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Abstract

This paper considers tests and con�dence sets (CS�s) concerning the coe¢ cient on the endogenous vari-

able in the linear IV regression model with homoskedastic normal errors and one right-hand side endogenous

variable. The paper derives a �nite-sample lower bound function for the probability that a CS constructed

using a two-sided invariant similar test has in�nite length and shows numerically that the conditional likeli-

hood ratio (CLR) CS of Moreira (2003) is not always �very close�to this lower bound function. This implies

that the CLR test is not always very close to the two-sided asymptotically-e¢ cient (AE) power envelope for

invariant similar tests of Andrews, Moreira, and Stock (2006) (AMS).

On the other hand, the paper establishes the �nite-sample optimality of the CLR test when the correlation

between the structural and reduced-form errors, or between the two reduced-form errors, goes to 1 or -1 and

other parameters are held constant, where optimality means achievement of the two-sided AE power envelope

of AMS. These results cover the full range of (non-zero) IV strength.

The paper investigates in detail scenarios in which the CLR test is not on the two-sided AE power

envelope of AMS. Also, the paper shows via theory and numerical work that the CLR test is close to having

greatest average power, where the average is over a grid of concentration parameter values and over pairs

alternative hypothesis values of the parameter of interest, uniformly over pairs of alternative hypothesis

values and uniformly over the correlation between the structural and reduced-form errors.

The paper concludes that, although the CLR test is not always very close to the two-sided AE power

envelope of AMS, CLR tests and CS�s have very good overall properties.

Keywords: Conditional likelihood ratio test, con�dence interval, in�nite length, linear instrumental

variables, optimal test, weighted average power, similar test.

JEL Classi�cation Numbers: C12, C36.



1 Introduction

The linear instrumental variables (IV) regression model is one of the most widely used models

in economics. It has been widely studied and considerable e¤ort has been made to develop good

estimation and inference methods for it. In particular, following the recognition that standard two

stage least squares t tests and con�dence sets (CS�s) can perform quite poorly under weak IV�s

(see Dufour (1997), Staiger and Stock (1997), and references therein), inference procedures that

are robust to weak IV�s have been developed, e.g., see Kleibergen (2002) and Moreira (2003, 2009).

The focus has been on models with one right-hand side (rhs) endogenous variable, because this

arises most frequently in applications, and on over-identi�ed models, because Anderson and Rubin

(1949) (AR) tests and CS�s are robust to weak IV�s and perform very well in exactly-identi�ed

models.

Andrews, Moreira, and Stock (2006) (AMS) develop a �nite-sample two-sided AE power en-

velope for invariant similar tests concerning the coe¢ cient on the rhs endogenous variable in the

linear IV model under homoskedastic normal errors and known reduced-form variance matrix. They

show via numerical simulations that the conditional likelihood ratio (CLR) test of Moreira (2003)

has power that is essentially (i.e., up to simulation error) on the power envelope. Chernozhukov,

Hansen, and Jansson (2009) (CHJ) show that this power envelope also applies to non-invariant

tests provided the envelope is for power averaged over certain direction vectors in a unit sphere.

CHJ also shows that the invariant similar tests that generate the two-sided AE power envelope

are �-admissible and d-admissible. Mikusheva (2010) provides approximate optimality results for

CLR-based CS�s that utilize the testing results in AMS. Chamberlain (2007), Andrews, Moreira,

and Stock (2008), and Hillier (2009) provide related results.

It is shown in Dufour (1997) that any CS with correct size 1�� must have positive probability
of having in�nite length at every point in the parameter space. The AR and CLR CS�s have this

property. In fact, simulation results show that in some over-identi�ed contexts the AR CS has

a lower probability of having an in�nite length than the CLR CS does. For example, consider a

model with one rhs endogenous variable, k IV�s, a concentration parameter �v (which is a measure

of the strength of the IV�s), homoskedastic normal errors, a correlation �uv between the structural-

equation error and the reduced-form error (for the �rst-stage equation) equal to zero, and no

covariates. When (k; �v) equals (2; 7); (5; 12); (10; 15); (20; 20); and (40; 20); the di¤erences between

the probabilities that the 95% CLR and AR CS�s have in�nite length are :016; :029; :037; :044;

and :049; respectively.1 In fact, one obtains positive di¤erences for all combinations of (k; �v) for

k = 2; 5; 10; 20; 40 and �v = 1; 5; 10; 15; 20: Hence, in these over-identi�ed scenarios the AR CS
1See Table SM-I in the Supplemental Material.
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outperforms the CLR CS in terms of its in�nite-length behavior, which is an important property

for CS�s. Similarly, one obtains positive (but smaller) di¤erences also when �uv = :3 for the same

range of (k; �v) values. On the other hand, for �uv = :5; :7; and :9; the di¤erences are negative over

the same range of (k; �v) values.

The AR and CLR CS�s are based on inverting AR and CLR tests that fall into the class of

invariant similar tests considered in AMS. Hence, the simulation results for �uv = :0 and :3 raise

the question: how can these results be reconciled with the near optimal CLR test and CS results

described above? In this paper, we answer this question and related questions concerning the

optimality of the CLR test and CS.

The contributions of the paper are as follows. First, the paper shows that the probability that

an invariant similar CS has in�nite length for a �xed true parameter value �� equals one minus the

power against �� of the test used to construct the CS as the null value �0 goes to 1 or �1: This
leads to explicit formulae for the probabilities that the AR and CLR CS�s have in�nite length.

Second, the paper uses the �rst result to determine a �nite-sample lower bound function on

the probabilities that a CS has in�nite length for CS�s based on invariant similar tests. The lower

bound function is found to be very simple. It is a function only of j�uvj; �v; and k: These results
allow one to compare the probabilities that the AR and CLR CS�s have in�nite length with the

lower bound.

Third, simulation results show that the AR and CLR CS�s are not always close to the lower

bound. This is not surprising for the AR CS, but it is surprising for the CLR CS in light of the

AMS results. The probabilities that the CLR CS has in�nite length are found to be o¤ the lower

bound function by a magnitude that is decreasing in j�uvj; increasing in k; and are maximized over
�v at values that correspond to somewhat weak IV�s, but not irrelevant IV�s. For �uv = 0; the paper

shows (analytically) that the AR test achieves the lower bound function. Hence, for �uv = 0; the

probabilities that the CLR CS has in�nite length exceed the lower bound by the same amounts as

reported above for the di¤erence between the in�nite length probabilities of the CLR and AR CS�s

for several (k; �v) values. On the other hand, for values of j�uvj � :7; the CLR CS has probabilities

of having in�nite length that are close to the lower bound function, :010 or less and typically much

less, for all (k; �v) combinations considered. For values of j�uvj � :7; the AR CS has probabilities

of having in�nite length that are often far from the lower bound. For j�uvj = :9 and certain values

of �v; they are as large as :084; :196; :280; :353; and :422 for k = 2; 5; 10; 20; and 40; respectively.2

Fourth, the paper derives new optimality properties of the CLR test when �uv ! �1 or �
 ! �1
with other parameters �xed at any values (with non-zero concentration parameter), where �


2See Table SM-I in the SM.

2



denotes the correlation between the reduced-form errors. Optimality here is in the class of invariant

similar tests or similar tests and employs the two-sided AE power envelope of AMS. These results

are consistent with the numerical results that show that the CLR test is very close to the power

envelope when j�uvj is large.
Fifth, we simulate power di¤erences (PD�s) between the two-sided AE power envelope of AMS

and the power of the CLR test for a �xed alternative value �� and a range of �nite null values

�0 (rather than the PD�s as �0 ! �1 discussed above). These PD�s are equivalent to the false

coverage probability di¤erences between the CLR CS and the corresponding infeasible optimal

CS for a �xed true value �� at incorrect values �0: We consider a wide range of (�0; �v; �uv; k)

values. The maximum (over �0 and �v values) PD�s range between [:016; :061] over the (�uv; k)

values considered. On the other hand, the average (over �0 and � values) PD�s only range between

[:002; :016]: This indicates that, although there are some (�0; �) values at which the CLR test is

noticeably o¤ the power envelope, on average the CLR test�s power is not far from the power

envelope. The maximum PD�s over (�0; �) are found to increase in k and decrease in j�uvj: The
�v values at which the maxima are obtained are found to (weakly) increase with k and decrease

in j�uvj: The j�0j values at which the maxima are obtained are found to be independent of k and
decrease in j�uvj:

Sixth, the paper considers a weighted average power (WAP) envelope with a uniform weight

function over a grid of concentration parameter values �v and the same two-point AE weight

function over (�; �) as in AMS. We refer to this as the WAP2 envelope. We determine numerically

how close the power of the CLR test is to the WAP2 envelope. We �nd that the di¤erence between

the WAP2 envelope and the average power of the CLR test is in the range of [:001; :007] over all

of the (�0; ��; �uv; k) values that we consider. Hence, the average power of the CLR test is quite

close to the WAP2 envelope.

Other papers in the literature that consider WAP include Wald (1943), Andrews and Ploberger

(1994), Andrews (1998), Moreira and Moreira (2013), Elliott, Müller, and Watson (2015), and

papers referenced above. The WAP2 envelope considered here is closest to the WAP envelopes

in Wald (1943), AMS, and CHJ because the other papers listed put a weight function over all of

the parameters in the alternative hypothesis, which yields a single weighted alternative density. In

contrast, the WAP2 envelope, Wald (1943), AMS, and CHJ consider a family of weight functions

over disjoint sets of parameters in the alternative hypothesis, which yields a WAP envelope.

In conclusion, based on our �ndings, we recommend use of the CLR test and CS. More specif-

ically, we recommend using heteroskedasticity-robust versions of these procedures that have the

same asymptotic properties as these procedures under homoskedasticity. For example, such tests
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are given in Andrews, Moreira, and Stock (2004) and Andrews and Guggenberger (2015). The

CLR CS has higher probability of having in�nite length than the AR CS in some scenarios, and

the CLR test is not a UMP two-sided invariant similar test. But, no such UMP test exists and the

CLR CS is close to the two-sided AE power envelope for invariant similar tests when j�uvj is not
close to zero and is close to the WAP2 envelope for all values of j�uvj:

Finally, we point out that the results of this paper illustrate a point that applies more generally

than in the linear IV model. In weak identi�cation scenarios, where CS�s may have in�nite length

(or may be bounded only due to bounds on the parameter space), good test performance at a priori

implausible parameter values is important for good CS performance at plausible parameter values.

More speci�cally, the probability under an a priori plausible parameter value �� that a CS has

in�nite length depends on the power of the test used to construct the CS against �� when the null

value j�0j is arbitrarily large, which may be an a priori implausible null value.
For the computation of CLR CS�s, see Mikusheva (2010). For a formula for the power of the

CLR test, see Hillier (2009).

The paper is organized as follows. Section 2 speci�es the model. Section 3 de�nes the class

of invariant similar tests. Section 4 provides a formula for the probability that a CS has in�nite

length. Section 5 derives a lower bound on the probability that a CS constructed using two-sided

invariant similar tests has in�nite length. Section 6 reports di¤erences between the probability

that the CLR CS has in�nite length and the lower bound derived in the previous section. Section

7 proves the optimality results for the CLR test described above. Section 8 reports di¤erences

between the power of CLR tests and the two-sided AE power bound of AMS for a wide range of

parameter con�gurations. Section 9 provides comparisons of the power of the CLR test to the

WAP2 power envelope described above. Proofs and additional theoretical and numerical results

are given in the Supplemental Material (SM).

2 Model

We consider the same model as in Andrews, Moreira, and Stock (2004, 2006) (AMS04,

AMS) but, for simplicity and without loss of generality (wlog), without any exogenous variables.

The model has one rhs endogenous variable, k instrumental variables (IV�s), and normal errors

with known reduced-form error variance matrix. The model consists of a structural equation and

a reduced-form equation:

y1 = y2� + u and y2 = Z� + v2; (2.1)
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where y1; y2 2 Rn and Z 2 Rn�k are observed variables; u; v2 2 Rn are unobserved errors; and

� 2 R and � 2 Rk are unknown parameters. The IV matrix Z is �xed (i.e., non-stochastic) and

has full column rank k: The n� 2 matrix of errors [u:v2] is i.i.d. across rows with each row having
a mean zero bivariate normal distribution.

The two corresponding reduced-form equations are

Y := [y1 :y2] := [Z�� + v1 :Z� + v2] = Z�a0 + V; where

V := [v1 : v2] = [u+ v2� : v2]; and a := (�; 1)0: (2.2)

The distribution of Y 2 Rn�2 is multivariate normal with mean matrix Z�a0; independence across
rows, and reduced-form variance matrix 
 2 R2�2 for each row. For the purposes of obtaining

exact �nite-sample results, we suppose 
 is known. As in AMS, asymptotic results for unknown 


and weak IV�s are the same as the exact results with known 
: The parameter space for � = (�; �0)0

is Rk+1:

We are interested in tests of the null hypothesis H0 : � = �0 and CS�s for �:

As shown in AMS, Z 0Y is a su¢ cient statistic for (�; �0)0: As in Moreira (2003) and AMS, we

consider a one-to-one transformation [S : T ] of Z 0Y :

S := (Z 0Z)�1=2Z 0Y b0 � (b00
b0)�1=2 � N(c�(�0;
) � ��; Ik) and

T := (Z 0Z)�1=2Z 0Y 
�1a0 � (a00
�1a0)�1=2 � N(d�(�0;
) � ��; Ik); where

b0 := (1;��0)0; a0 := (�0; 1)0; �� := (Z 0Z)1=2� 2 Rk;

c�(�0;
) := (� � �0) � (b00
b0)�1=2 2 R;

d�(�0;
) := b0
b0 � (b00
b0)�1=2 det(
)�1=2 2 R; and b = (1;��)0: (2.3)

As de�ned, S and T are independent. Note that S and T depend on the null hypothesis value �0:

3 Invariant Similar Tests

As in Hillier (1984) and AMS, we consider tests that are invariant to orthonormal transfor-

mations of [S : T ]; i.e., [S : T ] ! [FS : FT ] for a k � k orthogonal matrix F: The 2� 2 matrix Q
is a maximal invariant, where

Q = [S:T ]0[S:T ] =

24 S0S S0T

S0T T 0T

35 =
24 QS QST

QST QT

35 and Q1 =

0@ S0S

S0T

1A =

0@ QS

QST

1A ; (3.1)
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e.g., see Theorem 1 of AMS. Note that Q1 is the �rst column of Q and the matrix Q depends on

the null value �0:

The statistic Q has a non-central Wishart distribution because [S :T ] is a multivariate normal

matrix that has independent rows and common covariance matrix across rows. The distribution of

Q depends on � only through the scalar

� := �0Z 0Z� � 0: (3.2)

Leading examples of invariant identi�cation-robust tests in the literature include the AR test,

the LM test of Kleibergen (2002) and Moreira (2009), and the CLR test of Moreira (2003). The

latter test depends on the standard LR test statistic coupled with a �conditional� critical value

that depends on QT . The LR, LM, and AR test statistics are

LR :=
1

2

�
QS �QT +

q
(QS �QT )2 + 4Q2ST

�
;

LM := Q2ST =QT = (S0T )2=T 0T; and AR := QS=k = S0S=k: (3.3)

The critical values for the LM and AR tests are �21;1�� and �
2
k;1��=k; respectively, where �

2
m;1��

denotes the 1� � quantile of the �2 distribution with m degrees of freedom.

A test based on the maximal invariant Q is similar if its null rejection rate does not depend

on the parameter � that determines the strength of the IV�s Z: As in Moreira (2003), the class of

invariant similar tests is speci�ed as follows. Let the [0; 1]-valued statistic �(Q) denote a (possibly

randomized) test that depends on the maximal invariant Q: An invariant test �(Q) is similar with

signi�cance level � if and only if E�0(�(Q)jQT = qT ) = � for almost all qT > 0 (with respect to

Lebesgue measure), where E�0(�jQT = qT ) denotes conditional expectation given QT = qT when

� = �0 (which does not depend on �):

The CLR test rejects the null hypothesis when

LR > �LR;�(QT ); (3.4)

where �LR;�(QT ) is de�ned to satisfy P�0(LR > �LR;�(QT )jQT = qT ) = � and the conditional

distribution of Q1 given QT is speci�ed in AMS and in (11.3) in the SM.

The invariance condition discussed above is a rotational invariance condition. In some cases,

we also consider a sign invariance condition. A test that depends on [S : T ] is sign invariant if it is

invariant to the transformation [S : T ] ! [�S : T ]: A rotation invariant test is also sign invariant
if it depends on QST only through jQST j: Tests that are sign invariant are two-sided tests. In fact,
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AMS shows that the two-sided AE power envelope is identical to the power envelope generated by

sign and rotation invariant tests, see (4.11) in AMS.

For simplicity, we will use the term invariant test to mean a rotation invariant test and the term

sign and rotation invariant test to describe a test that satis�es both invariance conditions.

The paper also provides some results that apply to tests that satisfy no invariance properties.

A test �([S : T ]) (that is not necessarily invariant) is similar with signi�cance level � if and only if

E�0(�([S : T ])jT = t) = � for almost all t (with respect to Lebesgue measure), where E�0(�jT = t)

denotes conditional expectation given T = t when � = �0 (which does not depend on �); see

Moreira (2009).

4 Probability That a Con�dence Set Has In�nite Length

In this section, we show that the probability that a con�dence set (CS) has in�nite length is

given by one minus the power of the test used to construct the CS as the null value �0 of the test

goes to1 or �1: This provides motivation for interest in the power of tests as �0 ! �1: It shows
why high power against distant null hypotheses is highly desirable.

We sometimes make the dependence of Q; S; and T on Y and �0 explicit and write

Q = Q�0(Y ) = [S�0(Y ) : T�0(Y )]
0[S�0(Y ) : T�0(Y )]: (4.1)

We denote the (1; 1); (1; 2); and (2; 2) elements of Q�0(Y ) by QS;�0(Y ); QST;�0(Y ); and QT;�0(Y );

respectively.

Let

�(Q�0(Y )) = 1(T (Q�0(Y )) > cv(QT�0(Y ))) (4.2)

be a (nonrandomized) invariant similar level � test for testing H0 : � = �0 for �xed known 
;

where T (Q�0(Y )) is a test statistic and cv(QT�0(Y )) is a (possibly data-dependent) critical value.
Examples include the AR, LM, and CLR tests in (3.3). Let CS� be the level 1�� CS corresponding
to �: That is,

CS�(Y ) = f�0 : �(Q�0(Y )) = 0g: (4.3)

We say CS�(Y ) has right (or left) in�nite length, which we denote by RLength(CS�(Y )) =1
(or LLength(CS�(Y )) =1), if

9K(Y ) <1 such that � 2 CS�(Y ) 8� � K(Y ) (or 8� � �K(Y )): (4.4)

7



We say CS�(Y ) has in�nite length, which we denote by Length(CS�(Y )) =1; if it has right and
left in�nite lengths. A CS with in�nite length contains a set of the form (�1;K1(Y ))[(K2(Y );1)
for some �1 < K1(Y ) � K2(Y ) <1:

Let P��;�;
(�) denote probability for events determined by Y when Y has a multivariate normal
distribution with means matrix [��� : �] 2 R2k; independence across rows, and variance matrix 

for each row. Let P��;�0;�;
(�) denote probability for events determined by Q when Q := [S : T ]

0[S :

T ] and [S : T ] has the multivariate normal distribution in (2.3) with � = �� and � = �0���: In this

case, Q has a noncentral Wishart distribution whose density is given in (11.2) in the SM.

For �xed true value �� and reduced-form variance matrix 
; let �� denote the corresponding

structural variance matrix of each row of [u : v2]: Let �uv denote the correlation between the

structural and reduced-form errors, i.e., the correlation corresponding to ��: Some calculations

show that

�uv =
!12 � !22��

(!21 � 2!12�� + !22�2�)1=2!2
and

�� =

24 �2u �u�v�uv

�u�v�uv �2v

35 =
24 !21 � 2!12�� + !22�2� !12 � !22��

!12 � !22�� !22

35 ; (4.5)

where !21; !
2
2; and !12 denote the (1; 1); (2; 2); and (1; 2) elements of 
; respectively, see (11.9) in

the SM.

It is shown in Lemma 15.1 in the SM that the limit as �0 ! �1 of Q�0(Y ) is

Q�1(Y ) :=

24 e02Y
0PZY e2 � 1�2v e02Y

0PZY 

�1e1 � �(1��

2
uv)

1=2�u
�v

e02Y
0PZY 


�1e1 � �(1��
2
uv)

1=2�u
�v

e01

�1Y 0PZY 


�1e1 � (1� �2uv)�2u

35 ; (4.6)

where PZ := Z(Z 0Z)�1Z 0; e1 := (1; 0)0; and e2 := (0; 1)0: Let QT;�1(Y ) denote the (2; 2) element

of Q�1(Y ): It is also shown in Lemma 15.1 in the SM that Q�1(Y ) has a noncentral Wishart

distribution with means matrix ���(1=�v; �uv=(�v(1 � �2uv)
1=2)) 2 Rk�2 and identity variance

matrix.3

Theorem 4.1 Suppose CS�(Y ) is a CS based on invariant level � tests �(Q�0(Y )) whose test

statistic and critical value functions, T (q) and cv(qT ); respectively, are continuous at all positive
de�nite 2 � 2 matrices q and positive constants qT ; P��;�;
(T (Qc(Y )) = cv(QT;c(Y ))) = 0 for

c = +1 in parts (a) and (c) below and c = �1 in part (b) below. Then, for all (��; �;
);

(a) P��;�;
(RLength(CS�(Y )) =1) = 1� lim�0!1 P��;�0;�;
(�(Q) = 1);

3The density of this distribution is given in (11.4) in the SM.
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(b) P��;�;
(LLength(CS�(Y )) =1) = 1� lim�0!�1 P��;�0;�;
(�(Q) = 1); and

(c) if the tests are sign invariant, i.e., T (Q) depends on QST only through jQST j; then
P��;�;
(Length(CS�(Y )) =1) = 1� lim�0!�1 P��;�0;�;
(�(Q) = 1):

Comments. (i). For the AR, LM, and LR tests, the continuity conditions on T (q) and cv(qT )
hold given their simple functional forms in (3.3) using the assumption that qT > 0 for the LM

statistic and using the continuity of �LR;�(qT ); which holds by the argument in the proof of Thm.

10.1 in Andrews and Guggenberger (2016). We have P��;�;
(T (Q�1(Y )) = cv(QT;�1(Y ))) = 0 for

the AR and LM tests because cv(QT;�1(Y )) is a constant and T (Q�1(Y )) is absolutely continuous
with respect to Lebesgue measure. For the CLR test, P��;�;
(T (Q�1(Y )) = cv(QT;�1(Y ))) = 0 by

the argument given in the proof of Theorem 5.4 in the SM. The AR, LM, and CLR test statistics are

sign invariant. Hence, parts (a)-(c) of Theorem 4.1 apply to these tests. Theorem 5.4(a)-(c) below

provides formulae for the quantities lim�0!�1 P��;�0;�;
(�(Q) = 1); which appear in Theorem 4.1,

for the AR, LM, and CLR tests.

(ii). Comment (iii) to Theorem 5.2 below provides a lower bound on 1�lim�0!1 P��;�0;�;
(�(Q)

= 1) over all sign and rotation invariant similar level � tests. Combining this with Theorem 4.1(c)

yields a lower bound on the probability that a CS CS�(Y ) based on such tests has Length = 1:
The lower bound on the probability that Length = 1 is greater than the lower bound on the

probability that RLength =1 (or that LLength =1) unless �uv = 0 (in which case it turns out
that they are equal).

Theorem 12.1 in the SM provides lower bounds on 1� lim�0!�1 P��;�0;�;
(�(Q) = 1) over all

invariant similar level � tests. Combining these with Theorem 4.1(a) and (b) yields lower bounds

on the probabilities that a CS CS�(Y ) has RLength = 1 based on �0 ! 1 and LLength = 1
based on �0 ! �1:

(iii). The results of Theorem 4.1(a) and (b) also hold for a CS�(Y ) that is based on level

� tests that are not invariant. Denote such tests by �(S�0(Y ); T�0(Y )) and suppose their test

statistic and critical value functions, T (s; t) and cv(t); respectively, are continuous at all k � 2
matrices [s : t] and k vectors t and satisfy P��;�;
(T (Sc(Y ); Tc(Y )) = cv(Tc(Y ))) = 0 for c = +1;
where S�1(Y ) := �(Z 0Z)�1=2Z 0Y e2=�v and T�1(Y ) := �(Z 0Z)�1=2Z 0Y 
�1e1 � (1� �2uv)1=2�u: In
this case, P��;�;
(RLength(CS�(Y )) = 1) = 1 � lim�0!1 P��;�0;�;
(�([S : T ]) = 1) and likewise

with LLength(�); �0 ! �1; and c = �1 in place of RLength(�); �0 !1; and c = +1:
(iv). By Dufour (1997), all CS�s for � with correct size must have positive probability of

having in�nite length (assuming � is not bounded away from 0). In consequence, expected CS

length, which is a standard measure of the performance of a CS, is in�nite for all identi�cation-

robust CS�s. Due to this, Mikusheva (2010) compares CS�s based on their expected truncated
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lengths for various truncation values. The result of Theorem 5.2 below implies that, for two CS�s

where the rhs of Theorem 5.2(c) is smaller for the �rst CS than the second, the �rst CS has smaller

expected truncated length than the second for su¢ ciently large truncation values.

5 Power Bound as �0! �1

In this section, we provide two-sided AE power bounds for invariant similar tests as �0 ! �1
for �xed ��: The power bounds also apply to the larger class of similar tests for which invariance is

not imposed, provided power is averaged over ��=jj��jj vectors using the uniform distribution on

the unit sphere in Rk; as in CHJ.

Using Theorem 4.1, these results are used to obtain bounds on the probabilities that CS�s

constructed using sign and rotation invariant similar tests have in�nite length. They also are used

to obtain bounds on certain average probabilities that similar invariant tests and similar tests have

in�nite right (or left) length.

This section also determines the power of the AR, LM, and CLR tests as �0 ! �1 and the

probabilities that AR, LM, and CLR CS�s have in�nite length.

5.1 Density of Q as �0! �1

The density of Q := [S : T ]0[S : T ] when [S : T ] has the multivariate normal distribution in (2.3)

only depends on � through � := �0���: Let fQ(q;��; �0; �;
) denote this density when � = ��:

It is a noncentral Wishart density with means matrix of rank one and identity covariance matrix,

which was �rst derived by Anderson (1946, eqn. (6)). An explicit expression for fQ(q;��; �0; �;
)

is given in (11.2) in the SM.

Now, we determine the limit of the density fQ(q;��; �0; �;
) as �0 ! �1: De�ne

ruv :=
�uv

(1� �2uv)1=2
and �v := �=�2v = �0���=�

2
v: (5.1)

Note that �v is the concentration parameter, which indexes the strength of the IV�s. Let

fQ(q; �uv; �v) denote the density of Q := [S : T ]0[S : T ] when [S : T ] has a multivariate nor-

mal distribution with means matrix

�� � (1=�v; ruv=�v) 2 Rk�2; (5.2)

all variances equal to one, and all covariances equal to zero. This density also is a noncentral Wishart

density with means matrix of rank one and identity covariance matrix. The density depends on
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ruv; �v; and � only through �uv and �v: An explicit expression for fQ(q; �uv; �v) is given in (11.4)

in Section 11.1 the SM.

Lemma 5.1 For any �xed (��; �;
); lim�0!�1 fQ(q;��; �0; �;
) = fQ(q; �uv; �v) for all 2 � 2
variance matrices q; where �uv and �v are de�ned in (4.5) and (5.1), respectively.

Comment. Lemma 5.1 is proved by showing: lim�0!�1 c��(�0;
) = �1=�v and lim�0!�1
d��(�0;
) = � !22���!12

!2(!21!
2
2�!212)1=2

= � �uv
�v(1��2uv)1=2

; see Lemma 14.1 in the SM. When expressed in

terms of ��; the latter limit only depends on �uv; �u; and �v and its functional form is of a

relatively simple multiplicative form.

Let P��;�0;�;
(�) and P�uv ;�v(�) denote probabilities under the alternative hypothesis densities
fQ(q;��; �0; �;
) and fQ(q; �uv; �v); respectively, de�ned above.

5.2 Two-Sided AE Power Bound as �0! �1

AMS provides a two-sided power envelope for invariant similar tests based on maximizing av-

erage power against two points in the alternative hypothesis: (��; �) and (�2�; �2): AMS refers to

this as the two-sided AE power envelope because given one point (��; �); the second point (�2�; �2)

is the unique point such that the test that maximizes average power against these two points is

a two-sided AE e¢ cient test under strong IV asymptotics. This power envelope is a function of

(��; �):

Given (��; �); the second point (�2�; �2) satis�es

�2� = �0 �
d�0(�� � �0)

d�0 + 2r�0(�� � �0)
and �2 = �

(d�0 + 2r�0(�� � �0))
2

d2�0
; (5.3)

where r�0 := e01

�1a0 � (a00
�1a0)�1=2; see (4.2) of AMS. We let POIS2(Q;�0; ��; �) denote the

optimal average-power test statistic for testing � = �0 against (��; �) and (�2�; �2): Its condi-

tional critical value is denoted by �2;�0(QT ): For brevity, the formulas for POIS2(Q;�0; ��; �) and

�2;�0(QT ) are given in Section 16 in the SM.

The limit as �0 ! �1 of the POIS2(Q;�0; ��; �) statistic is shown in (16.6) in the SM to be

POIS2(Q;1; j�uvj; �v) :=
 (Q; �uv; �v) +  (Q;��uv; �v)

2 2(QT ; j�uvj; �v)
; where

 (Q; �uv; �v) := exp(��v(1 + r2uv)=2)(�v�(Q; �uv))�(k�2)=4I(k�2)=2(
p
�v�(Q; �uv));

 2(QT ; j�uvj; �v) := exp(��vr2uv=2)(�vr2uvQT )�(k�2)=4I(k�2)=2(
p
�vr2uvQT ); and

�(Q; �uv) := QS + 2ruvQST + r
2
uvQT ; (5.4)
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where Q; QS ; QST ; and QT are de�ned in (3.1), �uv is de�ned in (4.5), ruv and �v are de�ned in

(5.1), and I�(�) denotes the modi�ed Bessel function of the �rst kind of order � (e.g., see Comment
(ii) to Lemma 3 of AMS for more details regarding I�(�)):

Let �2;1(qT ) denote the conditional critical value of the POIS2(Q;1; j�uvj; �v) test statistic.
That is, �2;1(qT ) is de�ned to satisfy

PQ1jQT (POIS2(Q;1; j�uvj; �v) > �2;1(qT )jqT ) = � (5.5)

for all qT � 0; where PQ1jQT (�jqT ) denotes probability under the null density fQ1jQT (�jqT ); which is
speci�ed explicitly in (11.3) in the SM and does not depend on �0:

When �uv = 0; the test based on POIS2(Q;1; j�uvj; �v) is the AR test. This follows because
�(Q; 0) = QS ;  (Q; 0; �v) is monotone increasing in �(Q; 0); and  2(QT ; 0; �v) is a constant. Some

intuition for this is that EQST = 0 under the null and limj�0j!1EQST = 0 under any �xed

alternative �� when �uv = 0:
4 In consequence, QST is not useful for distinguishing between H0 and

H1 when j�0j ! 1 and �uv = 0: Furthermore, it is shown in (12.5) and Theorem 12.1 in the SM

that the AR test is also the best one-sided test as �0 ! +1 and as �0 ! �1:
The following theorem shows that the POIS2(Q;1; j�uvj; �v) test provides a two-point average-

power bound as �0 ! �1 for any invariant similar test for any �xed (��; �) and 
:

Theorem 5.2 Let f��0(Q) : �0 ! �1g be any sequence of invariant similar level � tests of

H0 : � = �0 for �xed known 
: For �xed (��; �); (�2�; �2) de�ned (5.3), and 
; the two-sided AE

power envelope test POIS2(Q;1; j�uvj; �v) de�ned in (5.4) and (5.5) satis�es

lim sup (
�0!�1

P��;�0;�;
(��0(Q) = 1) + P�2�;�0;�2;
(��0(Q) = 1))=2

� P�uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT ))

= P��uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT )):

Comments. (i). The power bound in Theorem 5.2 only depends on (��; �); (�2�; �2); and 


through j�uvj; which is the absolute magnitude of endogeneity under ��; and �v; which is the

concentration parameter.

(ii). The power bound in Theorem 5.2 is strictly less than one. Hence, it is informative.

(iii). For sign and rotation invariant similar tests ��0(Q); the lim sup on the left-hand side in

Theorem 5.2 is the average of two equal quantities.

4We have EQST = ES0ET by independence of S and T; EQST = 0 under H0 because ES = 0; and
limj�0j!1EQST = 0 under �� because ET = ��d��(�0;
); lim�0!�1 d��(�0;
)! �ruv=�v by Lemma 14.1(e) in
the SM, and ruv = 0 when �uv = 0:
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(iv). Theorem 5.2 can be extended to cover sequences of similar tests f��0(S; T ) : �0 !
�1g that satisfy no invariance properties, using the proof of Theorem 1 in CHJ. In this case,

the left-hand side (lhs) probabilities in Theorem 5.2 depend on � or, equivalently (�; ��=jj��jj);
rather than just �: In this case, Theorem 5.2 holds with P��;�0;�;
(��0(Q) = 1) replaced byR
P��;�;��=jj�� jj;
(��0(S; T ) = 1)dUnif(��=jj��jj) and analogously for the term that depends on

(�2�; �2); where P��;�;��=jj�� jj;
(�) denotes probability under (��; �; ��=jj��jj;
) and Unif(�) de-
notes the uniform measure on the unit sphere in Rk:

5.3 Lower Bound on the Probability That a CS Has In�nite Length

Next, we combine Theorems 4.1 and 5.2 to provide a lower bound on the probability that a

sign and rotation invariant similar CS has in�nite length. The same lower bound applies to the

average probability over (��; �) and (�2�; �) that a rotation invariant similar CS has right (left)

in�nite length. For a similar CS with no invariance properties, the same lower bound applies to a

di¤erent average probability that the CS has right (left) in�nite length.

Let P��;�;
(�) denote probability for events determined by (Z
0Z)1=2Z 0Y that depend on � only

through �; such as events that are determined by a CS based on invariant tests.

Corollary 5.3 Suppose CS�(Y ) is a CS based on invariant similar level � tests �(Q�0(Y )) that

satisfy the continuity condition in Theorem 4.1. (a) For any �xed (��; �;
);

(P��;�;
(RLength(CS�(Y )) =1) + P�2�;�2;
(RLength(CS�(Y )) =1))=2

� 1� P�uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT )) and

(P��;�;
(LLength(CS�(Y )) =1) + P�2�;�2;
(LLength(CS�(Y )) =1)

� 1� P�uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT )):

(b) If the tests �(Q�0(Y )) also are sign invariant, then for any �xed (��; �;
);

P��;�;
(Length(CS�(Y )) =1) � 1� P�uv ;�v(POIS2(Q;1; j�uvj; �v) > �2;1(QT )):

Comments. (i). All three lower bounds in Corollary 5.3 are the same. The di¤erent parts of

Corollary 5.3 specify di¤erent probabilities or average probabilities that have this lower bound.

(ii). Corollary 5.3(a) also holds for a similar CS that does not satisfy any invariance properties.

In this case, P��;�;
(RLength(CS�(Y )) =1) is replaced by
R
P��;�;��=jj�� jj;
(RLength(CS�(Y )) =

1)dUnif(��=jj��jj) and analogously for the other three lhs terms that depend on LLength(CS�(Y ))
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and/or (�2�; �2): This holds provided the similar level � tests �(S�0(Y ); T�0(Y )) that de�ne the

CS satisfy the conditions in Comment (iii) to Theorem 4.1.

5.4 Power of the AR, LM, and CLR Tests as �0! �1

Here, we provide the power of the AR, LM, and CLR tests as �0 ! �1 for �xed (��;
):

Theorem 5.4 For �xed true (��; �;
); the AR, LM, and CLR tests satisfy

(a) lim�0!�1 P��;�0;�;
(AR > �2k;1��=k) = P�uv ;�v(AR > �2k;1��=k) = P (�2k(�v) > �2k;1��);

(b) lim�0!�1 P��;�0;�;
(LM > �21;1��) = P�uv ;�v(LM > �21;1��); and

(c) lim�0!�1 P��;�0;�;
(LR > �LR;�(QT )) = P�uv ;�v(LR > �LR;�(QT ));

where AR; LM; and LR are de�ned as functions of Q in (3.3), �2m;1�� is the 1� � quantile of the
�2m distribution, and �2m(�v) is a noncentral �

2
m random variable with noncentrality parameter �v:

Comment. By Theorem 4.1(c), Theorem 5.4 provides the probabilities that the AR, LM, and

CLR CS�s have in�nite length when the true parameters are (��; �;
): These probabilities depend

only on (j�uvj; �v): For the AR CS, they only depend on �v:

6 Comparisons of Probabilities That Con�dence Sets Have

In�nite Length

Next, we investigate how close are the probabilities the CLR CS has in�nite length to the

lower bound in Corollary 5.3. Let POIS2 refer to the tests that generates the two-sided AE power

envelope of AMS. These tests depend on the alternative (��; �) considered and 
: Let POIS21 refer

to the tests in (5.4), which are the limits as �0 ! �1 of the POIS2 tests. These tests depend on

�� (through j�uvj) and �v: Let POIS2 and POIS21 CS�s refer to the CS�s constructed by inverting

the POIS2 and POIS21 tests. These CS�s are infeasible because they depend on knowing (��; �):

Table I reports di¤erences in simulated probabilities that the CLR and POIS21 CS�s have

in�nite lengths. The latter provide a lower bound on in�nite-length probabilities for CS�s based

on sign and invariant tests, such as the CLR CS, by Corollary 5.3(b). Hence, these di¤erences are

necessarily nonnegative. The results cover k = 2; 5; 10; 20; 40; a range of � values between 1 and

60 depending on the value of k; and �uv = 0; :3; :5; :7; :9: Table I also reports the probabilities that

the CLR CS has in�nite length for the same k and � values and a subset of the �uv values, viz.,

0; :7; :9: The true value of �� is taken to be 0 wlog by Section 21 in the SM. The results for negative

and positive �uv values are the same by Section 21 in the SM, and hence, results for negative �uv
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are not reported. The number of simulation repetitions employed is 50; 000: The critical values are

determined using 100; 000 simulation repetitions.

The results show that the CLR CS is not close to optimal in some parameter scenarios. In

particular, the di¤erences in probabilities of in�nite length (DPIL�s) between the CLR and the

POIS21 CS�s are positive for numerous combinations of (k; �; �uv): The DPIL�s are increasing in k;

decreasing in j�uvj; and maximized in the middle of the range of � values considered. For example,
for (k; �uv) = (2; 0); DPIL2 [:002; :016] over the � values considered, whereas for (k; �uv) = (5; 0);
DPIL2 [:003; :031] and for (k; �uv) = (40; 0); DPIL2 [:002; :049]:5 Hence, k has a noticeable e¤ect
on the magnitude of non-optimality of the CLR CS with larger values of k leading to larger non-

optimality. For (k; �) = (5; 10); we have DPIL2 [:002; :031] over the �uv values considered, and
for (k; �) = (20; 15); we have DPIL2 [:001; :046] over the �uv values considered. Hence, j�uvj also
has a noticeable e¤ect on the magnitude of non-optimality of the CLR CS in terms of DPIL�s with

non-optimality greatest at �uv = 0:
6

7 Optimality of CLR and LM Tests as �uv! �1 or �
! �1

The results of Table I show that the magnitude of non-optimality of the CLR CS decreases as

j�uvj increases to 1: This raises the question of whether CLR tests are optimal in some sense in

the limit as j�uvj ! 1: In this section, we show that this is indeed the case, not just for power as

�0 ! �1; but uniformly over all (�0; ��) parameter values in a two-sided AE power sense.
Let �
 denote the correlation parameter corresponding to the reduced-form variance matrix 
;

i.e., �
 := !12=(!1!2):

In this section, we provide parameter con�gurations under which the CLR and LM tests have

optimality properties. The results cover the case of strong and semi-strong identi�cation (where

� ! 1): They cover the cases where �uv ! �1 or �
 ! �1 for (almost) any �xed values of
the other parameters, which includes weak identi�cation of any strength. And, they cover the

cases where (�uv; �0) ! (�1;�1) or (�
; �0) ! (�1;�1) and the other parameters are �xed at
(almost) any values, which also includes weak identi�cation.

In somewhat related results, CHJ show that the CLR and LM tests can be written as the limits

of certain WAP LR tests, which indicates that they are at least close to being admissible.

5The simulation standard deviations of the DPIL�s are in the range of [:0000; 0014] with most being in the range
of [:0004; :0012]; see Table SM-I in the SM.

6Table SM-I in the SM shows that the di¤erences in probabilities that the AR and POIS2 CS�s have in�nite
length are very large for large �uv values for some � values. For example, for �uv = :9; they are as large as
:084; :196; :280; :353; :422 for k = 2; 5; 10; 20; 40; respectively, for some � values. As shown above, AR = POIS2 when
�uv = 0; so the di¤erences are zero in this case and they increase in j�uvj for given (k; �):
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Let d2�� := d2��(�0;
) and c
2
��
:= c2��(�0;
): As in Section 5.2, let POIS2(Q;�0; ��; �) and

�2;�0(QT ) denote the optimal average-power test statistic and its data-dependent critical value.

Let �21(c
2
1) denote a noncentral �

2
1 random variable with noncentrality parameter c21:

Theorem 7.1 Consider any sequence of null parameters �0 and true parameters (��; �;
) such

that �d2�� !1 and �1=2c�� ! c1 2 Rnf0g: Then, as �d2�� !1 and �1=2c�� ! c1;

(a) P��;�0;�;
(POIS2(Q;�0; ��; �) > �2;�0(QT ))! P (�21(c
2
1) > �21;1��);

(b) P��;�0;�;
(LR > �LR;�(QT ))! P (�21(c
2
1) > �21;1��); and

(c) P��;�0;�;
(LM > �21;1��)! P (�21(c
2
1) > �21;1��):

Comments. (i). Theorem 7.1 shows that the CLR and LM tests have the same limit power as the

POIS2 test. Theorem 7.1 provides both �nite-sample limiting optimality results, where n is �xed

and the limits are determined by sequences of parameters (�0; ��; �;
); and large-sample limiting

optimality results, where the limits are determined by sequences of sample sizes n and parameters

(�0; ��; �;
):

(ii). By Corollary 1 of AMS, for any invariant similar test �(Q); for any (��; �0; �;
);

1

2
(P��;�0;�;
(�(Q) = 1) + P�2�;�0;�2;
(�(Q) = 1) � P��;�0;�;
(POIS2(Q;�0; ��; �): (7.1)

That is, the POIS2 test determines the two-sided AE average power envelope of AMS for in-

variant similar tests, where the average is over (��; �) and (�2�; �2): A fortiori, by Theorem 1 of

CHJ, for any similar test �([S : T ]) (that is not necessarily invariant), for any (��; �0; �;
); (7.1)

holds with P��;�0;�;
(�(Q) = 1) replaced by the power average
R
P��;�0;�;��=jj�� jj;
(�([S : T ]) =

1)dUnif(��=jj��jj) and likewise for the second lhs summand in (7.1). Hence, the POIS2 test also
determines this average power envelope for similar tests.

These results and Theorem 7.1 show that the CLR and LM tests achieve these average power

envelopes for all (��; �0; �;
) asymptotically when �d
2
��
!1 and �1=2c�� ! c1 6= 0:

(iii) The power envelopes in Comment (ii) translate immediately into false coverage probability

(FCP) lower bounds for CS�s based on invariant similar tests and similar tests. Speci�cally, one

minus the lhs in (7.1), which equals the average FCP of the point �0 by the CS based on �(Q);

where the average is over the truth being (��; �) and (�2�; �2); is greater than or equal to one

minus the rhs in (7.1). In the case of non-invariant similar tests, the bound is on the average of

the FCP�s of the CS with averaging over (��; �) and (�2�; �2) and ��=jj��jj in the unit sphere in
Rk: Thus, Theorem 7.1 shows that the CLR and LM CS�s have optimal average FCP properties

asymptotically when �d2�� !1 and �1=2c�� ! c1 6= 0:
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(iv). Theorem 7.1 does not apply when the IV�s are completely irrelevant, i.e., � = 0; because

� = 0 implies that c1 = 0: However, Theorem 7.1 does cover some cases where the IV�s can be

arbitrarily weak, see Theorem 7.2 below.

Next, we provide conditions under which �d2�� !1 and �1=2c�� ! c1 2 Rnf0g; as is assumed
in Theorem 7.1. First, if �0 and 
 are �xed, 
 is nonsingular, and (��; �) satisfy �!1 and

�1=2(�� � �0)! L 2 R as �!1; (7.2)

then �d2�� ! 1 and �1=2c�� ! c1 2 Rnf0g with c1 = L(b00
b0)
�1=2: Here L indexes the local

alternatives against which the tests have nontrivial power. This result covers the usual strong IV

case in which � is �xed, Z 0Z depends on n; and � = �0Z 0Z� !1 as n!1:
The scenario in (7.2) also covers cases where � = �n ! 0 as n!1; but su¢ ciently slowly that

� = �0nZ
0Z�n ! 1 as n ! 1; which covers �semi-strong�identi�cation. As far as we are aware,

this is the only optimality property in the literature for tests under semi-strong identi�cation. The

scenario in (7.2) also covers �nite-sample, i.e., �xed n; cases in which Z 0Z is �xed, � diverges, i.e.,

jj�jj ! 1; and �min(Z 0Z) > 0: In these cases, � = �0Z 0Z� !1 as jj�jj ! 1:
The most novel cases in which Theorem 7.1 applies are when �uv ! �1 or �
 ! �1: The next

result shows that �d2�� !1 and �1=2c�� ! c1 2 Rnf0g when �uv ! �1 or �
 ! �1 and the other
parameters are �xed at (almost) any values. It also shows that this holds when (�uv; �0)! (1;�1)
or (�1;�1) or (�
; �0) ! (1;�1) or (�1;�1) and the other parameters are �xed at (almost)
any values.

Theorem 7.2 (a) Suppose the parameters �0; ��; �u > 0; �v > 0; and � > 0 are �xed, �uv 2
(�1; 1); and �uv ! �1: Then, (i) lim�uv!�1 �

1=2c�� = �1=2(�� � �0)=j�u � (�� � �0)�vj and (ii)
lim�uv!�1 �d

2
��
=1 provided �� � �0 6= ��u=�v:

(b) Suppose the parameters �0; ��; !1 > 0; !2 > 0; and � > 0 are �xed, �
 2 (�1; 1); and
�
 ! �1: Then, (i) lim�
!�1 �

1=2c�� = �1=2(�� � �0)=j!1 � !2�0j provided �0 6= �!1=!2 and (ii)
lim�
!�1 �d

2
��
=1 provided �0 6= �!1=!2 and �� 6= �!1=!2:

(c) Suppose the parameters are as in part (a) except (�uv; �0)! (1;�1) or (�1;�1): Then, (i)
lim(�uv ;�0)!(1;�1) �

1=2c�� = lim(�uv ;�0)!(�1;�1) �
1=2c�� = ��

1=2=�v and (ii) lim(�uv ;�0)!(1;�1) �d
2
��

= lim(�uv ;�0)!(�1;�1) �d
2
��
=1:

(d) Suppose the parameters are as in part (b) except (�
; �0)! (1;�1) or (�1;�1): Then, (i)
lim(�
;�0)!(1;�1) �

1=2c�� = lim(�
;�0)!(�1;�1) �
1=2c�� = ��1=2=!2 and (ii) lim(�
;�0)!(1;�1) �d

2
��

=1 provided �� 6= !1=!2 and lim(�
;�0)!(�1;�1) �d
2
��
=1 provided �� 6= �!1=!2:
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Comments. (i). Combining Theorems 7.1 and 7.2 provides analytic �nite-sample limiting opti-

mality results for the CLR and LM tests and CS�s as �uv ! �1 or �
 ! �1 with �0 �xed or jointly
with �0 ! �1 for (almost) any �xed values of the other parameters. These results apply for any

strength of the IV�s except � = 0: These results are much stronger than typical weighted average

power (WAP) results because they hold for (almost) any �xed values of the parameters �0; ��; �1;

�v; and � > 0 when �uv ! �1 and (almost) any �xed values of the parameters �0; ��; !1; !2; and
� > 0 when �
 ! �1:

(ii). The cases �uv ! �1 and �
 ! �1 are closely related because (1��2
)1=2!1 = (1��2uv)1=2�u
by (15.10) in the SM. Thus, �uv ! �1 implies j�
j ! 1 and/or !1 ! 0: And, �
 ! �1 implies
j�uvj ! 1 and/or �u ! 0:

8 General Power/False-Coverage-Probability Comparisons

By Theorem 4.1, the results in Table I equal power di¤erences (PD�s) between the POIS2 and

CLR tests as the null value �0 ! �1 for �xed true value �� = 0: Here, we consider PD�s between

the POIS2 and CLR tests for �nite �0 values, rather than PD�s as �0 ! �1: Speci�cally, Table
II reports maximum and average PD�s over �0 2 R and � > 0 for a �xed true value �� = 0 for a

range of values of (�uv; k): As above, the choice of �� = 0 (and !
2
1 = !22 = 1) is wlog. These PD�s

are equivalent to false coverage probability di¤erences (FCPD�s) between the CLR and POIS2 CS�s

for a �xed true value �� at incorrect values �0: They are necessarily nonnegative.

The � values considered are 1; 3; 5; 7; 10; 15; 20; as well as 22; 25 when k = 20 and 40; and :7; :8; :9

when k = 2 and 5 and �uv = :9: The positive and negative �0 values considered are those with

j�0j 2 f:25; :5; :::; 3:75; 4; 5; 7:5; 10; 50; 100; 1000; 10000g:
The number of simulation repetitions employed is 5; 000: The critical values are determined

using 100; 000 simulation repetitions. For example, the simulation standard deviations for the PD�s

for (�uv; k) = (0; 20) and any �xed (�0; �) value range from [:0013; :0040] across di¤erent (�0; �)

values, which compares to simulated averages of the PD�s over (�0; �) values that are of the :014

order of magnitude.

Tables II(a) and II(b) contain the same numbers, but are reported di¤erently to make the

patterns in the table more clear. Table II(a) shows variation across k for �xed �uv; whereas Table

II(b) shows variation across �uv for �xed k: The third and fourth columns in each table report the

values of � and �0 at which the maximum PD is obtained. The �fth column in each table reports

�uv;0; which is the correlation between the structural-equation and reduced-form errors when �0

is the true value (based on the assumption that the consistently-estimable reduced-form variance
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matrix is the same whether the truth is �0 or ��): In contrast, �uv is the same correlation, but

when �� is the true value� which is the true � value in the PD simulations. The sixth column in

the tables reports the power of the CLR test at the (�0; �) values that maximize the PD for given

(�uv; k); i.e., at (�0;max; �max):

Table II shows that the maximum (over (�0; �)) PD�s between the POIS2 and CLR tests range

between [:016; :061] over the (�uv; k) values. On the other hand, the average (over (�0; �)) PD�s

only range between [:002; :016] over the (�uv; k) values. This indicates that, although there are

some (�0; �) values at which the CLR test is noticeably o¤ the two-sided AE power envelope, on

average the CLR test�s power is not far from the power envelope.

In contrast, the analogous maximum and average PD ranges for the AR test are [:079; :513]

and [:012; :179]; see Table SM-III in the SM. For the LM test, they are [:242; :784] and [:010; :203];

see Table SM-IV in the SM. Hence, the power of AR and LM tests is very much farther from the

POIS2 power envelope than is the power of the CLR test.

Table II(a) shows that the maximum and average (over (�0; �)) PD�s for the CLR test are

clearly increasing in k: Table II(a) shows that for �uv � :3; the PD�s are maximized at more or less

the same �0 regardless of the value of k: For �uv = 0; this is also true to a certain extent, because

the sign of �0 is irrelevant (when �uv = 0) and the values 50 and 10; 000 are both large values.

Table II(a) also shows that for each �uv; the PD�s are maximized at � values that (weakly) increase

with k: The increase is particularly evident going from k = 20 to 40:

Table II(b) shows that for k � 5; the maximum PD�s are more or less the same for �uv � :7;

but noticeably lower for �uv = :9: For k = 2; the maximum PD�s are more or less the same for all

�uv considered. Table II(b) shows that, for each k; the PD�s are maximized at j�0j values that are
closer to 0 as �uv increases. Table II(b) also shows that, for each k; the PD�s are maximized at �

values that are closer to 0 as �uv increases.
7

In sum, the maximum PD�s over (�0; �) are found to increase in k ceteris paribus and decrease

in �uv ceteris paribus. The � values at which the maxima are obtained are found to (weakly)

increase with k ceteris paribus and decrease in �uv ceteris paribus. The j�0j values at which the
maxima are obtained are found to be independent of k ceteris paribus and decrease in �uv ceteris

paribus.

The numerical results in this section show that the �nding of AMS that the CLR test is essen-

tially on the two-sided AE power envelope does not hold when one considers a broader range of null

and alternative hypothesis values (�0; ��) than those considered in the numerical results in AMS.

7See Table SM-II in the SM for how the maximum PD�s over �0 vary with � for the (�uv; k) values in Table II.
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9 Di¤erences between CLR Power and an Average Over �

Power Envelope

In this section, we introduce a �WAP2�power envelope for similar tests with weight functions

over: (i) a �nite grid of � values, f�j > 0 : j � Jg; (ii) the same two-points (��; �j) and (�2�; �2j)
as in AMS for each �j for j � J; and (iii) the same uniform weight function over ��=jj��jj as in
CHJ. In particular, we use the uniform weight function over the 36 values of � in f2:5; 5:0; :::; 90:0g:

The WAP2 envelope is a function of (�0; ��): The WAP2(Q; �0; ��) test statistic that generates

this envelope is of the form
PJ
j=1( (Q;�0; ��j ; �j)+ (Q;�0; �2�j ; �2j))=

PJ
j=1 2 2(QT ;�0; ��; �j);

where the functions  (Q;�0; �; �) and  2(QT ;�0; �; �) are as in AMS (and as in (11.5) in the SM).

The WAP2(Q; �0; ��) conditional critical value �2;�0;J(qT ) is de�ned to satisfy PQ1jQT (WAP2(Q;

�0; ��) > �2;�0;J(qT )jqT ) = � for all qT � 0; where PQ1jQT (�jqT ) denotes probability under the
density fQ1jQT (�jqT ); which is speci�ed in (11.3) in the SM.

To be consistent with Tables I and II, we report PD�s between the WAP2(Q; �0; ��) and CLR

tests for �� = 0 and a range of �0 values. These PD�s are equivalent to the FCPD�s between

the CLR and WAP2 CS�s for �xed true �� and varying incorrect �0 values. The di¤erences are

necessarily nonnegative.

We consider �uv 2 f0; :3; :5; :7; :9; :95; :99g; k = 2; 5; 10; 20; 40; the same �0 values as in Table II,
and !21 = !22 = 1: Since �� = 0; �
 = �uv: Section 21 shows that taking �� = 0 and !

2
1 = !22 = 1 is

wlog provided the support of the weight function for � is scaled by !22 when !2 6= 1: The number
of simulation repetitions employed is 1; 000 for each �j value. With power averaged over the 36

�j values and independence of the simulation draws across �j ; this yields simulation SD�s that

are comparable to using 36; 000 simulation repetitions. The critical values are determined using

100; 000 simulation repetitions for k = 5 and 10; 000 for other values of k:

For brevity, Table III reports results only for k = 5 for a subset of the �0 values considered.

Results for all values of k and �0 considered are given in Table SM-V in the SM. Table IV reports

summary results for all values of k: In particular, Table IV(a) provides the maxima over �0 of the

average over � PD�s for each (�uv; k): Table IV(b) provides the average over �0 of the average over

� PD�s for each (�uv; k):

Table III shows that the CLR test has power quite close to the WAP2 power envelope for k = 5:

The PD�s for �uv 2 f0; :3; :5; :7g; we have PD2 [:000; :005] and SD2 [:0003; :0007] across all �0
values. For �uv 2 f:9; :95; :99g; we have PD2 [:000; :001] and SD2 [:0000; :0003] across all �0 values.

Table IV shows that PD�s between the WAP2 power envelope and the CLR power are increasing

in k and decreasing in j�uvj: For k = 2; the maximum PD over �0 and �uv values is very small:
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:004: In the worst case for CLR, which is when (k; �uv) = (40; 0); the maximum PD over �0 values

is substantially larger: :024: The average (over �0 values) PD in this case is :013; which is not very

large. For k = 40 and �uv � :9; the maximum PD (over �0 and �uv values) is very small: :004: This

is consistent with the theoretical optimality properties of the CLR test as �uv ! �1 described in
Section 7. For k = 40 and �uv � :9; the average PD (over �0 values and the �ve �uv values) is very

small: :000: The second worst case for CLR in Table V is when (k; �uv) = (20; 0): In this case, the

maximum PD over �0 values is :013; which is noticeably lower than :024 for (k; �uv) = (40; 0):

In conclusion, the results in Tables III and IV show that the CLR test is very close to the WAP2

power envelope for most (k; �uv; �0) values, but can deviate from it by as much as :024 for some �0

values when (k; �uv) = (40; 0):
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TABLE I. Differences in Probabilities of Infinite-Length CI’s for the CLR and POIS2∞ CI’s, and Probabilities of
Infinite-Length POIS2∞ CI’s as Functions of k, λ and ρuv

k λ
CLR–POIS2∞ POIS2∞

ρuv = 0 .3 .5 .7 .9 ρuv = 0 .7 .9
2 1 .002 .004 .003 .002 .002 .870 .863 .850
2 3 .007 .003 .002 .001 .001 .680 .656 .613
2 5 .012 .008 .003 .002 .001 .497 .455 .410
2 7 .016 .005 .001 .001 -.000 .344 .298 .262
2 10 .013 .006 .002 .001 .000 .184 .142 .122
2 15 .008 .004 .002 .001 .001 .056 .035 .029
2 20 .003 .001 .001 .000 -.000 .014 .008 .007
5 1 .003 .003 .002 .002 .002 .900 .898 .882
5 3 .010 .010 .006 .002 .004 .778 .751 .671
5 5 .017 .012 .004 .003 -.001 .639 .576 .466
5 7 .026 .012 .003 .001 -.002 .502 .407 .304
5 10 .031 .016 .005 .004 .002 .323 .221 .144
5 12 .029 .011 .003 .000 -.001 .231 .140 .086
5 15 .023 .013 .005 .003 .001 .134 .062 .036
5 20 .013 .007 .003 .001 .000 .048 .016 .008
5 25 .006 .002 .001 .000 .000 .016 .004 .001
10 1 .001 .002 .002 .001 .000 .919 .916 .904
10 5 .018 .015 .008 .005 .004 .731 .667 .526
10 10 .032 .014 .003 .005 .001 .459 .320 .176
10 15 .037 .020 .009 .004 .000 .239 .111 .046
10 17 .035 .017 .008 .003 .000 .176 .069 .025
10 20 .027 .014 .006 .002 .000 .110 .032 .010
10 25 .017 .008 .003 .001 .000 .045 .008 .002
10 30 .009 .004 .002 .000 -.000 .017 .002 .000
20 1 .001 .003 .002 .002 .000 .929 .926 .919
20 5 .014 .011 .006 .003 .006 .809 .766 .620
20 10 .035 .022 .011 .010 .001 .603 .463 .246
20 15 .046 .025 .011 .008 .001 .390 .215 .073
20 20 .044 .021 .011 .005 .000 .226 .080 .018
20 30 .033 .012 .005 .001 .000 .056 .007 .001
20 40 .007 .003 .001 .000 .000 .010 .001 .000
40 1 .002 .001 .001 .001 .000 .937 .937 .934
40 5 .011 .008 .005 .001 .009 .859 .838 .717
40 10 .028 .020 .009 .009 .002 .721 .614 .354
40 15 .043 .022 .011 .009 .001 .555 .372 .129
40 20 .049 .029 .013 .009 .001 .394 .186 .038
40 30 .043 .021 .011 .004 .000 .155 .028 .002
40 40 .022 .012 .005 .001 .000 .046 .003 .000
40 60 .002 .001 .000 .000 .000 .003 .000 .000



TABLE II. Maximum and Average Power Differences over λ and β0 Values between POIS2 and CLR Tests for Fixed Alternative β∗ = 0

(a) Across k patterns for fixed ρuv

POIS2–CLR
ρuv k λmax β0,max ρuv,0 POIS2 max average
.0 2 7 −10000.00 1.00 .66 .021 .006
.0 5 10 −50.00 1.00 .68 .030 .009
.0 10 15 −50.00 1.00 .76 .038 .012
.0 20 15 10.00 −1.00 .60 .042 .014
.0 40 22 −50.00 1.00 .66 .059 .016
.3 2 10 3.75 −0.96 .86 .019 .005
.3 5 10 3.50 −0.96 .73 .034 .008
.3 10 10 3.00 −0.94 .59 .032 .009
.3 20 15 3.50 −0.96 .66 .045 .012
.3 40 22 4.00 −0.97 .72 .061 .014
.5 2 5 2.00 −0.87 .64 .016 .004
.5 5 10 2.25 −0.90 .82 .029 .005
.5 10 10 2.00 −0.87 .70 .037 .007
.5 20 10 1.75 −0.82 .53 .046 .009
.5 40 15 1.75 −0.82 .59 .050 .012
.7 2 5 1.50 −0.75 .81 .016 .002
.7 5 5 1.50 −0.75 .67 .033 .003
.7 10 7 1.50 −0.75 .71 .036 .005
.7 20 7 1.25 −0.61 .54 .042 .006
.7 40 15 1.50 −0.75 .84 .050 .008
.9 2 0.9 1.25 −0.63 .46 .017 .002
.9 5 0.9 1.00 −0.22 .33 .017 .002
.9 10 3 1.25 −0.63 .77 .027 .003
.9 20 3 1.00 −0.22 .61 .032 .003
.9 40 5 1.25 −0.63 .75 .040 .004

(b) Across ρuv patterns for fixed k

POIS2–CLR
k ρuv λmax β0,max ρuv,0 POIS2 max average
2 .0 7 −10000.00 1.00 .66 .021 .006
2 .3 10 3.75 −0.96 .86 .019 .005
2 .5 5 2.00 −0.87 .64 .016 .004
2 .7 5 1.50 −0.75 .81 .016 .002
2 .9 0.9 1.25 −0.63 .46 .017 .002
5 .0 10 −50.00 1.00 .68 .030 .009
5 .3 10 3.50 −0.96 .73 .034 .008
5 .5 10 2.25 −0.90 .82 .029 .005
5 .7 5 1.50 −0.75 .67 .033 .003
5 .9 0.9 1.00 −0.22 .33 .017 .002

10 .0 15 −50.00 1.00 .76 .038 .012
10 .3 10 3.00 −0.94 .59 .032 .009
10 .5 10 2.00 −0.87 .70 .037 .007
10 .7 7 1.50 −0.75 .71 .036 .005
10 .9 3 1.25 −0.63 .77 .027 .003
20 .0 15 10.00 −1.00 .60 .042 .014
20 .3 15 3.50 −0.96 .66 .045 .012
20 .5 10 1.75 −0.82 .53 .046 .009
20 .7 7 1.25 −0.61 .54 .042 .006
20 .9 3 1.00 −0.22 .61 .032 .003
40 .0 22 −50.00 1.00 .66 .059 .016
40 .3 22 4.00 −0.97 .72 .061 .014
40 .5 15 1.75 −0.82 .59 .050 .012
40 .7 15 1.50 −0.75 .84 .050 .008
40 .9 5 1.25 −0.63 .75 .040 .004
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TABLE III. Average (over λ) Power Differences for λ ∈ {2.5, 5.0, ..., 90.0} between the WAP2 and CLR Tests for
k = 5

β0
ρuv,0 WAP2–CLR

ρuv = 0 .9 ρuv = 0 .3 .5 .7 .9 .95 .99
−10000.00 1.00 1.00 .005 .002 .001 .001 .000 -.000 .000
−100.00 1.00 1.00 .005 .002 .001 .001 .000 -.001 -.000
−10.00 1.00 1.00 .005 .002 .001 .000 .000 -.000 -.000
−4.00 .97 1.00 .003 .001 .000 -.000 .000 .000 -.000
−3.00 .95 .99 .003 .001 .000 .000 -.000 .001 .000
−2.00 .89 .99 .002 .001 .000 .001 -.000 -.001 -.000
−1.50 .83 .98 .001 .001 .001 .000 .000 -.001 -.000
−1.00 .71 .97 .001 .000 -.000 -.000 -.000 .000 -.000
−0.75 .60 .97 .000 -.000 .001 -.000 -.000 .000 .000
−0.50 .45 .95 -.000 -.000 -.001 -.001 -.000 -.001 -.000
−0.25 .24 .94 -.001 -.001 -.001 -.000 -.000 .001 -.001

0.25 −.24 .83 -.000 -.001 -.001 -.000 -.001 .000 .000
0.50 −.45 .68 .001 .000 .000 .000 .000 -.001 .000
0.75 −.60 .33 .000 .001 .001 .001 .000 .000 .000
1.00 −.71 −.22 .002 .001 .001 .001 .000 .000 .000
1.50 −.83 −.81 .001 .002 .003 .003 .001 -.000 .000
2.00 −.89 −.93 .002 .003 .004 .002 .000 -.001 -.000
3.00 −.95 −.98 .003 .005 .003 .001 .000 .000 .000
4.00 −.97 −.99 .004 .005 .002 .001 .000 .001 .000

10.00 −1.00 −1.00 .005 .003 .001 .001 .000 .000 .000
100.00 −1.00 −1.00 .005 .003 .001 .000 .000 -.001 .000

10000.00 −1.00 −1.00 .005 .002 .001 .001 .000 -.000 .000

TABLE IV. Average (over λ) Power Differences between the WAP2 and CLR Tests

k
(a) Maxima over β0 (b) Averages over β0

ρuv = 0 .3 .5 .7 .9 .95 .99 ρuv = 0 .3 .5 .7 .9 .95 .99
2 .004 .003 .002 .002 .001 .001 .001 .002 .002 .001 .001 .000 .000 .000
5 .005 .005 .004 .003 .001 .001 .000 .003 .002 .001 .001 .000 .000 .000
10 .011 .010 .008 .005 .004 .003 .003 .007 .006 .004 .002 .001 .001 .001
20 .013 .012 .010 .007 .002 .001 .002 .008 .007 .005 .002 .000 .000 .000
40 .024 .021 .017 .011 .004 .001 .000 .013 .011 .007 .004 .000 .000 .000
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