

equilibrium, i.e. if it satisfies obedience. 

By "can attain decision rule" we mean that there exists a (perhaps indirect) communication rule 

that gives rise to this decision rule in Bayes Nash equilibrium.5 We refer to the resulting (ex ante) 

joint distribution of payoff state θ and action profile a as the outcome of the information design, thus 

integrating out the private information t: X 
σ (a|t, θ) π (t|θ) ψ (θ) . 

t∈T 

5We do not discuss information design under solution concepts other than Bayes Nash equilibrium in this paper. 

Mathevet, Perego, and Taneva (2017) study information design under bounded level rationalizability and Inostroza and 

Pavan (2017) under full rationalizability. 
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In this (and later) propositions, we omit formal statements and proofs that correspond to revelation 

principle arguments. Bergemann and Morris (2016a) give a formal statement6 and proof of this propo-

sition as Theorem 1. The argument is a straightforward adaptation of standard characterizations of 

complete and incomplete information correlated equilibrium. 

If there is no payoff uncertainty — the set Θ is a singleton — then the notion of Bayes correlated 

equilibrium exactly coincides with the complete information correlated equilibrium as introduced in the 

seminal contributions of Aumann (1974) and (1987). In the absence of payoff uncertainty, we can simply 

suppress the dependence of the payoff function on the state of the world θ. Thus the decision rule σ 

does not vary with θ nor is there any private information t about the state of the world θ. A decision 

rule σ is then simply a joint distribution over actions, or σ ∈ Δ(A). Now, a distribution σ ∈ Δ(A) is 

defined to be a correlated equilibrium if for each i and ai ∈ Ai, we have: X X � �0 0 ui (ai, a−i) σ (ai, a−i) ≥ ui ai, a−i σ (ai, a−i) , ∀ai ∈ Ai. (3) 
a−i∈A−i a−i∈A−i 

The obedience condition (2) thus collapses to the best response property (3) in the absence of payoff 

uncertainty. Aumann (1987) argued that correlated equilibrium captured the implications of common 

knowledge of rationality in a complete information game (under the common prior assumption). An 

alternative interpretation is that the set of correlated equilibria is the set of outcomes attainable by an 

information designer in the absence of payoff uncertainty. We discuss these interpretational issues and 

the literature on incomplete information correlated equilibrium more broadly in Section 6.4. 

The proof of Proposition 1 in Bergemann and Morris (2016a), like the proof of Aumann (1987), is 

a "revelation principle" argument, establishing that it is without loss of generality to focus on a set of 

signals that equals the set of actions to be taken by the agents - so that there is "direct communication" 

- and to recommend actions in such way that they will be obeyed - so that "incentive compatibility" 

gives rise to "obedience" conditions. In the case of complete information, Myerson (1991) (section 6.2) 

describes this as the "revelation principle for strategic form games". Note that while the expression 

"revelation principle" is sometimes limited to the case where agents are sending messages rather than 

receiving them (e.g., Fudenberg and Tirole (1991) and Mas-Collel, Whinston, and Green (1995)), we 

follow Myerson in using the broader meaning throughout the paper. In the basic information design 

described in this section, the only incentive constraints are obedience conditions but we discuss the 

extension to the case where the information designer must elicit players’private information in Section 

6, where truth-telling incentive constraints also arise. We postpone a discussion of how to place 

information design in the broader context of the mechanism design literature until then. 

6A formal statement also appears in Section 7. 
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Proposition 1 characterizes the set of outcomes that an information designer could attain, i.e., a 

feasible set. To complete the description of the basic information design problem, we need an objective. 

Given the information designer’s ex post utility v (a, θ), her ex ante utility from the decision rule σ for 

a given game of incomplete information (G, S) is: X 
V (σ) = v (a, θ) σ (a|t, θ) π (t|θ) ψ (θ) . (4) 

a∈A,t∈T,θ∈Θ 

The (omniscient) information design problem is then to pick a BCE σ to maximize V (σ). When there 

is a single player with no prior information, the information design problem reduces to the benchmark 

Bayesian persuasion problem described by Kamenica and Gentzkow (2011). In this case, the single 

player is called the "receiver" and the information designer is called the "sender". 

3 An Investment Example 

We now apply this framework to an investment game and discuss the main themes of information design 

through the lens of this example. 

We first consider the following benchmark setting. There is a bad state (B) and a good state (G). 

The two states are equally likely: 
1 

ψ (G) = ψ (B) = . 
2 

0There is one player (the "firm"). The firm can decide to invest or not invest. The payoff from not 

investing is normalized to 0. The payoff to investing is −1 in the bad state and x in the good state, 

with 0 < x < 1. These payoffs, u (a, θ), are summarized in the following matrix: 

u (a, θ) bad state B good state G 

invest −1 x 

not invest 0 0 

. (5) 

3.1 Single Player without Prior Information 

We begin the analysis when the firm has no prior information about the state (beyond the uniform 

prior). Together with the above assumptions about the payoff matrix, the firm would therefore choose 

to not invest if it had no additional information. 

We will assume that an information designer (the "government") is interested in maximizing the 

probability of investment independent of the state, or 

1 = v(invest, θ) > v(not invest,θ) = 0, θ = B, G. 

11 



This example is (modulo some changes in labelling) the leading example in Kamenica and Gentzkow 

(2011). We will describe this example first, but then use variations to illustrate more general points. 

The decision rule is now simply: 

σ : Θ → Δ(A) , 

where we can omit the type space T due to the absence of prior information. In this binary decision 

environment, the decision rule σ (θ) specifies the probability of investment, denoted by pθ, conditional 

on the true state θ ∈ {B, G}. Thus a decision rule is a pair (pB , pG) of investment probabilities. We 

can think of a decision rule as a (stochastic) action recommendation from the government. If the 

recommendations are obeyed, the outcome - the ex ante distribution over states and actions - is given 

by: 

σ (a |θ ) ψ (θ) bad state B good state G 

invest pB 
1 
2

1 
2pG 

not invest 1 
2 (1 − pB) 1 

2 (1 − pG) 

. 

If the firm receives a recommendation to invest, it will update its beliefs about the state by Bayes’rule. 

The firm’s interim expected utility from following the recommendation represents the left hand side of 

the inequality below. If the firm were to disobey the recommendation and chose not to invest, then its 

payoff would be zero. This gives rise to the following obedience constraint: 
1 
2pB 

1pG2 x ≥ 0. (6)(−1) + 1 
2

1 
2pG 

1 1 
2pB + pB + pG2

As we discussed following Definition 1, we can simplify the inequality by multiplying through with the 

conditioning probability 1 
2pB +

1 
2pG, and thus write the obedience condition equivalently in terms of the 

interim probabilities: 
1 
pB (−1) + 
2

1 
pGx ≥ 0 ⇔ pG ≥ 
2

pB . 
x 

(7) 

There is an analogous obedience constraint corresponding to the recommendation not to invest, namely: 

1 1 
0 ≥ (1 − pB) (−1) + (1 − pG) x. 

2 2 

Because the firm would not invest absent information from the designer - by our maintained as-

sumption that x < 1 - the binding obedience constraint will be the one corresponding to investment, 

i.e., inequality (7). We see that the highest probability of investment corresponds to the decision rule 

with pG = 1 and pB = x. 

We illustrate the set of BCE decision rules for the case where x = 55/100 in Figure 1. Any decision 

rule (pB, pG) in the blue shaded area can arise as some BCE. We observe that the feasible set of BCE 

does not depend on the government’s preference v (a, θ). 
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Insert Figure 1: Investment Probability with Uninformed Player: x = 55/100 

Now every BCE decision rule corresponds to optimal behavior under some information structure S. 

By the revelation principle for the BCE, it suffi ces to give the firm a binary information structure S to 

implement any BCE decision rule in the binary action environment. For the outcome that maximizes 

the probability of investment, it suffi ces to generate a no-investment recommendation with probability 

1 − x if the state is bad, and otherwise give the firm an investment recommendation. The resulting 

outcome - the ex ante distribution over states and actions - is given by: 

σ (a |θ ) ψ (θ) bad state B good state G 

invest x1 
2

1 
2 

not invest (1 − x)1 
2 0 

. (8) 

Thus a government trying to encourage investment will obfuscate the states of the world in order to 

maximize investment. By pooling realizations of the bad and good states in the recommendation to 

invest, the firm is made exactly indifferent between investing or not when recommended to invest. The 

bad state is completely isolated in the recommendation not to invest. Finally, we observe that under 

complete information the firm would always invest in the good state and never invest in the bad state. 

We thus have described three different information structures —zero information, partial information, 

and complete information —that support the three vertices of the above investment triangle. Thus, the 

set of all investment probabilities that satisfy the obedience constraints can be described by a set of 

linear inequalities that jointly form a polyhedron of implementable outcomes. 

3.2 Single Player with Prior Information 

We remain with the investment example where there is still only one firm, but now the firm has some 

prior information about the true state that it receives independently of the government.7 In particular, 

the firm has a type (or receives a signal) which is "correct" with probability q > 1/2. Formally, the firm 

observes its type t ∈ {b, g} with probability q conditional on the true state being B or G, respectively: 

π (t |θ ) bad state B good state G 

bad signal b q 1 − q 

good signal g 1 − q q 

. 

Here, signals refer to the prior information that firms are endowed with. Conditional on the type of 

the firm, the analysis of the obedience constraints reduces immediately to the analysis of the previous 
7Some detailed calculations for this example appear in the Appendix. 
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section, but where the firm has an updated belief, q or 1 − q, depending on the type. We nonetheless 

analyze this problem because we want to trace the ex ante implications of a player’s prior information 

for information design. A decision rule σ now specifies the probability of investment pθt conditional on 

the true state θ ∈ {B, G} and the type t ∈ {b, g}. Thus a decision rule is now a quadruple: 

p = (pBb, pBg, pGb, pGg) . (9) 

We can solve the problem - conditional on state and type - as before. For example, the obedience 

constraint for the recommendation to invest after receiving a good type g now becomes: 

(1 − q) pBg (−1) + qpGgx ≥ 0. (10) 

However, we are interested in what we can say about the joint distribution of states and actions ex ante, 

integrating out the types, say 

pG = qpGg + (1 − q) pGb. 

One can show that there is a lower bound on investment in the good state given by: 

1 − q 
pG ≥ q − , (11) 

x 

which approaches 1 as q approaches 1. As before, the bound for pG depends on pB and the lowest 

bound is obtained by taking pB = 0 in that expression. 

The set of BCE is illustrated in Figure 2. More prior information shrinks the set of BCE since the 

obedience constraints become tighter. Once q reaches 1, the firm knows the state and the information 

designer has no ability to influence the outcome. The firm is simply pursuing the complete information 

optimal decision, which is to invest in the good state, pG = 1, and not to invest in the bad state, 

pB = 0. 

The set of BCE across different q has two notable features. First, we notice that the set of BCE 

happens to be constant across some information structures near precision q = 0.5, for example at q = 0.5 

and q = 0.6. With low precision in the signals, such as q = 0.6, the firm would pursue the same action 

for either type realization, absent any additional recommendation by the government. Thus, the weak 

private information by the agent does not constrain the government in its recommendation policy. In 

consequence, private information of the player only affects the set of BCE if the prior information by 

itself already generates a differential response by the player. Second, the slope of the boundary is 

constant across different levels of precision q. This occurs as the rate at which the optimal decision of 

the player can be reversed by additional information of the designer (and hence indifference is attained) 

is constant across q by Bayes’law. 
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Insert Figure 2: Investment Probability with Informed Player: x = 55/100 

3.3 Many Players without Prior Information 

We can now generalize the analysis to two firms and return to the assumption that the firms have no prior 

information.8 We assume for now that the government wants to maximize the sum over each individual 

firm’s probability of investment. If there is no strategic interaction between firms, the previous analysis 

can be carried out firm by firm and will thus be unchanged. 

But we now perturb the problem to make it strategic, assuming that each firm gets an extra payoff 

ε if both invest, where ε may be positive or negative. If ε is positive, we have a game of strategic 

complementarities, if ε < 0, we have a game of strategic substitutes. We can write firm 1’s state 

dependent payoffs for the game as follows (and symmetrically for firm 2): 

firm 2 firm 2 

θ = B invest not invest 

invest −1 + ε −1 

not invest 0 0 

(12)
firm 1 firm 1 

θ = G invest not invest 

invest x + ε x 

not invest 0 0 

We can focus on symmetric decision rules, given the symmetry of the basic game, for any symmetric 

objective of the information designer. To see why, note that if we found an asymmetric maximizing 

decision rule, the decision rule changing the names of the firms would also be optimal and so would the 

(symmetric) average of the two decision rules. Therefore, we will continue to write pθ for the probability 

that each firm will invest in state θ ∈ {G, B}; but we will now write rθ for the probability that both 

invest. Thus a decision rule is a vector (pB , rB , pG, rG). A decision rule can now be represented in a 

table as 

θ = B invest not invest 

invest rB pB − rB 

not invest pB − rB 1 + rB − 2pB 

. (13) 

To ensure that all probabilities are non-negative, we require that for all θ ∈ {B, G} : 

θ = G invest not invest 

invest rG pG − rG 

not invest pG − rG 1 + rG − 2pG 

max {0, 2pθ − 1} ≤ rθ ≤ pθ. 

8Other two player, two action and two state examples appear in Bergemann and Morris (2013a), (2016a) and Taneva 

(2015). 
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The firm has an incentive to invest when told to invest if 

1 1 1 − pB + pGx + (rB + rG) ε ≥ 0, (14)
2 2 2 

and an incentive to not invest when told to not invest if 

1 1 1 − (1 − pB ) + (1 − pG) x + (pB − rB + pG − rG) ε ≤ 0. 
2 2 2 

Since x < 1, (14) is always the binding constraint and - for |ε| suffi ciently close to 0 - we can rewrite it 

by the same reasoning as in Section 3.1 as 

pG ≥ 
pB − (rB + rG) 

ε 
. (15) 

x x 

Now maximizing the sum of the probabilities of each firm investing corresponds to maximizing pB, (or 

pB + pG, but we will have pG = 1 always) subject to (15). For fixed x < 1 and |ε| ≈ 0, it is clearly 

optimal to have firms always invest when the state is good (so pG = 1 and rG = 1) and it is not possible 

to get both firms to always invest when the signal is bad. 

If ε > 0, (15) implies that it is optimal to choose rB as large as possible given pB . Thus we will set 

rB = pB. Substituting these variables into expression (15), we have 

pB ε 
1 ≥ − (pB + 1) , 

x x 

and so it is optimal to set 
x + ε 

pB = rB = ,
1 − ε 

and we can summarize the optimal decision rule in the following table: 

θ = B invest not invest 

invest x+ε 
1−ε 0 

not invest 0 1−x−2ε 
1−ε 

θ = G invest not invest 

invest 1 0 

not invest 0 0 

This decision rule entails a public signal: there is common certainty among the firms that they always 

observe the same signal. 

If ε < 0, it remains optimal to have both firms always invest when the state is good (pG = rG = 1). 
1But now we want to minimize rB given (pB, pG, rG). To reduce cases, let us assume that x > and2 

restrict attention to |ε| ≤ x − 1 . In this case, it will be optimal to set rB = 0. Substituting these 2 

expressions into (15), we have 
pB ε 

1 ≥ − . 
x x 
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Thus we will now have pB = x + ε, and we can summarize the optimal decision rule in the following 

table: 
θ = B invest not invest 

invest 0 x + ε 

not invest x + ε 1 − 2x − 2ε 

θ = G invest not invest 

invest 1 0 

not invest 0 0 

. 

Under this decision rule, firms told to invest know neither whether the state is good or bad, nor if the 

other firm is investing or not. Thus signals are private to each firm. Given that - in the bad state - each 

firm will invest with (roughly) probability x and will not with (roughly) probability 1 − x, the above 

information structure minimizes the unconditional correlation of the signals across firms (or equivalently 

minimizes the negative correlation conditional on the bad state.) 

Strategic complementarities increase the private return from investing if the other player invests 

as well. Below we display the set of investment probabilities that can be attained by the government 

while varying the size of the strategic effect ε. As the strategic effect ε increases, the boundaries of 

the investment probabilities attainable by the government shift outwards as illustrated in Figure 3. As 

the strategic complementarity increases (or strategic substitutability decreases), the government can 

support a larger probability of investment in both states. The intermediate case of ε = 0 reduces to the 

case of a single player, and hence reduces to the area depicted earlier in Figure 1. 

Insert Figure 3: Investment Probability with Negative or Positive Strategic Term ε, 

x = 55/100. 

3.4 Many Players with Prior Information 

We analyzed the case of two players and prior information in Bergemann and Morris (2016a). Here, we 

illustrate this case without formally describing it. As in the single player case, an increase in players’ 

prior information limits the ability of the designer to influence the players’choices. Consequently, the 

impact of prior information on the set of attainable investment probabilities with many players is similar 

to the one player case. In Figure 4 we illustrate the set of attainable investment probabilities under 

increasing prior information with strategic complementarities. The strategic complementarities give rise 

to a kink in the set of attainable probabilities (pB , pG) unlike in the single player case depicted earlier 

in Figure 2. 

Insert Figure 4: Investment Probability with Two Players with Prior Information, 

with Strategic Term ε = 3/10, x = 55/100. 
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4 Issues in Information Design Illustrated by the Examples 

Let us draw out the significance of these examples. One basic point that has been extensively highlighted 

(e.g., by Kamenica and Gentzkow (2011) and the following Bayesian persuasion literature) is that when 

there is a conflict between the designer and the player(s), it will in general be optimal for the designer 

to obfuscate, that is, hide information from the player(s) in order to induce him to make choices that 

are in the designer’s interests. And conditional on obfuscation being optimal, it may not be optimal to 

hide all information, but will in general be optimal to partially reveal information. This issue already 

arises in the case of one player with no prior information. 

In this section, we draw out a number of additional insights about information design that emerged 

from the examples. First, we observe that information will be supplied to players publicly or privately 

depending on whether the designer would like to induce positive or negative correlation in players’ 

actions; we also discuss designers’ possible intrinsic or instrumental reasons for wanting positive or 

negative correlation. Second, we note that in the case of one player with prior information, more prior 

information constrains the ability of the designer to control outcomes; we discuss the many player 

generalization of this observation. Third, we discuss the elegant "concavification" approach as an 

alternative to the linear programming representation used above to characterize and provide insights 

into the information designer’s problem. We also discuss an extension of the concavification approach 

to the many player case but note limitations of the concavification approach, both in the one player 

case and (even more) in the many player case. 

4.1 Public versus Private Signals; and Instrumental versus Intrinsic Motivation for 

Preferences Over Correlation 

An information designer will often have preferences over whether players’actions are correlated with 

each other, or not. The case of many players without prior information illustrates the point that if the 

designer wants players’actions to be correlated, it will be optimal to give them public signals and if he 

wants players’actions to be uncorrelated, he will give them private signals. However, there are different 

reasons why the designer might want to induce positive or negative correlation in actions. 

In our analysis of the case of two players without prior information, we made the assumption that 

the information designer wanted to maximize the sum of the probabilities that each player invests. Thus 

we assumed that the information designer did not care whether players’actions were correlated or not. 

Put differently, we assumed that the information designer had no intrinsic preferences over correlation. 

Yet, despite this assumption we observed that the information designer wants - for instrumental reasons 
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- to induce correlated behavior when players’actions are strategic complements, and to induce negative 

correlation when there were strategic substitutes among the players. This in turn generated the insight 

that the designer would like to generate public signals when there are strategic complementarities and to 

generate private signals when there are strategic substitutes. The reason for this instrumental objective 

is that under strategic complements, the designer can slacken obedience constraints by correlating play, 

with the opposite mechanism holding under strategic substitutes. 

We now describe three environments where there will be only instrumental concerns about corre-

lation. First, Mathevet, Perego, and Taneva (2017) consider an environment with one-sided strategic 

complementarities. The designer cares about the action of a first player who cares about the action of 

a second player who has no strategic concerns, i.e., does not care about the first player’s action. In 

this case, the information designer does not have intrinsic preferences over correlation (because she only 

cares about the first player’s action) but has an instrumental incentive to correlate actions because she 

can use information design to influence the action of the second player and correlate behavior in order 

to slacken the first player’s obedience constraint. In the formulation of Mathevet, Perego, and Taneva 

(2017), the information designer is a manager, the first player is a worker and the second player is a 

supervisor. 

Second, Bergemann and Morris (2016a) consider an environment with two sided strategic comple-

mentarities but where a non-strategic payoff externality removes intrinsic preferences over correlation. 

To illustrate this, suppose that we take our many player with no prior information example from Section 

3.3, but now suppose that - in addition to the existing payoffs - each firm would like the other firm to 

invest, and thus there are spillovers. In the following payoff table, we are assuming that each firm gets 

an extra payoff of z > 0 if the other firm invests: 

θ = B invest not invest 

invest −1 + ε + z −1 

not invest z 0 

θ = G invest not invest 

invest x + ε + z x 

not invest z 0 

Observe that this change in payoffs has no impact on the firms’best responses: neither firm can influence 

whether the other firm invests. But now suppose that the government is interested in maximizing the 

sum of the firms’payoffs. Consider the case that z is very large. As z becomes larger and larger, the 

government’s objective will approach maximizing the sum of the probabilities that each firm invests. In 

this sense, the government’s instrumental preference for correlation is micro-founded in the benevolent 

government’s desire to make each firm invest in the interests of the other firm. This example illustrates 

a distinctive point about strategic information design. Recall that in the one player case where the 

designer and the player have common interests, it is always optimal for the designer to fully reveal all 
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information in order to allow the player to take an action that is optimal given their shared preferences. 

In the many player case, however, the players themselves may not act in their joint interest for the usual 

(non-cooperative strategic) reasons. In this case - as in the above example - a benevolent information 

designer might want to obfuscate information. 

For a last case with only instrumental concerns over correlation, Bergemann and Morris (2013b) 

considered quantity (Cournot) competition in a market, where the information designer wants to maxi-

mize the sum of the firms’payoffs, i.e., the industry profits.9 A continuum of firms choose output where 

there is uncertainty about the intercept of the demand curve, i.e., the level of demand. In this case, 

the information designer would like the firms’total output to be correlated with the level of demand, 

but total profits do not depend on the correlation of firms’output conditional on the level of aggregate 

output. However, firms would like their actions to be negatively correlated (because the game is one of 

strategic substitutes); but they would also like output to be correlated with the state. The information 

designer can induce players to make total output choices that are closer to the optimal level but allow 

them to negatively correlate their output. In the optimal outcome (for some parameters), firms observe 

conditionally independent private signals about the state of demand, trading off these two objectives.10 

Having considered the case where the information designer cares about correlation for instrumental 

but not intrinsic reasons, we can also consider the opposite case where the information designer cares 

about correlation for intrinsic but not instrumental reasons. We can illustrate this case with the example 

of Section 3.3 also. Suppose that the payoffs remain the same, but now the government would like to 

maximize the probability that at least one firm invests, so that the government has intrinsic preferences 

over correlation. But in this case - under our maintained assumption that x > 1 
2 - it is possible to 

ensure that one firm always invests. Consider the following decision rule: 

θ = B invest not invest θ = G invest not invest 

invest 0 1 
2 invest 1 0 

not invest 1 
2 0 not invest 0 0 

If ε were equal to 0, this decision rule would be obedient, with all constraints holding strictly: a firm told 

to not invest would have a strict incentive to obey, since it would know that the state was bad; a firm told � 
to invest would have a strict incentive to obey, since its expected payoff will be 2 

3 x − 1 
2 > 0. Because 

the obedience constraints hold strictly, this decision rule will continue to be obedient, for positive or 

negative ε, as long as |ε| is suffi ciently small. Note that the government’s objective, of maximizing the 

9This corresponds to a large literature on information sharing in oligopoly following Novshek and Sonnenschein (1982). 
10 In this setting, the information designer would like to induce firms to lower output on average, but cannot do so. The 

designer can only influence correlation. 
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probability that at least one firm invests, necessitates private signals. 

In a dynamic setting, Ely (2017) shows how an information designer with intrinsic preferences for 

negative correlation will optimally use private signals to induce it (he also shows that this is consistent 

with players’strategic objectives). Arieli and Babichenko (2016) and Meyer (2017) provide a general 

analysis of optimal information design when players have binary actions and the information designer 

has an intrinsic motive for correlation, but there is no strategic interaction - and thus no instrumental 

motive for caring about correlation. With supermodular payoffs, public signals are optimal whereas 

with submodular payoffs private signals are optimal and it is optimal to minimize correlation.11 

4.2 Tightening Obedience Constraints and Bayes Correlated Equilibrium Outcomes 

There is never any reason for an information and/or mechanism designer to provide players with more 

information than they will use in making their choices. Giving more information will impose more 

incentive constraints on players’ choices, and thus reduce the ability of an information designer to 

attain outcomes that are desirable for him. In dynamic mechanism design, giving players information 

about others’ past reports will tighten truth-telling constraints. Myerson (1986) emphasizes that a 

similar observation is true in dynamic problems of communication in games; in these games the extra 

information imposes more obedience constraints as well. Recall that in our language, communication in 

games corresponds to information design when the information designer has no information of her own. 

Our examples have illustrated this general observation: giving players more information will impose 

more obedience constraints and thus reduce the set of (BCE) outcomes that can occur. However, the 

examples illustrate a more subtle point that is the focus of Bergemann and Morris (2016a): it is not 

only true that sending additional signals reduces the set of outcomes that can occur; it is also possible 

to construct a partial order on arbitrary information structures that exactly characterizes the notion of 

"more informative", and one that corresponds exactly to adding more obedience constraints. 

This was illustrated in our one player example with prior information. In that example, the set 

of implementable BCE outcomes shrunk in size as the accuracy q of the prior information increased 

(as illustrated in Figure 2). As q increases, we are intuitively giving the player more information. The 

additional information is given to the player not in the form of more signals, rather more precise signals. 

We will now informally describe how this observation can be generalized in many directions. In the 

one player case, an information structure reduces to an experiment in the sense of Blackwell (1951), 

11 In a recent survey on the algorithmic aspects of information design, Dughmi (2017) emphasizes how the structure 

of the payoff environment impacts the algorithms to compute the optimal information structure and their computational 

complexity. 
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(1953). He defines the "more informative" ordering in terms of a feasibility ordering. An experiment 

is said to be more informative than another experiment if the set of outcomes (joint distributions over 

actions and states) that can be induced by decision rules mapping signals into actions is larger - in any 

decision problem - under the first experiment.12 

Blackwell (1951), (1953) offered an alternative, entirely statistical ordering on experiments, without 

reference to actions or payoffs: one experiment is suffi cient for another if the latter can be attained by 

adding noise to the former. 

We have described an incentive ordering on experiments: one experiment is more incentive con-

strained than another if the set of BCE outcomes under the former experiment is smaller (reflecting the 

tighter obedience constraints) in every decision problem (or one player basic game). 

Taken together, there is now an elegant set of connections between Blackwell’s theorem and the 

information design problem. One can show that there is a three way equivalence between (i) the "more 

informative" ordering; (ii) the "suffi ciency" ordering; and (iii) the "incentive constrained" ordering. 

Blackwell’s theorem shows an equivalence between (i) and (ii). Thus, if an experiment is "more 

informative" in the sense of Blackwell, then - in any decision problem - the set of BCE outcomes for a 

given experiment is smaller under the more informative experiment. There is naturally also a converse. 

If an experiment is not more informative than another, then one can find a decision problem and an 

outcome that is a BCE for the first experiment but not for the second. 

This equivalence result holds in the one player case for general games, i.e., decision problems with 

finitely many states and actions. This result is the one player special case of the main result (for many 

player information structures) from Bergemann and Morris (2016a). 

The definition of the incentive ordering, as well as the definition of feasibility ordering, generalizes 

naturally to the many player case. Bergemann and Morris (2016a) offer a new statistical ordering, 

termed individual suffi ciency, for many players, and show that is equivalent to the incentive ordering 

in the many player case. Individual suffi ciency is defined as follows. Fix two information structures. A 

combined information structure is one where players observe a pair of signals, corresponding to the two 

information structures, with the marginal on signal profiles of each information structure corresponding 

to the original information structures. Thus there are many combinations of any two information 

structures, corresponding to different ways of correlating signals across the two information structures. 

12 Blackwell (1951), (1953) defines "more informative" in terms of "risk vectors" rather than joint distributions between 

states and action. These two feasibility conditions are equivalent. Blackwell defines as risk vector the vector of expected 

payoffs that can be sustained by a decision rule measurable with respect to the information structure alone. The resulting 

payoff vector is however computed conditional (on the vector) of the true state. It then follows easily that a larger set of 

risk vectors is sustained if and only if a larger set of joint distribution of actions and states is sustained. 
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One information structure is now individually suffi cient for another if there is a combined information 

structure such that each player’s signal in the former information structure is a suffi cient statistic for 

his beliefs about the state of the world and others’signals in the latter information structure. A subtle 

feature of this ordering is that one information structure being individually suffi cient for another neither 

implies nor is implied by the property that players’ joint information in the former case is suffi cient 

(in the statistical sense) for their joint information in the latter case. We should add that in the 

special case of a single player individual suffi ciency and suffi ciency naturally coincide. The ordering of 

individual suffi ciency has a number of natural properties. Two information structures are individually 

suffi cient for each other if and only if they correspond to the same beliefs and higher order beliefs about 

states, and differ only in the redundancies of the type identified in Mertens and Zamir (1985). One 

information structure is individually suffi cient for another only if we can get from the latter to the 

former by providing additional information and removing redundancies. 

In the one player setting, there is an alternative but equivalent ordering to the feasibility ordering. 

It is phrased in terms of optimality and appears more frequently in the economics rather than statistic 

literature. For example, Laffont (1989) defines one experiment to be "more valuable" than another 

if it leads to (weakly) higher maximal expected utility for every decision problem. In a single player 

problem, a larger set of feasible joint distributions clearly implies a larger maximal expected utility. 

Less obvious perhaps, the converse also holds, as the ranking has to hold across all decision problems. 

A common observation is that in strategic situations, there is no many player analogue to the "more 

valuable" ordering: see, for example, Hirshleifer (1971), Neyman (1991), Gossner (2000), and Bassan, 

Gossner, Scarsini, and Zamir (2003). The above discussion provides a novel perspective. Intuitively, 

there are two effects of giving players more information in a strategic setting. First, it allows players 

to condition on more informative signals, and thus - in the absence of incentive constraints - attain 

more outcomes. Second, more information can reduce the set of attainable outcomes by imposing more 

incentive constraints on players’behavior. The value of information in strategic situations is ambiguous 

in general because both effects are at work. Following Lehrer, Rosenberg, and Shmaya (2010), we 

can abstract from the second (incentive) effect by focussing on common interest games. Here, more 

information in the sense of individual suffi ciency translates into more attainable outcomes. But looking 

at Bayes correlated equilibria abstracts from the first (feasibility) effect, by allowing the information 

designer to supply any information to the players. Now, more information in the sense of individual 

suffi ciency translates into less attainable outcomes. 
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4.3 Bayes Correlated Equilibrium Outcomes 

and Information Design without Concavification 

We have described a "two step" approach to solving information design problems. First, provide a linear 

algebraic characterization of implementable outcomes, meaning the set of joint distributions over actions 

and states that can be induced by some information structure that the information designer might choose 

to give the players. The set of implementable outcomes is exactly the set of Bayes correlated equilibria 

(BCE). Second, we select among the BCE the one that is optimal for the information designer. This 

second step implicitly identifies the optimal information structure. The first problem is solved by finding 

the set of outcomes that satisfy a set of linear (obedience) constraints. The second problem corresponds 

to maximizing a linear objective subject to linear constraints. Both steps of this problem are well 

behaved. There is a separate reason why we might pursue this two step procedure: for many questions 

of interest, it is critical to first understand the set of BCE outcomes. The next two sub-sections describe 

two contexts where the structure of the BCE outcomes is the focus of the analysis. 

However, there is a different approach to information design: concavification. The “concavification” 

approach is based on a geometric analysis of the function mapping receiver posterior beliefs to sender 

payoffs. Concavification focuses more on the “experiments” or the distribution of posteriors that are 

induced for the receivers rather than on the joint distribution between actions and states. In the 

one person problem, we can identify the payoff that the information designer receives for any given 

probability distribution over state, subject to the fact that the player will make an optimal choice. But 

the information designer has the ability to split the player’s beliefs about the state, i.e., supply the 

player with information that will induce any set of posteriors over the states of the world, subject to 

the constraint that the prior over states is a convex combination of those posteriors. This implies that 

the set of attainable payoffs for the information designer, as a function of prior distributions of states, 

is the concavification of the set of payoffs of the designer in the absence of information design. This 

concavification argument (building on Aumann and Maschler (1995)) is the focus of both Kamenica and 

Gentzkow (2011) and the large and important literature inspired by their work. The many players case 

is significantly harder than the single player case, as it is no longer the set of probability distributions 

over states that matter, but rather the set of (common prior) subsets of the universal type space of 

Mertens and Zamir (1985) that are relevant for strategic analysis. Mathevet, Perego, and Taneva (2017) 

describe this generalization of concavification for the many player case. 

Concavification and its many player analogue are important for two reasons. First, they offer 

structural insights into the information design problem. Second, they provide a method for solving 

information design problems. As a solution method, the concavification approach and its generalization 
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do not always help without some special structure. Our own work on (one player) price discrimination 

discussed in the next section, Bergemann, Brooks, and Morris (2015), relies heavily on linear pro-

gramming; but while the solution must correspond to the concavification of an objective function, it is 

very diffi cult to visualize the concavification or provide a proof using it. However, linear programming 

methods do not always help either: in our work on (many player) auctions, Bergemann, Brooks, and 

Morris (2017a), neither generalized concavification nor linear programming methods are used in stating 

or proving our results (although linear programming played an important role in supplying conjectures 

for the results). 

5 Metaphorical Information Design and Applications 

Mechanism design sometimes has a literal interpretation. For example - in some settings - a seller may 

be able to commit to an auction for selling an object. In other settings, the mechanism design problem 

is studied even though there does not exist a mechanism designer able to commit. For example, suppose 

that we are interested in a buyer and seller bargaining over an object. There may be no rules for how 

the players bargain and no one who could enforce such rules. Nonetheless, Myerson and Satterthwaite 

(1983) studied what would be the optimal mechanism for realizing gains from trade, because it bounds 

what could happen under any bargaining protocol that ends up being used. In this sense, there is not 

a literal mechanism designer, but we are rather using the language of mechanism design for another 

purpose. 

Similarly for information design, the most literal interpretation of the information design problem 

is that there is an actual information designer who can commit to choosing the players’ information 

structure in order to achieve a particular objective. In many contexts, this commitment assumption 

may not be plausible.13 Yet, the information design perspective can be used to address many important 

questions even where there is not a literal information designer. In particular, understanding the set 

of outcomes that an information designer can induce corresponds to identifying the set of all outcomes 

that could arise from some information structure. 

In our own applications of information design, we have mostly been interested in metaphorical 

interpretations. The set of Bayes correlated equilibria is precisely the set of outcomes that can arise with 

additional information, for a given basic game and prior information structure. If there are properties 

that hold for all Bayes correlated equilibria, we have identified predictions that are robust to the exact 

13 Forges and Koessler (2005) observe that conditioning on players’exogenous information makes sense if players’types 

are ex post verifiable. 
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information structure. Identifying the best or worst outcome that can arise under some information 

structure according to some objective function as criterion is the same as solving an information design 

problem where the designer is maximizing or minimizing that criterion. In this section, we will review 

two such economic applications of information design. We will highlight the implications of this 

approach in the context of third degree price discrimination (Bergemann, Brooks, and Morris (2015)) 

and a linear interaction game with a focus on aggregate variance, and macroeconomic implications 

(Bergemann, Heumann, and Morris (2015)). 

Caplin and Martin (2015) adopt a similar, metaphorical, approach to the recovery of preference 

orderings and utility from choice data. They allow for the possibility that the decision maker has 

imperfect information while satisfying Bayes law and iterated expectation. They ask what they can 

learn from the observed choice data about the underlying preference profile without making strong 

assumptions on the information available to the decision-maker at the moment of choice. In related 

work, Caplin and Dean (2015) develop a revealed preference test giving conditions under which apparent 

choice "mistakes" can be explained in terms of optimal costly information acquisition by the player in 

the presence of imperfect information. 

5.1 The Limits of Price Discrimination 

A classic issue in the economic analysis of monopoly is the impact of discriminatory pricing on consumer 

and producer surplus. A monopolist engages in third degree price discrimination if he uses additional 

information about consumer characteristics to offer different prices to different segments of the aggregate 

market. Bergemann, Brooks, and Morris (2015) characterize what could happen to consumer and 

producer surplus for all possible segmentations of the market. 

One can provide some elementary bounds on consumer and producer surplus in any market segmen-

tation. First, consumer surplus must be non-negative as a consequence of the participation constraint: 

a consumer will not buy the good at a price above his valuation. Second, the producer must get at least 

the surplus that he could get if there was no segmentation and he had no additional information beyond 

the prior distribution. In this case, an optimal policy is always to offer the product with probability one 

at a given price to all buyers. We therefore refer to it as uniform monopoly price, and correspondingly 

uniform monopoly profit. Third, the sum of consumer and producer surplus cannot exceed the total 

social value that is generated by the good, which is willingness-to-pay minus unit cost of production. 

The shaded right angled triangle in Figure 5 illustrates these three bounds. 

Insert Figure 5: The Bounds on Profits and Consumer Surplus in Third Degree Price 
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Discrimination 

The main result in Bergemann, Brooks, and Morris (2015) is that every welfare outcome satisfying 

these constraints is attainable by some market segmentation. This is the entire shaded triangle in Figure 

5. If the monopolist has no information beyond the prior distribution of valuations, there will be no 

segmentation. The producer charges the optimal monopoly price, and gets the associated monopoly 

profit, and consumers receive a positive surplus; this is marked by point A in Figure 5. If the monopolist 

has complete information, then he can charge each buyer his true valuation, i.e., engage in perfect or 

first degree price discrimination; this is marked by point B. The point marked C is where consumer 

surplus is maximized; the outcome is effi cient and the consumer gets all the surplus gains over the 

uniform monopoly profit. At the point marked D, social surplus is minimized by holding producer 

surplus down to uniform monopoly profits and holding consumer surplus down to zero. 

The main result states that we can make only very weak predictions about producer and consumer 

surplus. It can be understood as the outcome of a set of metaphorical information design problems. If 

an information designer wanted to maximize consumer surplus, she would choose point C. If she wanted 

minimize consumer surplus, or producer surplus, or any weighted combination of the two, she could 

choose point D. Any other point on the boundary of the triangle is the solution to some maximization 

problem of the information designer defined by some preferences over producer and consumer surplus. 

The information design problem has a very clear literal interpretation in the case where the mo-

nopolist knows the consumer’s valuation. She can then achieve perfect price discrimination at point 

B. However, giving a literal information design interpretation of point C is more subtle. We would 

need to identify an information designer who knew consumers’valuations and committed to give partial 

information to the monopolist in order to maximize the sum of consumers’welfare. Importantly, even 

though the disclosure rule is optimal for consumers as a group, individual consumers would not have an 

incentive to truthfully report their valuations to the information designer, given the designer’s disclosure 

rule, since they would want to report themselves to have low values. 

As discussed in the previous section, it seems hard to explain the main result using concavification, 

but there is an elementary geometric argument. One can show that any point where the monopolist is 

held down to his uniform monopoly profits with no information beyond the prior distribution– including 

outcomes A, C, and D in Figure 5– can be achieved with the same segmentation. In this segmentation, 

consumer surplus varies because the monopolist is indifferent between charging different prices. 

We can use a simple example to illustrate these results. There are three valuations, v ∈ V = 

{1, 2, 3}, which arise in equal proportions, and there is zero marginal cost of production. The feasible 
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∗ ∗social surplus is w = (1/3) (1 + 2 + 3) = 2. The uniform monopoly price is v = 2. Under the 
∗uniform monopoly price, profit is π∗ = (2/3) × 2 = 4/3 and consumer surplus is u = (1/3) (3 − 2) + 

(1/3) (2 − 2) = 1/3. A segment x is a vector of probabilities of each valuation, thus x = (x1, x2, x3), and 

by σ (x) we denote the total mass of a segment x. A segmentation of the market is therefore a collection 

of segments x ∈ X and and a probability distribution σ (·) over the segments. We give an example of 

a segmentation below. In the example, there are three segments and each segment is identified by its 

support on the valuations indicated by the set {·} in the superscript. The frequency of each segment x 

is given by σ (x): 

(16) 

The particular segmentation has a number of interesting properties. First, in each segment, the seller is 

indifferent between charging as price any valuation that is in the support of the segment. Second, the 

Segment x1 x2 x3 σ (x) 

{1,2,3}x 1 
2 

1 
6 

1 
3 

2 
3 

{2,3}x 0 1 
3 

2 
3 

1 
6 

{1}x 0 1 0 1 
6 

∗x 1 
3 

1 
3 

1 
3 1 

∗uniform monopoly price, p = 2 is in the support of every segment. Thus this particular segmentation 

preserves the uniform monopoly profit. If the monopolist charges the uniform monopoly price on each 

segment, we get point A. If he charges the lowest value in the support of each segment (which is also 

an optimal price, by construction), we get point C; and if he charges the highest value in the support, 

we get point D. 

Roesler and Szentes (2017) consider a related information design problem in which a single buyer can 

design her own information about her value before she is facing a monopolist seller. While the analysis 

of the third-degree price discrimination proceeds as a one player application, the arguments extend 

to many player settings. Bergemann, Brooks, and Morris (2017a) pursue the question of how private 

information may impacts the pricing behavior in a many buyer environment. There we derive results 

about equilibrium behavior in the first-price auction that hold across all common-prior information 

structures. The results that we obtain can be used for a variety of applications, e.g., to partially 

identify the value distribution in settings where the information structure is unknown and to make 

informationally robust comparisons of mechanisms. 

5.2 Information and Volatility 

Bergemann, Heumann, and Morris (2015) revisit a classic issue in macroeconomics. Consider an econ-

omy of interacting agents —each of whom picks an action —where the agents are subject to idiosyncratic 
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and aggregate shocks. A fundamental economic question in this environment is to ask how aggregate 

and idiosyncratic shocks map into "aggregate volatility" - the variance of the average action. Ver-

sions of this question arise in many different economic contexts. In particular, a central question in 

macroeconomics is how aggregate and individual productivity shocks translate into variation in GDP. 

Another classical question is when and how asymmetric information can influence this mapping, and in 

particular exacerbate aggregate volatility. 

These questions are studied in a setting with a continuum of agents whose best responses are 

linear in the (expectation of the) average action of others and in the idiosyncratic as well as aggregate 

shocks. Shocks, actions and signals are symmetrically normally distributed across agents, maintaining 

symmetry and normality of the information structure. The maximal aggregate volatility is attained 

in an information structure in which the agents confound idiosyncratic and aggregate shocks, and 

display excess response to the aggregate shocks, as in Lucas (1972) and more recently in Hellwig and 

Venkateswaran (2009), Venkateswaran (2013) and Angeletos and La’O (2013). Our contribution is to 

highlight that, in this setting with idiosyncratic and aggregate shocks, a class of noise-free confounding 

information structures are extremal and provide global bounds on how much volatility can arise. In 

particular, for any given variance of aggregate shocks, the upper bound on aggregate volatility is linearly 

increasing in the variance of the idiosyncratic shocks. 

In this application, we do not think there is any economic agent who is able to or wants to maximize 

aggregate volatility. But because we are interested in bounds in aggregate volatility across equilibria of 

different information structures, the problem is naturally represented as an information design problem. 

The basic setting is that the payoff shock θi of individual i is given by the sum of an aggregate shock 

θ and an idiosyncratic shock εi : 

θi , θ + εi. 

The aggregate shock θ is common to all agents and the idiosyncratic shock εi is identically and inde-

pendently distributed across agents, as well as independent of the aggregate shock. Each component of 

the payoff shock θi is normally distributed. ⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞⎞ 
2 
θθ µθ σ 0⎝ ⎝⎝⎠ ∼ N ⎠ ⎝ ⎠⎠ . (17), 

2 
εεi 0 0 σ

The variance of the individual payoff shock θi can be expressed in terms of the variance of the sum of 

the idiosyncratic and the aggregate shock: σ2 
θ + σ2 

ε. The correlation (coeffi cient) ρθ between the payoff 

shocks of any two agents i and j, θi and θj is: 

σ2 
θρθ , . (18)

σ2 
θ + σ2 

ε 
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The best response of agent i is given by a linear function 

ai = (1 − r) Ei [θi] + rEi [A] , 

where A is the average action. Now, the results described above regarding the structure of the extremal 

information structure hold independently of whether the weight on the average action, r, is negative 

(the strategic substitutes case), zero (the purely decision theoretic case) or positive (the strategic com-

plementarities case). A striking property is that the set of feasible correlations between individual 

and average actions and individual and aggregate shocks is independent of r and determined only by 

statistical constraints. Here we will thus convey the flavor of the result in a setting where the decision 

of the agent is independent of any strategic considerations, thus the decision-theoretic case. 

It suffi ces to consider the following one-dimensional class of signals: 

si , λεi + (1 − λ)θ, (19) 

where the linear composition of the signal si is determined by the parameter λ ∈ [0, 1]. The information 

structure λ is noise free in the sense that every signal si is a linear combination of the idiosyncratic and 

the aggregate shock, εi and θ, and no extraneous noise or error term enters the signal of each agent. 

Nonetheless, since the signal si combines the idiosyncratic and the aggregate shock with weights λ and 

1 − λ, each signal si leaves agent i with residual uncertainty about his true individual payoff shock θi, 

unless λ = 1 − λ = 1/2. 

In the decision-theoretic case, r = 0, the best response of each agent simply reflects a statistical 

prediction problem, namely to predict the payoff shock θi given the signal si: 

(1 − λ)ρθ + λ(1 − ρθ) ai = E [θi |si ] = si. (20)
(1 − λ)2ρθ + λ2(1 − ρθ) 

The individual prediction problem is more responsive to the signal si, that is assigns a larger weight to 

si if and only if the signal contains more information about the individual payoff shock θi. The noise 

free information structure λ = 1/2 allows each agent to perfectly infer the individual payoff shock θi. 

It follows that the responsiveness, and hence the variance of the individual action σ2 is maximized at a 

λ = 1/2: 

σ2 = σ2 
θ + σ2 

a ε. 

Now, to the extent that the individual payoff shocks, θi and θj , are correlated, we find that even though 

each agent i only solves an individual prediction problem, their actions are correlated by means of the 

underlying correlation of the individual payoff shocks, and the resulting aggregate volatility is: 

σ2 σ2 
A = ρa a = σθ

2 . 
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We can ask whether the aggregate volatility can reach higher levels under information structures different 

from λ = 1/2. As the information structure departs from λ = 1/2, we necessarily introduce a bias in 

the signal si towards one of the two components of the payoff shock θi. Clearly, the signal si is losing 

its informational quality with respect to the individual payoff shock θi as λ moves away from 1/2 in 

either direction. Thus the individual prediction problem (20) is becoming noisier, and in consequence 

the response of the individual agent to the signal si is attenuated. But a larger weight, 1 − λ, on 

the aggregate shock θ, may support correlation in the actions across agents, and thus support larger 

aggregate volatility. As the response of the agent is likely to be attenuated, a trade-off appears between 

bias and loss of information. We show that the maximal aggregate volatility: � q �2 
σ2σθ + θ + σ2 

ε 
max {var (A)} = , (21) 
λ 4 

is achieved by the information structure λ ∗ : 

σθ 1 
λ ∗ , arg max {var (A)} = q < . (22) 

λ 2σθ + σ2 + σ2 2 
θ ε 

which biases the signal towards the aggregate shock. We can express the information structure that 

maximizes the aggregate volatility in terms of the correlation coeffi cient ρθ: 
√ 

arg max {var (A)} = 
ρ
√θ , 

λ 1 + 2 ρθ 

and the maximal volatility can be expressed as: 

1 � √ �2 � � 
max {var (A)} = 1 + ρθ σ2 

θ + σ2 .ε 
λ 4 

Surprisingly, as we approach an environment with purely idiosyncratic shocks, the maximal aggregate 

volatility does not converge to zero, rather it is bounded away from 0, and given by σ2 
ε/4. Thus, the 

economy can maintain a large aggregate volatility even in the presence of vanishing aggregate payoff 

shocks by confounding the payoff relevant information about the idiosyncratic shock with the (in the 

limit) payoff irrelevant information about the aggregate shock. 

6 Information Design with Private Information 

We have thus far considered the scenario where the designer knows not only the true state θ but also 

the players’prior information about the state. We now consider what happens when the information 

designer does not have access to players’prior information (but still can condition on the state). Here 
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we consider two alternative assumptions about the designer’s ability to condition recommendations on 

players’prior information. If the designer can elicit the private information, then we have information 

design with elicitation. If the designer cannot elicit the private information, we have information design 

without elicitation. We present a self-contained discussion of these extensions and then discuss how -

with these extensions - information design fits into the mechanism design and incomplete information 

correlated equilibrium literatures more broadly in Sections 6.3 and 6.4. 

6.1 Players’Prior Information is not Known to the Designer 

When the information designer cannot observe the players’prior information, she may or may not be 

able to ask the players about it. In the case of information design with elicitation, she will be able 

to condition her recommendations on the reported types. In the case of information design without 

elicitation, she can only send a list of recommendations, namely one recommendation for each possible 

type of the player. 

In the case of information design with elicitation, the revelation principle still implies that we can 

restrict attention to the case where the information sent by the information designer consists of action 

recommendations. However, we will now require an incentive compatibility condition that entails truth-

telling as well as obedience, so that the information designer can only condition on a player’s signal if 

the player can be given an incentive to report it truthfully. Following Myerson (1991) (Section 6.3), we 

can think of the information designer choosing a decision rule σ : T × Θ → Δ(A) but each type of each 

player can choose a deviation δi : Ai → Ai with the interpretation that δi (ai) is the action chosen by 

player i if the information designer recommended action ai. The decision rule σ is incentive compatible 

if each player does not have an incentive to deviate: 

Definition 2 (Incentive Compatible) 

A decision rule σ : T × Θ → Δ(A) is incentive compatible for (G, S) if for each i = 1, . . . , I and 

ti ∈ Ti, X 
ui((ai, a−i), θ)σ((ai, a−i)|(ti, t−i), θ)π((ti, t−i)|θ)ψ(θ) 

(ai,a−i)∈A, t−i∈T−i, θ∈Θ X 
0≥ ui((δi(ai), a−i), θ)σ((ai, a−i)|(ti, t−i), θ)π((ti, t−i)|θ)ψ(θ) 

(ai,a−i)∈A, t−i∈T−i, θ∈Θ 

for all t0 ∈ Ti and δi : Ai → Ai.i 

The displayed inequality will be referred to as player i’s type-ti incentive constraint. It ensures that 

player i, after observing signal ti, finds it optimal to report his signal truthfully and then, after observing 
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and updating on the information contained in the resulting action recommendation ai, finds it optimal 

to follow this recommendation. Thus it builds in both truth-telling and obedience. In addition, the 

notion of incentive compatibility requires that the decision rule is immune to "double deviations" in 

which the player misreports his type to be t0 (rather than ti) and disobeys the recommendation of the i 

designer by choosing δi (ai) rather than ai. Thus, incentive compatibility implies, but is not implied by, 

separately requiring truthtelling and obedience. 

Proposition 2 

An information designer with elicitation can attain a decision rule if and only if it is incentive compat-

ible. 

In the case of information design without elicitation, the designer cannot condition the action rec-

ommendation on the reported type, but has to offer a contingent recommendation, that is a vector of 

action recommendations, where each individual entry is an action recommendation for a specific type 

of the player, hence contingent on the realized type. The set of feasible recommendations to player i is 

therefore given by Bi = AiTi . The set of player i’s contingent recommendations therefore has a typical 

element 

bi : Ti → Ai. 

We define B = ×iI =1Bi and let a generic element be given by b = (b1, . . . , bI ) ∈ B. 

We are now interested in contingent action recommendations φ : Θ → Δ(B) rather than action 

recommendations. 

Definition 3 (Public Feasibility) 

A decision rule σ : T × Θ → Δ(A) is publicly feasible if there exists a contingent recommendation 

φ : Θ → Δ(B) such that for each a ∈ A, t ∈ T , and θ ∈ Θ with π(t|θ) > 0, X 
σ(a|t, θ) = φ(b|θ). 

{b∈B:b(t)=a} 

In this case, we say that σ is induced by φ. 

Public feasibility is the restriction that a given players’s contingent recommendation cannot depend 

on the type of the player himself nor on the types of the other players. We refer to the above requirement 

as public feasibility since the recommendation vector cannot be tailored to the private information of 

the player, hence only the publicly available information about the player, namely the set of possible 

types and their common prior distribution; and it has to be feasible in the sense that it induces the 
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decision rule σ. We emphasize that each contingent recommendation bi is still communicated to each 

agent i separately and privately, and thus is not public in the sense of a public announcement to all 

players. 

When I = 1, public feasibility is a vacuous restriction. Every decision rule σ is induced by the 

contingent recommendation φ given by Y 
φ(b|θ) = σ(b(t)|t, θ). 

t∈T 

Under this choice of φ, the components b(t) of the strategy for different types t are drawn independently. 

When I > 1, however, public feasibility is a substantive restriction. By recommending to a particular 

player a strategy rather than an action, the designer can condition that player’s action on his type. By 

judiciously choosing a distribution over B, the designer can even correlate the players’strategies. But 

she cannot correlate one player’s strategy on another player’s type. 

We are not interested in all contingent recommendations, but rather those that are obedient in the 

sense defined earlier in Definition 1. Below we adapt the definition to account for the larger space of 

contingent recommendations, b, rather than action recommendations, a. 

Definition 4 (Publicly Feasible Obedience) 

A decision rule σ : T × Θ → Δ(A) is publicly feasible obedient if there exists a contingent recom-

mendation φ : Θ → Δ(B) such that (i) φ induces σ, and (ii) φ satisfies obedience in the sense that for 

each i = 1, . . . , I, ti ∈ Ti, and bi ∈ Bi, X 
ui((bi(ti), b−i(t−i)), θ)φ((bi, b−i)|θ)π((ti, t−i)|θ)ψ(θ) 

b−i∈B−i,t−i∈T−i,θ∈Θ X 
0≥ ui((ai, b−i(t−i)), θ)φ((bi, b−i)|θ)π((ti, t−i)|θ)ψ(θ) 

b−i∈B−i,t−i∈T−i,θ∈Θ 

0for all ai ∈ Ai. 

The displayed inequality will be referred to as player i’s (ti, bi)-publicly feasible obedience constraint. 

It ensures that player i, after observing signal ti and receiving and updating on the recommendation bi, 

finds it optimal to take the action bi(ti) prescribed by the vector bi for his type ti. Note that in so far 

as a contingent recommendation bi reveals more information about the state θ and thus possibly and 

indirectly about the type profile t−i than just an action recommendation, publicly feasible obedience 

will be a more demanding concept than mere obedience as it allows the agents to contemplate deviations 

based on more accurate information. After all, type ti is able to observe the recommendation tailored 

towards him as well as the recommendation offered to all other types t0 6 ti.i = To the extent that 
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the recommendation across types is not perfectly correlated, it then follows that the type ti will receive 

additional information through the contingent recommendation rather than the action recommendation. 

Proposition 3 

An information designer without elicitation can attain a decision rule if and only if it is publicly feasible 

obedient. 

6.2 The Investment Example Re-Visited 

We reconsider the investment example introduced earlier in Section 3 but now allow the firm’s informa-

tion to be private. The government does not know the realization of the signal that the firm observes 

but can or cannot elicit it. 

6.2.1 Information Design with Elicitation 

In the case of elicitation, we have a screening problem where the designer offers a recommendation which 

induces a probability of investing as a function of the reported signal and the true state. As noted above, 

we have three sets of constraints that need to be satisfied. First, each type has to truthfully report his 

signal; second, each type has to be willing to follow the recommendation, the obedience constraints; 

and third, double deviations, by means of misreporting and disobeying at the same time must not be 

profitable. Kolotilin, Li, Mylovanov, and Zapechelnyuk (2017) refer to this informational environment 

as "private persuasion".14 Kolotilin (2017) pursues a linear programming approach to identify the 

optimal information disclosure policy under a single-crossing assumption. 

A decision rule now specifies the probability of investment pθt conditional on the true state θ ∈ 

{B, G} and the reported type t ∈ {b, g}. Thus, as before in Section 3.2, a decision rule is now a 

vector p = (pBb, pBg, pGb, pGg). The information designer offers a recommendation (stochastically) as a 

function of the true state and the reported type. The obedience conditions are as in Section 3.2 where 

information was not private. A truthful reporting constraint is described below for a good type t = g. 

14 Bergemann, Bonatti, and Smolin (2018) consider a model of private persuasion with quasilinear utility. Their main 

objective is to analyze the revenue maximizing solution to the information design problem subject to the elicitation 

constraints. Daskalakis, Papadimitriou, and Tzamos (2016) also consider an information design with quasilinear utility. 

The novel aspect of their analysis is that the object for sale has many attributes, and the seller chooses optimally how 

much to disclose about each individual attribute. Their analysis reveals a close relationship to the classic bundling problem 

of a multi-item monopolist. 
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The truthtelling constraint for the good type t = g is: 

qpGgx − (1 − q) pBg ≥ qpGbx − (1 − q) pBb (23) 

and correspondingly for the bad type t = b : 

(1 − q) pGbx − qpBb ≥ (1 − q) pGgx − qpBg. (24) 

By misreporting and then following the resulting recommendation afterwards, each type can change the 

probability of investing. We can write the above two truthtelling constraints in terms of a bracketing 

inequality: 
1 − q q 

x (pGg − pGb) ≤ pBg − pBb ≤ x (pGg − pGb) . (25) 
q 1 − q 

These inequalities highlight how the differential between type t = b and t = g in the recommendation 

pBt in the bad state are bounded, below and above, by the differential in the recommendation pGt in 

the good state. Notice also that since 
1 − q 1 q

< x, 
q x 1 − q 

the above bracketing inequality requires that 

pGg − pGb ≥ 0, pBg − pBb ≥ 0, 

thus the conditional probability of investing has to be larger for the good type than the bad type in 

either state. An implication specific to the binary action, binary state environment is the fact that 

double deviations do not impose any additional restriction on the behavior of the player. We state 

and prove this results formally in the appendix as Proposition 6. In particular, this means that the 

obedience and truthtelling constraints discussed above imply the incentive compatibility condition of 

Definition 2. 

With these additional constraints, the set of outcomes that can arise in equilibrium under information 

design with elicitation is weakly, and typically strictly, smaller than under an omniscient designer, i.e., 

the case in the previous section where the designer can condition his recommendation directly on the 

players’ prior information. The truthtelling constraints impose restrictions on how the differences in 

the conditional probabilities across types can vary across states. These impose additional restrictions 

on the ability of the government to attain either very low or very high investment probabilities in both 

states as highlighted by equation (25). 

Figure 6 illustrates the case where x = 0.9 and q = 0.7; the dark red region corresponds to the 

outcomes that can arise under information design with elicitation; adding in the pink region, we get 
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back to the triangle that corresponds to omniscient information design where the designer knows players’ 

prior information. 

Insert Figure 6: Investment Probability with Private Information. 

6.2.2 Information Design without Elicitation 

We could also consider a government, who does not know the signal of the firm and cannot even elicit 

it. Kolotilin, Li, Mylovanov, and Zapechelnyuk (2017) call this scenario "public persuasion." Such 

information design without elicitation has been the focus of the recent literature. 

Clearly, the designer can replicate any decision rule without elicitation with a decision rule with 

elicitation. This inclusion holds without any restrictions on the state space, the number of players, or 

the players’actions. In the specific investment example above, with a single player, two states, and two 

actions, the converse happens to be true as well. That is, the information designer can attain any decision 

rule with elicitation with one that does not use elicitation. In other words, in the binary setting and 

with a single player, there is no need for elicitation. The designer can induce any incentive compatible 

decision rule by recommendations alone. We state and prove these two results in the appendix as 

Proposition 5 and 6.15 

The equivalence breaks down immediately if either of the binary assumptions regarding action and 

state are relaxed, or we consider more than one player. We illustrate this failure of the equivalence result 

with a minor generalization of the investment example. In particular, in a single player environment, 

we allow the player to either consider a small or a large investment. For completeness, we present 

examples where one of the other two hypotheses fails in the appendix. This modified example allows us 

to find a strict nesting of the set of outcomes without prior information, with prior information and an 

omniscient designer, with elicitation and finally without elicitation. For the purpose of this example, it 

will be suffi cient to focus on the case of a single player. 

6.2.3 Beyond the Binary Setting 

Consider the basic investment example with I = 1, Θ = {B, G}, uniform prior, and symmetric types 

that are correct with probability q > 1/2. We now add an additional investment decision, to invest 

15 Kolotilin, Li, Mylovanov, and Zapechelnyuk (2017) showed such an equivalence under a different set of assumptions. 

In their model, the designer and the player are privately informed about distinct payoff states rather than having distinct 

information about the same state as in the present setting. 
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small, to the set of feasible actions of the player. The decision to invest small comes with a higher 

rate of return but smaller total return than the (regular) investment decision. The payoff from a small 

investment is −1/2 in the bad state and y ∈ (x/2, x) in the good state: 

bad state B good state G 

invest −1 x 

invest small −1 
2 y 

not invest 0 0 

For simplicity we restrict attention to decision rules that put zero probability on the small investment 

in equilibrium. We note that the small investment decision still plays a role in the characterization 

of incentive compatible decision rules as it is a feasible action to the player. It will hence generate 

additional obedience constraints that the designer has to respect as the player has now two possible 

deviations from the recommended action, one of which is to invest at a small scale. The decision rules 

—restricted to invest and not invest —can still be represented by a vector pθt = (pBb, pBg, pGb, pGg) that 

records the probability of investing. 

As a benchmark, first suppose the player has no prior information. Then a decision rule that never 

recommends the small investment can be represented as a pair (pB, pG) ∈ [0, 1]2 that specifies the 

probability of the large investment in each state. When the firm has no prior information, there are two 

binding obedience constraints, one for the big investment against the small investment: 

pGx − pB ≥ pGy − 
1 
pB ,
2

(26) 

and one for the no investment against the small investment:16 

0 ≥ (1 − pG)y − 
1 
2 
(1 − pB) . (27) 

The equilibrium regions are depicted in Figure 7. If the firm has no prior information, the government 

faces only the above two constraints. The set of attainable decision rules is described by the light red 

area. In contrast to the setting with two investment levels analyzed earlier, there is now a kink in the 

area of attainable decision rule that reflects a change in the binding obedience constraint, from zero 

investment to small investment. 

If we consider the case in which the firm has prior information, then we have three different commu-

nication protocols for the government. An omniscient designer faces the obedience constraints that we 

16 The other two possible incentive constraints, namely for the big investment recommendation not to invest all, and for 

no investment recommendation to invest big are supplanted by the above two. 
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analyzed earlier in Section 3.2. By contrast, if the firm holds private information, then the information 

designer is no longer omniscient. Now the firm has two possible ways to disobey. If the government 

does not observe the signal, but can elicit the information from the firm then we have truthtelling 

constraints as described by (23) and (24) in addition to the obedience constraints. Importantly, in this 

setting with more than two actions, the possibility of double deviations, misreporting and disobeying, 

generates additional constraints on the incentive compatible decision rules. 

Finally, a designer without elicitation faces additional obedience constraints that rule out deviations 

conditional on a particular vector recommendation. The corresponding areas in Figure 7 illustrate 

that the sequence of additional constraints from omniscient to elicitation to no elicitation imposing 

increasingly more restrictions on the government and hence generate a sequence of strictly nested sets. 

We already discussed how these three regimes offer an increasing number of constraints. It remains 

to discuss the specific impact of being able to elicit (or not) the private information. With elicitation, 

the player only learns the designer’s recommendation for one type, namely the type that he reports. 

But a designer who cannot elicit must reveal her action recommendations for all types, hence the 

contingent recommendation. This enables a player to contemplate additional contingencies and hence 

deviations. With three possible actions, as in this example, there are two additional deviations that 

take advantage of this finer information. In particular, the high type can disobey the recommendation 

to invest by deviating to invest small only when the designer also recommends not to invest to the low 

type. Likewise, the low type can disobey the recommendation not to invest by deviating to invest small 

only when the designer also recommends investing to the high type. The additional options for the 

player induce further constraints on the information designer. Naturally, these additional deviations 

were not available in the binary action environment. And in fact the absence of this large set of 

deviations accounts for the equivalence between elicitation and no elicitation in the binary action and 

state environment.17 

We conclude with a few observations about the comparative statics with respect to the information 

structure. As the precision of the information q decreases towards 1/2, the inner three regions expand 

outwards and converge to the no prior information equilibrium set. By contrast, as the precision q 

increases towards 1, the three inner regions contract and converge to the singleton (0, 1). 

Insert Figure 7: Investment Probability under Different Information Design 

Scenarios. 
17 We mentioned earlier that double deviations were not relevant in the binary environment in the sense that they do not 

add additional restrictions. This changes in the richer environment here where the communicating designer indeed faces 

additional restrictions coming from the possibility of double deviations. 

39 

http:environment.17


6.3 Information Design within Mechanism Design 

In the information design problem, the "information designer" can commit to providing information 

to the players to serve his ends, but has no ability to choose outcomes (or force the players to take 

particular actions). The set of available actions and a mapping from action profiles to outcomes and 

thus payoffs is fixed. How does this relate to "mechanism design"? 

Myerson (1982) describes a class of Bayes incentive problems, which constitutes a leading definition 

of mechanism design (see also Myerson (1987) and Myerson (1994)). In this setting, players may have 

control over some actions affecting outcomes but the mechanism designer may be able to commit to pick 

other outcomes as a function of the players’reports. For example, in many classical mechanism design 

problems with individual rationality constraints, players do have control over some actions: participation 

versus non-participation. And even if the mechanism designer may not have any information that is 

unavailable to the players, he can - via the mechanism - implicitly control the information that players 

have about each other. Myerson (1991) then labels the case where the mechanism designer has no direct 

control over outcomes "Bayesian games with communication" (Section 6.3); and the setting where the 

designer has complete control over outcomes "Bayesian collective choice problems" (Section 6.4). Thus 

what we are calling information design corresponds to Myerson’s Bayesian games with communication 

with the proviso that the mediator brings his own information to the table, rather than merely re-

distributing others’information. 

There is also an important literature on an informed player (referred to as informed principal) who 

can commit to choose outcomes as a function of messages, see (Myerson (1983)). But in this setting, the 

information designer (principal) is typically assumed to be able to commit to a mechanism only after 

receiving his private information and the principal is not choosing action herself; see Mylovanov and 

Troeger (2012), (2014) and Perez-Richet (2014) for recent contributions. By contrast, in the information 

design setting there is a principal who cannot pick a contract/mechanism but can commit to a disclosure 

rule prior to observing her information. 

6.4 Correlated Equilibrium and Incomplete Information 

Aumann (1987) introduced correlated equilibrium as a solution concept for games with complete infor-

mation (about the payoff matrix). He showed that the set of correlated equilibria equals the set of 

distributions over actions that could arise in a Bayes Nash equilibrium if players observed some addi-

tional payoff-irrelevant signals (consistent with the common prior). Equivalently, the set of correlated 

equilibria corresponds to the set of outcomes that could be induced by an (uninformed) information 
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designer. What we are calling "information design" thus corresponds to an incomplete information 

elaboration of this original rationale for thinking about correlated equilibrium when the information 

designer has information of her own.18 In this section, we review the existing literature on incom-

plete information correlated equilibrium to relate it to the version of incomplete information correlated 

equilibrium - Bayes correlated equilibrium - that is relevant for information design. 

While Aumann (1987) provides an information design foundation for complete information corre-

lated equilibrium, he offers a broader interpretation of the characterization, arguing that correlated 

equilibrium captures the implications of common knowledge of rationality in a complete information 

game, under the common prior assumption.19 A large literature on the epistemic foundations of game 

theory has developed since then (Dekel and Siniscalchi (2014)), elaborating on the formal language and 

questions suggested by Aumann’s work, although focussed on the case of complete information without 

the common prior assumption. Formal treatment of the implications of common knowledge of ratio-

nality and the common prior assumption under incomplete information ties in with many of the issues 

discussed in this survey; we will discuss one issue that arises in this case in the next subsection. 

To understand the literature on incomplete information correlated equilibrium, it is useful to identify 

two kinds of constraints in the literature on incomplete information correlated equilibrium: feasibility 

conditions (constraints on what kind of information decision rules can condition on) and incentive com-

patibility conditions (what decision rules are consistent with optimal behavior). In the paper so far, 

we have introduced one feasibility condition - public feasibility (Definition 3); and three incentive con-

straints, obedience (Definition 1), incentive compatibility (Definition 2) and publicly feasible obedience 

(Definition 4). Recall that Bayes correlated equilibrium - our characterization of outcomes that can be 

induced by an omniscient information designer - imposed only obedience. We will discuss two further 

feasibility conditions to provide an overview of correlated equilibrium with incomplete information. 

6.4.1 Belief Invariance 

Consider the requirement that the information designer can correlate players’ actions, but without 

changing players’beliefs and higher order beliefs about the state of the world. This is formalized as: 

18 Bergemann and Morris (2017) consider foundations for other solution concepts based on informational robustness and 

information design considerations, when the common prior assumption is not maintained. 
19 Hillas, Kohlberg, and Pratt (2007) propose a related alternative foundation for correlated equilibrium. Consider an 

external observer who observes an infinite sequence of plays of a complete information game, has exchangeable beliefs 

about them, but does not believe he can offer beneficial advice to players on how to improve their payoffs. This observer 

must believe that play corresponds to a correlated equilibrium. 
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Definition 5 (Belief Invariant) 

Decision rule σ : T × Θ → Δ(A) is belief invariant for (G, S) if, σi (ai| (ti, t−i) , θ) is independent 
of t−i, where X 

σi (ai| (ti, t−i) , θ) , σi ((ai, a−i) | (ti, t−i) , θ) 
a−i∈A−i 

for each t−i ∈ T−i. 

We then say that a decision rule is a belief invariant Bayes correlated equilibrium if it satisfies belief 

invariance and obedience. It is not obvious how this feasibility condition arises under an information 

design interpretation: if the designer can condition his information on θ, why not allow him to change 

beliefs and higher order beliefs? 

There are couple of conceptual reasons why one might nonetheless be interested in belief invariant 

BCE. First, Dekel, Fudenberg, and Morris (2007) introduced the solution concept of interim correlated 

rationalizability. They show that it characterizes the implications of common certainty of rationality 

and players’ beliefs and higher order beliefs. The solution concept by construction imposes belief 

invariance. Liu (2015) observes that the set of interim correlated rationalizable actions corresponds 

to the set of actions that can be played in a correlated equilibrium with incomplete information and 

subjective priors. If then the common prior assumption is imposed, this corresponds to the set of 

belief invariant Bayes correlated equilibria. Thus the solution concept of belief invariant BCE is the 

"right" one for understanding the implications of common knowledge assumptions under the common 

prior assumption. 

Second, Mathevet, Perego, and Taneva (2017) consider a situation where the information designer 

can convey information only about beliefs and higher-order beliefs, but is not able to send additional 

information about correlation. Now the set of belief invariant BCE once some higher-order belief 

information has been sent is equal to the set of BCE. Bergemann and Morris (2016a) describe how 

an arbitrary information structure can be decomposed into information about beliefs and higher-order 

beliefs and additional belief-invariant signals. 

6.4.2 Join Feasibility 

Twenty five years ago, Forges (1993) (see also Forges (2006)) gave an overview of incomplete information 

correlated equilibrium. A maintained assumption in that literature was that the information designer (or 

"mediator") did not bring any information of her own to the table, but simply re-arranged information, 

telling players privately about others’information. This can be formalized as: 
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Definition 6 (Join Feasibility) 

Decision rule σ : T × Θ → A is join feasible for (G, S) if σ (a|t, θ) is independent of θ, i.e., σ (a|t, θ) = � � 
σ a|t, θ0 for each t ∈ T , a ∈ A, and θ, θ0 ∈ Θ. 

Thus join feasibility allows the designer to use the join of the private information of all the players, 

the information contained in the entire type profile t. At the same time, it requires that the information 

designer can send information only about the type profile of the players and thus can only condition on 

the type profile, and not on the state of the world θ or θ0 . Join feasibility is imposed implicitly in some 

work on incomplete information correlated equilibrium - Forges (1993) integrates out uncertainty other 

than the players’types - but explicitly in others, e.g., Lehrer, Rosenberg, and Shmaya (2010). 

As noted in the introduction, information design adds to the old incomplete information correlated 

literature the twist that the designer brings information of her own to the table. In turn, this allows 

the designer to choose the optimal design and provision of the information to the players. 

Forges’1993 paper was titled "Five Legitimate Definitions of Correlated Equilibrium in Incomplete 

Information Games". The feasibility and incentive conditions described so far allow us to completely 

describe the five solution concepts she discusses: 

1. A Bayesian solution is a decision rule satisfying join feasibility and obedience. 

2. A belief invariant Bayesian solution is a decision rule satisfying join feasibility, belief invariance 

and obedience. 

3. An agent normal form correlated equilibrium is a decision rule satisfying join feasibility, public 

feasibility (which implies belief invariance) and obedience. 

4. A communication equilibrium is a decision rule satisfying join feasibility and incentive compati-

bility (which implies obedience) 

5. A strategic form correlated equilibrium is a decision rule satisfying join feasibility and publicly 

feasible obedience (which implies belief invariance, public feasibility, obedience and incentive com-

patibility). 

Thus the Bayesian solution, communication equilibrium and strategic form correlated equilibrium 

correspond to omniscient information design, information design with elicitation and information design 

without elicitation, respectively. The belief invariant Bayesian solution and the agent normal form 

correlated equilibrium do not have natural information design interpretations. 
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Forges (1993) noted inclusions implied by these definitions. In particular, if we write (n) for the set 

of incomplete information correlated equilibria of type n above, we have 

(5) ⊆ (3) ⊆ (2) ⊆ (1) and 

(5) ⊆ (4) ⊆ (1) 

Forges (1993) reports examples showing that these inclusions are the only ones that can be shown, i.e., 

there exist decision rules that (i) are Bayesian solutions but not belief invariant BCE or communication 

equilibria; (ii) are belief invariant Bayes solutions but not communication equilibria or agent normal 

form correlated equilibria; (iii) are communication equilibria but not belief invariant Bayesian solutions; 

(iv) are belief invariant Bayesian solutions and communication equilibria but not agent normal form 

equilibria; (v) are agent normal form correlated equilibria but not communication equilibria; (vi) are 

agent normal form correlated equilibria and communication equilibria. 

Forges (1993) discusses one more solution concept: the universal Bayesian solution. The universal 

Bayesian solutions corresponds - in our language - to the set of Bayes correlated equilibria that would 

arise under join feasibility if players had no information. 

7 Information Design with Adversarial Equilibrium 

and Mechanism Selection 

We have so far examined settings where the revelation principle holds: we can without loss of generality 

assume that the set of signals, or types, is equal to the set of actions. We now consider two natural 

extensions of information design where the revelation principle breaks down. 

7.1 Adversarial Equilibrium Selection 

In Section 2, it was implicitly assumed that the information designer could, having designed the infor-

mation structure, also select the equilibrium to be played. With one player the equilibrium selection 

problem reduces to breaking ties and is not of substantive interest. However, Carroll (2016) and Math-

evet, Perego, and Taneva (2017) highlighted that this issue is of first order importance in the many 

player case, and that the revelation principle argument breaks down and alternative arguments must be 

used; Mathevet, Perego, and Taneva (2017) formalize and analyze the case where players with no prior 

information will choose the worst equilibrium for the designer. 

For our representation, we define a "communication rule" for the information designer. Players � � 
have the prior information encoded in the information structure S = (Ti)

I , π . The information i=1 
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designer sends each player i an extra message mi ∈ Mi, according to rule φ : T × Θ → Δ(M), where � � 
M = M1 × · · · × MI . A communication rule is then C = (Mi)

I , φ . Now the basic game G, the i=1 

prior information structure S and the communication rule C describe a Bayesian game (G, S, C).20 A 

strategy for player i in this game is a mapping bi : Ti × Mi → Δ(Ai). A communication rule C and 

strategy profile b will now induce a decision rule ⎛ ⎞ X Y 
σ (a|t, θ) = φ (m|t, θ) ⎝ bi (ai|ti,mi)⎠ . 

m∈M i=1,...,I 

We will write E (C) for the set of Bayes Nash equilibria of the game with communication rule C. We 

can now give a more formal statement of Proposition 1: 

Proposition 4 

Decision rule σ is a Bayes correlated equilibrium of (G, S) if and only if there exists a communica-

tion rule C and a Bayes Nash equilibrium b ∈ E (C) which induce σ. 

This is a revelation principle argument that was formally stated as Theorem 1 in Bergemann and 

Morris (2016a). 

Recall that in Section 2, we defined the information designer’s utility from BCE σ: X 
V (σ) = ψ (θ) π (t|θ) σ (a|t, θ) v (a, θ) . 

θ,t,a 

We can also define the information designer’s utility from communication rule C and strategy profile b: ⎛ ⎞ X X Y 
V ∗ (C, b) = ⎝ψ (θ) π (t|θ) φ (m|t, θ) bi (ai|ti, mi)⎠ v (a, θ) . 

θ,t,a m∈M i=1,...,I 

Let us consider the problem of an information designer who can pick both the communication rule and 

the equilibrium and is thus solving the problem 

max max V ∗ (C, b) . 
C b∈E(C) 

Proposition 4 established that 

max max V ∗ (C, b) = max V (σ) . 
C b∈E(C) σ∈BCE 

20 Bergemann and Morris (2016a) call the pair (S, C) an "expanded information structure". 
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But one could also consider the problem of an information designer who can pick the communication 

rule but wants to maximize his utility in the worst equilibrium and is thus solving the problem 

21 max min V ∗ (C, b) . 
C b∈E(C) 

We now discuss three applications where maxmin information design problems have been motivated 

and studied; in each application, players have prior information. First, Carroll (2016) considers the 

problem of bilateral trade where he wants to know the worst possible gains from trade for a given 

distribution over the known private values of a buyer and a seller. If we picked the worst equilibrium we 

could always support no trade with probability one, so instead he considers the best equilibrium. This 

is equivalent to having an information designer pick an information structure to minimize the effi ciency 

of trade anticipating that the buyer and seller will play an equilibrium that maximizes effi ciency (i.e., 

maximizes the gains from trade). 

Second, Inostroza and Pavan (2017) consider global game models of regime change, and the problem 

of an information designer trying to minimize the probability of regime change (they are motivated by 

the design of stress tests to minimize the probability of a run on a bank). What information should 

the information designer send - as a function of the state and players’initial information - to minimize 

the probability of a run (they call this scenario "discriminatory" because the information designer can 

condition on players’prior information)? As in Carroll’s bilateral trade problem, the problem is not 

interesting if the designer is able to pick the equilibrium as well as the information structure: in this 

case, he can prevent the possibility of ineffi cient outcomes by creating common knowledge of payoffs and 

picking the good equilibrium. To make the problem interesting, they then study the maxmin problem. 

Finally, a literature on robustness to incomplete information (Kajii and Morris (1997)) can be 

understood as an information design problem with adversarial equilibrium selection. We will give an 

example to illustrate this connection.22 We will consider a slightly adapted version of the incomplete 

information investment game discussed earlier with payoffs: 

θ = B invest not invest 

invest x, x −1, 0 

not invest 0, −1 0, 0 

θ = G invest not invest 

invest x, x x, 0 

not invest 0, −1 0, 0 

for some 0 < x < 1, and the probability of state G is ε, and ε is small. Assume that the prior information 

is that player 1 knows the state and player 2 knows nothing. Thus player 1 has a dominant strategy to 

invest in state G, while there are multiple equilibria in the complete information game corresponding 

22 See also Hoshino (2017) on this connection. 
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to state B. In this setting, we can study the standard information design (with prior information) 

described above. Suppose that the information designer wants to maximize the probability that at least 

one player invests. Maintaining the assumption that the designer can pick the equilibrium, the answer 

is trivial: the information designer can simply give the players no additional information and there will 

be an equilibrium where players always invest. 

But what if the information designer anticipated that the worst equilibrium would be played? This 

is an information design with adversarial equilibrium selection. What information structure would the 

information designer choose and what would be the induced probability that at least one player invests? 

It is convenient and more transparent to the describe information structures using the language of 

partitions. 

Consider the information structure with state space Ω = {1, 2, ..., .., ∞} where player 1 observes an 

element of the partition: 

({1} , {2, 3} , {4, 5} , ..., {∞}) , 

and player 2 observes an element of the partition: 

({1, 2} , {3, 4} , ..., {∞}) . 

Thus, an element of the partition now constitutes a signal realization. Let payoffs be given by θ = G at � �ω� �
1 1−qstate 1 and by θ = B everywhere else. For some q ∈ 2 , 1 , let the probability of state ω =6 ∞ be ε q 

qand so the probability of state ∞ is 1 − 2q−1 ε (if ε is suffi ciently small). This information structure 

could arise from the prior information described above (only player 1 can distinguish between states B 
1and G) and communicating additional information. Now suppose that q > ; this condition implies 1+x 

that a player assigning probability q to the other player investing will always have a strict incentive 

to invest. Following the induction argument of Rubinstein (1989), invest is the unique rationalizable 

action for both players at all states ω 6 To see this observe that at state 1, player 1 has a dominant = ∞. 
strategy to invest. Now player 2 with information set {1, 2} must have a best response to invest, 
since he attaches probability q to player 1 investing. Now suppose that we have established that both 

players are investing at information sets of the form {ω, ω + 1} if ω ≤ k. Now consider the player with 

information set {k + 1, k + 2}. He attaches probability q to the other player being at information set 

{k, k + 1} and therefore investing. So the player with information set {k + 1, k + 2} will invest. This 
argument establishes that it is possible to ensure that - if ε is suffi ciently small - both players invest 

with probability q ε. Since this is true for any q > 1 , it implies that it is possible to get both 2q−1 1+x 

players to invest with probability arbitrarily close to 

1/ (1 + x) 1 
ε = ε. 

2/ (1 + x) − 1 1 − x 
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The information structure we used to get arbitrarily close to this bound was (countably) infinite, but 

we can also get arbitrarily close using finite information structures as shown in Kajii and Morris (1997). 

Now, arguments from Kajii and Morris (1997) imply that this information structure is (arbitrarily close 

to) optimal for the information designer in this problem. To get a flavor of the argument, say that a 

player p-believes an event if he attaches probability at least p to the event occurring, and that there is 

common p-belief of that event if each player p-believes it, each player p-believes that both p-believe it, 
xand so on. One can show that not invest is rationalizable only if there is common -belief that payoffs 1+x 

x 1correspond to state B. But since x < 1, > and one can show that if the event that payoffs are 1+x 2 

given by state B has probability at least 1 − ε, then - for suffi ciently small ε - the ex ante probability 

that there is common x -belief that the state is B is at least 1 − 1 ε. This establishes that the bound 1+x 1−x 

is tight. If x > 1, similar arguments can be used to show that the information designer can ensure that 

both players invest with probability 1. 

Arguments from Kajii and Morris (1997) and the follow up literature (Ui (2001) and Morris and Ui 

(2005)) can be used to analyze maxmin payoffs more generally when - as in the above example - the 

incomplete information game has each player either knowing that payoffs are given by a fixed complete 

information game or having a dominant strategy. 

It is worth emphasizing that the above definition of the maxmin problem, and all the three applica-

tions, correspond to the omniscient case where the information designer can condition on players’prior 

information as well as on the state. An alternative case that has been studied is when the information 

designer can only send public signals and only condition on the state (and not players’prior informa-

tion). Goldstein and Huang (2016) and Inostroza and Pavan (2017) have studied this problem in global 

game models of regime change (Inostroza and Pavan (2017) call this the non-discriminatory case to 

contrast with the discriminatory case described above). This case can be illustrated by our example 

above. An information designer interested in maximizing the probability of both investing would send 
εa public signal to invest always if the state was good and with probability x if the state was bad. 1−ε 

This would make player 2 indifferent between investing and not investing if he got the "invest" signal. 

7.2 Adversarial Mechanism Selection 

We considered an information designer who was choosing additional information for the players, holding 

fixed the basic game and players’prior information. But what if the information designer had to pick the 

information structure not knowing what the basic game, or mechanism, was going to be? In particular, 

suppose that the choice of mechanism was adversarial. Again, we will lose the revelation principle. 

Once the information designer has picked the information structure (and thus the set of signals), the 
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adversarial mechanism designer could pick a mechanism with a different set of messages. 

Bergemann, Brooks, and Morris (2016) consider the problem of an information designer picking 

an information structure for a set of players with a common value of an object to minimize revenue, 

anticipating that an adversarial mechanism designer will then pick a mechanism to maximize revenue 

(a minmax problem). This gives an upper bound on the revenue of the seller of a single object who 

is picking a mechanism anticipating that the worst information structure will be chosen (a maxmin 

problem). Du (2016) constructs elegant bounds for the latter problem and shows that these bounds are 

sharp in the limit as the number of bidders increases. The former establishes the equivalence between 

minmax and maxmin exactly when there are two bidders and when the support of the value is binary, 

and the latter solves the auction design problem in the limit when the number of bidders goes to infinity. 

In a recent paper Brooks and Du (2017) provide a general solution to the common value auction problem 

with a general common prior and a finite number of bidders. Both problems are studied without the 

common prior assumption by Chung and Ely (2007). 

8 Conclusion 

We have provided a unified perspective for a rapidly expanding literature on Bayesian persuasion and 

information design. In contrast with the recent literature on Bayesian persuasion that is concerned 

with a single player (receiver), we emphasized the implications of information design for many player 

strategic environments. We presented a two step approach to information design: first identify the set 

of attainable outcomes by means of some information structure; then identify the optimal information 

structure. We have described the close connection between the information design problem and the ear-

lier literature on correlated equilibrium with incomplete information; but whereas players are receiving 

real payoff relevant information in the information design problem, in the older correlated equilibrium 

literature, the designer (mediator) was merely providing correlating devices. 

We have focussed on a pure version of the static information design problem where the designer has 

no ability to control outcomes. But - as argued in Myerson (1982) and Myerson (1987) and discussed 

in Section 6.3 - there are settings where a designer can control some outcomes (as a function of players’ 

messages), but cannot control others and then can only use information to influence the outcomes 

outside her control. In other settings the principal may be able to jointly choose the mechanism and the 

information structures. For example, Bergemann and Pesendorfer (2007) consider the optimal design of 

information structure and auction format in an independent private value environment. More recently, 

Daskalakis, Papadimitriou, and Tzamos (2016) solve for the optimal auction and information design 
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when the seller and the bidders have each some private information about the valuation of the object. 

Their analysis is motivated by online advertising auctions where the two-way information asymmetry 

among seller and bidder is a central feature of the environment. 

As one moves into dynamic settings, an overlap between the tools of information design and mech-

anism design more generally become more central. A specific setting where the tools of mechanism 

design and information design have recently been studied in conjunction is the area of markets with 

resale. Here, the information which is disclosed in the first stage fundamentally affects the interaction 

in the resale market, see for example Calzolari and Pavan (2006), Dworczak (2016), Carroll and Segal 

(2016) and Bergemann, Brooks, and Morris (2017b). 

The information design problem - whether literal or metaphorical - identifies a mapping from the 

economic environment to possible outcomes, allowing for different choices of information structures. 

There is a second, reverse use, of information design for robust identification, identifying a mapping 

from outcomes to possible parameters of the economic environment, allowing that different information 

structures might have generated the data.23 For example, in an auction setting, one might consider 

a sample of bids from a sequence (or cross-section) of independent auctions. We can then ask what 

can we infer about the underlying distribution of valuations under weak assumption on the information 

structure, that is without assuming a specific information structure. Syrgkanis, Tamer, and Ziani (2017) 

pursue such an approach for inference and identification in an auction setting. Magnolfi and Roncoroni 

(2017) adopt a similar perspective in the analysis of discrete games, in particular entry and exit games. 

Many interesting avenues remain open in information design. There are many open methodological 

questions. The concavification approach has been very influential in the single player (receiver) setting, 

it is natural to ask if it can be as useful in the many player setting. In either the linear programming 

or the concavification approach, the optimal information structure is identified by a global optimization 

problem. It might be insightful to find a more local approach that could identify the direction of 

valuable information provision. We briefly mentioned a number of applications of information design 

in the introduction. Digital information is becoming widely used in the allocation and distribution of 

services and commodities, as in traffi c navigation apps such as Waze or Google Maps, recommender 

systems used by Netflix and Amazon, or service platforms such as Uber or OpenTable. This suggests 

that information design will naturally be part of the solution of large class of allocation problems. To 

the extent that the relevant information is arriving sequentially and improving over time, the resulting 

models will likely incorporate and address dynamic aspects. 

23 This reverse use is exposited in Bergemann and Morris (2012). 
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9 Appendix 

Additional Computation for Section 3.2 We observed in Section 3.1 that absent any additional 

information beyond the common prior the firm does not invest. For any additional private information 

of the firm to change the "default" behavior , it has to be that the firm is investing after receiving the 

good signal, or that 
1 − q 1 

qx + (1 − q) (−1) ≥ 0 ⇔ x ≥ ⇔ q ≥ . (28) 
q 1 + x 

In other words, the information has to be suffi ciently precise—thus q suffi ciently large—to induce a change 

in the behavior. 

Conditional on being type g, the firm will have an incentive to invest (when told to invest) under 

p = (pBb, pBg, pGb, pGg) if 

1 1 1 − q pBg − (1 − q) pBg + qpGgx ≥ 0 ⇔ pGg ≥ ,
2 2 q x 

(29) 

and an incentive to not invest (when told to not invest) if 

1 1 1 − q pBg 
0 ≥ − (1 − q) (1 − pBg) + q (1 − pGg) x ⇔ pGg ≥ 

2 2 q x 
1 − q 1 

+ 1 − . 
q x 

(30) 

A similar pair of incentive constraints apply to the recommendations conditional on being type b. 

As long as the private information of the firm is suffi ciently noisy, or q ≤ 1/ (1 + x), the binding 

constraint is (29) as in the uninformed case; otherwise it is the inequality (30) that determines the 

conditional probabilities. The obedience conditions for the firm observing a bad type b are derived in an 

analogous manner. The obedience conditions are defined type by type and we compute the restrictions 

on the conditional probabilities averaged across types. Now the decision rule (pBb, pBg, pGb, pGg) will 

induce behavior (pB , pG) integrating over types t ∈ {b, g}. 
The behavior of the equilibrium set is illustrated in Figure 2. Note that the sets becomes smaller 

as the firm’s private information improves. Intuitively, the firm’s private information limits the gov-

ernment’s ability to influence the firm’s decision as the private information tightens the obedience 

constraints. We observe that the boundary that describes the sets of obedient decision rules maintains 

a constant slope independent of q, namely 1/x, and it is only the intercept that moves upward. More-

over, the slope is identical with the one described in the problem of the uninformed firm. The lowest 

probability of investing in the good state is achieved if there is zero probability of investing in the bad 

state as derived earlier in (11). 

Additional Results for Section 6.2 For a given Bayesian game (G, S), let E(G, S), respectively, 

NE(G, S), denote the set of decision rules that can be attained with and without elicitation, respectively. 
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Proposition 5 

For each (G, S), we have 

NE(G, S) ⊆ E(G, S). 

Proof. Let σ ∈ NE(G, S), and let φ be an obedient contingent recommendation that induces σ. 

To show that σ ∈ E(G, S), we will verify that σ is incentive compatible. 
0Fix player i, types ti, ti 

0 ∈ Ti, and a function δi : Ai → Ai. For each strategy bi ∈ Bi, take a = i 

δi(bi(t
0 
i)) in player i’s (ti, bi) publicly feasible obedience constraint. Then sum the resulting inequalities 

over bi ∈ Bi. After regrouping the summation, we have ⎛ ⎞ X X ⎝ ui ((bi(ti), b−i(t−i)), θ) φ((bi, b−i)|θ)⎠ π(ti, t−i|θ)ψ(θ) 
t−i∈T−i,θ∈Θ (bi,b−i)∈B ⎛ ⎞ X X � �0⎝≥ ui (δi(bi(ti)), b−i(t−i)), θ φ((bi, b−i)|θ)⎠ π(ti, t−i|θ)ψ(θ). 
t−i∈T−i,θ∈Θ (bi,b−i)∈B 

We focus on the term in parentheses on each line. In the first line, group the summation according to 

the value of (bi(ti), b−i(t−i)) and use the fact that φ induces σ to obtain X 
ui((ai, a−i), θ)σ((ai, a−i)|(ti, t−i), θ). 

(ai,a−i)∈A 

In the second line, group the summation according to the value of (bi(t0 ), b−i(t−i)) and use the fact that i

φ induces σ to obtain X 
0 ui((δi(ai), a−i), θ)σ((ai, a−i)|(ti, t−i), θ). 

(ai,a−i)∈A 

Substituting these expressions into the inequality gives player i’s type-ti incentive constraint with devi-

ation t0 , δi. Since i, ti, t0 , δi are all arbitrary, the proof is complete. i i

Proposition 6 

Let (G, S) be a Bayesian game with I = 1. If |A| = 2 and |Θ| = 2, then 

NE(G, S) = E(G, S). 

Proof. By Proposition 5, it suffi ces to prove NE(G, S) ⊇ E(G, S). First, we simplify the notation. 

Label the states and actions so that Θ = {G, B} and A = {0, 1}. If either action is weakly dominant, 

the desired result can be verified by directly computing NE(G, S) and E(G, S). Therefore, we assume 

u(1, G) − u(0, G) and u(1, B) − u(0, B) are each nonzero and have opposite signs. Then without loss, 

we may assume the payoffs take the form u(0, G) = u(0, B) = 0, u(1, B) = −1 and u(1, G) = x > 
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0.24 Action 1 can be interpreted as investment. We will represent a decision rule σ by a vector 

p = (pθt)(θ,t)∈Θ×T , where pθt = σ(1|θ, t). For each signal t ∈ T , let 

ψ(G)π(t|G) 
q(t) = ,

π(t) 

where π(t) = ψ(G)π(t|G) + ψ(B)π(t|B) > 0 by assumption. 

Let p = (pθt) ∈ E(G, S). To show that p ∈ NE(G, S), we will explicitly construct an obedient 
0contingent recommendation φ that induces p. Let t, t0 ∈ T and set q = q(t) and q = q(t0). Since p 

satisfies the truthtelling constraint, 

qpGtx − (1 − q)pBt ≥ qpGt0 x − (1 − q)pBt0 , 

0 0 q pGt0 x − (1 − q 0)pBt0 ≥ q pGtx − (1 − q 0)pBt. 

0 0Taking (1 − q , 1 − q) and (q , q) linear combinations of these two inequalities respectively yields 

(q − q 0)(pGt − pGt0 )x ≥ 0 and (q − q 0)(pBt − pBt0 ) ≥ 0. 

So q(t) < q(t0) implies pθt ≤ pθt0 for θ ∈ {G, B}. In the case q = q0, both inequalities must hold with 

equality so 

q(pGt − pGt0 ) = (1 − q)(pBt − pBt0 ), 

and hence pGt ≥ pGt0 iff pBt ≥ pBt0 . Therefore, we can label the signals t1, . . . , tn so that 

q(t1) ≤ · · · ≤ q(tn) and pθt1 ≤ · · · ≤ pθtn for θ = B, G. (31) 

To simplify notation, define ql = q(tl) for each l = 1, . . . , n; set pθt0 = 0 and pθtn+1 = 1 for all θ. For 

each k = 1, . . . , n + 1, define the cutoff strategy bk by 

bk(tl) = 

⎧ ⎪⎨ ⎪⎩ 

1 if l ≥ k, 

0 otherwise. 

In particular b1 is unconditional investment, and bn+1 is unconditional non-investment. Define the 

stochastic contingent recommendation φ : Θ → Δ(B) by 

φ(b|θ) = 

⎧ ⎪⎨ ⎪⎩ 

pθtk − pθtk−1 if b = bk for some k = 1, . . . , n + 1, 

0 otherwise. 

24 First, swap the labels G and B if needed to obtain u(1, G) − u(0, G) > 0. Then rescale the utility function so that 

u(1, G) − u(0, G) = 1. Finally, translate the functions u(·, G) and u(·, B) separately so that u(0, G) = u(0, B) = 0. The 

separate translations may change the agent’s preferences over states but not over actions. 
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By (31), pθtk − pθtk−1 ≥ 0, so φ(·|θ) is a probability distribution for each θ ∈ {G, B}. It is easy to check 

that φ induces the decision rule p. 

To complete the proof, we verify that φ is obedient. For each l = 1, . . . , n and k = 1, . . . , n +1, type 

tl ’s expected utility from investing if and only if being recommended bk is: 

Ul|k = ql(pGtk − pGtk−1 )x − (1 − ql)(pBtk − pBtk−1 ). 

Since both expressions in parentheses are nonnegative, Ul|k is weakly increasing in l. Therefore, for 

types tl with l ≥ k, 

� � 
Ul|k ≥ Uk|k = (qkpGtk x − (1 − qk)pBtk ) − qkpGtk−1 x − (1 − qk)pBtk−1 ≥ 0, 

where the last inequality holds by truth-telling for k > 1 and obedience for k = 1. Similarly, for types 

tl with l < k, 

� � 
Ul|k ≤ Uk−1|k = (qk−1pGtk x − (1 − qk−1)pBtk ) − qk−1pGtk−1 x − (1 − qk−1)pBtk−1 ≤ 0. 

The last two inequalities establish the obedience of φ, so the proof is complete. 

Now we return to the main problem of finding (pBb, pBg, pGb, pGg). To compare these decision rules 

to the benchmark we will ultimately integrate over the signals to compute the probability of investment 

in each state. Formally, 

(pBb, pBg, pGb, pGg) → ((1 − q)pBg + qpBb, qpGg + (1 − q)pGb) . 

With an informed receiver, the omniscient designer faces four obedience constraints: � � 
1 − q

Δ1 
g , qpGgx − (1 − q)pBg − qpGgy − pBg ≥ 0, (32a)

2 � � 
Δ1 
b , (1 − q)pGbx − qpBb − (1 − q)pGby − 

q
pBb ≥ 0. (32b)
2

1 − q
Δ0 
g , q(1 − pGg)y − (1 − pBg) ≤ 0, (32c)

2 

Δ0 
b , (1 − q)(1 − pGb)y − 

q 
(1 − pBb) ≤ 0. (32d)
2

More precisely, Δ1 denotes the difference in type t’s utility between investing large and small when t 

told to invest large and Δ0 denotes the difference in type t’s utility between investing small and not t 

investing when told not to invest. We thus have only ruled out profitable truthful deviations to the 

small investment, but it can be shown that this implies that there are no profitable truthful deviations 

to not invest or to invest large. An information designer with elicitation faces four additional constraints 
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ruling out non-truthful deviations: 

qpGgx − (1 − q)pBg ≥ qpGbx − (1 − q)pBb, (33a) 

1 + pBb 
qpGgx − (1 − q)pBg ≥ q(pGbx + (1 − pGb)y) − (1 − q) , (33b)

2 

(1 − q)pGbx − qpBb ≥ (1 − q)pGgx − qpBg, (33c) 

(1 − q)pGbx − qpBb ≥ (1 − q)pGgy − 
q
pBg. (33d)
2

Again, it is suffi cient to consider a smaller class of deviations because the high type finds investment 

more attractive than the low type does. Formally, E(G, S) is the set of p ∈ [0, 1]4 satisfying (32a)-(33d). 

Now we determine the additional constraints faced by an information designer without elicita-

tion. Since there are only two signals, we may represent each strategy b : T → A as an ordered pair 

(b(g), b(b)) ∈ A2 . (In the second component, the letter b is used in two different ways, to denote a 

strategy and a signal.) The strategy b = (not invest, invest) can never be obedient for both types, so 

for any p ∈ NE(G, S), there is only one candidate φ, namely 

φ((0, 0)|θ) = 1 − pθg, 

φ((0, 1)|θ) = 0, 

φ((1, 0)|θ) = pθg − pθb, 

φ((1, 1)|θ) = pθb, 

for each θ ∈ {B, G}. A designer without elicitation faces two additional obedience constraints, which 

prevent deviations following the recommendation (invest,not invest): 

1 − q 
q(pGg − pGb)x − (1 − q)(pBg − pBb) ≥ q(pGg − pGb)y − (pBg − pBb), (34a)

2 

(1 − q)(pGg − pGb)y − 
q 
(pBg − pBb) ≤ 0. (34b)
2

Formally, NE(G, S) is the set of decision rules in E(G, S) satisfying (34a) and (34b). 

After some algebra, we can see that (34a) is equivalent to 

Δ1 ≥ Δ1 
b + pGb(2q − 1)(x − y) + pBb(2q − 1)/2. (35)g 

When p puts positive probability on investing after a bad signal, (35) eliminates decision rules for which 

(32a) has little slack. Similarly, (34b) is equivalent to 

Δ0 
b ≤ Δ0 − (1 − pGg)(2q − 1)y − (1 − pBg)(2q − 1)/2. (36)g 

When p puts positive probability on not investing after a good signal, (36) eliminates decision rules for 

which (32d) does not have too much slack. 
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Example 1 (Two Agents) Suppose I = 2, Θ = {B, G}, A1 = A2 ={invest, not invest}, and 

ui(ai, a−i, θ) = u(ai, θ) with u as in the opening example given by (5). Each player i receives a condi-

tionally independent signal ti ∈ {g, b} that is correct with probability qi > 1/2. Suppose q1 > q2, so that 

player 1 receives a more accurate signal. Consider the following decision rule: both players invest if 

player 1’s signal is good and neither agent invests if player 1’s signal is bad. For x suffi ciently near one, 

this decision rule is incentive compatible. However, it is not even publicly feasible because following any 

contingent recommendation, player 2’s choice of action will depend on her own signal, not on player 

1’s. 

Example 2 (Three States) Consider the single player, single investment setting of the opening ex-

ample given by (5), but now split the bad state into two bad states B1 and B2, each with prior probability 

1/4 and the same payoffs as in state B of the original example. Suppose the agents receive a completely 

uninformative binary signal t taking values t1 and t2 with equal probability. Consider the following 

decision rule: type ti invests precisely in states G and Bi. For x ∈ (1/2, 1), this decision rule is in-

centive compatible. It is uniquely induced by recommending (b(t1), b(t2)) = (invest, invest) in state G; 

(b(t1), b(t2)) = (invest,not invest) in state B1; and (b(t1), b(t2)) = (not invest,invest) in state B2. How-

ever, this contingent recommendation perfectly reveals the state of the world, so the agent can profitably 

deviate to his first-best strategy of investing iff the state is G. Therefore, the decision rule is not publicly 

feasible obedient. 
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