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Abstract

The concept of relative convergence, which requires the ratio of two time series to converge
to unity in the long run, explains convergent behavior when series share commonly divergent
stochastic or deterministic trend components. Relative convergence of this type does not neces-
sarily hold when series share common time decay patterns measured by evaporating rather than
divergent trend behavior. To capture convergent behavior in panel data that do not involve
stochastic or divergent deterministic trends, we introduce the notion of weak �-convergence,
whereby cross section variation in the panel decreases over time. The paper formalizes this
concept and proposes a simple-to-implement linear trend regression test of the null of no �-
convergence. Asymptotic properties for the test are developed under general regularity con-
ditions and various data generating processes. Simulations show that the test has good size
control and discriminatory power. The method is applied to examine whether the idiosyncratic
components of 90 disaggregate personal consumption expenditure (PCE) price index items �-
converge over time. We �nd strong evidence of weak �-convergence in the period after 1992,
which implies that cross sectional dependence has strenthened over the last two decades. In a
second application, the method is used to test whether experimental data in ultimatum games
converge over successive rounds, again �nding evidence in favor of weak �-convergence. A third
application studies convergence and divergence in US States unemployment data over the period
2001-2016.
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�The real test of a tendency to convergence would be in showing a consistent diminution
of variance�, Hotelling (1933) cited in Friedman (1992)

1 Introduction

The notion of convergence is a prominent element in many branches of economic analysis. In
macroeconomics and �nancial economics, for instance, the in�uence of transitory (as distinct from
persistent) shocks on an equilibrium system diminishes over time. The e¤ects of such shocks is
ultimately eliminated when the system is stable, absorbs their impact, and restores an equilibrium
position. In microeconomics, particularly in experiments involving economic behavior, heteroge-
neous subject outcomes may be expected under certain conditions to converge to some point (or a
set of points) or to diverge when those conditions fail. The object of much research in experimental
economics is to determine by econometric analysis whether or not predictions from game theory,
�nance, or micro theory hold up in experimental data. While the general idea of convergence
in economic behavior is well-understood in broad terms in economics, empirical analysis requires
more speci�c formulation and embodiment of the concept of convergence over time to facilitate
econometric testing.

The idea of cointegration as it developed in the 1980s for studying co-movement among nonsta-
tionary trending time series bears an important general relationship to convergence. Cointegrated
series match one another in the sense that over the long run some linear relationship of them is
a stationary rather than a nonstationary time series. But while the cointegration concept has
proved extraordinarily useful in practical time series work, cointegration itself does not explain
trends in the component variables. These are embodied implicitly in the system�s unit roots and
deterministic drifts.

The empirical task of determining convergence among time series has moved in a distinct direc-
tion from the theory and application of cointegration in the last two decades. Convergence studies
�ourished particularly in cross country economic growth analyses during the 1990s when economists
became focused on long run behavioral comparisons of variables such as real per capita GDP across
countries and the potential existence of growth convergence clubs where countries might be grouped
according to the long run characteristics of their GDP or consumption behavior. This research led
to several new concepts, including �conditional convergence�and �absolute convergence�as well as
speci�c measures such as �(sigma)-convergence for evaluating convergence characteristics in prac-
tical work �see Barro (1991), Barro and Sala-I-Martin (1991, 1992), Evans (1996, 1998), and the
overview by Durlauf and Quah (1999), among many others in what is now a large literature.

The �-convergence concept measures gaps among time series by examining whether cross sec-
tional variation decreases over time, as would be anticipated if two series converge. Conditional
convergence interestingly requires divergence among the growth rates to ensure catch up and con-
vergence in levels. Thus, for poor countries to catch up with rich countries, poor countries need to
grow faster than rich countries. Econometric detection of convergence therefore has to deal with
this subtlety in the data. To address this di¢ culty Phillips and Sul (2007, hereafter PS) used
the concept of �relative convergence�and developed a simple econometric regression test to assess
this mode of convergence. Two series converge relatively over time when the time series share the
same stochastic or deterministic trend elements in the long run, so that the ratio of the two series
eventually converge to unity.

The PS regression trend regression test for convergence has been popular in applications. But
neither conditional nor relative convergence concepts are well suited to characterize convergence
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among time series that do not have (common) divergent deterministic or stochastic trend elements
such as polynomial time trends or integrated time series. Instead, many economic time series,
especially after di¤erencing (such as growth rates), do not display evidence of deterministic growth
or the random wandering behavior that is the primary characteristic of integrated data. In addition,
much laboratory experimental data are non-integrated by virtue of their construction in terms
of bounded responses, and much macro data during the so-called Great Moderation from the
mid 1980s show less evidence of persistent trend behavior. Researchers interested in empirical
convergence properties of such times series need an alternative approach that accommodates panels
of asymptotically stationary or weakly dependent series, where the concept of convergence involves
an explicit time decay function that may be common across series in the panel.

The present paper seeks to address that need by working directly with convergence issues in
a panel of non-divergent trending time series and by developing an empirical test for convergence
that is suited to such panels. Interestingly, the original concept of ��convergence that is based on
cross section sample variation is suitable for analyzing such panels for convergence properties in the
data and our work builds on this concept by developing a simple regression test procedure. The
main contributions of the paper are fourfold: (i) we introduce a concept of weak ��convergence
whereby cross section variation in the panel decreases over time; (ii) we propose a simple linear
trend regression test to assess evidence for such convergence; (iii) we develop an asymptotic theory
for inference with this test in practical work; and (iv) we provide empirical applications of the
new procedure to personal consumption expenditure price index data, to US States unemployment
data, and to experimental data involving ultimatum games.

There are two major di¤erences between the approach used in PS, which is based on the so-called
logt regression, and the trend decay regressions advocated in the present paper for asymptotically
weakly dependent data. First, the logt regression approach uses sample cross sectional variation in
the relative transition curves and a logarithmic trend regression for detection of convergence. By
contrast, the method proposed here uses linear trend regression to detect trend decay in the sam-
ple cross section variation after the elimination of common components. This objective matches
precisely the �real test� of �showing a consistent diminution of variance� suggested originally by
Hotelling (1933) and cited in the header of this article. One of the advantages of linear trend re-
gression in addition to its obvious simplicity in practice is that the sign of the �tted slope coe¢ cient
captures trend decay even though the regression is misspeci�ed.

Second, the asymptotic properties of the two procedures are very di¤erent. Trend regression is
used in the present paper as a detective device in an intentionally misspeci�ed regression so that
test outcomes signal convergence or divergence of cross section averages over time by virtue of the
sign behavior of the trend slope coe¢ cient and its associated t-test statistic. This behavior in turn
re�ects the nature of the dominant trend or trend decay that is present in the data. The asymptotic
properties of these misspeci�ed trend regression statistics are of some independent interest, but it
is their e¤ectiveness in detecting trend decay convergence that is the primary focus of the present
paper.

The remainder of the paper is organized as follows. The next section provides a non-technical
introduction to convergence testing and begins with an empirical example to motivate the introduc-
tion of a new concept of weak ��convergence that accords with the notion suggested by Hotelling
(1933) in the header. The section brie�y reviews existing tests for convergence, explains the need for
a new concept of the Hotelling type that is useful in economic, social and experimental applications,
and provides the simple linear trend regression mechanism that is proposed in this paper for test-
ing convergence. Section 3 provides a formal development of the concept of weak ��convergence,
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discusses various matters of formulation and interpretation in the context of several useful proto-
typical decay function models of convergence, and introduces the linear trend regression approach
and associated t-ratio test of convergence. Section 4 derives asymptotic theory for the proposed test
under null and alternative hypotheses (of both convergence and divergence). Several new results
on power function trend regression asymptotics are obtained in these derivations, which may well
be of wider interest. Section 5 reports some numerical calculations to demonstrate the contrasting
test behavior under these two alternatives. Section 6 reports the results of Monte Carlo simulations
to assess the �nite sample performance of the test procedure. Section 7 illustrates the use of the
new test in two additional empirical applications. Section 8 concludes. Technical derivations and
proofs are in the Appendix. Supplementary materials (intended for online reference) that include
the proofs of supporting lemmas and further numerical calculations and simulations are given in
Appendix S.

2 Empirical Motivation and Modeling Preliminaries

2.1 Divergence and Convergence in US State Unemployment rates

We begin with a motivating example. Figure 1 (upper panel) shows national unemployment rate
data for the US over 2001:M1 to 2016:M7. The �gure also plots the monthly sample cross section
variance of unemployment rates in the 48 contiguous US States. The data are obtained from the
Bureau of Labor Statistics.

The focus of economic interest concerns the behavior of State unemployment rates over the whole
period and certain subperiods, particularly those preceding and following the subprime mortgage
crisis. The periods prior to, during, and following the subprime mortgage crisis are of special
interest because of the onset and impact of the great recession coupled with the distinct time series
behavior in unemployment rates in these subperiods.

Evidently, the temporal patterns of the national unemployment rate and the cross section
variation of State unemployment rates show some stability over 2001-2007. Both rise sharply
during the crisis, and both fall steadily in the crisis aftermath. These patterns suggest a period of
stationary �uctuations in unemployment rates, followed by divergence during the crisis, followed
then by a steady decline in variation with convergence to pre-crisis levels. The tests we develop
provide a quantitative analysis to buttress this descriptive commentary on the divergence and
convergence of unemployment rates over this 15 year period.

The o¢ cial period of the recession precipitated by the subprime mortgage crisis is December
2007 to June 2009 (the gray-shaded area in the �gure). Over this period, cross section variation
in State unemployment rates rose rapidly from a range of 4.6% (high: Michigan 7.3%; low: South
Dakota 2.7%) in December 2007 to more than twice that �gure reaching 10.7% in June 2009
(high: Michigan 14.9%; low: Nevada 4.2%). Almost immediately following the recession, cross
section variation in unemployment rates started to decline and continued to do so until the national
unemployment rate reached pre-crisis levels.

The methodology we propose to test convergence and divergence in the present paper involves
the use of a simple linear trend regression with cross section variation as the dependent variable.
The idea is related to Hotelling�s (1933) original suggestion. Evans (1996) pursued a related idea
in the context of economic growth using a linear trend regression to distinguish divergence from
stationarity. Our methodology also uses a linear trend regression but explicitly allows for misspec-
i�cation in that regression in making inferences and also permits a focus on convergence in cross
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section variances as well as divergence, thereby providing econometric methods to meet Hotelling�s
idea of a �real test of a tendency to convergence�.

Panel A: Variance of US Unemployment Rates (with t-ratio
convergence tests for the pre-, mid- and post- crisis periods)
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Figure 1: Impact of the Subprime Mortgage Crisis on Unemployment rates
across 48 contiguous United States
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Allowance for misspeci�cation is important in applications. For instance, in the present example
of unemployment rates, the mechanism generating the data is a complicated dynamic system that
is further complicated by cross section averaging over the heterogeneous contiguous States of the
USA. This mechanism is inexorably more complex than a simple linear trend regression, even
allowing for segmentation of the regression over di¤erent subperiods of data such as the pre- and
post- crisis periods. Such empirical formulations are therefore inevitably misspeci�ed. But they are
nonetheless useful and, indeed, commonly appear in empirical work allowing for both exogenously
determined and endogenously determined break points. Our methodology is designed speci�cally to
allow for such misspeci�cation in the regression and we develop a limit theory for the usual t-ratio
test statistic for the linear trend coe¢ cient (�̂; in later notation) in these misspeci�ed regressions
that distinguishes behavior in such subperiods and enables inference.

As we will show, the limit theory enables us to di¤erentiate between periods of divergence,
periods of convergence, and periods of stable �uctuations, based on signs and critical values from
a standard normal distribution. The methodology is very easy to apply and involves a standard
linear time trend regression of the form shown in equation (28) below and the computation of a
heteroskedastic and autocorrelation robust t-ratio statistic t�̂:

For the empirical example of cross section variation in US States unemployment rates, the
results of these tests are displayed in Figure 1. The top panel of the �gure reports the t-ratio
statistics t�̂ = 0:416; 11:50;�21:95 for the pre-crisis, mid-crisis and post-crisis periods, exogenously
determined according to the o¢ cial period of the recession shown in the shaded region. As explained
below, t statistics outside the standard normal critical values signal variation divergence in the right
tail, variation convergence in the left tail, and stable variation within standard N (0; 1) critical
values centred on the origin. Even with the relatively short time series trajectories available in the
three subperiods, the empirical results strongly con�rm the heuristic visual evidence in the data
trajectories of a rapid divergence from a stable period to 2007, followed by a steady decline in
variation after mid 2009.

The lower Panel B of Figure 1 provides plots of recursive calculations of the same robust t ratio
statistics computed from linear trend regressions with various rolling window (WD) widths. Three
cases are shown in the �gure, corresponding to 37; 41; and 49 month rolling window widths. The
starting date of the window (when WD = 49) is detailed in the upper horizontal axis and the end
date is located on the lower horizontal axis.

As the rolling window width increases, the t-ratio recursion pattern becomes smoother and the
absolute value of the t-ratio also tends to decrease. To magnify the scale of the recursive plot,
the upper pane of Panel B shows the t-ratio recursion for WD = 49, constraining realized values
to the interval [�3; 3]. The upper and lower 5% critical values of �1:65 appear as dotted lines in
the �gure on the right hand axis scale. These recursive tests enable the data to determine break
dates where stability changes to divergence (February, 2008) and subsequently to convergence (May
2012) in terms of �rst crossing times of the critical values (c.f., Phillips, Wang, Yu, 2011; Phillips,
Shi, Yu, 2015). Evidently, the recursive regression tests lead to broadly similar conclusions to
those in which the break dates are given exogenously by the o¢ cial dates of the recession, although
the endogenously determined dates delay both the onset of the crisis impact on the divergence of
unemployment rate variation and the onset of the decline in variation and convergence.

Two further empirical applications of our methods are given later in the paper in Section 7.
That section also includes detailed procedures for implementation. Stata and Gauss codes are
available at www.utdallas.edu/~d.sul/papers/weak_pro.zip.
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2.2 Existing Tests and Weak ��Convergence
As discussed in the Introduction, various notions of convergence were developed in the economic
growth literature during the 1990s with multiple concepts suited to various empirical applications,
including ��convergence and ��convergence (for an overview, see Barro and Sala-i-Martin, 1991).
These methods have been widely applied. Tests for ��convergence typically rely on cross section
linear least squares regressions of the type

T�1
XT

t=1
(yit � yi0) = â+ �̂yi0 + z

0
î + errori; i = 1; :::; n; (1)

of average historical growth rates T�1
PT

t=1 (yit � yi0) on initial observations yi0 of log level real
incomes and covariates zi that control for idiosyncratic factors a¤ecting growth in country i: These
regressions test for a signi�cantly negative slope coe¢ cient �̂ in the �tted regression. Signi�cance
in this coe¢ cient suggests that countries with higher initial incomes have lower average growth
rates facilitating catch-up by less developed economies with lower initial incomes. However, when
̂ di¤ers signi�cantly from zero, the limiting outcomes for countries i and j may di¤er. Evans
(1996) explained why growth regressions like (1) provide valid guidance regarding convergence only
under strict conditions.

To address these complications and provide a more general framework for analysis, Phillips and
Sul (2007) formulated a nonlinear panel model of the form

yit = bit�t; for t = 1; :::; T ; i = 1; :::; n; (2)

where bit is the ith individual slope coe¢ cient at time t; which may be interpreted as a time varying
loading coe¢ cient attached to a common trend function �t; which may involve deterministic and
stochastic trends. Individual countries share in the common trend driver �t to a greater or lesser
extent over time depending on the loading coe¢ cient bit: This formulation accommodates many
di¤erent generating mechanisms and allows for a convenient �relative convergence�concept, which
is de�ned as

plimt!1
yit
yjt

= 1 for any i 6= j: (3)

The relative convergence condition may be tested using an empirical least squares regression of the
following form involving a �ln t�regressor

ln (H1=Ht)� 2 ln ln t = â+ ̂ ln t+ ût; (4)

where Ht = n�1
Pn

i=1 (hit � 1)
2 and hit = yit=(n

�1Pn
i=1 yit) is the relative income of country i: If

the estimate ̂ is signi�cantly positive, then this �logt test�provides evidence supporting relative
convergence. The test is primarily useful in contexts where the panel data involve stochastic and
deterministic trends such as �t that may originate in common technological, educational, multi-
national, and trade-related drivers of growth. When the data do not involve such trends as �t; then
the concept of relative convergence in (3) is far less useful.

In such cases, a more appropriate notion is ��convergence, a concept that is de�ned in terms of
declining cross sectional dispersion over time. This concept was originally suggested by Hotelling
(1933), as indicated in the quotation that heads this article. It is naturally appealing in many
contexts, such as the US States unemployment rate example just studied where there is a direct
focus on cross section variation and its behavior over time. At present, however, there is no
convenient and statistically rigorous test or asymptotic theory available for inference concerning
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��convergence. Evans (1996) used cross sectional variance primarily to test divergence, and Evans
and Karras (1996), and Hobijn and Franses (1999) tested ��convergence by considering di¤erences
between dyadic pairs of yit rather than cross section variance or standard deviation.

The ��convergence concept is not applicable when panel observations involve stochastic or
deterministic trends. Consider, for instance, the simple panel model

yit = ai +
�
b+ "it

�1=2
�
t+ �itt

��

where �it � iid
�
0; �2�

�
over (i; t) ; "i � iid

�
0; �2"

�
; and the components (ai; "i; �it) are all indepen-

dent. It is easy to see that relative convergence holds but not ��convergence. In particular, taking
dyadic pairs (yit; yjt) we have

plimt!1
yit
yjt

= plimt!1
b+ "it

�1=2

b+ "jt�1=2
= 1;

but when considering cross section variances, such as Ky
nt = n�1

Pn
i=1(yit � n�1

Pn
i=1 yit)

2; we
have

plimn!1K
y
nt = �2a + �

2
"t+ �

2
� t
�2� ;

where �2a is the variance of ai. When �
2
" > 0; the cross sectional dispersion of yit increases over

time. Thus, "i 6= "j for some i 6= j is su¢ cient to prevent ��convergence.
A formal test of ��convergence requires a well-de�ned concept and econometric machinery for

inference. Quah (1996) de�ned ��convergence in terms of the cross section variance Ky
nt by the

condition
Ky
nt � Ky

nt�1 for all t: (5)

Evidently, the de�nition (5) partly accords with Hotelling�s suggestion but does not require �con-
sistent diminution in variance�. Moreover, the temporal monotonicity of (5) is restrictive in most
applications because it does not allow for subperiod �uctuation or short-period temporal diver-
gence. In place of (5), our approach introduces a weaker condition that focuses on the asymptotic
behavior of the sample covariance

dCov (Ky
nt; t) = T�1

XT

t=1
~Ky
nt
~t < 0; (6)

where ~Ky
nt = Ky

nt � T�1
PT

t=1K
y
nt; and ~t = t� T�1

PT
t=1 t: Under suitable standardization, as we

show below, the asymptotic behavior of the sample covariance dCov (Ky
nt; t) may be used to de�ne a

concept of �weak ��convergence�which is less restrictive than monotonicity and which is amenable
to inference. Section 3 of the paper provides a formal de�nition of this concept. Importantly,
the condition (6) does not imply that cross sectional dispersion tends to zero eventually and it
allows for local temporal divergences and subperiod �uctuation. However, the concept captures the
notion that cross section dispersion shows a tendency to decrease over time and in doing so may
be characterized as displaying weak ��convergence.

2.3 Testing for Weak ��Convergence
The simple idea involved in testing weak ��convergence is to assess by a trend regression whether
cross section dispersion declines over time. Since the mechanism of decline is not formulated in an
explicit data generating process, the test is performed via a linear time trend regression of the form

Ky
nt = ânT + �̂nT t+ ût; (7)
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and a simple robust t ratio test of whether the �tted coe¢ cient �̂nT is signi�cantly less than
zero. The technical di¢ culty in justifying such a test involves allowance for misspeci�cation in the
regression (7), which is formulated as an empirical regression not an underlying data generating
process for the sample cross section variances Ky

nt = n�1
Pn

i=1(yit � n�1
Pn

i=1 yit)
2. The latter

process is inevitably complex because it involves both the generation of the individual components
yit and the construction of the sample averageK

y
nt: For the purposes of testing whether cross section

dispersion declines over time, a suitably general time decay speci�cation of the type

Ky
nt = an + bnt

�� + vn;t � 0 for all t; (8)

may be employed, wherein the component coe¢ cients an; bn; and vn;t embody the import of the
individual data generating processes of the yit and the cross section averaging involved inK

y
nt: Under

stability conditions as n!1 that ensure plimn!1 (an; bn) = (a; b) > 0 and vn;t is asymptotically
stationary, then cross section dispersionKy

nt will decline over time when the �convergence parameter�
� > 0: On the other hand, when � < 0; Ky

nt increases over time indicating that some of the
component time series yit have nonstationary or heterogeneously divergent trend characteristics.1

When � > 0; then cross section dispersion decreases over time and ultimately �uctuates about the
level a > 0, and weak ��convergence holds. When � = 0; there is no apparent tendency to diverge
or converge and Ky

nt �uctuates in an asymptotically stationary manner about the level a:
Using the empirical regression (7), a robust t-ratio test on the �tted coe¢ cient �̂nT can be used

to assess evidence for weak ��convergence, divergence or asymptotic stability in Ky
nt: This statistic

takes the standard form for the time trend regressor case, viz.,

t�̂nT
=

�̂nTq

̂2u=

PT
t=1
~t2
; (9)

where 
̂2u is a typical long run variance estimate based on the residuals ût = Ky
nt� ânT � �̂nT t from

(7), such as the Bartlett-Newey-West (BNW) estimate


̂2u =
1

T

XT

t=1
û2t + 2

1

T

XL

`=1
#`L

XT�`

t=1
ûtût+`; (10)

where #`L are the Bartlett lag kernel weights and the lag truncation parameter L = bT �c for some
small � > 0 .

The test based on the t-ratio (9) is straightforward to implement using the empirical regression
(7). As shown in Theorem 2, one sided critical values from the standard normal distribution
N (0; 1) are used in testing to detect convergence (t�̂nT signi�cantly negative) and divergence (t�̂nT
signi�cantly positive) from the null of �uctuating variation. Validity conditions for the test are
discussed in detail in the following sections. Essentially, these require that the number of cross
sectional units (n) be larger than the number of time series observations (T ). In particular, if
n
T !1 as n; T !1; the t-ratio diverges to negative in�nity under weak ��convergence, leading
to a consistent test. Under divergence, the t-ratio diverges to positive in�nity as n; T !1 without
any restriction on the n=T ratio.

An interesting case occurs when the rate of decline in the variation Ky
nt is extremely fast. In this

case, the second term in (8) converges to zero rapidly because � > 0 is large. In such situations, the

1 If plimn!1bn = b < 0; a� b > 0 and � > 0; then Knt increases over time but stabilizes to �uctuate about some
constant level a as n; T !1; which is a form of asymptotic stability over time. See Section 3.1 for more discussion.
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cross sectional dispersion decreases fast initially and soon stabilizes to �uctuations around some
long run level because of the rapid convergence. Such cases of convergence are typically much
harder to detect because of the inevitable small sample e¤ects of the rapid trend decay in the
regressor and potential failure of the persistent excitation condition2 in asymptotics. Nonetheless
and somewhat remarkably, the t-ratio in (9) is shown to remain negative and signi�cant at the
one-sided 5% level3 even as �!1:

2.4 Further Uses and Empirical Applications

There are advantages to the use of trend regression in convergence studies beyond the simplicity of
the approach and the robustness to misspeci�cation. Importantly, no speci�c data ordering of the
cross sectional units is required in calculating the sample cross section variance Knt: Moreover, the
approach is robust to the number and the members of the cross sectional individuals, which may
di¤er in each time period as long as the cross sectional sample sizes fnt : t = 1; :::; Tg satisfy the
uniform divergence condition mint�T (nt) =T ! 1 relative to the time series sample size T: This
�exibility is particularly useful in analyzing experimental data where the subjects and number of
subjects in each session may di¤er for each experimental round.

A second advantage is that the weak ��convergence test does not require any model pre-tests
or preliminary regression. The approach is equally able to detect divergence as convergence and no
separate speci�cation is required to allow for this. Thus, if the variable of interest is stochastically
nonstationary or has a divergent trend, then the t-ratio test reveals this property by virtue of a
right-sided test signi�cance, as discussed earlier.

The following two empirical areas provide additional examples where the notion of weak ��convergence
is useful in applications.

The Law of One Price There is now a large empirical literature, especially in international
�nance, on the law of one price. Many of the empirical studies on this topic focus on the behavior
of key rates and ratios over time. For example, relative purchasing power parity (PPP) states
that real currency depreciation rates should converge over time; and the uncovered interest parity
condition states that excess returns should converge. To �x ideas, de�ne yit as the deviation from
a parity condition such as yit = �sit � �it + ��t where �sit is the depreciation rate of the nominal
exchange rate of the ith currency, �it is the in�ation rate of the ith country, and ��t is the in�ation
rate of the numeraire country. The law of one price requires that yit converges over time. Since
yit can be positive or negative for any t and ratios yit=yjt may not converge to unity for i 6= j; the
concept of relative convergence is not readily applicable to such data: But under certain conditions,
weak �� convergence can be applied when the panel elements yit share a common component Ft
with a residual component xit that satis�es (13), viz.,

yit = Ft + xit; (11)

2The persistent excitation condition in simple linear regression requires that the sample variance of the regressor
diverges as the sample size tends to in�nity, so that the regressor is increasingly informative about the slope of the
regression. In the present case of the trend decay model (8), note that

PT
t=1 t

�2� !
P1

t=1 t
�2� <1 for all � > 0:5:

As shown in the proof of Lemma 4 and Theorem 2, this failure in persistent excitation, in contrast to that of the
empirical regression (7) where

PT
t=1 t

2 !1; impacts the asymptotic behavior of both the regression coe¢ cient �̂nT
and the t-ratio (9). Nonetheless, the t-ratio statistic remains negative and does not converge to zero as T ! 1: So
the t-ratio is still a useful in testing convergence even in this case.

3 In fact, as shown later in Theorem 2, the asymptotic form of the t -ratio is t�̂nT !p �
p
3 from below as �!1:
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and then weak ��convergence of xit implies that yit converges to follow Ft over time.
Alternatively, yit may have the following static common factor structure.

yit = �0iFt + xit: (12)

Weak ��convergence of xit in this case implies that the deviation of the law of one price can
be explained by the common components embodied in the factors Ft because the variance of xit
shrinks over time under weak ��convergence. Usually Ft is unobservable. So weak ��convergence
should be tested with the estimated idiosyncratic components.4 Importantly, weak ��convergence
of xit does not necessarily imply weak ��convergence of yit in (12). For when there is cross section
heterogeneity and �i 6= � for some i; then yit is not weak ��convergent unless �i � � !p 0 at a
suitably fast rate relative to the factor Ft:

Convergence in Experimental Studies The concept of weak ��convergence is useful for
assessing outcomes in certain experimental studies. As summarized in the overviews by Ledyard
(1995) and Chaudhuri (2011), repeated public good games typically display the property that the
fractional contribution to the public account decreases over time, which makes weak ��convergence
towards a zero contribution of interest. In the ultimatum game, for instance, each subject in
the experiment is asked what fraction of the endowment the subject wants to contribute to the
partner. Many experimental studies (Gale et al., 1995, Cooper and Dutcher, 2011, Avrahami et
al., 2010) reveal that the o¤ers in such games converge toward a threshold acceptance point in
the long run. Whether or not the o¤ers converge over time can then be subjected to an empirical
test of weak ��convergence. Similarly, in a repeated Prisoner�s dilemma game, it is of primary
interest whether the estimated probability of the dominant strategy converges over time. In almost
all such laboratory experimental studies, the data lie in a bounded interval (typically between
zero and unity) and interest focuses on convergence behavior within such an interval, making
weak ��convergence a more relevant concept than relative convergence. Section 7 pursues an
experimental data application showing how trend regression can be used to test convergence in
economic experiments.

4Let Cit = �0iFt and x̂it = yit � Ĉit where Ĉit = �̂
0
iF̂t: From Bai (2003), Ĉit � Cit = Op

�
m�1
nT

�
where mnT =

min
hp
n;
p
T
i
; and so the estimation error Ĉit�Cit !p 0 as mnT !1 can be treated as an asymptotically negligible

component. Then weak ��convergence of x̂it = xit � (Ĉit � Cit) implies weak ��convergence of xit from condition
(ii) in (13) in the next section. Let Knt (x̂) = n�1

Pn
i=1 x̂

2
it; assume that xit is weak ��convergent, and set �Kx

t =
plimn!1K

x
nt and a = plimt!1 �Kx

t 2 [0;1): Then

1

n

Xn

i=1
x̂2it =

1

n

Xn

i=1
x2it +

1

n

Xn

i=1

�
Ĉit � Cit

�2
� 2 1

n

Xn

i=1
xit
�
Ĉit � Cit

�
=

1

n

Xn

i=1
x2it +

1

n

Xn

i=1

�
Ĉit � Cit

�2
+ op (1) ;

and the three conditions of (13) are all satis�ed regardless of the relative size of n and T: First, take the case where
n > T: We have at most

1

n

Xn

i=1

�
Ĉit � Cit

�2
= Op

�
T�1

�
;
1

n

Xn

i=1
xit
�
Ĉit � Cit

�
= Op

�
n�1=2

�
;

and then plimn!1Knt (x̂) = �Kt (x) + Op
�
T�1

�
< 1: Hence, the �rst and second conditions of (13) are satis�ed

and the �nal condition holds by the weak ��convergence of xit since Ĉit � Cit = op (1) : When n � T we have

n�1
Pn

i=1 x̂
2
it = n�1

Pn
i=1 x

2
it +Op

�
n�1=2

�
; and all three conditions of (13) again hold.
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3 Modeling and Testing Weak �� Convergence

This section begins with a formal de�nition of weak ��convergence that embodies the ideas de-
scribed above and that is designed to have su¢ cient generality to be useful in many di¤erent
applications where convergence may not be monotone over time. To assist in interpreting the em-
pirical regression used to test for convergence, we investigate a class of prototypical data generating
processes each of which satis�es the weak ��convergence conditions. These processes provide a
foundation for developing asymptotics of the regression test under potential misspeci�cation of the
empirical regression relation.

To craft a suitably general concept of convergence, we are motivated by Hotelling�s idea of decay
in cross sectional variation over time. To avoid a strict requirement of monotonicity and to assist in
developing a trend regression approach to testing convergence, it is useful to de�ne a measure based
on the behavior of the sample covariance of cross section dispersion with a simple linear trend. To
�x ideas, let fxit : i = 1; ::; n; t = 1; :::; Tg be a panel of cross section and time series observations,
let �x:t := n�1

Pn
i=1 xit; and de�ne ~xit := xit � �x:t:

De�nition (Weak ��convergence): Let Kx
nt =

1
n

Pn
i=1 ~x

2
it: The panel xit is said to ��converge

weakly if the following conditions hold

(i) plimn!1K
x
nt = �Kx

t <1; a:s: for all t
(ii) plimt!1

�Kx
t = a 2 [0;1);

(iii) lim supT!1 T
�
�Kx
t ; t; cT

�
< 0 a:s:;

(13)

where T
�
�Kx
t ; t; cT

�
:= 1

cT

PT
t=1

f�Kx
t
et is a time series sample covariance of �Kx

t with a linear time
trend t normalized by some suitable increasing sequence cT !1:

The �rst two conditions in (13) state that the probability limit of the cross section sample variance
exists for each t and that its time limit exists and is non-negative: We allow for the case where the
limit �Kx

t is stochastic. For example, we may have K
x
nt !p

�Kx
t = E fxitjCg where C is the invariant

sigma �eld of shocks that are common across section, in which case �Kx
t is a random sequence that

is stochastically dependent on t (c.f. Phillips and Sul, 2003, 2007; Andrews, 2005). If in place of
(ii) �Kx

t diverges, then we say that xit is ��divergent. When xit includes either deterministic trends
like time polynomials or integrated random components like random walks, xit is ��divergent.

To illustrate ��divergence, suppose the nonlinear panel model (2) is the generating mechanism
with explicit deterministically trending panel form

xit = ai + �it
� + "it =

�
�i +

ai + "it
t�

�
t� = bitt

�; (14)

where (ai; �i) are iid idiosyncratic components distributed with �nite support, "it is a zero mean
covariance stationary time series for each i and where "it is iid and independent of

�
aj ; �j

�
for

all i and j: In this case, it is straightforward to show conditions under which �Kx
t is an increasing

function of t: Let �a� be the covariance between ai and �i; �
2
a be the variance of ai; �

2
� be the

variance of �i; and �2" be the variance of "it: By straightforward calculation we obtain �Kx
t =

�2a + 2�a�t
� + �2�t

2� + �2" = O
�
t2�
�
; so that, as t ! 1; �Kx

t � �2�t
2� and �Kx

t therefore increases
over time eventually as long as � > 0 and �2� > 0: For integrated components, we may replace the
power trend t� in the generating mechanism (14) by a partial sum series �t =

Pt
s=1 �s for some
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stationary time series �s with zero mean, spectrum f� (�) ; and long run variance !2� = 2�f� (0) > 0:

Since �t = Op
�
t1=2
�
and T�1=2�t=bTrc ) B� (r) ; a Brownian motion with variance !2� ; we �nd that

�Kx
t = �2a + 2�a��

�
t + �

2
��
2�
t + �2": In this case as t!1, �Kx

t � �2��
2
t �a �2�tB� (1)

2 = Op (t) : Thus,
when there a stochastic trend in the panel generating mechanism, �Kt is eventually increasing with
probability one as t ! 1 provided �2� > 0: It follows that condition (13) fails in the presence of
either deterministic trends like time polynomials or stochastic trends such as random walks.

Condition (iii) in (13) requires that a suitably weighted sample covariance between the cross
section variance limit �Kx

t and a linear time trend t be negative eventually. The weight sequence
cT ! 1 delivers a normalization that is suited to the time series properties of �Kx

t in relation to
a linear time trend, without requiring speci�city in the de�nition. This generality accommodates
a wide range of empirical possibilities. For example, consider the case where �Kx

t = At�� for some
constants A;� > 0: Then, as Lemma 2 in the Appendix shows, the normalization function cT may
be de�ned as

cT =

8<:
T�2+� if � < 1
(T lnT )�1 if � = 1
T�1 if � > 1

:

Thus, when � = 1; we have �Kx
t = At�1; and then the standardized temporal covariation is

T
�
�Kx
t ; t; cT

�
=

A

T lnT

XT

t=1

ft�1~t = A

T lnT

XT

t=1

�
t�1 � 1

T

XT

t=1
t�1
�
t

=
A

T lnT

XT

t=1

"
t�1 �

T lnT +  +O
�
T�1

�
T

#
t! �A

2
as T !1; (15)

where  is the Euler-Mascheroni constant. This result continues to apply when �Kx
t = Att

�1 with
At = A+ vAt; where A > 0 and vAt is covariance stationary supported on [�A;1) with zero mean
and 1�summable autocovariance function as in condition (46) of Lemma 3 of the Appendix.5

If the cross section variation has some non-monotonic behavior as in �Kx
t =

A
t sin

2 (t) ; then
again setting cT = T lnT , we obtain the following standardized time covariation

T
�
�Kx
t ; t; cT

�
=

A

T lnT

XT

t=1

gsin2 t
t
~t =

A

T lnT

XT

t=1

�
sin2 t

t
� 1

T

XT

t=1

sin2 t

t

�
t

=
A

T lnT

XT

t=1
sin2 t� A (T + 1)

2T lnT

XT

t=1

sin2 t

t

= � A

2 lnT

�
1

2
lnT � 1

2
Ci (2T )

�
+ o (1)! �1

4
A; (16)

where Ci (x) = �
R1
x

cos t

t
dt is the cosine integral, which has asymptotic expansion Ci (x) � sinx

x
+

O
�
x�2

�
as x ! 1: If �Kx

t =
At
t
sin2 (t) with a random coe¢ cient At as indicated above, then the

5 In particular, we �nd that

T
�
�Kx
t ; t; cT

�
=

1

T lnT

XT

t=1
Atft�1~t = A

T lnT

XT

t=1

�
t�1 � 1

T

XT

t=1
t�1
�
t+

1

T lnT

XT

t=1
vAt

�
t�1 � 1

T

XT

t=1
t�1
�
t

=
A

T lnT

XT

t=1

�
t�1 � 1

T

XT

t=1
t�1
�
t+Op

�
1p
T

�
! �A

2
as T !1:
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normalization factor cT = T lnT again applies and (16) continues to hold. In more general cases

where we have �Kx
t =

At
t�
sin2 (t) for some �; then the standardizing factor cT = cT (�) depends on

the value of �; as implied by Lemma 3 in the Appendix.
In order to ensure an indicative negative value to lim supT!1 T

�
�Kx
t ; t; cT

�
; condition (iii) uses

a standardized sample covariance function rather than a (self normalized) correlation function. To
show the limitation of using a correlation function, consider the case above where �Kx

t = At�1:
Straightforward calculations reveal that the corresponding correlation function is

�T
�
�Kx
t ; t
�
:=

PT
t=1

ft�1~t�PT
t=1

�ft�1�2PT
t=1
~t2
�1=2 � �

26664(1=2) (T + 1) lnT�
�2

6
T 3

12

�1=2
37775 = O

�
lnT

T 1=2

�
! 0;

so that in the limit the correlation tends to zero. That is, although �T
�
t�1; t

�
is negative for large

T , the correlation coe¢ cient tends to zero as T ! 1: In regression applications where we regress
cross sectional variation on a linear trend, it is the sign of the regression coe¢ cient that is important
in determining convergence over time. The asymptotic behavior of the regression test statistic then
depends on the magnitude of the regression coe¢ cient in relation to its standard error, just as in
spurious regression limit theory (Phillips, 1986). The fact that the sign of the regression coe¢ cient
is revealed in a simple trend regression, even when that regression is misspeci�ed, forms the basic
motivation for the test developed later. This relationship is important in our empirical work and
will become evident in the analysis of the convergence test given later.

The requirement of condition (iii) that lim supT!1 T
�
�Kx
t ; t; cT

�
< 0 a:s: can be modi�ed to

assure divergence in variation over time, rather than convergence. In particular, if conditions (i)
and (ii) hold and lim infT!1 T

�
�Kx
t ; t; cT

�
> 0 a:s: then the panel xit may be said to ��diverge

weakly. In this case, the sign of the coe¢ cient in the regression of the sample cross section variation
on a linear time trend is positive and this ultimately reveals divergent behavior even though the
regression itself may be misspeci�ed.

3.1 Modeling Weak ��Convergence with Decay Functions
To �x ideas and develop a framework for asymptotic analysis and testing we introduce an explicit
modeling framework for the panel data xit. Following PS, we use a power law time decay function,
which is a convenient formulation to study weak ��convergence.6 Here we consider cases where
additive heterogeneous and exogenous shocks enter the panel xit and how these shocks are neu-
tralized over time under convergence. We consider three prototypical cases to illustrate alternative
models of convergence.

First, we model weak ��convergence using a decay function for the mean of the panel in the
following DGP, which is analogous to (14) but with temporal decay, and where temporal shocks
in�uence only the mean level of the panel xit

Model M1: xit = ai + �it
�� + �it: (17)

6Other decay functions are possible. For example, the exponential function ec=t ! 1 as t ! 1 is useful in
capturing multiplicative decay, and the geometric function �t with j�j < 1 is useful in capturing faster forms of decay
than power laws.
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Here ai is the mean of xit; �i is an initial (period 1) shock to the ith unit, and �it has zero mean
and variance E�2it = �2�;i: The power decay parameter � > 0 (in contrast to (14)) and, as earlier,
the idiosyncratic components (ai; �i) are iid with �nite support and are independent of the �it: The
cross sectional variation of xit in this case can be broken down into the following components

Kx
nt = �2a;n + �

2
�;nt + 2�a�;nt

�� + �2�;nt
�2� + en;t; (18)

where �2a;n = n�1
Pn

i=1 ~a
2
i ; ~ai := ai� �a:; �2�;nt = n�1

Pn
i=1 ~�

2
it; ~�it := �it���:t; �a�;n = n�1

Pn
i=1 ~ai~�i;

�2�;n = n�1
Pn

i=1 ~�
2
i and en;t = 2n

�1Pn
i=1 ~ai~�it + 2n

�1Pn
i=1 ~�i~�itt

�� !p 0 as n!1:
Examination of Kx

nt in (18) shows that weak ��convergence holds if � > 0 and �a� � 0:
When there is only constant cross section variation in the panel, as occurs for instance when
xit = a + �t�� + �it and �2�;nt = n�1

Pn
i=1 ~�

2
it !p �

2
� > 0; then �Kx

t = �2� and there is no weak
��convergence over time. In fact, the cross section mean and variation are constant for each t so
that the sample covariation

PT
t=1

f�Kx
t
et = 0 and the upper limit lim supT!1 T

�
�Kx
t ; t; cT

�
= 0 a:s:

In such cases there is panel mean weak convergence of the form xit ) a + �i1 where the weak
limit has constant variation �2� over time. Thus, even though the variation does not shrink over
time, we get individual element panel convergence in mean up to a homogeneously varying error.
To eliminate such trivial cases, we henceforth assume that �2a;n !p �

2
a > 0 and �

2
�;n !p �

2
� > 0.

If � < 0; then xit is ��divergent. In this case, the t�2� term eventually dominates the t��

term in (18) for large t:7 This domination may also hold when � > 0 if E (ai�i) = 0; as then
�a� = plimn!1�a�;n = 0 and �a�;nt�� = Op

�
n�1=2t��

�
= op

�
t�2�

�
uniformly in t � T provided

T 2�=n! 0: When �a� 6= 0; the sign of ��� is also relevant in assessing convergence or divergence
of variation. For instance, if � > 0 and �a� < 0; the t�� term dominates the t�2� term in (18)
as t ! 1 and Kx

nt increases over time and eventually stabilizes to �uctuate around �
2
a + �2� as

n; T !1:
We also consider a variant of the DGP in (17) where Kx

nt may converge in an oscillatory way
to a constant, as in the following example where

xit = ai + �itt
�� + �it; �it � iid

�
0; �2�

�
;

with ai � iid
�
a; �2a

�
; �it = �i sin (��t) ; �i � iid

�
�; �2�

�
and all these random coe¢ cients are

independent of �it: Then

Kx
nt = �2a;n + �

2
�;nt + 2�a�;n sin (��t) t

�� + �2�;n [sin (��t)]
2 t�2� + en;t;

where en;t = 2n�1
Pn

i=1 ~ai~�it + 2n
�1Pn

i=1 ~�i~�it sin (��t) t
�� !p 0 as n!1: The probability limit

of Kx
nt as n!1 is

�Kx
t = �2a + �

2
� + �

2
� [sin (��t)]

2 t�2�; (19)

under the assumptions above concerning the components and when ai is uncorrelated with �i: Figure
2 below shows two examples of �Kx

t ; setting �
2
a+�

2
� = 1; �

2
� = 1; � 2 [1=5; 1=10] ; and � 2 [0:5; 0:25] :

More complex versions of such processes, for example by setting �it = �i sin (�i�t) with random
�i; would introduce di¤erences in oscillatory behavior across section that would allow for cyclical
variations across i in the data. Irregularities in the limiting form of the cyclical behavior over time

7When �a� < 0 and � < 0; the variation Kx
t may follow a U�shaped time path if j�a�j > �2�: In such cases, K

x
t

may initially decrease before beginning to increase over time. When j�a�j � �2�; then K
x
t increases monotonically

over time.

15



as n ! 1 can be introduced using functional versions such as sin (��i (t=T )) for �i (t=T ) 2 �;
where � is the class of monotonically increasing functions over the unit interval [0; 1].

Figure 2: Two examples of oscillatory convergence illustrating (19)

As a further example, we may consider stochastic trend weak ��convergence for panels of the
form

xit = ai + bit
1Pt
s=1 �s

+ �it; �it � iid
�
0; �2

�
,

and

(ai; bit) � iid

��
a
bt

�
;

�
�2a 0
0 �2bt

��
over i;

with the �it independent of (ai; bit) ; and bt; �2bt = Op (1) ; re�ecting the presence of common shocks
over time on the mean and variance of bit. Under general conditions on the time series �s (e.g.,
Phillips and Solo, 1992), partial sums of �s satisfy an invariance principle upon standardization, so
that T�1=2

PbT �c
s=1 �s ) B� (�) ; a Brownian motion with variance !2 > 0: Then, since

Kx
nt ! a:s:�

2
a +

�2btb
2
t t
�1�

t�1=2
Pt

s=1 �s
�2 as n!1

� �2a +
�2btb

2
t t
�1

B� (1)
2 !p �

2
a; as t!1 (20)

in which case we again get weak ��convergence as t!1 to �2a: Observe that the ratio 1=B� (1)
2

in (20) is the reciprocal of a �21 variate and therefore has no �nite integer moments, so that
realizations of the second component of (20) have potentially heavy tails. Moreover, depending on
the realization of the coe¢ cient function b2t there may be increasing or decreasing behavior en route
to the limit value �2a:
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The second prototypical case arises when shocks in�uence only the cross sectional variation of
xit not the mean level of the panel xit; as in the following DGP.8

Model M2: xit = ai + �itt
�� : (21)

The sample cross sectional variation Kx
nt is then

Kx
nt = �2a;n + �

2
�;ntt

�2� + en;t; (22)

where �2�;nt = n�1
Pn

i=1 ~�
2
it; and en;t = 2n

�1Pn
i=1 ~ai~�itt

�� !p 0 as n!1: If n�1
Pn

i=1 ~ai~�it !p 0
and � > 0 the power decay rate in (22) is 2�:When � < 0; there is divergence and xit has increasing
cross section variation over time. For instance, if � = �1=2; xit = Op(

p
t) and xit has stochastic

order similar to a unit root process.
The last prototypical model combines level and scale time changes and has the following form

Model M3: xit = ai + �it
�� + �itt

��; (23)

where the idiosyncratic components satisfy the same assumptions as before. The sample cross
sectional variation of xit in this case is given by

Kx
nt = �2a;n + 2�a�;nt

�� + �2�;nt
�2� + �2�;ntt

�2� + en;t; (24)

where en;t = 2n�1t��
Pn

i=1 ~ai~�it + 2n
�1t����

Pn
i=1 ~�i~�it !p 0 as n!1; and �2a;n = n�1

Pn
i=1 ~a

2
i ;

�a�;n = n�1
Pn

i=1 ~ai~�i; and �
2
�;n = n�1

Pn
i=1 ~�

2
i , as before in (18). Weak ��convergence clearly

holds if � > 0 and � > 0:
The outcomes for the sample cross section variation in these models may be summarized as

follows:
Kx
nt = an + �n;t + "n;t; (25)

where

an =

8<:
�2a;n + �

2
�;nT for M1,

�2a;n for M2,
�2a;n for M3,

�n;t =

8<:
2�a�;nt

�� + �2�;nt
�2� for M1,

�2�;nT t
�2� for M2,

2�a�;nt
�� + �2�;nt

�2� + �2�;nT t
�2� for M3,

(26)

and

"n;t =

8>>><>>>:
2n�1

Pn
i=1 ~ai~�it + 2n

�1Pn
i=1 ~�i~�itt

�� +
�
�2�;nt � �2�;nT

�
for M1,

2n�1
Pn

i=1 ~ai~�itt
�� +

�
�2�;nt � �2�;nT

�
t�2� for M2,

2n�1
Pn

i=1 ~ai~�itt
�� + 2n�1

Pn
i=1 ~�i~�itt

���� +
�
�2�;nt � �2�;nT

�
t�2� for M3.

(27)

Clearly, Model M3 in (23) nests the �rst two models. M3 becomes M1 when � = 0 and � 6= 0; and
M3 becomes M2 when � = 0 and � 6= 0:

8The model may be modi�ed to allow for a composite error of the form ��it + �itt
�� with an additional stationary

component ��it This error augmentation does not alter subsequent results and is therefore not included in (21).
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3.2 Testing and Application of Weak ��Convergence
3.2.1 Direct Nonlinear Regression

An obvious initial possibility for testing weak ��convergence is to run a nonlinear regression based
on the form of the implied decay function of Knt given in (24) and carry out tests on the coe¢ -
cients and the sign of the power trend parameters. The parameters of interest are �2a; �; �; �

2
�

and �2� : If these parameters were identi�able and estimable using nonlinear least squares, testing
weak ��convergence might be possible by this type of direct model speci�cation, �tting, and test-
ing. However, the parameters are not all identi�able or asymptotically identi�able in view of the
multifold identi�cation problem that is present in models with multiple power trend parameters.
Readers are referred to Baek, Cho and Phillips (2015) and Cho and Phillips (2015) for a recent
study of this multifold identi�cation problem, and more general issues of identi�cation and testing
analysis in time series models with power trends of the type that appear in (23) and (25).

Even if restrictions were imposed to ensure that all parameters were identi�ed in a direct model
speci�cation of convergence, formulation of a suitable null hypothesis presents further di¢ culties.
Our interest centres on the possible presence of weak ��convergence, which holds in the model
when � > 0 and � > 0: Hence, the conditions for weak ��convergence are themselves multifold,
which further complicates testing. Further, it is well known that nonlinear estimation of the power
trend parameters � and � is inconsistent when �; � > 0:25 because of weakness in the signal that
is transmitted from a decay trend regressor (see Malinvaud, 1970, Wu, 1981, Phillips, 2007, and
Lemma 1 below). Finally, a parametric nonlinear regression approach relies on a given speci�cation,
whereas in practical work the nature of data and its generating mechanism across section and
over time are generally so complex that any given model will be misspeci�ed. In consequence,
econometric tests based on the direct application of nonlinear regression to a given model will
su¤er from speci�cation bias resulting in size distortion. It is therefore of considerable interest and
importance in applications to be able to provide a convergence test without providing a complete
model speci�cation for the panel.

In view of these manifold di¢ culties involved in direct model speci�cation and testing, we pursue
a convenient alternative approach to test for weak ��convergence. The idea is to employ a simple
linear trend regression that is capable of distinguishing convergence from divergence, even though
a linear trend regression is misspeci�ed under the convergence hypothesis. In fact, a linear trend
may be interpreted as a form of spurious trend under the convergence hypothesis. Yet this type of
empirical regression provides asymptotically revealing information about convergence, as we now
explain, just as spurious regressions typically reveal the presence of trend in the data through the
use of another coordinate system (Phillips, 1998, 2005).

3.2.2 Linear Trend Regression

The idea is to run a least squares regression of cross section sample variation9 Knt on a linear trend
giving

Knt = ânT + �̂nT t+ ût; t = 1; :::; T (28)

where ût is the �tted residual, and to perform a simple signi�cance test on the �tted trend slope
coe¢ cient �̂nT : This regression enables us to test the key de�ning property of weak ��convergence.
In particular, according to the de�nition, if plimn!1Knt exists and Knt is a decreasing function

9 In what follows we remove the variable name a¢ x and write Kx
nt simply as Knt:
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of t; then weak ��convergence holds. In this event, in terms of the regression (28), we expect the
slope coe¢ cient �̂nT to be signi�cantly negative, whereas if �̂nT is not signi�cantly di¤erent from
zero or is greater than zero, then the null of no ��convergence cannot be rejected.

In order to construct a valid signi�cance test, allowance must be made for the fact that the
model (28) is generally misspeci�ed when Knt satis�es a model such as (24), so that a robust test of
signi�cance must allow for the presence of serially correlated and heteroskedastic residuals. Further,
as we will show under certain regularity conditions, the corresponding robust t-ratio statistic t�̂nT
diverges to negative in�nity in the presence of weak ��convergence, so that this simple regression
t-test is consistent.

The misspeci�cation implicit in the trend regression (28) complicates the asymptotic properties
of the estimates and the t-ratio statistic, so that the limit behavior of both �̂nT and t�̂nT depends
on the values of � and � and the relative sample sizes n and T: This limit behavior is examined
next.

4 Asymptotic Properties

This section provides asymptotic properties of the suggested test in the previous section. We start
with asymptotics for the slope coe¢ cient estimator �̂nT and then develop the limit theory for the
t-ratio statistic. To proceed in the analysis we impose the following conditions on the components
of the system given by model M3 in (23), which is convenient to use in what follows because it
subsumes models M1 and M2.

Assumption A:

(i) The model error term, �it, is independently distributed over i with �nite fourth mo-
ment and is strictly stationary over t with autocovariance sequence i (h) = E (�it�it+h)
satisfying the summability condition

P1
h=1 h ji (h)j < 1 and with long run variance


2e =
P1

h=�1 i (h) > 0:

(ii) The slope coe¢ cients, ai and �i; are cross sectionally independent and have �nite
second moments.

(iii) Eai�jt = E�i�jt = E�it�jt = 0 for all i; j;and t;with i 6= j :

The cross section independence over i and stationarity over t in (i) are restrictive but are also fairly
common. It seems likely that both conditions may be considerably relaxed and cross sectional
dependence in �it and some heterogeneity over t may permitted, for example under suitable uniform
moment and mixing conditions that assure the validity of our methods. For simplicity we do not
pursue these extensions in the present work.

In what follows it is useful to note that as T ! 1 sums of reciprocal powers of the integers
have the following asymptotic form (see Lemma 1 in the Appendix)

�T (�) =
XT

t=1
t�� =

8><>:
1

1� �T
1�� +O (1) if � < 1;

lnT +O (1) if � = 1;
� (�) = O (1) if � > 1:

As is well known, �T (�) is O (1) for � > 1; has a representation by Euler-Maclaurin summation
in terms of Bernoulli numbers, and can be simply bounded. Lemma 1 provides more detail about
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the Riemann zeta function limit � (�) and the various asymptotic representations of �T (�) ; which
turn out to be useful in our asymptotic development.

The least squares coe¢ cient �̂nT in the trend regression (28) can be decomposed into determin-
istic and random component parts as follows. We use the general framework for the sample cross
section variation Kx

nt given by (25) - (27). We may write �n;t as

�n;t = �t + �n;t = �t +Op

�
n�1=2

�
; (29)

where �t is the n�probability limit of �n;t; speci�cally

�t =

8<:
2�a�t

�� + �2�t
�2� for M1,

�2� t
�2� for M2,

2�a�t
�� + �2�t

�2� + �2� t
�2� for M3,

(30)

where �a� = plimn!1�a�;n; �2� = plimn!1�2�;n; and �
2
� = plimn!1�2�;nT : We further de�ne the

quantities

�a�;n : = �a�;n � �a� = n�1
Xn

i=1
(~ai~�i � �a�) = Op

�
n�1=2

�
; (31)

��;n : = �2�;n � �2� = n�1
Xn

i=1

�
~�2i � �2�

�
= Op

�
n�1=2

�
; (32)

so that the residual in (29) can be written as �n;t := 2�a�;nt
�� + ��;nt

�2� = Op
�
n�1=2

�
uniformly

in t for all � > 0 for M1.
Setting atT = ~t=

�PT
s=1 ~s

2
�
and using (29), the trend regression coe¢ cient �̂nT in (28) can be

decomposed into three components as follows

�̂nT =
XT

t=1
atT ~�t +

XT

t=1
atT~�n;t +

XT

t=1
atT~"n;t =: IA + IB + IC ; (33)

where ~�t = bgt��; ~�n;t = �n;t�T�1
PT

t=1 �nt; ~"n;t = "n;t�T�1
PT

t=1 "nt and � represents the relevant
decay parameter, and b is the corresponding coe¢ cient in that term. To be speci�c, the values of
� and b in the three model cases M1-M3 are summarized in the Table M below.

Case M1 M2 M3
b � b � b �

�; � > 0;and �a� 6= 0 2�a� � �2� 2� 2�a� for �; �2� for 2� min [�; 2�]
�; � > 0;and �a� = 0 �2� 2� �2� 2� �2� for 2�; �

2
� for 2� min [2�; 2�]

� < 0 or � < 0 �2� 2� �2� 2� �2� for 2�; �
2
� for 2� min [2�; 2�]

Table M: Parameter Speci�cations for Models M1 - M3

As is apparent in the table, for model M3 there are two possible sources of decay (or divergence)
and the relevant value of the parameter � is determined by the majorizing force. These possibilities
are accounted for in the proofs of the results that follow.

It is convenient to de�ne the conditional order-rate element

OT� = �

8<:
L�T

�1�� if � < 1;
6T�2 lnT if � = 1;
6� (�)T�2 if � > 1:

(34)
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where L� = 6�[(2� �) (1� �)]�1: The limit behavior of �̂nT in the regression equation (28) is
characterized more easily in terms of OT� in the following result. Since the linear trend regression
(28) is typically misspeci�ed, interest centers on the asymptotic behavior of �̂nT under the various
potential models of data generation, the possible values of the rate parameters (�; �) in the trend
decay functions of M1, M2, and M3, and the sample size divergence rates n; T !1:

Theorem 1 (Linear Trend Regression Limit Behavior)

Under assumption A and as (n; T ) ! 1 jointly, the limit behavior of the �tted coe¢ -
cient �̂nT in regression (28) is characterized in the following results.

(i) Under weak ��convergence (with � > 0 and b > 0), then �̂nT = b � OT� < 0 for
1
n +

T
n ! 0 and the respective values of � given in Table M.

(ii) Under ��divergence (with � > 0 and b < 0), then �̂nT = b�OT� > 0 for 1
n+

T
n ! 0;

or �̂nT = b�L�T�1�� > 0 if � < 0 with no restiction on the n=T ratio as (n; T )!1:
(iii) Under the null hypothesis of neither convergence nor divergence (� = 0), then
�̂nT = Op

�
n�1=2T�3=2

�
; irrespective of the n=T ratio:

The decay parameter � which governs convergence behavior is unknown and is not estimated.
Since the empirical trend regression equation (28) is generally misspeci�ed when � 6= 0; the key
point of interest is whether the �tted coe¢ cient �̂nT and its associated t-ratio in regression (28)
have asymptotically distinguishable behavior that reveal weak ��convergence in the data. When
the deterministic component (IA =

PT
t=1 atT �t) of �̂nT dominates (33) as it typically does (see

the discussion below), it turns out that there is identi�able behavior in the sign of �̂nT and this
property is used as the basis of a convergence test.

In establishing the results of the theorem, the proof examines the components of (33) to assess
the main contribution to the asymptotic behavior of �̂nT : The proof of the theorem provides detailed
calculations and examines the various cases implied by the di¤erent parameter con�gurations. The
outcomes for the three models that emerge from this theory are summarized below with discussion
about the role of the decay parameter � and its speci�c parametric values (�; 2�; 2�) in determining
the respective outcomes.

First, in model M1 the dominant term depends on the value of �, and the IA term dominates
provided nT�2� ! 1 if � < 1=2 and provided n=T ! 1 if � � 1=2: In model M2, the decay
parameter is 2�: As long as � > 0; E�̂nT passes to zero as T ! 1; and the other terms pass to
zero faster than the �rst term IA in (33) regardless of the n=T ratio: Thus, regardless of the value
of � > 0 and the n=T ratio, the �rst term always dominates the other two terms. In model M3,
the situation is more complex because there are two potential sources of decay or divergence; but,
in general, the behavior under M3 is similar to that of M1 and the IA term dominates provided
n=T !1:

As is apparent in the statement of the theorem, discriminating behavior in the �tted slope
coe¢ cient �̂nT (and, as we will see, test consistency) typically require the rate condition that
n=T !1: This condition ensures that the sample cross section variation has stabilized su¢ ciently
(for large enough n) to facilitate the identi�cation of trend decay or divergence in the variation
over time (for large T ). It is of some interest whether this rate condition might be relaxed if a more
�exible power trend regression of the form

Knt = ânT + �̂nT t
 + ût; t = 1; :::; T; and some given  > 0; (35)
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were used in place of the linear trend regression equation (28). In fact, as discussed in Appendix S,
use of a power trend regressor t in the empirical regression instead of a simple linear trend does
not lead to di¤erent rate requirements regarding (n; T ) : Simulations with various values of the
exponent parameter  con�rmed that there is also no reason based on �nite sample performance
to use a value of  di¤erent from unity in the empirical regression.

With the asymptotic behavior of �̂nT in hand, limit theory can be developed for the correspond-
ing t-ratio in the regression (28). We use the robust form of the test statistic given earlier in (9)
which employs a standard long run variance estimate 
̂2u constructed by lag kernel methods as in
(10) from the regression residuals ût = Knt � ânT � �̂nT t. Since the trend regression equation is
misspeci�ed, 
̂2u does not consistently estimate the long run variance 


2
e of the errors �it in models

M1,M2, or M3 as n; T ! 1 unless the parameters � = � = 0 in those models and there is no
decay function in the generating model. That special case is taken as the null hypothesis of no
convergence or divergence, viz., H0 : � = � = 0; under which consistency 
̂2u !p 


2
e follows by

standard methods.
The primary focus of interest in testing is not the null H0 : � = � = 0 but the alternative

hypothesis HA : � 6= 0 or � 6= 0 under which there is convergence or divergence in the cross section
sample variation. Under HA; the linear trend regression speci�cation is no longer maintained and
the relevant asymptotic behavior is that of the long run variance estimate 
̂2u under misspeci�cation
of the trend regression. To capture the misspeci�cation e¤ect, it is convenient to decompose the
regression residual into two primary components as

ût =
�
~�n;t � �̂nT ~t

�
+ ~"nT =: ~Mnt + ~"nT ; (36)

where ~�n;t = �n;t � T�1
PT

t=1 �n;t and ~"nt = "nt � T�1
PT

t=1 "nt: Using (29)-(32) we have �n;t =
�t + �n;t = �t +Op

�
n�1=2

�
uniformly in t for all � > 0 for M1 and M3. Then,

~�n;t = ~�t +
~�n;t = bgt�� + ~�n;t;

using the simpli�ed summary notation of Table M. More speci�cally, from Lemma 5 in the Appen-
dix, we have

~�n;t =

8>>><>>>:
2�a�;n

gt�� + ��;ngt�2� = op

�gt�2�� for M1,

��;n
gt�2� = op

�gt�2�� for M2,

2�a�;n
gt�� + ��;ngt�2� + ��;ngt�2� = op

�
min

�gt�2�; gt�2��� for M3,

(37)

which may be expressed in the simple form that ~�n;t = op (~�t) uniformly in t as n=T ! 1. Since
the trend regression coe¢ cient �̂nT satis�es the decomposition (33), we �nd that

~Mnt = ~�n;t � �̂nT ~t = ~�t + ~�n;t � (IA + IB + IC) ~t
= ~�t � IA~t+ ~�n;t � ~t (IB + IC)
= ~mt +Rnt;

with deterministic part ~mt = ~�t� IA~t and random part Rnt = ~�n;t� ~t (IB + IC) : As n=T !1; we
show in the Appendix in the proof of Theorem 1 that IA dominates IB and IC for all three models;
and, from above, ~�n;t = op (~�t) uniformly in t as n=T !1: It follows that Rnt = op ( ~mt) uniformly
in t as n=T !1:

22



Under model M2, the term ~Mnt in (36) always dominates the second term asymptotically in
the behavior of 
̂2u as (n; T ) ! 1; irrespective of the n=T ratio. In models M1 and M3, ~Mnt

continues to dominate the behavior of 
̂2u as (n; T ) ! 1 provided n=T ! 1: Thus, ~Mnt can be
rewritten

~Mnt = b

"gt�� � ~t�XT

t=1
~tgt����XT

t=1
~t2
��1#

+Rnt; (38)

where Rnt is a smaller order term: Thus, when ~Mnt dominates the behavior of 
̂2u as (n; T )!1;
the asymptotic behavior of the t-ratio is determined as follows

t�̂nT
=

�̂nTq

̂2u=

PT
t=1
~t2
� �̂nTq


2M=
PT

t=1
~t2
=

�
b
PT

t=1
~tgt����PT

t=1
~t2
��1=2

q

2M

; (39)

making the t-ratio a function of only �; �; and T asymptotically when n=T ! 1. In (39) the
quantity 
2M is constructed in the usual manner as a long run variance estimate, viz.,


2M =
1

T

XT

t=1
~m2
t +

2

T

XL

`=1

XT�`

t=1

�
1� `

L+ 1

�
~mt ~mt+`; (40)

as in (10) with lag truncation parameter L; and, being a function of ~mt, 
2M is a deterministic
function of t: The asymptotic equivalence in (39) is established in the proof of the following result
which gives the asymptotic behavior of t�̂nT under the null and alternative hypotheses.

Theorem 2 (Asymptotic Properties of the t�̂nT ratio)

Under Assumption A, the t-ratio statistic t�̂nT in the empirical regression (28) has the
following asymptotic behavior as n; T !1 :

(i) Under weak ��convergence (� > 0 and b > 0) and when n=T !1;

t�̂nT
! ���� =

8>><>>:
�1 if 0 < � < 1;

�
p
6=�2 if � = 1;

�Z (�)
p
3 if 1 < � <1;

�
p
3 if �!1:

(41)

where � > 0 is de�ned by the lag truncation parameter L = bT �c in the long run
variance estimator (10). The function Z (�) := � (�)

�P1
t=1 t

��� (�; t)
��1=2

> 1 for all
� > 1; where � (�) =

P1
t=1 t

�� and � (�; t) =
P1

s=1 (s+ t)
�� are the Riemann and

Hurwitz zeta functions, respectively.

(ii) Under ��divergence, as n; T !1;

t�̂nT
!
�
+1 if � < 0 regardless of the n=T ratio,
��� if �a� < 0 with � > 0 and n=T !1: (42)

(iii) Under the null hypothesis H0 : � = 0 (neither convergence nor divergence), as
n; T !1 irrespective of the n=T ratio,

t�̂nT
!d N (0; 1) : (43)
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As indicated in (41) and (42), the precise limit behavior of the t-ratio statistic depends on the
parameter �; the lag truncation constant � > 0 in L = bT �c; and certain other constants when
� � 1: When the Bartlett-Newey-West estimate is used in constructing 
̂2u, the constant � is
commonly set to 1=3:

Theorem 2 (ii) de�nes t-ratio behavior under ��divergence when � < 0 and the limit theory
is expected. For when � 2 f2�; 2�g and is negative, the dominant term is either t�2� or t�2�;
so that cross section variation diverges permanently and the t-ratio is positive and increasing as
n; T !1: Theorem 2 (ii) also shows that when � > 0 and �a� < 0, the behavior of the t ratio is a
mirror image of part (i). Theorem 2 (iii) gives the standard result for a correctly speci�ed model
with weakly dependent errors. Thus, when � = � = 0; the trend regression is well de�ned as a
simple model with a slope coe¢ cient of zero, and the t-ratio is asymptotically N (0; 1) by standard
nonparametrically studentized limit theory.

Theorem (i) is the key result of most relevance in empirical studies of convergence. The ex-
plicit limit behavior shown in (41) derives from the fact that the t-ratio takes asymptotically the
deterministic form (39), whose limit form can be well characterized. As long as the deterministic
component in the estimator �̂nT is dominant, the results given in (41) hold. Remarkably, the t-
ratio is completely free of nuisance parameters in the limit because the scale parameter b appears
in both numerator and denominator of the t-ratio and thereby cancels, making the limiting form of
the t-ratio a function only of the value of � and the bandwidth parameter � used in the construction
of the long run variance estimate. This property makes the test statistic especially convenient and
auspicious for practical work.

When a 5% one-sided test is used, the critical value of the test for convergence is �1:65. Then,
even if � ! 1 and convergence is extremely fast (making convergence in the data extremely
hard to detect because of the e¤ective small sample property of the convergence behavior), the
maximum value of the t-ratio t�̂nT is �

p
3 = �1:73; which is signi�cant at the 5% level. Hence,

although the the t-test is not consistent in this case, it is still capable of detecting convergence
with high probability asymptotically even under these di¢ cult conditions. When � 2 (0; 1) ; the
test is consistent for convergence behavior and when � < 0 the test is consistent for divergence as
(n; T )!1 irrrespective of the behavior of the ratio n=T:

5 Numerical Calculations

To demonstrate the contrasting test behavior under the alternatives of convergence and divergence,
we use the following numerical calculation. When n!1 the probability limit of Knt under M1 -
M3 is the following deterministic function of t

plimn!1Knt = Kt = a+ �t = a+ bt��; (44)

for some non-zero constants a and b: We calculate the t-ratio under this asymptotic (n ! 1)
deterministic DGP (44) for various sample sizes T and refer to it as the t1T -ratio: Figure 3 shows
how t1T behaves for various values of �: In the vicinity of � s 0, Panel A of Figure 3 shows that
t1T ! �1 as T !1; according as � 7 0: The distinction between the two alternatives is strongly
evident, even for T = 100: Panel B of Figure 3, shows the behavior of t1T as � increases for various
values of T: The approach of t1T to the asymptote �

p
3 as �!1 is clearly evident and becomes
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stronger as T increases.
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Figure 3: Asymptotic behavior of the t1T ratio (� = 1=3, � = �; �2� = �2� = 1; n!1)

Figure 4: Empirical distribution of t�̂nT under M1
(n = 1000; T = 100; �a� = 0; �2a = �2� = 1; �it � iidN (0; 1) ; � = 1=3)

To explore behavior of the test in the vicinity � s 0, Figure 4 plots the density of the t-ratio
for various values of � in model M1 with n = 1000 and T = 100: We set �a� = 0; �2� = 1 and
� = 1=3 in (17) and use draws of �it � iidN

�
0; �2�

�
; �i � iidN

�
0; �2�

�
; and ai � iidN

�
0; �2a

�
with

50,000 replications. Evidently for � = 0:5 the density lies almost completely to the left of the 5%
critical value �1:65 even for the moderate time series sample size T = 100: For � = 0:3; 0:4, the
distribution shifts further to the left and the test is even more powerful, whereas for � � 0:5, the
distribution moves to the right and the rejection frequency starts to decline. Test power continues
to decline as � departs further from 0:5. The same pattern applies as n or T increases.

Figure 5 shows the power function over a range of � values for di¤erent n; with T = 50, �2� = 4;
�2� = 1; and 100; 000 replications. Rapid movements in the power function occur around � = 0 as
the model parameter changes from a divergent alternative through the null hypothesis (� = 0) to
a convergent alternative. Observe that for moderate values of � with � < 1 (equivalently � < 2)
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the power function is close to unity. But when � � 2; the convergence rate is fast and, as discussed
above, the discriminatory power of the test is reduced because of an e¤ective small sample problem.
Indeed, for Model M1 with � = 2 (i.e. � = 1) the half life in mean levels is just one period and the
half life in the variation is less than one period10. Nevertheless, even in this rather extreme case of
rapid convergence, test power is well in excess of 50%.
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Figure 6: Test power curves near � = 0 for various n in model M1

10The mean level in model M1 has the form E (xit) = a+�t�� !
t!1

a; when � > 0: Then E (xi1 � xi2) = �
�
1� 2��

�
= 2�� (2� � 1)E (xi1 � xi1) = E (xi1 � xi1) =2 for � = 1 and the half life in mean level from t = 1 is just one
period when � = 1. The limiting variation when n ! 1 has the form K1;t = b +  t�2�; so that K1;1 � K1;2

=  
�
1� 2�2�

�
= 2�2�

�
22� � 1

�
(K1;1 �K1;1) = (3=4) (K1;1 �K1;1) ; and the half life in the variation K1;t

from t = 1 is less than one period.
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As is apparent in Figure 5, the test rejection frequency changes rapidly from the nominal 5%
at the null where � = 0 to virtually 100% for even small departures from the null. This behavior
in the power function is sensitive, at least in the immediate vicinity of � = 0 to the extent of cross
section averaging. To demonstrate, Figure 6 magni�es the region around � = 0 from Figure 5 to
reveal the extent of this sensitivity to the cross section sample size n: Evidently, with greater cross
section information as n increases, the distinction between the null and the alternative becomes
more sharply de�ned, increasing test power as expected.

Similar features to those discussed above apply for tests based on data generated by models M2
and M3. These �ndings are given in the Appendix S as supplementary material to this paper.

6 Monte Carlo Simulations

We investigate the �nite sample performance of the trend regression test of convergence and diver-
gence using the following data generating process

yit = ai + �iFt + �it
�� + �itt

��;

where

ai � iidN
�
0; �2a

�
; �i � iidN (0; 1) ;

�it = �i�it�1 + vit; vit � iidN (0; 1) ; �i � U [0; 0:5] ;

and �i � iidN (0; 1) or �i = 1 for all i: The �xed parameter settings are: �a 2 [1; 2; 5; 10] ; and
�; � 2 [�0:1; 0; 0:1; 0:5] : The experimental design for each model and restrictions on the parameter
values are as follows:

Model M1: (� = 0) We take the case where �i = 1 for all i as the case �i 6= �j for i 6= j is
considered in Model 2. This model is useful in studying panel data convergence when cross sectional
dependence is homogeneous (here via the common factor Ft). We consider two cases depending on
the value of �a�; one case with �a� = 0:45 and the other case with �a� = 0: Comparison of these
cases highlights the impact of �a� on test performance where asymptotics are known to be a¤ected
through the di¤ering values of the rate parameter � (see Table M).

Model M2: (� = 0) Two cases are considered. In the �rst case �i = 1 for all i; whereas in the
second case �i is generated from iidN (0; 1) and idiosyncratic components must be estimated to
eliminate common factor Ft. More speci�cally, we use estimates of xit de�ned by

x̂it = yit � �̂iF̂t;

where �̂i and F̂t are obtained by principal component methods. In this experiment, the number of
common factors is assumed to be known. Bai and Ng (2002) showed that the number of common
factors can be sharply determined by suitable information criteria when sample sizes of n and T
are moderate and this was con�rmed in our simulations in the present case, so these results are not
reported.
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Model M3: (� = �) For brevity, we consider only the case � = �. Simulation results for other
cases are available online11. As in Model M1, we consider two cases depending on the value of �a�:

Table 1 reports size and power of the one-sided convergence test in model M1 with settings
� = 1=3 and L = int(T �) in the long run variance calculation. When � < 0 or � < 0; the size of the
one-sided test is expected to be zero and this is con�rmed in Table 1 (with � = �0:1) and in Table 2
(with � = �0:1) for model M2. Moreover, test size in M1 and M2 is very similar, again as expected
because of the null hypothesis setting � = � = 0. The Table 1 results show that test power is
dependent on �a�: When �a� 6= 0; the test is consistent when (n; T )!1 irrespective of the n=T
ratio if � < 0:5; as demonstrated in the Appendix. Otherwise, test power increases with n but
may decrease as T increases with n �xed. For example, when � = 0:3; 0:5 and �a� = 0; test power
decreases as T increases for any �xed n: This is explained by the fact that when �a� = 0 the decay
parameter � = 2� > 0:5 in these experiments, so that convergence is faster and discriminatory
power is correspondingly reduced as T increases with n �xed. On the other hand, when �a� 6= 0;
the power of the test increases as T increases.

Table 2 shows test size in model M2, which is comparable with that of Table 1 for model M1:
When � = �0:1; the test size is virtually zero, which is expected for the one-sided test because the
t-ratio tends to in�nity in this case and large positive values of the statistic are expected. When
� = 0; there is some mild size distortion for small T; which does not seem to rise or fall as n
increases, but which diminishes quickly as T increases. Test size does not seem sensitive to �2a
or when estimated idiosyncratic elements are estimated, which perhaps to be expected given the
robust limit theory in Theorem 2.

Table 3 reports test power for model M2. Interestingly, power is smaller for � = 0:1 than when
� = 0:5: The test statistic densities reveal (see Figure S1) that as � increases the variance of the
t-ratio decreases but at the same time the mean of the t-ratio decreases in absolute value. This
reduction in variance of the test statistic seems to a¤ect �nite sample power performance more than
reduction in mean. Also, Table 3 shows that test power decreases as the variance of ai increases,
which is explained by the fact that as �2a increases there is greater �uctuation in the panel data level
for all t; and this induced noise reduces discriminatory power in the test. When �i � iidN (0; 1) and
idiosyncratic components are estimated, test power is similar to the �xed �i = 1 case. In general,
the �ndings show that as long as � < 1 test power increases with T for �xed n and increases as n
increases for �xed T:

Table 4 shows test power for model M3. Test size is not reported in this case becauses the
results are very similar to those of models M1 and M2 and we report only the case where � = � as
the results are similar for other cases. The main �nding is that test power increases as n increases
regardless of the value of �a� and generally increases as T increases for �xed n: The exception
occurs when �a� = 0 and � = � = 0:5 where there is evidence of a minor attentuation in power
as T increases, which is explained as earlier by the fact that when �a� = 0 the decay parameter
� = 2� > 0:5 and test discriminatory power is reduced because of the faster convergence rate and
the implied small sample e¤ect as T increases with n �xed.

7 Empirical Examples

We demonstrate two practical applications of the proposed test. The �rst data set is a balanced
panel consisting of 90 disaggregated personal consumption expenditure (PCE) items. The second

11www.utdallas.edu/~d.sul/papers/Monte_res_9_17.xls
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application involves a balanced pseudo-panel data set. The proposed test remains valid in pseudo-
panels as long as the sample cross sectional variation approximates well the true cross sectional
variance in each time period.

7.1 Weak ��Convergence with 90 PCE in�ation Rates
Here we report a very interesting empirical fact about the weak ��convergence with 90 disaggregate
PCE in�ation rates. The source of the data is the annual PCE (Table 2.5.5) and our full data set
covers 90 disaggregated series over the period 1960 to 2014. During the latter sample period 1992
to 2014, PCE in�ation rates experienced much smaller variation than in the 1970s and 1980s.

Following the common factor literature, we assume that the PCE in�ation rates have a static
factor structure of the form

�it = ai + �
0
iFt + �

o
it; (45)

with common factors Ft; factor loadings �i; individual series �xed e¤ects ai; and idiosyncratic
in�ation rate �oit. Our main concern is whether or not the idiosyncratic components of the 90
disaggregated PCE in�ation rates manifest weak ��convergence over time. We start by estimating
the number of the static common factors using Bai and Ng�s (2002) IC2 criterion (up to a potential
maximum of 8 factors). Three factors are found over the entire sample period from 1960 to 2014.
Next, we obtain estimates of the idiosyncratic components by using principal components.12
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Figure 7: Cross Sectional Means and Variances of 90 PCE items

Figure 7 plots the PCE average in�ation rates (heavy dark blue line) for the 90 disaggregated
series, the average of the estimated common components (thin black line with empty circles), and

12 In determining the number of the common factors, we standardize the sample observations for each i (dividing
�it by its standard deviation for each i) before calculating the IC2 criterion and estimating the common factors.
Let F̂t be the principal component estimates obtained from the standardized sample. Once the common factors are
estimated, the factor loadings are estimated by regression of the original sample data, �it; on a constant and F̂t (45)
for each i. The �nal estimated idiosyncratic components are calculated by taking residuals �̂rit = �it � �̂

0
iF̂t, so that

�xed e¤ects are embodied in �̂rit: That is, �̂
r
it = ai + �oit + �0iFt � �̂

0
iF̂t:
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the sample variance of the estimated idiosyncratic components (thin pink line with solid circles)
over the period 1992 - 2014. Evidently, the cross sectional variance is generally decreasing over this
time period but with some �uctuations, most notably during 2009.

Table 5 reports the weak ��convergence test results with the whole sample (from 1960 to
2014) and two subsamples (before and after 1992). For the sample after 1992, the null of no
��convergence is rejected even at the 1% level. Two di¤erent lag truncation parameter settings
(L = 3; 6) were used in the construction of the long run variance estimates used in the tests and, as
is apparent in the table, the test outcomes and evidence for ��convergence in the data are robust
to lag choice. The selected common factor dimension (k) is also varied from 1 to 8, and again all
cases support evidence for ��convergence.

Test results for the sample prior to 1992 and for the entire sample are very di¤erent. It is well
known that in�ation rates reached a peak in the early1980s and displayed time series wandering
characteristics over the 1970s and 1980s. Common factors to in�ation rates estimated for the 1970s
and 1980s therefore tend to behave rather like random walks and, using the entire sample of data,
it is hard to reject the null of a unit root in the in�ation rates. If the series are integrated, then the
null of no ��convergence should not be rejected, as discussed earlier in the paper. Application of
the convergence test con�rms this intuition. As is evident from Table 5, irrespective of the choice
of k and L, the null of no ��convergence is not rejected in any case either for the whole sample
or the subsample from 1960 to 1992. For the latter subsample regressions, the t-ratios all exceed
the right side critical value 1.65, leading to the conclusion that in�ation rates before 1992 were
diverging. For the entire sample, there is no evidence for divergence (and the t ratio is negative
for most choices of k) and the null of no ��convergence is not rejected in any of the parameter
settings.

Table 6 shows the trend regression test results for various starting years and with various lag
parameter settings of L and with k = 3: As the starting year rises the number of time series
observations T declines. But even with much smaller values of T; the null of no ��convergence is
rejected in all cases. The table also shows that average (absolute) cross sectional correlation also
increases as we move closer to the end of the sample by raising the starting date in the regression.

7.2 Convergence in Ultimatum Games

One of the most studied games in experimental economics is the ultimatum game. A standard
ultimatum game consists of two players: a leader (proposer) and a follower (responder). The leader
o¤ers a portion (x) of a �xed pie (money) to the follower. If the o¤er is accepted, then the pie is
divided as proposed. Otherwise, both players receive nothing. The game theory prediction on the
optimal o¤er is near zero since all positive o¤ers are expected to be accepted. Since the pioneering
study by Güth, Schmittberger and Schwartz (1982), more than 2,000 experimental studies have
shown that leaders usually o¤er around 40% of the pie, and o¤ers lower than 30% of the pie are
often rejected. See Güth (1995), Bearden (2001), Cooper and Kagel (2013) and Cooper and Dutcher
(2011) for surveys of this literature.

A natural question is whether o¤ers tend to converge over rounds in repeated games. We use
the experimental data from Ho and Su (2009) to examine evidence for the convergence. Ho and Su
ran 24 rounds of Ultimatum games with 4 sections. Each section had between 15 and 21 subjects,
and each subject played the game 24 times. For each round subjects were randomly matched with
others. So one subject could be a follower in one round, but become a leader in another round. For
each round, there are three players in the Ho-Su experiment: one leader and two followers. From
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their data, we form a pseudo panel of 25 subjects over 24 rounds. Figure 8 shows the cross sectional
average and variance over rounds. Interestingly, the o¤er fraction seems to follow a slow decaying
function: initial o¤ers were slightly higher than 40%, but with more rounds the o¤ers seem to fall
and stabilize slightly above 30%. Cross sectional variation clearly �uctuates but is evidently slowly
decreasing over time.
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Figure 8: Cross Sectional Average and Variance
(From Ho & Su (2009))

We ran trend regressions with the cross sectional variance from these data. The results are
reported in Table 7 and allow for various starting points in the regression. When the initialization
is set at the round 1 game, the point estimate is �̂nT = �0:087 with t-ratios t�̂nT (L) � �4:299 for
all values L 2 f1; 3; 5; 7g of the lag truncation parameter. The null hypothesis of no ��convergence
is therefore rejected even at the 0:1% level. This �nding con�rms that as the ultimatum game
is repeated, cross section variation in the o¤er rates declines. In further investigation, the trend
regression was performed with initializations set at later rounds of the game. Due to the high peak
in the variance at round 6, the point estimates �̂nT remain close to the same level �0:09 until the
6th round sample observations are discarded. Commencing from later initializations, the regression
point estimates drop to �0:05 and show evidence of some further decline thereafter. Nonetheless,
the t-ratios all lead to rejections of the null of no ��convergence at close to the 1% level.

8 Conclusion

Concepts of convergence have proved useful in studying economic phenomena at both micro and
macro levels and have wider applications in the social, medical, and natural sciences. Of particular
interest in empirical work is whether given data across a body of individual units show a tendency
toward convergence in the sense of a persistent diminution in their variation over time, an idea
that was clearly articulated by Hotelling (1933) in the header to this article. The concept of weak
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��convergence introduced in the present paper gives analytic characterization to this concept and,
more importantly for implementation, one that is amenable to convenient econometric testing. The
approach relies on a simple linear trend regression which is correctly speci�ed only when the data
is subject to no change or evolution over time, but which leads to a statistical test of convergence
that has discriminatory power when there is either diminution or dilation of variation over time.

When a system is disturbed and cross section variation is a¤ected, the convergence test is an
empirical mechanism for assessing whether the disturbances in�uence the system over time in a
directional manner that diminishes or raises variance. In the event that there is no directional
impact, the slope coe¢ cient in the trend regression is zero and the test does not register any
evolutionary change. But if the disturbances are neutralized and variation is reduced over time,
the estimated slope coe¢ cient is negative and the test registers diminution in variance even when
the precise mechanism is unknown. When the directional impact is positive and variation rises over
time, the estimated slope coe¢ cient is positive and the test registers rising variation. Asymptotic
theory in the paper justi�es this simple approach to testing convergence and divergence in panel
data when the underlying stochastic processes are unknown but fall within some general categories
of models with evaporating or dilating trends in variation.

The methodology applies whether or not the observed data are cross sectionally dependent,
under general regularity conditions for which a law of large numbers holds. Moreover, the data
may be drawn from panels or pseudo-panels where observations may relate to di¤erent individuals
or cross sectional units in each time period. The main technical requirement on the panel is that
the respective sample sizes (n; T )!1 and that n

T !1; although the latter rate condition is not
always required. Simulations show that the methods provide good discriminatory power in most
cases of convergence and divergence, even when the time series sample and cross section sample
sizes are of comparable size.
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Appendix

The following lemmas are useful in establishing Theorems 1 and 2. Proofs are given in the Supple-
mentary Appendix S.

Lemma 1

Finite series of sums of powers of integers have the following asymptotic forms as T !
1

�T (�) =
XT

t=1
t�� =

8><>:
1

1� �T
1�� +O (1) if � < 1;

lnT +O (1) if � = 1;
ZT (�) = O (1) if � > 1;

HT (�; `) =
XT

t=0
(t+ `)�� =

8><>:
1

1� � (T + `)
1�� +O (1) if � < 1;

ln (T + `)� ln `+O (1) if � = 1;
�T (�; `) = O (1) if � > 1;

where, for � > 1; ` � 1;

ZT (�) ! � (�) =
X1

t=1

1

t�
=

1

�� 1 +
1

2
+��;

�T (�; `) ! � (�; `) =
X1

t=0

1

(t+ `)�
=
1

`�
+

1

(1 + `)�

�
1

2
+
1 + `

�� 1

�
+��;`:

with �� and ��;` de�ned below in (63) and (64) in the supplementary appendix, and
where � (�; `) � � (�) for all integer ` � 1:

Lemma 2

De�ne ~t = t� T�1
PT

t=1 t;
gt�� = t�� � T�1

PT
t=1 t

��; TT (1; �) =
PT

t=1
~tgt��; ST (�) =PT

t=1
gt��gt��, and BT (�) = 1

T

PT
t=1

hgt�� � ~t �P ~t2
��1P ~tgt��i2 : Then, as T !1; we

have

TT (1; �) =

8>>>><>>>>:
� �

2 (�� 2) (�� 1)T
2�� +O

�
T 1��

�
if � < 1;

�1
2
T lnT +O (T ) if � = 1;

�1
2
� (�)T +O (1) if � > 1;

ST (�) =

8>><>>:
�2

(�� 1)2 (1� 2�)
T 1�2� +O (1) if � < 1=2;

lnT +O (1) if � = 1=2;
� (2�) +O

�
T�1

�
if � > 1=2;

and

BT (�) =

8>><>>:
�2

(�� 1)2 (1� 2�)
T�2� +O

�
T�1

�
if � < 1=2;

T�1 lnT +O
�
T�1

�
if � = 1=2;

T�1� (2�) + o
�
T�1

�
if � > 1=2;

=

8<:
O
�
T�2�

�
if � < 1=2;

O
�
T�1 lnT

�
if � = 1=2;

O
�
T�1

�
if � > 1=2:
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Lemma 3:

Let vit be cross section independent over i and covariance stationary over t with mean
zero and autocovariogram h;v;i = E (vitvit+h) satisfying the summability condition

1X
h=1

h
��h;v;i�� <1; (46)

for all i: Suppose bi � iid
�
0; �2b

�
: ThenXT

t=1
vitt

�� = Op

�
[�T (2�)]

1=2
�
;XT

t=1
vit~tt

�� = Op

�
T [�T (2�)]

1=2
�
;XT

t=1
bi~tt

�� = Op (TT (1; �)) :

Lemma 4:

Let mt = t�� � t
�PT

t=1
~tgt����PT

t=1
~t2
��1

and L = bT �c for some � 2 (0; 1) : Then
for � > 0

G (T; �) :=
1

T

XL

`=1

XT�`

t=1

�
1� `

L+ 1

�
~mt ~mt+`

=

8>>>>>><>>>>>>:

O
�
T�2�+�

�
if � < 1=2;

O
�
T ��1 lnT

�
if � = 1=2;

O
�
T ��1

�
if 1=2 < � < 1= (1 + �) ;

O
�
T��+����

�
if 1= (1 + �) � � < 1;

�2

2 T
�1 ln2 T +O

�
T�2 lnT

�
if � = 1;

T�1
�P1

t=1 t
��� (�; `)� � (2�)

	
if � > 1;

where ~mt = mt � 1
T�`

PT�`
s=1 ms; ~mt+` = mt+` � 1

T�`
PT�`

s=1 ms+`; � (�; `) is the Hurwitz
zeta function and � (2�) is the Riemann zeta function

Lemma 5

Suppose bi � iid
�
b; �2b

�
: Let �b;n = n�1

Pn
i=1(bi�b): Then as n; t!1 with n=T !1;

we have

�b;n
gt�� = op

�gt�2�� : (47)

which may be expressed in the simple form that ~�n;t = op (~�t) uniformly in t as n=T !1. :

Proof of Theorem 1: The Asymptotic Limit of �̂nT
To analyze the asymptotic behavior of the trend regression coe¢ cient �̂nT we use the convenient
decomposition (33), viz.,

�̂nT =
XT

t=1
atT �t +

XT

t=1
atT �n;t +

XT

t=1
atT "n;t =: IA + IB + IC ;
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where

atT =
~tPT

s=1 ~s
2
=

t� T�1
PT

s=1 s

T 3 � 1
T 3
PT

s=1 ~s
2
=
12

T 3

�
t� T + 1

2

��
1 +O

�
T�1

�	
;

The dominant term in �t;denoted by �t;d; can be classi�ed according to the three models as
follows

Case M1 M2 M3
�; � > 0;and �a� 6= 0 2�a�t

�� �2� t
�2� 2�a�t

�� + �2� t
�2�

�; � > 0;and �a� = 0 �2�t
�2� �2� t

�2� �2�t
�2� + �2� t

�2�

� < 0 or � < 0 �2�t
�2� �2� t

�2� �2�t
�2� + �2� t

�2�

Using the general form �t;d = bt��;where � represents the decay parameter and b is the corre-
sponding coe¢ cient in that term, we �rst obtain the following expression for IA: We specify b and
� later in the case of each individual model.

IA =

�XT

t=1
~t2
��1XT

t=1
~t�t s b

�XT

t=1
~t2
��1XT

t=1
~tt��

= �6b�

8>><>>:
�

(�� 2) (�� 1)T
�1�� +O

�
T�2��

�
if � < 1;

T�2 lnT +O
�
T�2

�
if � = 1;

T�2ZT (�)
�
1 +O

�
T�1

�	
if � > 1:

(48)

In particular:

(i) Case � < 1

XT

t=1
atT t

�� =

PT
t=1 t

1�� � T + 1

2

PT
t=1 t

��PT
s=1 ~s

2
=

�
T���1

2� � � T�1��

2 (1� �)

��
1 +O

�
T�1

�	
T�3

PT
s=1 ~s

2

= �
�

6�T�1��

(2� �) (1� �)

��
1 +O

�
T�1

�	
(ii) Case � = 1

XT

t=1
atT t

�� =
T � T + 1

2

PT
t=1 t

�1PT
s=1 ~s

2
=

�
T�2 � T�2

2
lnT

��
1 +O

�
T�1

�	
T�3

PT
s=1 ~s

2

= �6T�2 lnT
�
1 +O

�
T�1

�	
(iii) Case � > 1

XT

t=1
atT t

�� =

PT
t=1 t

1�� � T + 1

2

PT
t=1 t

��PT
s=1 ~s

2
=

T 2��

2� �
�
1 +O

�
T�1

�	
� T + 1

2
ZT (�)

T 3 � 1

T 3
PT

s=1 ~s
2

= �

0BB@
T�2

2
ZT (�)

�
1 +O

�
T�1

�	
1

T 3
PT

s=1 ~s
2

1CCA = �6T�2ZT (�)
�
1 +O

�
T�1

�	
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Next consider IB =
PT

t=1 atT �n;t:When �a� 6= 0; we have

IB = Op

�
n�1=2

�
�
�XT

t=1
~t2
��1XT

t=1
~tt��

Thus, IB = Op
�
n�1=2

�
� IA and IA dominates IB always. When �a� = 0 (this only in�uences M1

and M3), term 2�a�t
�� disappears in IA, but term 2�a�;nt

�� is still present in IB: Hence, when
�a� = 0;

IB =

�
Op
�
n�1=2T�3

�
TT (1; �) for M1,

Op
�
n�1=2T�3

�
TT (1; ��) , with �� = min [�; 2�] for M3,

since n�1
Pn

i=1 ~ai~�i = Op
�
n�1=2

�
by (31); and�XT

t=1
~t2
��1XT

t=1
�a�;n~tgt��

=

�XT

t=1
~t2
��1 �

n�1
Xn

i=1
~ai~�i

�XT

t=1
~tgt�� =

8<:
Op
�
n�1=2T�1��

�
if � < 1;

Op
�
n�1=2T�2 lnT

�
if � = 1;

Op
�
n�1=2T�2

�
if � > 1:

For term IC ; �rst recall that

"n;t =

8>>><>>>:
2n�1

Pn
i=1(~ai~�it + ~�i~�itt

��) +
�
�2�;nt � �2�;nT

�
for M1,

2n�1
Pn

i=1 ~ai~�itt
�� +

�
�2�;nt � �2�;nT

�
t�2� for M2,

2n�1
Pn

i=1(~ai~�itt
�� + ~�i~�itt

����) +
�
�2�;nt � �2�;nT

�
t�2� for M3.

Let ~& it = 2~ai~�it: Then irrespective of whether �a� = 0; or �a� 6= 0; if � > 0 and � > 0 the dominant
term in "n;t is as follows:

M1 M2 M3

n�1
Pn

i=1 ~& it +
�
�2�;nt � �2�;nT

�
n�1

Pn
i=1 ~& itt

�� n�1
Pn

i=1 ~& itt
��

Using lemma 3, for M2 and M3, we have

IC =

�XT

t=1
~t2
��1XT

t=1

�
n�1

Xn

i=1
~& it

�
~tgt�� =

8><>:
Op
�
n�1=2T�3=2��

�
if � < 1=2;

Op

�
n�1=2T�2 [lnT ]1=2

�
if � = 1=2;

Op
�
n�1=2T�2

�
if � > 1=2;

and then, for M1,

IC =

�XT

t=1
~t2
��1

n�1
Xn

i=1

XT

t=1
~& it~t+

�XT

t=1
~t2
��1XT

t=1
~t
�
�2�;nt � �2�;nT

�
= Op

�
n�1=2T�3=2

�
:

If � < 0 or � < 0;the order of term IC will be discussed under each case.

The Asymptotic Limit of �̂nT When � > 0; � > 0

When � > 0; � > 0;we separate the proof when �a� = 0 from that when �a� 6= 0:
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(i) The Asymptotic Limit of �̂nT when �a� = 0

Recall that �t;d = bt��: Then, when �a� = 0; we have: � = 2� and b = �2� in M1; � = 2�; b = �2�
in M2; and � = min [2�; 2�] ; with b = �2� if � = 2�; and b = �2� if � = 2� in M3. We take each
model in turn to obtain the �nal results.

Under M1: We have

�̂nT = IA + IB + IC

=

8>>>><>>>>:
O
�
T�1�2�

�
+Op

�
n�1=2T�1��

�
+Op

�
n�1=2T�3=2

�
if � < 1=2;

O
�
T�2 lnT

�
+Op

�
n�1=2T�1��

�
+Op

�
n�1=2T�3=2

�
if � = 1=2;

O
�
T�2

�
+Op

�
n�1=2T�1��

�
+Op

�
n�1=2T�3=2

�
if 1=2 < � < 1;

O
�
T�2

�
+Op

�
n�1=2T�2 lnT

�
+Op

�
n�1=2T�3=2

�
if � = 1;

O
�
T�2

�
+Op

�
n�1=2T�2

�
+Op

�
n�1=2T�3=2

�
if � > 1;

=

8<:
O
�
T�1�2�

�
+Op

�
n�1=2T�1��

�
if � < 1=2;

O
�
T�2 lnT

�
+Op

�
n�1=2T�3=2

�
if � = 1=2;

O
�
T�2

�
+Op

�
n�1=2T�3=2

�
if � > 1=2:

(49)

So IA dominates IB when n=T !1:

Under M2 For M2, IA always dominates IB as discussed above. Then

�̂nT = (IA + IC) f1 + o (1)g

=

8><>:
O
�
T�1�2�

�
+Op

�
n�1=2T�3=2��

�
if � < 1=2;

O
�
T�2 lnT

�
+Op

�
n�1=2T�2 [lnT ]1=2

�
if � = 1=2;

O
�
T�2

�
+Op

�
n�1=2T�2

�
if � > 1=2;

(50)

so that IA dominates IC :

Under M3 We have

IA = O
�
T�3

�
� TT (1; �) =

8<:
O
�
T�1��

�
if � < 1;

O
�
T�2 lnT

�
if � = 1;

O
�
T�2

�
if � > 1;

with � = min [2�; 2�] ;

IB = Op

�
n�1=2T�3

�
TT (1; ��) , with �� = min [�; 2�] ;

=

8<:
Op
�
n�1=2T�1��

��
if �� < 1;

Op
�
n�1=2T�2 lnT

�
if �� = 1;

Op
�
n�1=2T�2

�
if �� > 1;

IC =

8><>:
Op
�
n�1=2T�3=2��

�
if � < 1=2;

Op

�
n�1=2T�2 [lnT ]1=2

�
if � = 1=2;

Op
�
n�1=2T�2

�
if � > 1=2:

We need to consider the following two subcases.
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Case 1: (� � �) Combining all the three terms, we have the following.

�̂nT = IA + IB + IC

=

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

O
�
T�1�2�

�
+Op

�
n�1=2T�1��

�
+Op

�
n�1=2T�3=2��

�
if � � � < 1=2;

O
�
T�1�2�

�
+Op

�
n�1=2T�1��

�
+Op

�
n�1=2T�2 [lnT ]1=2

�
if � < � = 1=2;

O
�
T�2 lnT

�
+Op

�
n�1=2T�1��

�
+Op

�
n�1=2T�2 [lnT ]1=2

�
if � = � = 1=2;

O
�
T�2 lnT

�
+Op

�
n�1=2T�1��

�
+Op

�
n�1=2T�2

�
if 1=2 = � < �;

O
�
T�2 lnT

�
+Op

�
n�1=2T�1��

�
+Op

�
n�1=2T�2 [lnT ]1=2

�
if 1=2 = � = �;

O
�
T�2

�
+Op

�
n�1=2T�2

�
+Op

�
n�1=2T�2

�
if 1 < � � �;

O
�
T�2

�
+Op

�
n�1=2T�1��

�
+Op

�
n�1=2T�2

�
if 1=2 < � < 1 � �;

O
�
T�2

�
+Op

�
n�1=2T�2 lnT

�
+Op

�
n�1=2T�2

�
if 1 = � � �;

O
�
T�1�2�

�
+Op

�
n�1=2T�1��

�
+Op

�
n�1=2T�2

�
if � < 1=2 < �;

=

8>>>><>>>>:
O
�
T�1�2�

�
+Op

�
n�1=2T�1��

�
if � < 1=2;

O
�
T�2 lnT

�
+Op

�
n�1=2T�1��

�
if � = 1=2;

O
�
T�2

�
+Op

�
n�1=2T�1��

�
if 1=2 < � < 1;

O
�
T�2

�
+Op

�
n�1=2T�2 lnT

�
if � = 1;

O
�
T�2

�
+Op

�
n�1=2T�2

�
if � > 1;

(51)

so that IA dominates IB and IC when n=T !1:

Case 2: (� > �) When �a� = 0 and � > �; IA always dominates IC : When 2� � �;

�̂nT = IA + IB

=

8><>:
O
�
T�1�2�

�
+Op

�
n�1=2T�3=2��

�
if � < 1=2;

O
�
T�2 lnT

�
+Op

�
n�1=2T�2 [lnT ]1=2

�
if � = 1=2;

O
�
T�2

�
+Op

�
n�1=2T�2

�
if � > 1=2:

If 2� > � > �; we have

�̂nT = IA + IB

=

8>>>><>>>>:
O
�
T�1�2�

�
+Op

�
n�1=2T�1��

�
if � < 2� < 1;

O
�
T�2 lnT

�
+Op

�
n�1=2T�1��

�
if � < 2� = 1;

O
�
T�2

�
+Op

�
n�1=2T�1��

�
if � < 1 < 2�;

O
�
T�2

�
+Op

�
n�1=2T�2 lnT

�
if � = 1 < 2�;

O
�
T�2

�
+Op

�
n�1=2T�2

�
if 1 < � < 2�;

(52)

so that IA dominates IB when n=T !1:

(ii) The Asymptotic Limit of �̂nT when �a� 6= 0
When �a� 6= 0;and �; � > 0; we have: � = � and b = �a� for M1; � = 2� and b = �2� for M2;

� = min [�; 2�] for M3, with b = �a� if � = �; and b = �2� if � = 2� for M3. When b = �a�; the
sign of IA is consonant with that of �b: So that when �a� > 0; IA is negative, and when �a� < 0;
IA is positive.
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Under M1 �̂nT can be written as

�̂nT = (IA + IC) f1 + op (1)g

=

8<:
O
�
T�1��

�
+Op

�
n�1=2T�3=2

�
if � < 1;

O
�
T�2 lnT

�
+Op

�
n�1=2T�3=2

�
if � = 1;

O
�
T�2

�
+Op

�
n�1=2T�3=2

�
if � > 1;

(53)

so that if � < 0:5; then IA dominates IC for any n. Otherwise, IA dominates IC when n=T !1:

Under M2 For M2, the behavior of �̂nT when �a� 6= 0 is the same as when �a� = 0:

Under M3 When �a� 6= 0; we have

IA =

�
O
�
T�3TT (1; �)

�
if � � 2�;

O
�
T�3TT (1; 2�)

�
if � > 2�;

where TT (1; �) =
PT

t=1
~tgt�� =PT

t=1 t
�(��1)�

�
T+1
2

�PT
t=1 t

�� is de�ned in the proof of Lemma 2.
From the analysis above, the term IC has the following order

IC =

8><>:
Op
�
n�1=2T�3=2��

�
if � < 1=2;

Op

�
n�1=2T�2 [lnT ]1=2

�
if � = 1=2;

Op
�
n�1=2T�2

�
if � > 1=2:

Case 1: ( � � 2�) When �a� 6= 0 and � � 2�;

�̂nT = fIA + ICg f1 + o (1)g

=

8>>>>>>>>>>><>>>>>>>>>>>:

O
�
T�1��

�
+Op

�
n�1=2T�3=2��

�
if � � 2� < 1;

O
�
T�1��

�
+Op

�
n�1=2T�2 [lnT ]1=2

�
if � < 2� = 1;

O
�
T�2 lnT

�
+Op

�
n�1=2T�2 [lnT ]1=2

�
if � = 2� = 1;

O
�
T�2 lnT

�
+Op

�
n�1=2T�2

�
if 1 = � < 2�;

O
�
T�2 lnT

�
+Op

�
n�1=2T�2 [lnT ]1=2

�
if 1 = � = 2�;

O
�
T�2

�
+Op

�
n�1=2T�2

�
if 1 < � � 2�;

O
�
T�1��

�
+Op

�
n�1=2T�2

�
if � < 1 < 2�;

=

8<:
O
�
T�1��

�
if � < 1;

O
�
T�2 lnT

�
if � = 1;

O
�
T�2

�
if � > 1:

(54)

Note that since O
�
T�1��+3=2+�

�
= O

�
T��+1=2+�

�
> O

�
T�2�+1=2+�

�
when � � 2�; the �rst term

dominates the second term.
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Case 2: (� > 2�) When �a� 6= 0 and � > 2�;

�̂nT = IA + IC

=

8><>:
O
�
T�1�2�

�
+Op

�
n�1=2T�3=2��

�
if � < 1=2;

O
�
T�2 lnT

�
+Op

�
n�1=2T�2 [lnT ]1=2

�
if � = 1=2;

O
�
T�2

�
+Op

�
n�1=2T�2

�
if � > 1=2:

(55)

The �rst term always dominates the second term.

The Asymptotic Limit of �̂nT When � < 0 or � < 0

Recall the OLS estimate is decomposed in the form

�̂nT =
XT

t=1
atT ~�t +

XT

t=1
atT~�n;t +

XT

t=1
atT~"n;t =: IA + IB + IC :

Note that when � < 0 or � < 0; we have: � = 2� and b = �2� in M1; � = 2� and b = �2� in M2;
� = min (2�; 2�) in M3. As shown above, IA always dominates IB since IB = Op

�
n�1=2

�
IA:Using

Lemma 2, we have

IA = �b
�

6�T�1��

(2� �) (1� �)

��
1 +O

�
T�1

�	
:

Note the sign of IA is positive when � < 0 or � < 0.

Under Model M1 and M2:

First, we consider the term IC : If � < 0 (for M1) or � < 0 (for M2), the dominating term in "nt
is 2n�1

Pn
i=1 ~�i~�itt

�� in M1 and
�
�2�;nt � �2�;nT

�
t�2� in M2. By using lemma 3, we have

IC =

�XT

t=1
~t2
��1XT

t=1
~t"nt

=

8<: Op

�
n�1=2T�2 [�T (2�)]

1=2
�

for M1,

Op

�
n�1=2T�2 [�T (4�)]

1=2
�

for M2.

Combining the two parts we have

�̂nT = IA + IC

=

�
O
�
T�1�2�

�
+Op

�
n�1=2T�3=2��

�
for M1,

O
�
T�1�2�

�
+Op

�
n�1=2T�3=2�2�

�
for M2.

Thus, IA dominates IC for M1 and M2.

Under Model M3

We proceed case by case as follows.
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Case 1: (� < 0 and � > 0) If � < 0 but � > 0; the dominating term is �2�t
�2� in �t and is

2n�1
Pn

i=1 ~�i~�itt
���� in "nt: Then IA =

�PT
t=1
~t2
��1PT

t=1
~t~�t = O

�
T�1�2�

�
and

IC =

�XT

t=1
~t2
��1XT

t=1
~t~"nt = Op

�
n�1=2T�2 [�T (2�+ 2�)]

1=2
�
:

Note from Lemma 1 that �T (2�+ 2�) reaches the largest order of O
�
T 1�2��2�

�
when �+� < 1=2.

Even at this case, IC = Op
�
n�1=2T�3=2����

�
;and is still dominated by IA:Hence, we have

�̂nT = O
�
T�1�2�

�
+Op

�
n�1=2T�2 [�T (2�+ 2�)]

1=2
�
= O

�
T�1�2�

�
:

Case 2: (� > 0 and � < 0) If � > 0 and � < 0; the dominating term is �2� t
�2� in �t; and is�

�2�;nt � �2�;nT
�
t�2� in "nt: Then IA = O

�
T�1�2�

�
and IC = Op

�
n�1=2T�2 [�T (4�)]

1=2
�
: Hence

we have

�̂nT = O
�
T�1�2�

�
+Op

�
n�1=2T�2 [�T (4�)]

1=2
�

= O
�
T�1�2�

�
+Op

�
n�1=2T�3=2�2�

�
= O

�
T�1�2�

�
:

Case 3: (� < 0 and � < 0) If � < 0 and � < 0;the dominating terms are �2�t
�2�+�2� t

�2� in

�t; and 2n
�1Pn

i=1 ~�i~�itt
���� +

�
�2�;nt � �2�;nT

�
t�2� in "nt: Then we have

�̂nT = O
�
T�3

� �
�2�TT (1; 2�) + �2�TT (1; 2�)

�
+Op

�
n�1=2T�2 [�T (2�+ 2�)]

1=2
�

+Op

�
n�1=2T�2 [�T (4�)]

1=2
�

= O
�
T�1�2�

�
;

where � = min (�; �) :

The Asymptotic Limit of �̂nT When � = � = 0

This case is covered by standard theory and the proof is omitted.
�

Proof of Theorem 2: (t-ratio of �̂nT )

The proof under � = � = 0 is standard and is omitted.

(i) The Asymptotic Limit of t�̂nT when � > 0; � > 0

The asymptotic behavior of the t-ratio is determined by the three component factors of

t�̂nT
= �̂nT

�XT

t=1
~t2
�1=2

=
q

2M:

The behavior of �̂nT is described above in (49) - (55), and
PT

t=1
~t2 = 1

12T
3
�
1 +O

�
T�1

�	
: The

behavior of the long run variance estimate 
2M is obtained as follows. As in the proof of Theorem
1, it is convenient to use the following speci�cations of � for each model.
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Model speci�cations of �

� M1: � = � (or 2�) when �a� 6= 0 (respectively, �a� = 0) ;

� M2: � = 2�;

� M3: � = min [�; 2�] (or min [2�; 2�]) when �a� 6= 0 (respectively, �a� = 0).

We write fMnt = ~mt+Rnt; where the deterministic part is ~mt =
gt���~t�PT

t=1
~tgt����PT

t=1
~t2
��1

and the random part is Rnt = ~�n;t � ~t (IB + IC). Note that as n=T !1; Rnt = op ( ~mt) uniformly
in t: The regression residual is given by

ût =gKx
nt � �̂nT ~t =

�
~�n;t � �̂nT ~t

�
+ ~"nt =: ~Mnt + ~"nt:

We decompose 
̂2u; the long run variance estimate with lag truncation parameter L and Bartlett
lag kernel #`L; as follows


̂2u =
1

T

XT

t=1
û2t + 2

1

T

XL

`=1
#`L

XT�`

t=1
ûtût+`

=
1

T

XT

t=1

�
~Mnt + ~"nt

�2
+ 2

1

T

XL

`=1
#`L

XT�`

t=1

�
~Mnt + ~"nt

��
~Mnt+` + ~"nt+`

�
=

1

T

XT

t=1
~M2
nt + 2

1

T

XL

`=1
#`L

XT�`

t=1
~Mnt

~Mnt+`

+
1

T

XT

t=1
~"2nt + 2

1

T

XL

`=1
#`L

XT�`

t=1
~"nt~"nt+`

+2
1

T

XT

t=1
~Mnt~"nt + 2

1

T

XL

`=1
#`L

XT�`

t=1

�
~Mnt~"nt+` + ~"nt ~Mnt+`

�
: = 
̂2M + 
̂2" + 2
̂M";

where


̂2M =
1

T

XT

t=1
~M2
nt +

2

T

XL

`=1

XT�`

t=1

�
1� `

T � + 1

�
~Mnt

~Mnt+`; (56)


2M =
1

T

XT

t=1
~m2
t +

2

T

XL

`=1

XT�`

t=1

�
1� `

T � + 1

�
~mt ~mt+`: (57)

Note that


̂2M =
1

T

XT

t=1
~M2
nt +

2

T

XL

`=1

XT�`

t=1

�
1� `

T � + 1

�
~Mnt

~Mnt+`

=
1

T

XT

t=1
( ~mt +Rnt)

2 +
2

T

XL

`=1

XT�`

t=1

�
1� `

T � + 1

�
( ~mt +Rnt) ( ~mt+` +Rnt+`)

=
1

T

XT

t=1
~m2
t +

2

T

XL

`=1

XT�`

t=1

�
1� `

T � + 1

�
~mt ~mt+`

+
1

T

XT

t=1
R2nt +

2

T

XL

`=1

XT�`

t=1

�
1� `

T � + 1

�
RntRnt+`

+2
1

T

XT

t=1
~mtRnt +

2

T

XL

`=1

XT�`

t=1

�
1� `

T � + 1

�
( ~mtRnt+` +Rnt ~mt+`)
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We have shown that Rnt = op ( ~mt) uniformly in t � T; from which it follows that the dominating
term in 
̂2M is 
2M; which is represented by 
̂2M s 
2M:

From Lemma 4, we know that


2M s

8>>>>>>>>>><>>>>>>>>>>:

�2(�+1)2

(1�2�)(�2�3�+2)
2 b
2T�2�+� if � < 1=2;

b2T�1+� lnT if � = 1=2;
b2T�1+�� (2�) if 1=2 < � < 1= (1 + �) ;

1

(1� �)2 (2� �)
b2T��+���� if 1= (1 + �) � � < 1;

�2

2 b
2T�1 ln2 T +O

�
T�2 lnT

�
if � = 1;

T�1b2
�P1

t=1 t
��� (�; `)� � (2�)

	
if � > 1:

Recall that

"n;t =

8>>><>>>:
2n�1

Pn
i=1 ~ai~�it + 2n

�1Pn
i=1 ~�i~�itt

�� +
�
�2�;nt � �2�;nT

�
for M1,

2n�1
Pn

i=1 ~ai~�itt
�� +

�
�2�;nt � �2�;nT

�
t�2� for M2,

2n�1
Pn

i=1 ~ai~�itt
�� + 2n�1

Pn
i=1 ~�i~�itt

���� +
�
�2�;nt � �2�;nT

�
t�2� for M3.

For �xed t; "n;t = Op
�
n�1=2

�
:When � > 0 and � > 0; the dominant term in "n;t is 2n�1

Pn
i=1 ~ai~�it

for M1 and 2n�1
Pn

i=1 ~ai~�itt
�� for M2 and M3. From Lemma 3, we have


̂2" =
1

T

XT

t=1
~"2nt + 2

1

T

XL

`=1
#`L

XT�`

t=1
~"nt~"nt+`

=

�
Op
�
n�1T�1S (�)

�
in M2 & M3,

Op
�
n�1

�
in M1.

Comparing 
̂2M and 
̂2"; it is evident that the order of 
̂
2
M exceeds that of 
̂2" as long as n=T !1:

Next, consider 
̂m": By Cauchy-Schwarz, 
̂m" is bounded above as

1

T

XT

t=1
~Mnt~"nt �

�
1

T

XT

t=1
~M2
nt

�1=2� 1
T

XT

t=1
~"2nt

�1=2
= op

�
1

T

XT

t=1
~M2
nt

�
;

since 1
T

PT
t=1 ~"

2
nt = op

�
1
T

PT
t=1

~M2
nt

�
.

Combining these results, we �nd that


̂2u = 
̂
2
M + 
̂2" + 2
̂M" s 
̂2M s 
2M; (58)

and therefore


̂2u =

8>>>>>>>>>><>>>>>>>>>>:

�2(�+1)2

(1�2�)(�2�3�+2)
2 b
2T�2�+� if � < 1=2;

b2T�1+� lnT if � = 1=2;
b2T�1+�� (2�) if 1=2 < � < 1= (1 + �) ;

1

(1� �)2 (2� �)
b2T��+���� if 1= (1 + �) � � < 1;

�2

2 b
2T�1 ln2 T +O

�
T�2 lnT

�
if � = 1;

T�1b2
�P1

t=1 t
��� (�; `)� � (2�)

	
if � > 1:

(59)
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Using (58), the t ratio t�̂nT has the same asymptotic form as

t�̂nT
s

�̂nT
�P

~t2
�1=2q


̂2M + 
̂2" + 2
̂M"

s
�̂nT

�P
~t2
�1=2q


2M

;

where 
2M is deterministic. Therefore, using (59) as n=T ! 1 with � = 1=3 and a �nite �; the
asymptotic behavior of the t-ratio in all models can be represented as follows:

t�̂nT
=

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

�
p
3 (1� 2�)1=2

(�+ 1)
T 1=2��=2 = (�1)�O

�
T 1=2��=2

�
! �1 if � < 1=2;

�2
3

p
3T 1=2��=2 (lnT )�1=2 = (�1)�O

�
T 1=2��=2 (lnT )�1=2

�
! �1 if � = 1=2;

�
p
3�

(�� 2) (�� 1) (� (2�))
�1=2 T 1����=2 = (�1)�O

�
T 1����=2

�
!= �1 if 1=2 < � < 1= (1 + �) ;

�
p
3�

(2� �)1=2
T (1��)(1��)=2 = (�1)�O

�
T (1��)(1��)=2

�
= �1 if 1= (1 + �) � � < 1;

�6bT�2 lnT
�
1
12T

3
�1=2�

�2

2
b2T�1 ln2 T

�1=2 = �3
p
6 if � = 1;

�6bT�2� (�)
�
1
12T

3
�1=2

(T�1b2 f
P1

t=1 t
��� (�; t)g)1=2

=
�� (�)

p
3

(
P1

t=1 t
��� (�; t))1=2

> �
p
3 if � > 1:

(60)
Note that with � = 1=3; we have 1 � � � �=2 > 0 as long as 1=2 < � < 1= (1 + �) : The last
inequality in (60) is obtained by noting that when t > 1; � (�; t) < � (�) and henceX1

t=1
t��� (�; t) <

X1

t=1
t��

X1

s=1

1

s�
= � (�)2 ;

giving
� (�)

(
P1

t=1 t
��� (�; t))1=2

> 1 for all � > 1:

Moreover, when �!1 we have

lim
�!1

nX1

t=1
t��� (�; t)� � (2�)

o
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�!1

(X1

t=1

X1

s=0

1

t� (t+ s)�
�
X1

t=1

1

t2�

)

= lim
�!1

(X1

t=1

X1

s=1

1

t� (t+ s)�

)
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Then, as �!1 we have

lim
�!1

t�̂nT
= � lim

�!1

� (�)
p
3

(
P1

t=1 t
��� (�; t))1=2

= � lim
�!1

� (�)
p
3

� (2�)1=2
= �

p
3;

giving a sharp result for the t-ratio for large �:
On the other hand, as �! 0; the t-ratio has the following limit

lim
�!+0

t�̂nT
= lim

�!+0

�
p
3 (1� 2�)1=2

(�+ 1)
T 1=2��=2 = �

p
3T 1=2��=2 ! �1 as T !1:
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(ii) The Asymptotic Limit of t�̂nT when � < 0 or � < 0

Recall the representation

~Mnt = b

"gt�� � ~t�XT

t=1
~t2
��1XT

t=1
~tgt��#+Rnt = b ~mt +Rnt; (61)

where � = 2� for M1, � = 2� for M2, and � = min [2�; 2�] for M3. The factor b in (61) is positive
since b = �2� or �

2
�: Then we have

1

T

XT

t=1
~m2
t = b2B (�) = Op

�
T�2�

�
;

since from Lemma 2, B (�) = O
�
T�2�

�
when � < 0. Note also that when � < 0;

	`;11 =
XT�`

t=1

�
t2 + t`

���
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t�� (t+ `)�� <
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1� 2�
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XL

`=1

�
1� `

L+ 1

�
	`;11 <

T�2�L

1� 2� = O
�
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�
:

This implies from lemma 4 that

1

T
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`=1

XT�`
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�
1� `

L+ 1

�
~mt ~mt+` = O

�
T�2�+�

�
:

The order of 
2M is at least Op
�
T�2�

�
and is less than O

�
T�2�+�

�
;where � = 2� for M1, � = 2�

for M2, and � = min [2�; 2�] for M3. From Lemma 3, we have


̂2" =

8<:
Op
�
n�1T�1S (�)

�
= Op

�
n�1T�2�

�
in M1,

Op
�
n�1T�1S (2�)

�
= Op

�
n�1T�4�

�
in M2,
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�
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�
n�1T�2(�+�)

�
; Op

�
n�1T�4�

��
in M3.

Hence, 
̂2M dominates 
̂2":And 
̂
2
M also dominates 
̂m" since

1

T

XT

t=1
~Mnt~"nt �

�
1

T
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t=1
~M2
nt

�1=2� 1
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t=1
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~M2
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;

Hence the long run variance has the following order


̂2u = O
�
T�2�+�

�
:

Then

t�̂nT
=
�̂nT

qPT
t=1
~t2q


̂2u

=
O
�
T�1��

�
O
�
T �=2��

�O �T 3=2� = O
�
T 1=2��=2

�
:

In this event, t�̂nT ! +1 as n; T ! 1; since the sign of t�̂nT is consistent with �̂nT which is
positive when � < 0:
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Table 1: Size and Power of the Test in M1

�a� � �2a Tnn 25 50 100 200 500 1000
Size 0 0 1 25 0.105 0.111 0.109 0.113 0.104 0.117

50 0.091 0.090 0.089 0.092 0.091 0.091
100 0.070 0.074 0.075 0.076 0.072 0.071
200 0.069 0.072 0.066 0.063 0.067 0.070

0 -0.1 1 25 0.012 0.005 0.000 0.000 0.000 0.000
50 0.002 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000
200 0.000 0.000 0.000 0.000 0.000 0.000

Power 0 0.3 2 25 0.268 0.360 0.489 0.644 0.881 0.970
50 0.272 0.345 0.479 0.625 0.884 0.979
100 0.263 0.342 0.462 0.635 0.882 0.981
200 0.259 0.340 0.465 0.637 0.876 0.982

0.45 0.3 2 25 0.526 0.704 0.892 0.982 1.000 1.000
50 0.580 0.781 0.941 0.993 1.000 1.000
100 0.635 0.841 0.973 0.999 1.000 1.000
200 0.705 0.898 0.989 1.000 1.000 1.000

0 0.5 2 25 0.276 0.336 0.431 0.565 0.778 0.915
50 0.221 0.296 0.362 0.495 0.712 0.863
100 0.212 0.241 0.296 0.417 0.612 0.806
200 0.180 0.211 0.279 0.348 0.522 0.712

0.45 0.5 2 25 0.564 0.742 0.896 0.983 1.000 1.000
50 0.555 0.760 0.917 0.988 1.000 1.000
100 0.575 0.764 0.929 0.994 1.000 1.000
200 0.555 0.773 0.938 0.994 1.000 1.000
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Table 2: Size of the Test in M2

�i � �2a Tnn 25 50 100 200 500 1000
1 0 1 25 0.103 0.116 0.111 0.107 0.105 0.110

50 0.082 0.098 0.085 0.092 0.091 0.091
100 0.077 0.074 0.076 0.087 0.069 0.074
200 0.072 0.063 0.067 0.064 0.076 0.067

1 -0.1 1 25 0.004 0.001 0.000 0.000 0.000 0.000
50 0.000 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000 0.000
200 0.000 0.000 0.000 0.000 0.000 0.000

1 0 5 25 0.119 0.113 0.119 0.114 0.115 0.114
50 0.095 0.096 0.094 0.100 0.093 0.099
100 0.082 0.085 0.082 0.080 0.087 0.082
200 0.066 0.068 0.067 0.077 0.069 0.071

1 -0.1 5 25 0.018 0.006 0.002 0.000 0.000 0.000
50 0.005 0.001 0.000 0.000 0.000 0.000
100 0.001 0.000 0.000 0.000 0.000 0.000
200 0.000 0.000 0.000 0.000 0.000 0.000

iidN (0:5; 1) 0 1 25 0.106 0.102 0.100 0.100 0.106 0.115
50 0.083 0.085 0.086 0.092 0.091 0.091
100 0.077 0.078 0.076 0.074 0.074 0.075
200 0.065 0.065 0.068 0.066 0.061 0.068
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Table 3: Power of the Test in M2

�i � �2a Tnn 25 50 100 200 500 1000
1 0.1 1 25 0.452 0.623 0.815 0.958 0.999 1.000

50 0.574 0.786 0.943 0.997 1.000 1.000
100 0.752 0.937 0.996 1.000 1.000 1.000
200 0.907 0.991 1.000 1.000 1.000 1.000

1 0.5 1 25 0.934 0.992 1.000 1.000 1.000 1.000
50 0.967 0.998 1.000 1.000 1.000 1.000
100 0.984 1.000 1.000 1.000 1.000 1.000
200 0.992 1.000 1.000 1.000 1.000 1.000

1 0.1 5 25 0.181 0.207 0.247 0.307 0.461 0.618
50 0.165 0.211 0.282 0.368 0.580 0.790
100 0.193 0.240 0.334 0.479 0.744 0.933
200 0.224 0.297 0.426 0.647 0.916 0.992

1 0.5 5 25 0.335 0.417 0.544 0.697 0.911 0.989
50 0.352 0.452 0.589 0.782 0.950 0.996
100 0.375 0.485 0.625 0.815 0.974 0.999
200 0.393 0.518 0.681 0.853 0.986 0.999

iidN (0:5; 1) 0.1 1 25 0.419 0.567 0.753 0.914 0.993 1.000
50 0.560 0.765 0.934 0.995 1.000 1.000
100 0.738 0.931 0.995 1.000 1.000 1.000
200 0.905 0.990 1.000 1.000 1.000 1.000

iidN (0:5; 1) 0.5 1 25 0.908 0.987 1.000 1.000 1.000 1.000
50 0.950 0.997 1.000 1.000 1.000 1.000
100 0.975 0.999 1.000 1.000 1.000 1.000
200 0.991 0.999 1.000 1.000 1.000 1.000
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Table 4: Power of the test in M3

�a� � = � �2a Tnn 25 50 100 200 500 1000
0 0.3 2 25 0.799 0.932 0.993 1.000 1.000 1.000

50 0.856 0.965 0.997 1.000 1.000 1.000
100 0.880 0.972 0.999 1.000 1.000 1.000
200 0.880 0.966 0.998 1.000 1.000 1.000

0.45 0.3 2 25 0.958 0.998 1.000 1.000 1.000 1.000
50 0.991 1.000 1.000 1.000 1.000 1.000
100 0.997 1.000 1.000 1.000 1.000 1.000
200 0.999 1.000 1.000 1.000 1.000 1.000

0 0.5 2 25 0.834 0.949 0.994 1.000 1.000 1.000
50 0.829 0.936 0.987 1.000 1.000 1.000
100 0.806 0.906 0.976 0.999 1.000 1.000
200 0.763 0.867 0.949 0.992 1.000 1.000

0.45 0.5 2 25 0.990 1.000 1.000 1.000 1.000 1.000
50 0.996 1.000 1.000 1.000 1.000 1.000
100 0.997 1.000 1.000 1.000 1.000 1.000
200 0.998 1.000 1.000 1.000 1.000 1.000

Table 5: Evidence of weak ��convergence
among personal consumption expenditure price index items

Factor number Whole Sample From 1960 to 1992 From 1992 to 2014
k �̂nT t�̂nT

(3) t�̂nT
(6) �̂nT t�̂nT

(3) t�̂nT
(6) �̂nT t�̂nT

(3) t�̂nT
(6)

1 0.212 1.680 1.471 0.792 3.789 3.487 -0.868 -3.309 -4.456
2 0.133 1.343 1.276 0.424 2.071 2.010 -0.696 -3.146 -4.039
3 0.000 0.001 0.001 0.399 3.012 2.878 -0.994 -4.113 -4.735
4 -0.004 -0.044 -0.038 0.376 2.862 2.722 -0.870 -3.420 -3.553
5 -0.022 -0.231 -0.200 0.351 3.064 3.152 -0.900 -3.786 -3.730
6 -0.031 -0.588 -0.541 0.252 2.679 2.979 -0.274 -2.267 -2.553
7 -0.033 -0.723 -0.652 0.203 2.512 2.731 -0.298 -3.898 -4.165
8 -0.026 -0.644 -0.579 0.198 2.906 3.444 -0.230 -3.447 -3.630

Notes: k stands for the number of the common factors; t�̂nT (3) and t�̂nT (6) are the t-ratios
computed with L = 3; 6 truncation lags in the long run variance estimates.
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Table 6: Trend Regressions with Various Starting Years (PCE data)

Starting Average
Year Correlation �̂nT t�̂nT

(3) t�̂nT
(4) t�̂nT

(5) t�̂nT
(6)

1992 0.507 -0.994 -4.113 -4.226 -4.497 -4.735
1993 0.513 -1.223 -4.344 -4.241 -4.298 -4.39
1994 0.518 -0.873 -3.503 -3.668 -3.901 -4.139
1995 0.532 -1.027 -3.527 -3.594 -3.737 -3.868
1996 0.552 -1.024 -3.183 -3.243 -3.374 -3.493
1997 0.565 -0.686 -2.577 -2.785 -3.111 -3.384
1998 0.591 -0.585 -2.035 -2.251 -2.584 -2.901
1999 0.613 -0.618 -1.884 -2.070 -2.351 -2.619

Table 7: Trend Regression Results for Ultimatum Game data with Various Starting Rounds

Starting Rounds �̂nT � 100 t�̂nT
(1) t�̂nT

(3) t�̂nT
(5) t�̂nT

(7)

1 -0.087 -4.299 -4.698 -5.034 -5.362
2 -0.090 -4.082 -4.472 -4.769 -4.975
3 -0.085 -3.543 -3.829 -4.246 -4.526
4 -0.086 -3.285 -3.539 -3.885 -4.124
5 -0.090 -3.133 -3.258 -3.518 -3.713
6 -0.096 -2.908 -2.917 -3.105 -3.269
7 -0.050 -3.153 -3.309 -3.914 -4.402
8 -0.028 -2.231 -2.296 -2.872 -3.210
9 -0.031 -2.256 -2.325 -2.891 -3.223
10 -0.037 -2.329 -2.426 -3.042 -3.283
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Appendix S: Supplementary Material

(Included as an Online Supplement)
This document contains supplementary proofs, additional discussion on power trend regression,

some further numerical calculations, and additional simulations to those reported in paper. We
begin with the proofs of Lemmas 1-5.

Proofs of Lemmas

Proof of Lemma 1: By Euler-Maclaurin summation, the stated representations and large T
approximations of �T (�) andHT (�; `) for � � 1 are well known:When � > 1; the exact expressions
for the in�nite sums are given by the Riemann and Hurwitz zeta functions

� (�) =
P1

t=1 t
�� =

1

�� 1 +
1

2
+��;

� (�; `) =
1

`�
+

1

(1 + `)�

�
1

2
+
1 + `

�� 1

�
+��;`;

(62)

where

�� =
JX
j=1

�
�+ 2j � 2
2j � 1

��
B2j
2j

�
� (2J + 1)!

�
�+ 2J
2J + 1

�Z 1

1

P2J+1 (t)

t�+2J+1
dt; (63)

��;` =
JX
j=1

�
�+ 2j � 2
2j � 1

��
B2j
2j

�
1

(1 + `)�+2j�1

� (2J + 1)!
�
�+ 2J
2J + 1

�Z 1

1

P2J+1 (t)

(t+ `)�+2J+1
dt; (64)

the B2j are Bernoulli numbers, and P2J+1 (t) = (�1)J�1
P1

k=1 2 sin (2k�t) = (2k�)
2J+1 : Thus, the

expressions given in (62) provide upper bounds for ZT (�) and �T (�; `) : Simpler bounds are readily
constructed (e.g., Kac and Cheung, 2002; KC). Indeed, since t�� is positive, continuous, and tends

to zero, the Euler-Maclaurin-Cauchy constant � = limT!1
nPT

t=1 t
�� �

R T
1 t��dt

o
exists and is

�nite for all � > 1:Note the explicit form

X1

t=1
t�� =

1

�� 1 +
1

2
+ �

Z 1

1

bxc � x+ 1
2

x�+1
dx; (65)

where the �oor function bxc denotes the integer part of x. Since �1
2 < bxc � x + 1

2 �
1
2 we have

the bound �����
Z 1

1

bxc � x+ 1
2

x�+1
dx

����� �
Z 1

1

1
2

x�+1
dx =

1

2�
;

from which we deduce that j��j < 1
2 for all � > 1: The �rst element of (65) is, of course, unbounded

as �! 1: Finally, the inequality � (�; `) � � (�) holds trivially for all ` � 1 when � > 1:
�
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Proof of Lemma 2 The proof of lemma 2 follows in a straightforward way by direct calculation
using lemma 1. In particular, we have as T !1

TT (1; �) =
XT

t=1
~tgt�� =XT

t=1
t�(��1) �

�
T + 1

2

�XT

t=1
t�� (66)

=

8>>>><>>>>:
� �

2 (�� 2) (�� 1)T
2�� +O

�
T 1��

�
if � < 1;

�1
2
T lnT + T +O (1) if � = 1;

�1
2
� (�)T +O (1) if � > 1;

(67)

ST (�) =
XT

t=1
gt��gt�� =XT

t=1

�
t�� � T�1

XT

t=1
t��
�
t�� (68)

=

8>><>>:
�2

(�� 1)2 (1� 2�)
T 1�2� +O (1) if � < 1=2;

lnT +O (1) if � = 1=2;
� (2�) + o (1) if � > 1=2:

For BT (�) ;we �rst simplify as follows

BT (�) =
1

T

XT

t=1

"gt�� � ~t�XT

t=1
~t2
��1XT

t=1
~tgt��#2 (69)

=
1

T

XT

t=1

"gt�� � ~tTT (1; �)PT
t=1
~t2

#2

=
1

T

XT

t=1

�gt���2 + 1

T

XT

t=1
~t2

"
TT (1; �)PT
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� 2 1

T
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t=1
~t2

"
TT (1; �)PT
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~t2
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=
1

T

XT

t=1

�gt���2 � 1

T

[TT (1; �)]2PT
t=1
~t2

= T�1ST (�)� 12T�4 [TT (1; �)]2 :

Then, using the results just established we have

BT (�) = T�1ST (�)� 12T�4 [TT (1; �)]2 = T�1ST (�)
�
1 +O

�
T�1

�	
(70)

=

8>><>>:
�2

(�� 1)2 (1� 2�)
T�2� +O

�
T�1

�
if � < 1=2;

T�1 lnT +O
�
T�1

�
if � = 1=2;

T�1� (2�) + o
�
T�1

�
if � > 1=2;

=

8<:
O
�
T�2�

�
if � < 1=2;

O
�
T�1 lnT

�
if � = 1=2;

O
�
T�1

�
if � > 1=2;

as required. �
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Proof of Lemma 3 To derive the required asymptotic orders, it is su¢ cient to compute the
order of the variances since all quantities have zero mean. By direct calculation

E
�XT

t=1
vitt

��
�2
= E

�XT

t=1

XT

s=1
vitvist

��s��
�
=
XT

t=1

XT

s=1
s�t;v;it

��s��

=
XT�1

h=�T+1
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XT

t=1
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s=1
t��s��1 fs� t = hg

=
XT�1
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XT

t=1
1�t+h�T

t�� (t+ h)�� ;

and we deduce by summability and Cauchy-Schwarz that

E
�XT

t=1
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��
�2
�
X1

h=�1

��h;v;i��
(�XT

t=1
t�2�

�2)1=2
= O (�T (2�)) :

Hence,
PT

t=1 vitt
�� = Op

�
[�T (2�)]

1=2
�
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�PT
t=1 vitt

��
�
= 0: Next,

XT

t=1
vitgt�� =
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t=1
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�
t�� � 1

T
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t=1
t��
�

=
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t=1
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T
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t=1
t��
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t=1
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[�T (2�)]

1=2
�
+Op
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�
= Op

�
[�T (2�)]
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:

and XT

t=1
~tt��vit =

XT

t=1
vitt

1�� � T + 1

2

XT

t=1
vitt

��

= Op

 �XT

t=1
t2�2�

�1=2!
+Op

 
T

�XT

t=1
t�2�

�1=2!
= Op

�
T [�T (2�)]

1=2
�
:

For the �nal result, note that

E
�XT

t=1
bi~tt

��
�2
= E [biTT (1; �)]2 = �2bT 2T (1; �) ;

from which we deduce that
PT

t=1 bi~tt
�� = Op (TT (1; �)) : �
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Proof of Lemma 4 Denote t` = t+ ` for any given integer ` � 1 and observe that

G (T; �) :=
1

T

XL

`=1

XT�`

t=1

�
1� `

L+ 1

�
~mt ~mt+` (71)

=
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�
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T
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�
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�
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where
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"gt��t��` �gt��t`�XT
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We decompose the term 	`;1 in (71) �rst, writing
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When � < 1; as T !1 with a �nite ` � 1; we haveXT�`
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XT�`

t=1

�
t2 + t`
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We calculate the upper bound �rst. Note that
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t=1
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8><>:
1

1� 2� (T � `)
1�2� +O (1) if � < 1=2;

ln (T � `) +O (1) if � = 1=2;
� (2�) = O (1) if � > 1=2;
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so that
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uniformly in ` � L = bT �c with � < 1: Hence
1

T

XL

`=1

�
1� `

L+ 1

�XT�`

t=1

�
t2 + t`

���
(75)

<

8>><>>:
min

�
O
�
T�2�+�

�
; O
�
T��+����

��
= O

�
T�2�+�

�
if � < 1=2;

min
�
O
�
T ��1 lnT

�
; O
�
T ��1=2��=2

��
= O

�
T ��1 lnT

�
if � = 1=2;

min
�
O
�
T ��1

�
; O
�
T��+����

��
= O

�
T ��1

�
if 1=2 < � < 1= (1 + �) ;

min
�
O
�
T ��1

�
; O
�
T��+����

��
= O

�
T��+����

�
if 1= (1 + �) � � < 1:

Next, we consider the lower bound. We haveXT�`
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Combining (76) with (75) yields
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In the �rst three cases, the asymptotic order of the sum is the same as the asymptotic order
of the upper and lower bounds, as con�rmed in the above derivation. In the last case when
1= (1 + �) � � < 1; we use the upper bound. Note that when � < �=2; this term increases as T
increases, but when � � �=2; this term decreases as T increases.13
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and when ` is �xed we have
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Then, using (78), (79), and with L = T � !1 as T !1; we obtain
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13A graphical demonstration of the relevance of the decay rate (73) in determining the behavior of G (T; �) as
T !1 is given in Fig. A1 at the end of this Appendix.
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When � > 1; we �nd from Lemma 1 thatXL
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where � (�; `) is the Hurwitz zeta function which is well de�ned for all � > 1 and t > 0: Note, in
particular, that
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Our next step is to calculate
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14 It is not needed in the results for Lemma 4 but is interesting to note (and will be used later) that as �!1; we
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of magnitude are given as follows:XL
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XT�`

t=1

��
t�� � 1

T � `
XT�`

t=1
t��
�
(t+ `)

�
=

XL

`=1

XT�`

t=1

�
t�� � 1

T � `
XT�`

t=1
t��
�
t

=
XL

`=1
TT�` (1; �)

s

8>>>><>>>>:
� �

2 (�� 2) (�� 1)T
2��+� if � < 1;

�1
2
T 1+� lnT if � = 1;

�1
2
� (�)T 1+� if � > 1;

=

8<:
O
�
T �+2��

�
if � < 1;

O
�
T �+1 lnT

�
if � = 1;

O
�
T �+1

�
if � > 1:

Then, using results (80) - (81) and Lemmas 1 and 2, we haveXL

`=1
	`;12 = �

XL

`=1

1

T � `

�XT�`

t=1
t��
�XT�`

t=1
t��`

= �
XL

`=1

1

T � `

�XT�`

t=1
t��
�XT

`+1
t��

= �
XL

`=1

1

T � `

�XT�`

t=1
t��
��XT

t=1
t�� �

X`

t=1
t��
�

=

8<:
O
�
T �+1�2�

�
if � < 1;

O
�
T ��1 ln2 T

�
if � = 1;

O
�
T ��1

�
if � > 1;
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Note, when � < 1;
PL

`=1	`;12 s � 1
(1��)2T

�+1�2�:

XL

`=1
	`;13 = �

�XT

t=1
et2��1�XT

t=1
etgt���XL

`=1

XT�`

t=1

�gt��t`�
=

8<:
O
�
T�3

�
O
�
T 2��

�
O
�
T �+2��

�
= O

�
T �+1�2�

�
if � < 1;

O
�
T�3

�
O (T lnT )O

�
T �+1 lnT

�
= O

�
T ��1 ln2 T

�
if � = 1;

O
�
T�3

�
O (T )O

�
T �+1

�
= O

�
T ��1

�
if � > 1:

When � < 1;
PL

`=1	`;13 s �
3�2

(�� 2)2 (�� 1)2
T 1�2�+�:

XL

`=1
	`;2 = �

�XT

t=1
~t2
��1�XT

t=1
~tgt���XL

`=1

XT�`

t=1
~tt��`

+

�XT

t=1
~t2
��2�XT

t=1
~tgt���2XL

`=1

XT�`

t=1
~tt`

=

8<:
O
�
T�3

�
O
�
T 2��

�
O
�
T �+2��

�
+O

�
T�6

�
O
�
T 4�2�

�
O
�
T �+3

�
if � < 1;

O
�
T�3

�
O (T lnT )O

�
T �+1 lnT

�
+O

�
T�6

�
O
�
T 2 ln2 T

�
O
�
T �+3

�
if � = 1;

O
�
T�3

�
O (T )O

�
T �+1

�
+O

�
T�6

�
O
�
T 2
�
O
�
T �+3

�
if � > 1;

=

8<:
O
�
T �+1�2�

�
if � < 1;

O
�
T ��1 ln2 T

�
if � = 1;

O
�
T ��1

�
if � > 1:

When � < 1;
PL

`=1	`;2 s �3
�

�

(�� 2) (�� 1)

�2
T 1�2�+� + 3T�6

�
�

(�� 2) (�� 1)T
2��
�2

T 3+� =

0:
Combining these three terms we �nd that

XL

`=1

�
1� `

L+ 1

�
(	`;12 +	`;13 +	`;2) =

8<:
O
�
T �+1�2�

�
if � < 1;

O
�
T ��1 ln2 T

�
if � = 1;

O
�
T ��1

�
if � > 1:

(82)

When � < 1;
PL

`=1

�
1� `

L+1

�
(	`;12 +	`;13 +	`;2) s �4 �2��+1

(�2�3�+2)
2T

1�2�+�:

Hence, we have

1

T

XL

`=1

XT�`

t=1

�
1� `

L+ 1

�
~mt ~mt+`

=
XL

`=1

�
1� `

L+ 1

�
(	`;11 +	`;12 +	`;13 +	`;2)

=

8>>>>>>>>>><>>>>>>>>>>:

�2(�+1)2

(1�2�)(�2�3�+2)
2T

�2�+� if � < 1=2;

T�1+� lnT if � = 1=2;
T�1+�� (2�) if 1=2 < � < 1= (1 + �) ;

1

(1� �)2 (2� �)
T��+���� if 1= (1 + �) � � < 1;

�2

2 T
�1 ln2 T +O

�
T�2 lnT

�
if � = 1;

T�1
�P1

t=1 t
��� (�; `)� � (2�)

	
if � > 1:

�
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Proof of Lemma 5 Since �b;n = Op
�
n�1=2

�
and n=T !1; we have

�b;n
gt�� = Op

�
n�1=2gt��� = op

�
T�1=2gt��� :

Note that

gt��T�1=2 =
8>><>>:

t��T�1=2 � 1

1� �T
�1=2T�� if � < 1;

t��T�1=2 � T�1T�1=2 lnT if � = 1;
t��T�1=2 �ZT (�)T�1T�1=2 if � > 1;

and

gt�2� =
8><>:

t�2� � 1

1� 2�T
�2� if � < 1=2;

t�2� � T�1 lnT if � = 1=2;
t�2� �ZT (2�)T�1 if � > 1=2:

Hence gt�2� �gt��T�1=2

=

8>>>>>>>><>>>>>>>>:

t�2� � 1

1� 2�T
�2� � t��T�1=2 + 1

1� �T
�1=2T�� if � < 1=2;

t�2� � T�1 lnT � t��T�1=2 + 1

1� �T
�1=2T�� if � = 1=2;

t�2� �ZT (2�)T�1 � t��T�1=2 +
1

1� �T
�1=2T�� if 1=2 < � < 1;

t�2� �ZT (2�)T�1 � t��T�1=2 + T�1T�1=2 lnT if � = 1;
t�2� �ZT (2�)T�1 � t��T�1=2 + ZT (�)T�1T�1=2 if � > 1;

= gt�2� + o�gt�2�� :
For example, when � = 1=2; as T !1 we have

lim
T!1

�gt��T�1=2gt�2� = lim
T!1

�t��T�1=2 + 1

1� �T
�1=2T��gt�2� = lim

T!1

�t�1=2T�1=2 + 2T�1
t�1 � T�1 lnT

= lim
T!1

� (t=T )1=2 + 2 (t=T )
1� (t=T ) lnT ! 0;

since t=T 2 (0; 1] as T ! 1 for 1 � t � T: Hence, for all t � T; �gt��T�1=2 = o
�gt�2�� : The

required result (47) now follows.
�

Power Trend Regression

We explore the impact on Theorem 1 of using a power trend regression of the form (35) in place of
a linear trend regression. In (35) the empirical regression involves the power trend regressor t for
some given power parameter  > 0: Direct calculations extending the results in Theorem 1 show
that the asymptotic behavior of the regression coe¢ cient �̂nT in this case is as follows:

�̂nT =

8<:
Op
�
T� ��

�
if 0 < � < 1;

Op
�
T�1� lnT

�
if � = 1;

Op
�
T�1� 

�
if � > 1:

(83)
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rather than �̂nT = Op (OT�) ; where � in (83) is as given in Theorem 1. Upon calculation, we �nd
that  XT

t=1

�
t � 1

T

XT

t=1
t 
�2!�1XT

t=1

�
t � 1

T

XT

t=1
t 
�
"n;t = Op

�
n�1=2T�1=2� 

�
;

and then

n1=2T 1=2+ �̂nT =

8<:
O
�
n1=2T 1=2��

�
if 0 < � < 1;

O
�
n1=2T�1=2 lnT

�
if � = 1;

O
�
n1=2T�1=2

�
if � > 1:

Hence divergence of the scaled statistic n1=2T 1=2+ �̂nT requires n=T ! 1 regardless of the value
of  : Thus using a power trend regression with regressor t instead of a simple linear trend does
not lead to di¤erent requirements regarding (n; T ) :

Additional Numerical Calculations

We extend the numerical calculations given in Section 5 of the paper for model M1 by conducting
related computations for models M2 and M3. As either n or � increases, the variance of en;t
shrinks to zero for given T , so that the t-ratio diverges to a negative in�nity under the alternative
as n ! 1 with a �xed �, or approaches the limit value of �

p
3 given in Theorem 2 as � ! 1:

We �rst investigate the �nite sample behavior of the t-ratio for given n and T: Figure S1 plots the
empirical density functions of the t-ratio with various � values in M2. We set n = 100; T = 200;
�2a = 1; and �it � iidN (0; 1) : As � decreases, the variance of the t ratio increases and the mean
of the distribution moves to the left. Even for moderately large n and T; the entire empirical
distribution of the t-ratio still lies in the left side of the critical value, �1:65; with for � = 2: As
� passes to in�nity, the empirical distribution collapses to a mass point at �

p
3 = �1:73: For

� = 0:5; xit is convergent, the trend regression test is consistent, and its strong discriminatory
power is evident in the density shown in Figure S1.
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Figure S1: Empirical distribution of t�̂nT in M2
T = 200; n = 100; �2a = 1; �it � iidN (0; 1) ; � = 1=3
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Figure S2: Rejection Frequencies plotted against � in Model M2
for a 5% level test with �2a = 1; �

2
� = 4.

Figure S2 displays the rapid changes in the power function of a 5% level test near � = 0 as n
and T increase with T = n: As Theorem 2 indicates, no asymptotic n=T ratio condition is required
for test consistency in this case. Evidently, as sample size increases, the rapid movement in the
power function near � = 0 becomes more accentuated. The power function is unity outside a small
neighborhood of � = 0 even for n = T = 25 because the empirical distribution of the t-ratio is well
separated from the test critical value of �1:65:
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Figure S3: The Rejection Frequencies with
the critical value of �

p
3 over � = 2� in Model 2 (�2a = 1; �

2
� = 2)
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Figure S4: Test Rejection Frequencies in model M3�
� = 2� � 0:1; �2a = 8; �2a� = 0; �2� = �2� = 1

�
Since Figure S2 reports the rejection probability for the 5% level test with critical value of

�1:65; which exceeds �
p
3; this �gure does not reveal the relationship of the density function of

the t-ratio to the limit value �
p
3: To explore this issue, we set the critical value of the test to

�
p
3 and plot the associated rejection frequencies in Figure S3. When n; T is small, some portion

of the t-ratio is in fact larger than �
p
3 so that in that case the rejection frequency is less than

unity. However as n increases, the power function reaches unity rapidly, thereby indicating that
the asympotic theory holds well in �nite samples.

Finally, we consider model M3. As shown in Theorems 1 and 2, when either 2� > � > � or
� � � < 1; the n=T ratio matters in the limit theory and we explore �nite sample performance in
this case, setting � = 2�� 0:1, �2a = 8; and �xing T = 50 for all values of n: Figure S4 displays the
power of the test for various values of �: The power functions are seen in the �gure to have a mild
U�shape and minimum power is found around � = 1:When � > 1; power increases as � increases.
It is also apparent from Figure S4 that as n increases with T �xed, the n=T ratio increases and
test power approaches unity around � = 1.

Approximation accuracy of (74) for G (T; �)

We can assess the adequacy of the approximation (74) in a graphical demonstration by using the de-

terministic DGP in (44) to characterize the large T behavior ofG (T; �) = 1
T

PL
`=1

PT�`
t=1

�
1� `

L+1

�
~mt ~mt+`

when � < 1. We let � = 1=3 and compute the ratio
G(10k;�)
G(106;�)

for various values of � and k = 3; 4; 5:
The plots are shown in Figure A1. Evidently, the ratios exceed unity for large � but rapidly de-
crease as � decreases. The threshold value of � for G (T; �) to decay as T !1 is � > �=2 = 1=6 '
0:167 for � = 1=3; which is evidently well-matched in the �gure, corroborating the limit behavior
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G (T; �) = O
�
T��+����

�
& 0 given in (74).
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Figure A.1: Approximation Accuracy of (74) for G (T; �)
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