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Abstract

We study auction design when bidders have a pure common value equal to the max-

imum of their independent signals. In the revenue maximizing mechanism, each bidder

makes a payment that is independent of his signal and the allocation discriminates in

favor of bidders with lower signals. We provide a necessary and su�cient condition

under which the optimal mechanism reduces to a posted price under which all bidders

are equally likely to get the good. This model of pure common values can equivalently

be interpreted as model of resale: the bidders have independent private values at the

auction stage, and the winner of the auction can make a take-it-or-leave-it-o�er in the

secondary market under complete information.
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1 Introduction

We study auction design when bidders have a pure common value. Each of N bidders receives

an independent signal and the pure common value of the object is given by the maximum

of the N independent signals of the bidders. We call this environment the �maximum of

independent signals� common value model, or a bit shorter, maximum common value model.1

We have two interpretations in mind. First, each bidder's independent signal � his type �

may represent a possible use of the good that the bidder has discovered. Whoever wins

the good at the auction will ultimately discover the best possible use, so that lower signals

(inferior discoveries) contain no information about the value conditional on the highest signal

(best discovery).2 Second, each signal may represent the bidder's private value of the good,

but there is a re-sale market where the good is allocated to the bidder with the highest

private value. A bidder's private value gives a lower bound on the highest possible value,

but no other information.

We characterize the revenue maximizing mechanism in this environment. Maximum

revenue is achieved by a constant � signal independent � participation fee, and a constant

� again signal independent � probability of receiving the good. The optimality of constant

participation fees and assignment probabilities is valid for all independent and symmetric

distributions.

The good may not be allocated in the optimal auction. We obtain necessary and su�cient

conditions under which the object is assigned with probability one in the auction. When these

conditions are met, the optimal mechanism reduces to a simple posted price mechanism. The

optimal posted price is equal to the conditional expectation that the lowest possible signal

has about the value of the object. In turn, every bidder is willing to buy the object at

the posted price and all bidders are equally likely to receive the good in equilibrium. The

necessary and su�cient condition for such an inclusive posted price to be optimal is given

by a generalization of the virtual utility formula. The condition essentially requires that the

distribution of the value does not put too much mass close to the seller's value for the good,

and in particular it requires that the lowest possible value of each bidder is bounded away

from the seller's value.

We now describe how we obtain our results. We �rst argue by contradiction that the

optimal auction cannot be characterized by local incentive constraints alone. If it were, the

revenue equivalence formula would indicate that the optimal allocation would only allocate

the good to bidders who do not have the highest signal. The virtual utility function represents

1Bulow and Klemperer (2002) studied the winner's curse in an ascending auction with this common value
model, which they described as the �maximum game.�

2This is consistent with a mineral rights interpretation in Bulow and Klemperer (2002).

2



value minus the information rents due to binding local downward incentive constraints. In

a common value setting, the value of the object is the same for all bidders, and the bidders

only di�er in their information rent. Now, when the value of the object is the maximum

of all signals, an information rent only accrues to the highest type. The information held

by all other bidders is locally without in�uence on the value of the object. But this means

that the virtual utility is lowest for the highest type, and higher (and identically so) for all

lower types. Thus, the analysis of the local incentive constraints would suggest that the

object should be assigned to one of the bidders with low signals, and never assigned to the

bidder with the highest signal. Such an allocation would, however, violate global incentive

constraints, in that high types would prefer to misreport themselves as lower types.

In fact, we show that the optimal allocation makes bidders indi�erent between reporting

their true types and reporting any lower type. For characterizing optimal revenue, however,

it is su�cient to focus on a relatively small collection of downward incentive constraints of

the following form: instead of reporting their true type, a bidder could misreport a lower

type which is randomly drawn from the prior distribution censored at the bidder's true value.

We derive maximum revenue when the mechanism only has to deter local deviations and this

one-dimensional family of global deviations, which is necessarily an upper bound on optimal

revenue.

The optimal auction resolves this tension between local and global constraints to the

maximal extent possible. Namely, it assigns the object as frequently as possible to the low

signals, and as infrequently as allowed by global incentive constraints to the high signal. The

resulting allocation assigns the object so that each type is equally likely to receive the good in

an interim sense. This brief description should indicate that the arguments that support the

construction of the optimal auction will di�er signi�cantly from the standard construction

that extends the local incentive constraints to global incentive constraints. Instead, we

directly consider a small set of global deviations that will be necessary as well as su�cient

to characterize maximum revenue.

We construct an incentive compatible mechanism that exactly achieves the upper bound.

In the direct mechanism, all types are asked to make a �xed payment, a participation fee,

that is independent of their type. No transfers beyond the participation fee are collected.

In terms of the allocation, every type has the same interim expected probability of being

allocated the good. These two features of the optimal mechanism resemble a posted price

mechanism. However, unlike posted prices, the object is only allocated if the highest realized

signal among the bidders exceeds a threshold value. Thus, typically, the probability that the

object is assigned to some bidder is strictly smaller than one. The second feature distinct

from posted prices is that the optimal mechanism discriminates against bidders with higher
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signals. That is, conditional on the entire signal pro�le, the optimal mechanism allocates the

good to lower types with greater frequency than would a purely random allocation. From

an interim point of view of each bidder, given his signal, the conditional probability that the

good is allocated to somebody is increasing with the highest signal. Interestingly, the lower

probability of receiving the good conditional on a high signal is exactly balanced out by the

higher interim probability that the good is assigned at all in such a way that the interim

probability of receiving the good is constant. We also exhibit an indirect implementation of

the optimal mechanism by means of a descending auction with an entry fee.

A fundamental question in the theory of mechanism design is: how should selling mecha-

nisms be structured in order to extract as much revenue as possible from the bidders? Since

Myerson's (1981) paper on optimal auctions this problem is typically approached with two

essential observations. First, the revelation principle says that it is without loss of generality

to restrict attention to a class of �direct� mechanisms in which bidders simply report their

private information to the mechanism. Second, when private information is independent

across bidders and when preferences can be suitably ordered by type, the revenue equiva-

lence theorem says that the revenue from a mechanism is determined by the allocation that

it induces and the utility of the lowest type. The reason is that there is a unique transfer

schedule under which truthful reporting is locally optimal for every type. If bidders' val-

ues are also additively separable between their own type and others' types�e.g., as in the

independent private value (IPV) case�then there is a simple monotonicity condition that

characterizes the allocations for which truthful reporting is also globally optimal. These tools

reduce the problem of maximizing revenue over mechanisms to the problem of maximizing

revenue over monotonic allocations, which in the separable case can be essentially solved in

closed form.

Since that seminal work there have been remarkably few results that generalize the theory

of optimal auctions beyond the private value case. An important generalization of the

revenue equivalence result was obtained by Bulow and Klemperer (1996) to a model with

interdependent values in which the values are weakly increasing and possibly not additively

separable. Both the revelation principle and the revenue equivalence theorem generalize.

Importantly, now the transfers no longer depend just on the allocation, but rather on the

allocation weighted by the sensitivity of the value to the bidder's private information. In

this more general model, however, there is no simple analogue of the monotonicity condition

anymore to guarantee the global incentive compatibility of the mechanism. The literature,

most notably Bulow and Klemperer (1996), has identi�ed special cases in which the local

constraints are su�cient to guarantee the global incentive constraints. When the values

are common, this occurs when the information rent is (weakly) smaller for bidders with
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higher signals, where the information rent is the product of the inverse hazard rate and the

sensitivity of the value to the bidder's information. For example, this is the case when the

common value is equal to the sum of the bidders' signals3 and when the distribution of the

signals satis�es an increasing hazard rate condition. In this case the value is equally sensitive

to all of the bidders' signals, and the increasing hazard rate implies that information rents

are smaller for higher types. As a result, it is optimal to bias the allocation in favor of

bidders with higher signals. To our knowledge, this is the �rst paper to extend the theory of

optimal auctions in common value environments beyond the case of decreasing information

rents.

When the lowest valuation in the support of the distribution is su�ciently greater than

the seller's value, then it is not worthwhile to discriminate, and the optimal mechanism

reduces to a posted price at which every bidder is willing to purchase the object independent

of his signal realization. This relates to an observation of Bulow and Klemperer (2002) that

a fully inclusive posted price (i.e., a price at which all types would be willing to purchase the

good) generates more revenue than a second-price auction in the maximum common value

model. The reason is that in the second-price auction the good is allocated to the bidder

with the highest signal, who has the highest information rent, whereas all types are equally

likely to be allocated the good under an inclusive posted price, see also Harstad and Bordley

(1996) and Campbell and Levin (2006) for related results. Our main result then shows that

the revenue can be further increased by distorting the allocation even further away from the

high signal bidders than achieved by posted prices, while maintaining other features of the

posted prices, such as constant transfers and constant (interim) allocation probabilities.

As we alluded to above, another interpretation of the pure common value model is that

the bidders have independent private values, but that the allocation of the good will be

followed by a frictionless resale market, in which values become complete information and

the interim owner of the good can make a take-it-or-leave-it o�er to the bidder with the

highest value. Thus, whoever wins the good in the �rst stage will earn revenue from resale

equal to the highest of the bidders' private values. Now, as the allocation rule of the optimal

mechanism favors lower signals, in e�ect, it induces a more active resale market. The reason

is that only the bidder with the highest signal has private information that is payo� relevant,

so that discriminating against this bidder reduces the total amount of information rents that

bidders receive. Admittedly, this model of resale abstracts from the bidders' incentives to

signal their values through the outcome of the auction, and instead emphasizes the common

3This version of the common value was studied by Myerson (1981). Bulow and Klemperer (2002) refer
to it as the �wallet game,� with the interpretation that each bidder privately observes the amount of money
in his or her wallet, and bidders are bidding for the amount of money in all the wallets.
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value structure that arises from the bidders' ability to resell the good in the same market.

A similar model has been studied by Gupta and LeBrun (1999) and Haile (2003) under the

assumption that the mechanism used to initially allocate the good is a �rst-price auction.

By contrast, we treat the mechanism as an endogenous object, and derive the auction format

that a revenue maximizing seller would use. A similar perspective is taken in recent work

by Carroll and Segal (2016) who design the optimal auction in the presence of a resale

market. They derive the optimal auction as a maxmin problem where nature chooses the

resale market, in terms of information disclosure and bargaining power that is least favorable

to the revenue maximizing seller. Their solution and their argument are very di�erent from

the ones presented here. In particular, they establish that the least favorable resale market

is then one where the bidder with the highest value � independent of his ownership � has the

bargaining power and complete information. Thus, he can make a take it or leave it o�er

to the current owner of the object. By contrast, our resale interpretation implicitly requires

that it is the current owner of the object � independent of his value � who has the bargaining

power and has complete information.

As a side bene�t of our analysis, we show that there is a remarkable connection be-

tween incentive compatible allocations in the maxim common value model and those that

are incentive compatible in the independent private value setting. We can associate each

maximum common value model model with an independent private value model that has

the same distribution of signals. Under the former, the value is common and equal to the

maximum of the signals, and in the latter, each bidder's signal is equal to his private value.

For a given mechanism, the equilibrium strategies could be quite di�erent under the two

models. However, if a mechanism implements an allocation in the IPV setting that is condi-

tionally e�cient (i.e., conditional on the good being allocated, it is allocated to the bidders'

with the highest values), then the same strategies would also be an equilibrium under the

analogous maximum common value model. Thus, even though values are uniformly higher

under the maximum common value interpretation of the signals, the two models are in a

sense �strategically equivalent� as long as the mechanism discriminates in favor of types with

higher signals. This result generalizes an observation of Bulow and Klemperer (2002) that

bidding one's signal is an equilibrium of the second-price auction in the maximum common

value model, as it would be with independent private values. In Bergemann, Brooks, and

Morris (2016), we show that the model of the maximum of independent signals attains the

minimum revenue for a �rst-price auction, across all type spaces with a �xed marginal distri-

bution over a pure common value. In combination with the strategic equivalence result, we

conclude that �rst-price auctions generate greater worst-case revenue across all type spaces
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and equilibria than does any mechanism that implements conditionally e�cient allocations

in the corresponding IPV setting.

The rest of this paper is organized as follows. Section 2 describes our model. Section

3 generalizes the revenue equivalence formula to the maximum common value model we

consider. Section 4 solves for the optimal mechanism. Section 5 concludes with a discussion

of properties of the optimal mechanism, and also draws additional connections to the auction

theory literature.

2 Model

There are N potential bidders of a single unit of a good, indexed by i ∈ N = {1, . . . , N}.
Each bidder receives a signal si ∈ S = [s, s] about the good's value. The signals si are

independent draws across the bidders from an absolutely continuous cumulative distribution

F (si) with density f(si). The bidders all assign the same value to the good, which is the

maximum of the signals:

v (s1, . . . , sN) = max {s1, . . . , sN} . (1)

The common value of the object is thus the maximum of N independent signals. The

distribution of signals, F (si), induces a distribution G(v) over the common value:

G(v) = (F (s))N .

Alternatively, we can let the signals describe a speci�c common value model. With this

interpretation, we can take the prior distribution G(v) of the pure common value as given

and then type space is chosen such that the maximum of the independently distributed types

si is equal to the pure common value. We often simply refer to the maximum common value

model when we talk about the �maximum of independent signals� common values model.

The bidders are expected utility maximizers, with quasilinear preferences over the good

and transfers ti. Thus, the ordering over pairs (q, t) of probabilities of receiving the good

and net transfers to the seller is represented by the utility index:

u (s, q, t) = v (s) q − t.

The good is sold via an auction. Informally, an auction consists of sets of messages and

functions that assign to each bidder i a probability of receiving the good and a transfer to the

seller. Following Myerson (1981), we invoke the revelation principle and restrict attention
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to direct mechanisms, whereby each bidder simply reports his own signal, and the set of

possible message pro�les is SN . The probability that bidder i receives the good given signals

s ∈ SN is qi (s) ≥ 0, with
∑N

i=1 qi (s) ≤ 1. The interim probability that bidder i receives the

good is denoted by:

Qi (si) =

ˆ
s−i∈SN−1

qi (si, s−i) f−i (s−i) ds−i, (2)

where f−i (s−i) =
∏

j 6=i f (sj) is the distribution of signals for bidders j 6= i.

The transfer of bidder i to the seller is ti (s) and the interim expected transfer is denoted

by:

Ti (si) =

ˆ
s−i∈SN−1

ti (si, s−i) f−i (s−i) ds−i, (3)

The revenue from the direct mechanism is simply the expected sum of transfers:

R =
N∑
i=1

ˆ
si∈S

Ti (si) f (si) dsi,

and bidder i's surplus from reporting a signal s′i when his true signal is si is

Ui (si, s
′
i) =

ˆ
s−i∈SN−1

qi (s
′
i, s−i) v (si, s−i) f−i (s−i) ds−i − Ti (s′i) .

We let Ui (si) = Ui (si, si) for short.

We say that the direct mechanism {qi, ti}Ni=1 is incentive compatible if

Ui (si) ≥ Ui (si, s
′
i) ,

for all i and si, s
′
i ∈ S. The mechanism is individually rational if

Ui (si) ≥ 0,

for all i and si ∈ S. The seller's problem is to maximize R over all incentive compatible and

individually rational direct mechanisms {qi, ti}Ni=1.

3 A Revenue Equivalence Formula

A standard tool in optimal auction design is the revenue equivalence formula (Myerson,

1981). In this section, we extend the standard revenue equivalence result to the present

setting. For this, it will be useful to distinguish between the winning probability of bidder i
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when i himself has the highest signal realization x, and when somebody including i has the

highest signal realization x. Let

Q̂i,j (x) =

ˆ
s−j∈[s,x]N−1

qi (x, s−j) f−j (s−j) ds−j, (4)

and thus, Q̂i,j (x) is the likelihood conditional on bidder j's signal being x, that (i) the

highest signal is x and (ii) bidder i is allocated the good.4 We will represent the indirect

utility function of bidder i as a function of the probability

Q̂i (x) ≡ Q̂i,i (x) , (5)

that is the probability that bidder i is allocated the good and that bidder i has the high

signal, conditional on i's signal being x.

By contrast, we denote the total probability that bidder i is allocated the good and that

the highest signal is x by:

Qi (x) ≡
N∑
j=1

Q̂i,j (x) . (6)

We should emphasize that these probabilities, Q̂i (x) and Qi (x), both di�er from the interim

probability of winning, Qi(si) de�ned earlier in (2), in that they represent the probability of

the event that bidder i is allocated the good and that the highest signal is x, conditional on

some bidder having the signal of x. In the case of Q̂i, it is bidder i who has the signal x, and

with Qi, it could be any one of the N bidders. Finally, we denote the aggregate probability

of allocating the good, respectively by:

Q̂ (x) =
N∑
i=1

Q̂i (x) and Q (x) =
N∑
i=1

Qi (x) . (7)

Proposition 1 (Envelope Formula).

In any incentive compatible mechanism, the indirect utility function must satisfy

Ui (si) = Ui (s) +

ˆ si

x=s

Q̂i (x) dx. (8)

4The objects Q̂i,j , Q̂i, and Qi (which will be described shortly) are de�ned so as to maintain as tight a
correspondence as possible between the statements of our results and those of Myerson (1981). In particular,

Q̂i (x) plays the same role in our envelope characterization of bidder surplus as does Q (x) in Myerson's
Lemma 2, as de�ned in his equation (4.1).
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Note that in the standard (private value) revenue equivalence formula, the derivative of

the indirect utility is the total probability that bidder i is allocated the good conditional on

his own signal. In contrast, Proposition 1 says that the derivative of the indirect utility is the

probability Q̂i (x) that bidder i is allocated the good conditional on his own signal being the

highest. The reason is that each bidder only receives information rents from local deviations

when the valuation v(s) is sensitive to his private information si. In the present pure common

value environment, this only occurs when the bidder in question has the highest signal. The

above formula is nearly identical to that given by Bulow and Klemperer (1996), with the

minor exception that for their derivation they require that the value function v (s1, . . . , sN)

is di�erentiable and strictly increasing, neither of which is the case in the current setting.

Proof of Proposition 1. The proof follows closely that of Lemma 2 in Myerson (1981). Let

X ([a, b]) =

{
s−i ∈ SN−1

∣∣∣∣max
j 6=i

sj ∈ [a, b]

}
.

If si ≤ s′i, then

Ui (s
′
i, si) = s′iQ̂i (si) +

ˆ
s−i∈X([si,s])

(
max
j
sj

)
qi (si, s−i) f−i (s−i) ds−i − Ti (si)

≥ s′iQ̂i (si) +

ˆ
s−i∈X([si,s])

(
max
j 6=i

sj

)
qi (si, s−i) f−i (s−i) ds−i − Ti (si) .

Thus,

Ui (s
′
i, si)− Ui (si) ≥ (s′i − si) Q̂i (si) ,

and hence

Ui (s
′
i) ≥ Ui (si) + (s′i − si) Q̂i (si) .

Similarly,

Ui (si, s
′
i) = siQ̂i (s

′
i) +

ˆ
s−i∈X([si,s′])

(
max
j 6=i

sj − si
)
qi (s

′
i, s−i) f−i (s−i) ds−i

+

ˆ
s−i∈X([s′i,s])

(
max
j 6=i

sj

)
qi (s

′
i, s−i) f−i (s−i) ds−i − Ti (s′i)

≥ siQ̂i (s
′
i) +

ˆ
s−i∈X([s′i,s])

(
max
j
sj

)
qi (s

′
i, s−i) f−i (s−i) ds−i − Ti (s′i)

Thus,

Ui (si, s
′
i)− Ui (s′i) ≥ (si − s′i) Q̂i (s

′
i) ,
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and hence

Ui (si) + (s′i − si) Q̂i (s
′
i) ≥ Ui (s

′
i) .

We conclude that

Ui (si + ∆)− Ui (si) ≥ ∆Q̂i (si) ,

and hence

Ui (si)− Ui (si −∆) ≤ ∆Q̂i (si) ,

so that Ui (si) is di�erentiable and U
′
i (si) = Q̂i (si).

We can express the total surplus realized in the auction using the total probabilityQ (x)as:

TS =

ˆ
x∈S

xQ (x) g(x)dx.

We can then express the revenue of any direct mechanism in terms of Q and Q̂:

Proposition 2 (Revenue Equivalence).

The expected revenue from the direct mechanism {qi, ti}Ni=1 is

R =

ˆ
x∈S

(
xQ (x)−

ˆ x

y=s

Q̂ (y) dy

)
f (x) dx−

N∑
i=1

Ui (s) . (9)

As a result, if two mechanisms induce the same allocation and assign the same utilities to

the lowest type s, then they must generate the same expected revenue.

Proof. This follows from Proposition 1 and the formula from total surplus, since

R = TS −
N∑
i=1

ˆ s

x=s

Ui (x) f (x) dx

and
N∑
i=1

Ui (x) =

ˆ x

y=s

Q̂ (y) dy +
N∑
i=1

Ui (s) .

In other words, revenue is simply the total surplus generated by the allocation less the

bidders' total information rents. These quantities can be calculated by integrating over the

highest signal�i.e., the value.
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4 Optimal Revenue

We now characterize the revenue maximizing mechanism. In the classical analysis of My-

erson (1981), a regularity condition guarantees that the optimal mechanism is completely

characterized by the local incentive constraints as expressed in the envelope characteriza-

tion of transfers. Under the regularity condition, a revenue formula analogous to (9) has a

pointwise maximum. The implied allocation turns out to satisfy a form of monotonicity that

is su�cient to guarantee global incentive compatibility. In our environment, however, such

local constraints are never su�cient. The revenue equivalence formula tells us that a bidder

receives information rents only when he is allocated the good and when has the highest

signal. If we were only concerned with maximizing the revenue formula from Proposition 2,

then the seller could specify an allocation qi in which the good is always sold to one of the

bidders whose signal is less than the maximum. According to the equation (9), bidders would

not receive any information rents, and the seller would extract the full surplus as revenue.

This mechanism would, however, violate global incentive constraints, for the simple rea-

son that the bidders would want to misreport lower signals. For example, the bidder with the

highest signal s would never be allocated the good under this mechanism, and by assumption

receives zero rents (i.e., there is no subsidy from the seller), while the bidder with the lowest

signal s is allocated the good with probability 1/ (N − 1) and pays a 1/ (N − 1) share of the

expectation of the highest of the N − 1 other signals:

ŝ =

ˆ s

x=s

x (N − 1)FN−2 (x) f (x) dx.

Thus, the highest type could pretend to be the lowest type and obtain (s− ŝ) / (N − 1) for

sure. We conclude that in order to characterize the optimal mechanism, we will have to

explicitly incorporate global constraints into the optimization problem.

In principle, we might have to consider all of the global deviations whereby a type si

misreports some s′i 6= si. It turns out, however, that maximum revenue in the maximum

model is pinned down by a relatively small one-dimensional family of constraints of the

following form: instead of reporting signal si, report a random signal s′i that is drawn from

the truncated prior F (s′i) /F (si) on the support [s, si]. We will refer to this deviation as

misreporting a redrawn lower signal. Obviously, for a direct mechanism to be incentive

compatible, bidders must not want to misreport in this manner. We will presently use

these incentive constraints to derive an upper bound on maximum revenue. As part of the

derivation, we will also identify features that an allocation would have to satisfy in order to
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attain the bound, which we will use in the next section to construct a revenue maximizing

mechanism.

4.1 An Upper Bound on Revenue

Let us proceed by explicitly describing the incentive constraint associated with misreporting a

redrawn lower signal. As it is always possible to increase revenue by reducing the information

rent of the lowest signal Ui (s), we assume throughout the rest of this section that Ui (s) = 0

for all i. Consequently, the equilibrium surplus of a bidder with type x is

Ui (x) =

ˆ x

y=s

Q̂i (y) dy.

In addition, the surplus from misreporting the redrawn lower signal must be

1

F (x)

ˆ x

y=s

Ui (x, y) f (y) dy =
1

F (x)

ˆ x

y=s

[
(x− y)Qi (y) dy +

ˆ y

z=s

Q̂i (z) dz

]
f (y) dy. (10)

This formula deserves a bit more explanation. The second piece inside the brackets is simply

the rent that type y receives in equilibrium, which depends on the allocation when y is the

highest signal. Of course, this is not the surplus that the deviator would obtain, since in

cases where y < x, x is the highest signal rather than y. What is the additional surplus that

the downward deviator must obtain? While the gains may vary depending on the realized

misreport, the average gains across all misreports is relatively easy to compute. Recall that

Qi (y) is the total probability that bidder i is allocated the good and that y is the highest

type, conditional on some representative bidder having a signal y. The probability that

bidder i is allocated the good when the highest signal is y may depend on the particular

misreport, but since the misreport is redrawn from the prior, it must be that bidder i is

equally likely to fall anywhere in the distribution of signals, so that unconditional on the

misreport, Qi (y) f (y) is precisely the ex-ante likelihood that i receives the good and y is the

highest among the N reported signals. Moreover, if that highest report is less than x, then

the surplus that bidder i obtains from being allocated the good is x rather than y, so that

x− y is the di�erence between the deviator's surplus and the equilibrium surplus.

Thus, misreporting a redrawn lower signal is not attractive if and only if

ˆ x

y=s

(x− y)Qi (y) f (y) dy ≤
ˆ x

y=s

Q̂i (y)F (y) dy

13



for every x ∈ S, where the left-hand side is obtained by integrating (10) by parts and can-

celing terms. Summing across i, we conclude that the direct mechanism deters misreporting

redrawn lower signals only if

ˆ x

y=s

(x− y)Q (y) f (y) dy ≤
ˆ x

y=s

Q̂ (y)F (y) dy. (11)

Since Q and Q̂ are also su�cient for computing revenue, we can now derive an upper

bound on revenue by maximizing (9) over all functions Q and Q̂ that satisfy (11) and also

satisfy the feasibility constraints

0 ≤ Q (x) ≤ NFN−1 (x) and 0 ≤ Q̂ (x) ≤ NFN−1 (x) .

These range constraints correspond to the fact that x cannot be the highest signal with

probability greater than N (F (x))N−1. (Strictly speaking, Q̂ (x) cannot be larger than Q (x),

though we shall see that this constraint is not binding.)

Note that the expression for revenue given by (9) can be integrated by parts to obtain

the equivalent expression

ˆ
x∈S

(
xQ (x) f (x)− 1− F (x)

F (x)
Q̂ (x)F (x)

)
dx,

and integrating the second term by parts again, we obtain:

ˆ
x∈S

(
xQ (x) f (x)− f (x)

F 2 (x)

ˆ x

y=s

Q̂ (y)F (y) dy

)
dx.

From this formula, it is clear that revenue is increased by making
´ x
y=s

Q̂ (y)F (y) dy as small

as possible, so that the constraint (11) must bind everywhere at an optimum. As a result,

we can solve out Q̂ in terms of Q:

Q̂ (x) =
1

F (x)

ˆ x

y=s

Q (y) f (y) dy,

and then substitute this in to obtain the following expression for revenue:

ˆ
x∈S

(
xQ (x) f (x)− 1− F (x)

F (x)

ˆ x

y=s

Q (y) f (y) dy

)
dx.
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Integrating by parts one last time, we obtain our �nal formula for revenue, which is

R =

ˆ
x∈S

ψ (x)Q (x) f (x) dx (12)

where

ψ (x) = x−
ˆ s

y=x

1− F (y)

F (y)
dy,

which is strictly increasing and �nite valued for x > s and positive for x su�ciently close to

s, though it is possible that limx→s ψ (x) = −∞. In a sense, ψ (x) is the correct analog of

the �virtual value� from Myerson (1981), in that it describes the seller's marginal revenue of

allocating the good when the value is x, which is the value itself less the information rents

that must be given to deter local deviations and to deter bidders from misreporting redrawn

lower signals.

Let r = inf {x|ψ (x) > 0}, which must exist and be strictly positive. It is now clear that

the pointwise optimum of the revenue formula (12) is given by:

Q (x) =

0 if x < r;

NFN−1 (x) otherwise.
(13)

We thus have proved the following:

Proposition 3 (Upper Bound on Revenue).

The revenue of the optimal auction is bounded above by

R =

ˆ s

x=r

ψ (x)NFN−1 (x) f (x) dx. (14)

In sum, the bound is generated by an allocation that favors low-signal bidders as much

as possible by making Q̂ as small as possible. Under the resale interpretation, this means

that the seller wants to bias the allocation towards those bidders who are likely to want to

resell the good in the secondary market, since they have less private information about the

resale value that the seller would have to incentivize them to reveal. Q̂ cannot be too low,

however, or else bidders would want to deviate by misreporting redrawn lower signals. This

constraint boils down to the requirement that Q̂ (x) cannot be smaller than the probability

that the good is allocated conditional on the highest signal being less than x.

Thus, increasing Q (x) has two competing e�ects on revenue: it increases the total surplus

that is generated by the auction, but it also generates additional information rents for types

that are greater than x since it increases the value of misreporting a redrawn lower signal.
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The function ψ (x) represents the net contribution to revenue of allocating the good when

one takes into account both of these forces, and the allocation that maximizes revenue is

bang-bang: allocate the good if and only if ψ (x) ≥ 0.

4.2 An Optimal Mechanism

We now construct a direct mechanism that attains the bound described in Proposition 3.

Let

γ (x) =
1

N

(
1−

(
F (r)

F (x)

)N)
. (15)

The allocation is as follows: if the highest signal x is at least r, then the good is allocated

to the bidder with the highest signal with probability γ (x), and with probability 1 − γ (x)

the good is allocated to one of the N − 1 other bidders who do not have high signals at

random. If the highest signal is less than r, then the good is not allocated all. Formally, the

probability by which bidder i receives the object when the realized pro�le of signal is s is

given by:

qi (s) =


γ (max s) , if si > sj ∀j 6= i and si ≥ r;

1
N−1 (1− γ (max s)) , if si < max s and max s ≥ r;

0, otherwise.

(16)

(We have ignored ties, which occur with probability zero.)

This mechanism is reverse engineered to implement the allocation corresponding to the

solution to the relaxed program. Observe that the good is always allocated as long as the

highest signal is at least r. Thus, total surplus under this mechanism would coincide with

that attained in the solution to the relaxed program. In addition, note that

γ (x) =
Q̂ (x)

NFN−1 (x)

where

Q̂ (x) =
1

F (x)

ˆ s

y=s

Q (y) f (y) dy =
FN (x)− FN (r)

F (x)

is the optimal value of Q̂ for the relaxed program. Recall that Q̂ is the probability, conditional

on some bidder having a signal of x, that x is the highest signal and that the high-signal

bidder is allocated the good. In a symmetric allocation, each bidder would be equally likely
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to obtain this allocation, so that the probability that a representative bidder with signal x

is allocated the good and has the high signal is Q̂ (x) /N . Since FN−1 (x) is the probability

that a bidder with signal x has the highest signal, the likelihood that bidder i is allocated

the good when he has signal x and conditional on having the highest signal is exactly γ (x).

As such, if this mechanism is incentive compatible, it must implement the allocation that

maximizes revenue for the relaxed program.

The implied interim transfer is constant in si and is equal to

Ti (si) = T =

ˆ s

x=r

x (1− γ (x))FN−2 (x) f (x) dx, (17)

which is simply the expected surplus generated by allocating the good to any type si < r.

The transfer can therefore be viewed as an entry fee that is paid independent of the type

and the outcome of the auction.

Theorem 1 (Optimal Auction).

The direct mechanism described by (15) - (17) is individually rational and incentive compat-

ible and attains maximum revenue. The transfer payment Ti(si) and the probability Qi(si)

of receiving the good are constant in si.

Proof. We show that the mechanism de�ned by (15)�(17) is incentive compatible. Consider

a type si ≥ r that misreports to some signal x with r ≤ x < si. The resulting surplus

consists of three pieces:

U (si, x) = siγ (x)FN−1 (x) +

ˆ si

y=x

si (1− γ (y))FN−2 (y) f (y) dy

+

ˆ s

y=si

y (1− γ (y))FN−2 (y) f (y) dy − T.

Di�erentiating this expression with respect to x, we obtain

U ′ (si, x) = si
(
γ′ (x)FN−1 (x) + (Nγ (x)− 1)FN−2 (x) f (x)

)
.

But substituting in the de�nition of γ, this becomes

si

(
FN (r) f (x)

FN+1 (x)
FN−1 (x) +

((
1− FN (r)

FN (x)

)
− 1

)
FN−2 (x) f (x)

)
= 0,

so that downward deviations are not attractive.
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On the other hand, if type si ≥ r misreports x > si, then surplus is

U (si, x) = siγ (x)FN−1 (si) +

ˆ x

y=si

yγ (x) (N − 1)FN−2 (y) f (y) dy

+

ˆ s

y=x

y (1− γ (y))FN−2 (y) f (y) dy − T.

Di�erentiating with respect to x, we now obtain

U ′ (si, x) = γ′ (x)

(
siF

N−1 (si) +

ˆ x

y=si

y (N − 1)FN−2 (y) f (y) dy

)
+ (Nγ (x)− 1)xFN−2 (x) f (x)

≤ γ′ (x)xFN−1 (x) + (Nγ (x)− 1)xFN−2 (x) f (x) = 0

since

siF
N−1 (si) +

ˆ x

y=si

y (N − 1)FN−2 (y) f (y) dy ≤ xFN−1 (x) .

As a result, upward deviations are not attractive either.

Using (15) we can compute the interim probability of winning for si ≥ r :

Qi(si) = F (si)
N−1

(
1

N

(
1−

(
F (r)

F (si)

)N))

+ (1− F (si)
N−1)

ˆ s

y=si

(
1
N

+ 1
N(N−1)

(
F (r)
F (y)

)N)
(N − 1) f(y)F (y)N−2

1− F (si)
N−1 dy

=
1

N

(
1− F (r)N

F (si)

)
+

ˆ s

y=si

1

N

F (r)

F (y)2

N

f(y)dy

=
1

N
(1− F (r)N).

Similarly, if si < r, then the �rst term above drops out, and we have

Qi(si) = (1− F (r)N−1)

ˆ s

y=r

(
1
N

+ 1
N(N−1)

(
F (r)
F (y)

)N)
(N − 1) f(y)F (y)N−2

1− F (r)N−1
dy

=
1

N

(
1− F (r)N−1

)
+

ˆ s

r

1

N

F (r)

F (y)2

N

f(y)dy

=
1

N
(1− F (r)N),
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which concludes the proof of our main result.

The optimal mechanism thus o�ers a constant interim payment and probability of win-

ning the good. But there is an important di�erence to a posted price mechanism. The

probability of receiving the good given a type pro�le s is not uniformly distributed, but

rather biased away from the bidder with the highest signal. Nonetheless, the interim prob-

ability of receiving the good must be constant across the types. To see this, consider the

highest type of a bidder. If he is indi�erent to randomly redrawing a lower signal, then in

equilibrium he must also be indi�erent to any pointwise downward deviation. Now, this

type knows that the value is exactly the highest signal, so that all he cares about is the

total expected probability of getting the good and the expected transfer. Since the latter

is constant, the former must be as well. Moreover, since the signals are independent, this

expected probability of getting the good can only depend on the message, not the type that

is sending the message.

But since the other types separate, it must be that the correlation between getting the

good and others signals depends on the report. Speci�cally, it must be that a lower report

means you are more likely to get the good when others have higher signals. Thus, a high

type is happy to deviate down (since he doesn't care what others types are, conditional on

being less than his) but a low type would not want to deviate up, because then he would

win more often when others signals are relatively low (but still higher than his, so that they

mean the value is lower), which is less desirable.

We illustrate the nature of the optimal auction with the uniform distribution of values,

G(v) = v. The corresponding distribution of signals by the bidders is given by F (x) = x1/N .

In this case, the generalized virtual utility ψ (x) takes the form:

ψ (x) = x−
ˆ 1

y=x

(
x−

1
N − 1

)
dx =

1

N − 1

(
Nx

N−1
N − 1

)
.

The optimal cuto� r is therefore

r =

(
1

N

) N
N−1

, (18)
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which is strictly decreasing in N . Optimal revenue can be computed using F (x) = x1/N and

the optimal cut-o� above as:

1

N − 1

ˆ 1

x=r

(
Nx

N−1
N − 1

)
dx =

1

N − 1

[
N2

2N − 1
x

2N−1
N − x

]1
x=r

=
1

2N − 1

(
N − 1− 1

N

N
N−1

)
.

The revenue is strictly increasing in N as well and converges against the expected value of

the object equal to 1/2 and hence full surplus extraction as N grows large. We will return

to this example in our discussion below.

5 Discussion

We begin this section by suggesting an indirect implementation of the optimal auction by a

descending clock auction. We then relate the equilibrium behavior in the current common

value environment to the equilibrium behavior independent private value environment. We

then revisit the classic result of Bulow and Klemperer (1996) that compares the revenue of

the optimal auction with N bidders with the second price auction without reserve price with

N + 1 bidders. Finally, we return to the resale interpretation of our model.

5.1 Descending Clock Auction and Posted Prices

While we have described the optimal mechanism in terms of its direct implementation, there

is a natural indirect implementation of the optimal mechanism that uses a �descending clock,�

in a manner that is in a sense dual to a Dutch auction. In the Dutch auction, the value

of the clock represents the price at which the bidder who stops the clock will purchase the

good. In our indirect mechanism, the value of the clock represents the probability with which

the bidder who stops the clock gets allocated the good.

We can describe this auction more explicitly as follows. First, all of the bidders must

pay an entry fee of T to enter the auction, as determined above by (17). Once all of the

bidders have entered, there are no subsequent transfers, and the allocation is determined as

follows. There is a probability p which starts at γ (s) ≤ 1/N and descends gradually. Similar

to the Dutch clock auction described in Milgrom and Weber (1982), the bidders each have a

button which is initially depressed, and the auction ends as soon as the �rst bidder releases

his button. If bidder i is the �rst to release his button at p > 0, then bidder i is allocated the
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good with probability p, and each of the other bidders is allocated the good with probability

(1− p) / (N − 1). Finally, if p reaches zero, the auction ends and no bidder is allocated the

good.

It is not hard to see that there is an equilibrium of this descending clock auction in which

each bidder uses the cuto� strategy of staying active until p ≤ γ (si). The reason is that

the information which each bidder receives as p descends but as long as p ≥ γ (si) does not

change the marginal bene�ts of staying in versus dropping out, since the derivative of the

indirect utility derived above only depends on outcomes when the highest signal is less than

ŝ, where p (ŝ) is the cuto� that the bidder deviates to. Put di�erently, suppose we replaced

F (s) by a truncated distribution F̂ (s) = F (s) /F (x), which conditions on the knowledge

that all signals are less than a bidder's own signal x. Then the form for γ remains exactly the

same and the incentive compatibility of truthtelling would continue to hold, thus verifying

that bidders still would not want to deviate even after they see that other bidders have not

yet ended the auction. Interestingly, even as p gets arbitrarily close to zero, bidders are still

willing to wait and see if someone else stops the auction, with the reason being that the

probability of being allocated the good as the bidder who stops the auction is su�ciently

small compared to the corresponding probability when someone else stops the auction. Thus,

bidders with low signals are willing to wait and hope that someone else stops the auction

before it is too late. We therefore have:

Proposition 4 (Descending Clock Auction).

The optimal auction can be implemented by a descending clock auction.

The optimal selling mechanism of Theorem (1) is achieved with a constant interim transfer

T = Ti(si) and a constant interim winning probability Q = Qi(si). But in contrast to a

posted price mechanism it distorts the ex post allocation qi(s) as a function of the threshold

value r which the highest signal has to exceed before the object is allocated. This suggests

that a posted price mechanism becomes optimal if the threshold value r were to coincide

with lowest signal in the support of S, that is if r = s. Interestingly, this also suggests that

if a posted price mechanism is an optimal mechanism, then the mechanism will not exclude

any type of bidders. Thus, the posted price is chosen so that every type of bidder is willing

to buy the object. We refer to the posted price thus as fully inclusive as it does not exclude

any bidders at any signal realization.

Proposition 5 (Posted Prices).

A posted price mechanism is optimal if and only if

s−
ˆ s

s

1− F (x)

F (x)
dx ≥ 0.
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If a posted price mechanism is optimal, then it is fully inclusive and the price p is:

p = T ·N =

ˆ s

s

x(N − 2)F (x)N−1f(x)dx.

The posted price p is equal to the expectation of the highest among N − 1 signal realiza-

tions, which is exactly the expectation that a bidder with lowest possible signal si = s has

about the value of the object. We note in passing that the posted price mechanism is indeed

the limit of the descending clock auction as r goes to zero, in which case the initial value of

the clock γ (s) converges to 1/N , and in equilibrium, all types stop the clock immediately.

We can illustrate these results with the uniform example we introduced in the previous

section. For the exact posted price result, consider the family of translated uniform distribu-

tions which are uniform on [a, a+ 1]. The marginal revenue function for these distributions

is

ψa (x) = x−
ˆ a+1

y=x

(
(x− a)−

1
N − 1

)
dx,

so that the lowest marginal revenue is

ψa (a) = a−
ˆ a+1

y=a

(
(x− a)−

1
N − 1

)
= a− 1

N − 1
.

Thus, for a > 1/ (N − 1), it is optimal to not exclude any bidders, and a posted price is

optimal. Moreover, the posted price is such that every bidder, irrespective of his signal

realization, declares his interest to receive the object at the price.

We note that while posted prices need not be optimal for �xed N , they will be approx-

imately optimal for N large. More precisely, suppose we hold �xed the distribution of the

common value at P (v) and consider the sequence of economies indexed by N in which bid-

ders receive independent signals from (P (v))1/N and the value is the highest signal. Then

if the seller sets a posted price of t =
´
v
vP (dv) − ε for some ε > 0, then as N → ∞, the

probability that at least one of the bidders assigns a value of at least t to the good goes to

one, so that the seller can approximately extract the whole surplus. The reason is that for

N large, when a bidder has a low signal, the expectation of the highest of the others' signals

is converging to the unconditional expectation of the value, and the probability that at least

one bidder has a low signal is going to one.
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We can also illustrate the limit optimality of posted prices in the uniform case (without

translated support and a = 0). As N → ∞, the optimal cuto� r as derived in (18) goes to

zero and the optimal revenue converges to 1/2. Indeed, it is impossible for revenue to exceed

1/2, and we could have separately concluded that this must be attained in the limit, since it

is obtained by even simpler mechanisms such as posted prices (which correspond to the case

where r = 0 for �nite N). Speci�cally, the seller could always sell the good at a price equal

to the expectation of the highest of N − 1 draws. Even the zero type would want to buy at

this price, so that the good would always be sold, and revenue would be

p =

ˆ 1

x=0

x
N − 1

N
x
N−1

1 x−
N−1
N dx =

1

2

N − 1

N
.

We can therefore further conclude that the optimal revenue converges to the total surplus at

the same rate as would revenue from the posted price under which the good is always sold.

5.2 Comparison with Independent Private Value Environment

In the analysis of the �maximum game,� Bulow and Klemperer (2002) in Section 9 show

that the second-price auction (or equivalently the ascending auction) has an equilibrium in

which bidders bid their signals. In this equilibrium, the bidder with the highest signal wins

the auction and pays the second-highest signal. To see this, suppose that bidders j 6= i are

bidding their signals. The surplus to a bidder with signal si from bidding b < si (ignoring

ties) is ˆ
s−i∈X([s,b])

(
si −max

j 6=i
sj

)
f−i (s−i) ds−i,

which is clearly increasing in b. On the other hand, if b > si, then the surplus for the bidder

i is

ˆ
s−i∈X([s,si])

(
si −max

j 6=i
sj

)
f−i (s−i) ds−i +

ˆ
s−i∈X([si,b])

(
max
j 6=i

sj −max
j 6=i

sj

)
f−i (s−i) ds−i

which is equal to the surplus from bidding si! Thus, it is optimal to bid any amount which

is at least your signal, and, in particular, it is optimal to bid your signal. Thus in the

equilibrium of the second price auction, each bidder is indi�erent between bidding his signal

and bidding any higher signal. In sharp contrast, in the optimal auction as established

in Theorem (1), each bidder is indi�erent between reporting his signal and reporting any

lower signal. Thus, we �nd that in the second price auction of this pure common value

environment, each bidder behaves as if his signal is his true private value rather than a

signal and in particular a lower bound on the pure common value.
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This observation can be generalized in the following manner. Consider the alternative

model in which each bidder's signal is again drawn from F , but instead of the value being

the highest of the signals, the value is the bidder's own signal. In other words, this is the

independent private value model, where bidder i's value is

vi (s1, . . . , sN) = si.

Let H (s) = {i|si = maxj sj} denote the set of bidders with high signals. We will say that

the direct mechanism {qi, ti} is conditionally e�cient if (i) qi (s) > 0 if and only if si ∈ H (s)

and (ii) there exists a cuto� r such that the good is allocated whenever maxi si > r.

Proposition 6 (Strategic Equivalence).

Suppose a direct mechanism {qi, ti} is incentive compatible and individually rational for the

independent private value model in which vi (s) = si and that the allocation is conditionally

e�cient. Then {qi, ti} is also incentive compatible and individually rational for the maximum

common value model in which vi (s) = maxj {sj}.

Proof of Proposition 6. Let

Qi (si) =

ˆ
s−i∈SN−1

qi (si, s−i) f−i (s−i) ds−i

denote the probability that bidder i is allocated the good. Since the bidder with the lowest

signal s is allocated the good with zero probability, it must be that ti (s) ≤ 0. In addition,

conditional e�ciency implies that Qi (si) = Q̂i (si), so that

Ui (si)− Ui (s′i) =

ˆ s′i

x=si

Qi (x) dx

is satis�ed by both the indirect utilities whenvi = si and when vi = max s. As a result, the

same transfers satisfy local incentive constraints and individual rationality. We then only

need to check global incentive constraints. Let Ui (si, s
′
i) denote the utility of a type si that

reports s′i when the value is the maximum signal, and let Ũi (si, s
′
i) denote the same when

values are private. Then

Ui (si, s
′
i) =

ˆ
s−i∈SN−1

max
j
sjqi (s

′
i, s−i) f−i (s−i) ds−i − Ti (s′i)

and

Ũi (si, s
′
i) =

ˆ
s−i∈SN−1

siqi (s
′
i, s−i) f−i (s−i) ds−i − Ti (s′i) .
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If s′i < si, then since qi (s
′
i, s−i) = 0 unless s′i ≥ sj for all j 6= i. As a result, Ui (si, s

′
i) =

Ũi (si, s
′
i) and Ui (si) ≥ Ui (si, s

′
i) follows from the fact that Ũi (si) ≥ Ũi (si, s

′
i).

So consider the case where s′i > si. Conditional e�ciency implies that

Qi (si) = Isi≥rFN−1 (si) .

As a result, for si ≥ r,

Ti (si) = siF
N−1 (si)−

ˆ si

x=r

FN−1 (x) dx− Ui (s)

=

ˆ
s−i∈X([r,si])

max
j 6=i

sjf−i (s−i) ds−i − Ui (s) .

Thus,

Ui (si, s
′
i) = siF

N−1 (s′i) +

ˆ
s−i∈X([si,s′i])

(
max
j 6=i

sj − si
)
f−i (s−i) ds−i − Ti (s′i)

= siF
N−1 (s′i) +

ˆ
s−i∈X([si,s′i])

(
max
j 6=i

sj − si
)
f−i (s−i) ds−i

−
ˆ
s−i∈X([r,s′i])

max
j 6=i

sjf−i (s−i) ds−i + Ui (s)

= siF
N−1 (si)−

ˆ
s−i∈X([r,si])

max
j 6=i

sjf−i (s−i) ds−i + Ui (s) ,

which is independent of s′i, thus proving that bidders have no incentive to deviate up.

As a corollary of this result, consider any mechanism that admits an equilibrium in which

the allocation is conditionally e�cient in the independent private value model, and such that

all actions are used in equilibrium. We will refer to such a mechanism as standard. Then the

same strategies will also be an equilibrium of that mechanism in the corresponding maximum

common value model with the same distribution of signals but in which all bidders have a

common value equal to the maximum signal. Moreover, all of these mechanisms (which are

revenue equivalent in the IPV setting) will also be revenue equivalent when the value is the

maximum signal.

This strategic equivalence is somewhat surprising. When we transform the independent

private value model into the common value model, the bidders' interim expectations of their

values increase substantially, since their value is now the maximum of their own signal and

the highest signal of others. In principle, one might think that the higher values would

induce the bidders to bid more aggressively. However, this turns out not to be the case.
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The reason is that others' bidding strategies are correlated with the value in such a way

that all of the potential surplus gains from more aggressive bidding are exactly dissipated

by higher sales prices. In fact, while bidders would strictly prefer their equilibrium bids over

higher bids in the IPV model, they become indi�erent between their equilibrium bids and

all higher bids when the value is the maximum signal. In other words, the winner's curse is

exactly strong enough to make any bid beyond the realized signal just as good as bidding

the realized signal.

In related work, (Bergemann et al., 2016), we analyze the range of possible revenue

outcomes of the �rst-price auction, where we held �xed the distribution of bidders' values

but varied the bidders' information and equilibrium strategies. The main result, Theorem

1, shows that when bidders' values are common, the information structure that minimizes

revenue is precisely the one in which the bidders have independent signals, and the value

is the maximum signal. Thus, a further corollary of Proposition 6 is that holding �xed the

distribution of the common value, the �rst-price auction generates greater worst-case revenue

over all type spaces and equilibria than any mechanism that induces e�cient allocations on

independent private value models. To wit, by Proposition 6, we can extend the revenue

equivalence result from the independent private value model to the maximum common value

model for standard auctions. By Theorem 1 of Bergemann et al. (2016), the lowest revenue in

a �rst price auction is achieved in the maximum type space. By Proposition 6, this revenue

is also achieved in all other standard auctions, but in any such auction, the worst case type

space could possibly be di�erent, and hence yield even lower revenues.

In fact, in Section 6 of Bergemann et al. (2016), we establish that the worst-case rev-

enue even for �rst-price auctions with a reserve price with a type space similar to the one

considered here, but where low signals are pooled up to some threshold (so that bidders

see, for example, the maximum of si and a cuto� value r). One can extend the revenue

equivalence formula and Proposition 6 to show that �rst-price auctions with reserve prices

generate greater worst-case revenue than any other standard mechanism. We state this as a

formal result:

Corollary 1 (Revenue Performance of First-Price Auction).

Suppose there is a pure common value v with �xed distribution P (v). Then there exists

a reserve price r such that the �rst-price auction with minimum bid r generates greater

minimum revenue than any standard mechanism, where the minimum is taken across all

Bayes Nash equilibria and across all common value common prior type spaces where the

distribution of the common value is P .

Note that while our proposition only asserts that �rst-price auctions are weakly better

than other standard mechanisms in the maxmin sense, in some cases we know that the
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ordering is strict. For example, second-price auctions admit �bidding ring� equilibria in

which one bidder bids a large amount while the others bid zero. Indeed, we have performed

simulations that indicate that all-pay auctions also have strictly worse minimum revenue than

�rst-price auctions. This revenue ranking contrasts sharply with the ranking of mechanism

suggested by �linkage principle� of Milgrom and Weber (1982), who �nd that that the English

auctions generate more revenue than the second-price than the �rst-price auctions when

values are a�liated. (Note that the maximum common value model is an a�liated values

model.) The di�erent conclusion here stems from the fact that our worst-case criterion varies

the information structure and equilibrium while holding the mechanism constant, whereas

Milgrom and Weber's comparison holds the information structure constant while comparing

mechanisms.

One can therefore interpret Corollary 1 as an explanation as to why �rst-price auctions

are so much more prevalent than second-price auctions, or any other auction format that

maximizes revenue in independent private value settings. The reason is that while all of

these mechanisms generate the same revenue in the IPV environment, standard mechanisms

other than the �rst-price auction are more susceptible to low revenue in other informational

environments and when equilibrium selection is less favorable to the seller.

5.3 Auctions versus Optimal Mechanism

We derived the optimal mechanism in an environment with independent signals and common

values. In a seminal paper, Bulow and Klemperer (1996), established the limited power of

optimal mechanisms as opposed to standard auction formats. They showed that the revenue

of the optimal auction with N bidders is strictly dominated by a standard auction without

reserve prices with N + 1 bidders. The pure common value environment analyzed here is

an instance of their more general interdependent value environment with one exception.

The virtual utility function�or marginal revenue function in the language of Bulow and

Klemperer (1996)�is not monotone due the maximum operator in the common value model.

We saw that this aspect of the environment lead to an optimal mechanism with features

distinct from the standard �rst or second price auction. Namely, the optimal mechanism

elicits the information from the bidder with the highest signal but minimizes the probability

of assigning him the object subject to the incentive constraint. The optimal mechanism

thus implements a very di�erent allocation from a standard auction such as a �rst or second

price auction in which the bidder with the highest signal would typically receive the object

with probability one. This raises the question whether the revenue comparison suggested by

Bulow and Klemperer (1996) still resolves in favor of the standard auction.
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In the pure common value environment considered here, the value of the object is the

same for all bidders. However, only the bidder with the highest signal can guarantee himself

an information rent. Indeed, the virtual utility of each bidder, πi(si, s−i) is constant in si

and equal to the utility until si becomes the largest signal. At this critical point, the virtual

utility of bidder i displays a downward jump, and thereafter has the standard expression of

the virtual utility:

πi(si, s−i) =

 maxj{sj}, if si ≤ max{s−i};

max{sj} − 1−Fi(si)
fi(si)

, if si > max{s−i}.
(19)

The downward discontinuity in the virtual utility indicates why the seller wishes to min-

imize the probability of assigning the object to the bidder with the high signal. We notice

that the downward discontinuity is due to the value function of the bidders, and arises inde-

pendent of the nature of the distribution function. The virtual utility of bidder i therefore

fails the monotonicity assumption even when the hazard rate of the distribution function is

increasing everywhere. Bulow and Klemperer (1996) required the monotonicity of the vir-

tual utility when establishing their main result that an absolute English auction with N + 1

bidders is more pro�table than any optimal mechanism with N bidders.

Indeed, we can show that the revenue ranking established in Bulow and Klemperer (1996)

does not extend to the current auction environment. For this, it will su�ce to restrict

ourselves to the class of power distribution functions:

G(v) = vα, v ∈ [0, 1], α ∈ R+.

We have the following result and the proof is relegated to the Appendix.

Proposition 7 (Revenue Comparison).

For every N ≥ 2, there exists ᾱ, with 1 < ᾱ < ∞, such that an optimal auction with N

bidders is more pro�table than a second price auction with N+1 bidders if and only if α < ᾱ.

In the special case of the uniform distribution, thus α = 1, the optimal mechanism with

N bidders is therefore more pro�table than a second price auction with N + 1 bidders ir-

respective of the number N of bidders. The analysis of the optimal auction shows that the

optimal auction uses a fully inclusive posted price for all values of αand N. By using a posted

price, the optimal auction avoids low revenue realizations that arise when even the highest

realized signal is low. However as α increases, the distribution of values becomes more con-

centrated around 1, and the probability of low value realizations decreases. Thus eventually

the capacity of the optimal auction to avoid low revenue realization is overshadowed by an
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additional signal realization and hence the possibility of higher revenues with an additional

bidder. This explains that eventually as α increases, the revenue ranking established in

Bulow and Klemperer (1996) is reestablished.

5.4 Auction with Resale

We conclude by revisiting the resale interpretation of the �maximum independent signal�

model. We observed that a leading interpretation of the maximum comm value model comes

from re-sale in a model with independent private values. The characterization of the optimal

mechanism remains valid if we interpret the model as one where the object is initially sold

optimally among N bidders with independent private values, and then possibly o�ered for

resale under complete information. In contrast to previous work on auctions with resale,

such as Gupta and LeBrun (1999) and Haile (2003), that also study resale under complete

information, our analysis investigates the optimal mechanism in the primary market. The

earlier literature started with the assumption that the mechanism used to initially allocate

the good is a �rst-price auction to be followed by an optimal take-it-or-leave-it o�er.

The resale interpretation has some limitations. Truth telling is an equilibrium of this

mechanism under the assumption that values automatically become complete information

in the secondary market, so that the resale price is exactly the highest value. Truthtelling

would no longer be incentive compatible if bidders had to infer one another's values from

the outcome of the auction. To see this, recall that bidders are indi�erent between reporting

their true type and reporting any lower type when there is complete information. Intuitively,

when a bidder has the highest signal, they only receive rents from being allocated the good

outright since otherwise they have to buy it at its value in the secondary market. The optimal

mechanism makes it so that the probability of being allocated the good is independent of

the report s′ < si, conditional on si being the highest signal, so that bidders do not bene�t

from deviating down. It is essential for this logic that the bidder not make any rents in the

resale market, even after they report a lower signal. On the other hand, if by reporting a

lower signal a bidder could signal a lower willingness to pay, then the deviator could buy

the good in the resale market at a price strictly less than its value, so that the downward

deviator would be strictly better o�. It remains an open question what would be the form

of the revenue maximizing mechanism if resale prices were in�uenced by the auction format.
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6 Conclusion

We have characterized novel revenue maximizing auctions for a class of common value models.

These common value models have the qualitative feature that values are more sensitive to

the private information of bidders with more optimistic beliefs. This seems like a natural

feature of many economic environments, in which the most optimistic bidder has the most

useful information for determining the best-use value of the good, and therefore has a greater

information rent. One class of models for which this is undoubtedly the case is when the

bidders have private values but the auction will be followed by a friction less resale market,

so that the total surplus generated by allocating the good is always the highest private value.

In contrast, the characterizations of optimal revenue that exist in the literature depend on

information rents being smaller for bidders who are more optimistic about the value.

The qualitative impact is that while earlier results found that optimal auctions discrimi-

nate in favor of more optimistic bidders, we �nd that optimal auctions discriminate in favor

of less optimistic bidders, since they obtain less information rents from being allocated the

good. In certain cases, the optimal auction reduces to a fully inclusive posted price, under

which the likelihood that a given bidder wins the good is independent of their private infor-

mation. In many cases, however, the optimal auction strictly favors bidders whose signals

are not the highest. This is necessarily the case when there is no gap between the seller's

cost and the support of bidder's values.
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7 Appendix

Proof of Proposition 7. We compare the revenue of an optimal mechanism with N bidders

with a second price auction (without reserve prices) with N + 1 bidders.

We begin with the second price auction with N +1 bidders. By Proposition 6, here every

bidder bids his signal, and the realized price is the second highest signal. The expected

revenue is therefore the expectation of the second order statistic, s(2), which has a density

(for N independent and identically distributed random variables):

h(s) = N (N − 1) (1− F (s))F (s)N−2f (s) .

We can then evaluate the second order statistic for N + 1 bidders. Suppose the distribution

of values is given by G(v) = vα, then the signal distribution of each of N + 1 bidders is given

by F (s) = s
α

N+1 . The resulting expected revenue is then given by

1ˆ

0

s(N + 1)N (1− F (s))F (s)N−1f(s)ds

=

1ˆ

0

s(N + 1)N
(

1− s
α

N+1

)
s
α(N−1)
N+1

α

N + 1
s

α
N+1
−1ds

=
α2

α + 1

N

(N + 1)(1 + α)− α
. (20)

We can separately compute the expected revenue from the optimal mechanism with N

bidders. In the comparison across the two settings we follow the method of Bulow and

Klemperer (1996). Namely, when we restrict attention to N � as opposed to N+1 � bidders,

the distribution of signals and values does not change. Rather, the mechanism is restricted

to N bidders, and neither the mechanism nor the N bidders observe the signal realization

of the N + 1-th bidder. Instead, the seller and the N bidders take the expectation over the

(unobserved) signal realization of the N + 1-th bidder.

Thus, in the optimal mechanism with N bidders, the true value is given by

v = max{s1, ..., sN+1},

but every bidder i < N + 1 with signal realization si has to compute the expectation of

the true value conditional on si being the highest signal among the realized N signals. The
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conditional distribution is given by

G(v |s) =

{
0 if v < s;

F (v) if v ≥ s;

and therefore the conditional expectation is given by:

E [v |s ] = sF (s) +

ˆ 1

s

yf(y)dy > s. (21)

In the optimal mechanism with N bidders, we therefore replace the conditional expectation

of the true value conditional on s being the highest signal among the realized N + 1 signals

(which is s) by the conditional expectation of the true value conditional on s being the

highest signal among the realized N signals (which is E [v |s ] > s).

We restrict attention to the class of power distribution functions, and hence the condi-

tional expectation is given by:

E [v |s ] = sF (s) +

ˆ 1

s

yf(y)dy

= s
(
s

α
N+1

)
+

ˆ 1

s

α

N + 1
y

α
N+1dy

=
N + 1

N + 1 + α
s
N+1+α
N+1 +

α

N + 1 + α
.

The highest signal s among N bidders is therefore distributed according to G(s)
N
N+1 and the

expected value conditional on highest signal is

v(s) ≡ N + 1

N + 1 + α
s
N+1+α
N+1 +

α

N + 1 + α
,

and inverting we have

s =

(
v
N + 1 + α

N + 1
− α

N + 1

) N+1
N+1+α

(22)

The distribution of values v is thus given by:

H (v(s)) = G(s)
N
N+1 ,

or using (22):

H(v) =

(
v
N + 1 + α

N + 1
− α

N + 1

) N
N+1+α

,
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with support

v ∈
[

α

N + 1 + α
, 1

]
.

We can then compute the revenue of the optimal mechanism with N bidders as if the signals

in the optimal mechanism were distributed according to

F (s) = H(v)
1
N =

(
v
N + 1 + α

N + 1
− α

N + 1

) 1
N+1+α

. (23)

We can then compute the revenue of the optimal mechanism using Theorem 1. The gener-

alized virtual utility function ψ(x) for the signal distribution given by (23) can be computed

using integration by parts:

ψ(x) = x−
1ˆ

x

1− F (y)

F (y)
dy

=

(
N + 1 + α

N + 1
x− α

N + 1

) N+1
N+1+α

(24)

Thus, the generalized virtual utility is nonnegative for all values in the support of F (v), and

thus the optimal mechanism has no reserve price.

The expected revenue from the optimal mechanism is therefore given by (14):

R =

ˆ 1

1
N+1+α

ψ(x)NFN−1(x)f(x)dx

=
N + α− 1

2N + α
, (25)

where the second line follows from integration by parts after inserting (23) and (24).

We can then compare the revenue from the optimal mechanism with the revenue from

the second price auction, and thus

N + α− 1

2N + α
− α2

α + 1

N

(N + 1)(1 + α)− α

=
2N2α +N2 +Nα2 + α2 − 1−N2α2

(α + 1)(2N2α + 2N2 +Nα2 +Nα + 2N + α)

which delivers the results as eventually, as α grows, N2α2 becomes the dominant term.
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