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IV and GMM Estimation and Testing of
Multivariate Stochastic Unit Root Models�

O¤er Liebermanyand Peter C. B. Phillipsz

June 10, 2016

Abstract

Lieberman and Phillips (2015; LP) introduced a multivariate sto-
chastic unit root (STUR) model, which allows for random, time vary-
ing local departures from a unit root (UR) model, where nonlinear
least squares (NLLS) may be used for estimation and inference on
the STUR coe¢ cient. In a structural version of this model where the
driver variables of the STUR coe¢ cient are endogenous, the NLLS es-
timate of the STUR parameter is inconsistent, as are the correspond-
ing estimates of the associated covariance parameters. This paper
develops a nonlinear instrumental variable (NLIV) as well as GMM
estimators of the STUR parameter which conveniently addresses en-
dogeneity. We derive the asymptotic distributions of the NLIV and
GMM estimators and establish consistency under similar orthogonal-
ity and relevance conditions to those used in the linear model. An
overidenti�cation test and its asymptotic distribution are also devel-
oped. The results enable inference about structural STUR models
and a mechanism for testing the local STUR model against a simple
UR null, which complements usual UR tests. Simulations reveal that
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the asymptotic distributions of the the NLIV and GMM estimators
of the STUR parameter as well as the test for overidentifying restric-
tions perform well in small samples and that the distribution of the
NLIV estimator is heavily leptokurtic with a limit theory which has
Cauchy-like tails. Comparisons of STUR coe¢ cient and a standard
UR coe¢ cient test show that the one-sided UR test performs poorly
against the one-sided STUR coe¢ cient test both as the sample size
and departures from the null rise.
Key words and phrases: Autoregression; Di¤usion; Similarity; Sto-
chastic unit root; Time-varying coe¢ cients.

JEL Classi�cation: C22

1 Introduction

The model under consideration is the stochastic unit root (STUR) system

Y1 = "1;

Yt = �t (a;n)Yt�1 + "t; t = 2; :::; n; (1)

where the STUR coe¢ cient

�t (a;n) = exp

�
a0utp
n

�
; (2)

depends nonlinearly on an K � 1 vector of observed stationary variables ut
that are assumed to drive the localizing coe¢ cient �t (a;n). In the important
case where the vector a = 0, the model reduces to a simple unit root (UR)
time series model. When the vector a 6= 0 but has certain components
that are zero then a certain subvector of ut comprises the driver variables of
�t (a;n). These submodels are of considerable interest in cases where the UR
model itself appears too restrictive and localized departures from unity are
considered more relevant, especially when there are potential driver variables
that are thought to in�uence the degree of persistence.
Examples of empirical models with roots in the vicinity of unity abound in

the literature and this phenomenon has motivated the use of alternative mod-
els such as the local UR (LUR) model, where the coe¢ cient �t (a;n) = e

c
n is

�xed for given n and some unknown scalar a = c (Phillips, 1987; Chan and
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Wei, 1987). In the STUR model (1)-(2), the coe¢ cient �t (a;n) is similarly
localized to unity in an array format but is dependent on a group of sta-
tionary covariates ut with a localizing decay rate of n�1=2 that is compatible
with the (assumed) stationarity of ut and enables an asymptotic develop-
ment. Some examples of empirical application of STUR models in �nance
are given in Lieberman and Phillips (2016, hereafter, LP). STUR models
have the advantage that, under certain conditions, the coe¢ cients may be
identi�ed and consistently estimated, thereby enabling investigators to test
for the presence of relevant driver variables that in�uence departures of the
coe¢ cient �t (a;n) from unity. As will be shown in the present paper, we
may also allow for structural model formulations in which the driver variables
ut that appear in (2) are endogeneous.
Under the assumption that (ut; "t) is a martingale di¤erence sequence

(mds), LP (2016) showed that in the limit as the sample size n ! 1, the
standardized output n�1=2Yt of (1)-(2) takes the form of a nonlinear di¤usion,
extending the well-known linear di¤usion result for the LUR model. The
asymptotic distribution of the nonlinear least squares (NLLS) estimator ân
of the localizing coe¢ cient a in (2) then depends on this nonlinear di¤usion.
The LP results show that ân is inconsistent in the structural model case where
ut and "t are correlated. Thus, in a structural version of (1)-(2), endogeneity
bias is present in NLLS estimation in the limit, just as in linear models.
However, when the right hand side (rhs) of (1) contains a drift, LP (2016)
showed that ân is

p
n-consistent whether or not ut and "t are correlated,

a result due to the stronger regression signal that is present in the lagged
variable regressor in (1) in this case.
The main goals of the present paper are as follows. First, we extend the

central result of LP (2016) and derive the limit process of the standardized
output n�1=2Yt when ut and "t are general linear processes. As expected, this
extension induces additional terms in the limit which do not appear in the
mds case. Second, we derive the asymptotic distribution of ân in the model
(1)-(2) for general weakly dependent ut and "t. We are particularly interested
in the structural model case where ut and "t are correlated because it seems
important to allow for such correlation in practical work. Since the NLLS
estimator ân is inconsistent when ut and "t are correlated, it is important to
develop an alternative procedure that enables identi�cation and consistent
estimation.
As in the case of linear structural models, the primary alternative proce-

dure involves instrumental variables. The present paper develops a nonlinear
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instrumental variable (NLIV) as well as (the more general) GMM estimators
of a, derives their asymptotic distribution, and shows consistency under sim-
ilar conditions to those used in the linear model. Furthermore, we derive
the asymptotic distribution of the Sargan-Hansen test for overidentifying re-
strictions in this model. The limit theory facilitates statistical testing of the
STUR model (1)-(2) against the simple unit root model where a = 0: Such
tests are valuable in empirical applications where the relevance of potential
driver variables warrants investigation.
The plan for the remainder of the paper is as follows. In Section 2 we

set up model assumptions, characterize the asymptotic limit process form of
n�1=2Yt; and derive the limit distribution of ân. The theory for the NLIV
estimator is presented in Section 3. Asymptotic theory for estimation of
the covariance parameters follows in Section 4 and a test statistic which
accounts for the estimation of nuisance parameters is suggested in Section 5.
Limit theory for GMM estimation and a test for overidentifying restrictions
is developed in Section 6. Simulation experiments evaluating the adequacy
of the limit theory is reported in Section 7. Section 8 concludes and proofs
are given in the Appendix.

2 Preliminaries and Results on the NLLS

For the generating mechanism of the process wt = (u0t; "t)
0 we adopt a linear

process framework similar to Ibragimov and Phillips (IP, 2008), making the
following assumption.

Assumption 1. The vector wt is a linear process satisfying

wt = G (L) �t =

1X
j=0

Gj�t�j,
1X
j=1

j kGjk <1, G (1) has full rank K + 1,

(3)
�t is iid, zero mean with E (�t�0t) = �� > 0 and maxE j�i0j

p <1, for some
p > 4.

Under Assumption 1, wt is zero mean, strictly stationary and ergodic,
with partial sums satisfying the invariance principle

n�1=2
bn�cX
t=1

wt ) B (�) � BM
�
�`r
�
; �`r =

�
�`ru �`ru"
�`r0u"

�
�`r"
�2 � ; (4)
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where b�c is the �oor function and B = (Bu; B")
0 is a vector Brownian mo-

tion1. The matrix �`r = G (1)��G (1)
0 > 0 is the long run covariance matrix

of wt, with K �K submatrix �`ru > 0, scalar
�
�`r"
�2
> 0 and K � 1 vector

�`ru". In component form, we write (3) as

wt =

�
ut
"t

�
=

�
G11 (L) G12 (L)
G21 (L) G22 (L)

��
�1t
�2t

�
=

�
G1 (L)

G2 (L)

��
�1t
�2t

�
(5)

=

�P1
j=0G1;j�t�jP1
j=0G2;j�t�j

�
where �1t is K � 1 and �2t is scalar. Speci�cally,

ut = G1;0�t +G1;1�t�1 + � � �
"t = G2;0�t +G2;1�t�1 + � � � ;

where G1;j is K � (K + 1) and G2;j is 1� (K + 1).
Denote the contemporaneous covariance matrix of wt by � > 0, with

corresponding components �u" = E (utu0t) > 0; �u" = E (ut"t) and �2" =
E ("2t ) > 0. The one-sided long run covariance matrices are similarly denoted
by � =

P1
h=1 E (w0w0h) and � =

P1
h=0 E (w0w0h) = � + �, with correspond-

ing component submatrices �u" =
P1

h=1 E (u0"0h), �"" =
P1

h=1 E ("0"0h) and
�u" =

P1
h=0 E (u0"0h), �"" =

P1
h=0 E ("0"0h).

In the special case where wt is an mds, � = �`r. For that case, Lieber-
man and Phillips (2014, 2016) showed that the standardized output process
n�1=2Yt=bn�c of (1) converges weakly to a nonlinear di¤usion process. The
following Lemma extends the result of LP (2016) to the present case of sta-
tionary driver variables and equation errors satisfying Assumption 1.

Lemma 1 For the model (1)�(2), under Assumption 1,

n�1=2Yt=bnrc ) ea
0Bu(r)

�Z r

0

e�a
0Bu(p)dB" (p)� a0�u"

Z r

0

e�a
0Bu(p)dp

�
:= Ga (r) :

(6)

Importantly, the quantity a0�u" in (6) involves the one-sided long run
covariance matrix �u" between u and ": This quantity measures the impor-
tance of the random drift e¤ect,

R r
0
ea

0(Bu(r)�Bu(p))dp; that is induced in the

1Primitive conditions under which the functional law (4) holds are given, for example,
in Phillips and Solo (1992).
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limit process Ga whenever a 6= 0 and �u" 6= 0: If a = 0; the limit process is
standard Brownian motion B" as expected.
Denote by ân the NLLS of a which minimizes the criterion Qn (a) =Pn
t=2 fYt � �t (a;n)Yt�1g

2. The following theorem was established in LP
(2016) for the case where �t is a strictly stationary mds and is extended
below to the case where �t is a zero mean, strictly stationary and ergodic
process, satisfying Assumption 1.

Theorem 2 For the model (1)�(2), under Assumption 1, the asymptotic
behavior of ân is given by:
(1)

(ân � a))
R 1
0
Ga (r) drR 1

0
G2a (r) dr

��1u �u"; if �u" 6= 0:

(2)

ân )
R 1
0
B" (r) drR 1

0
B2" (r) dr

��1u �u"; if �u" 6= 0 and a = 0:

(3)

p
n (ân � a))

1R 1
0
G2a (r) dr

��1u

�Z 1

0

Ga (r) dBu" (r) (7)

+ fE ("tutu0t)g a
Z 1

0

Ga (r) dr

�
; if �u" = 0:

(4)

p
nân )

1R 1
0
B2" (r) dr

��1u

Z 1

0

B" (r) dBu" (r) , if �u" = 0 and a = 0:

Remark 1 The results in Theorem 2 depend directly on the contemporaneous
covariance matrices �u =

P1
j=0G1j��G

0
1j and �u" =

P1
j=0G1j��G

0
2j, where

�� = E (�t�0t), and in view of (6), on the long run covariances indirectly,
through Ga (r).

Remark 2 If �t has a symmetric distribution around zero and K = 1, then

E ("tutu0t) = E
�
"tu

2
t

�
=

1X
j=0

G2;jG
2
1;jE

�
�3t�j

�
= 0;
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because all odd moments of a symmetric distribution around zero are equal
to zero. In this case, eq�n (7) reduces to

p
n (ân � a))

1R 1
0
G2a (r) dr

��1u

Z 1

0

Ga (r) dBu" (r) , if �u" = 0:

It follows from Theorem 2 that ân is inconsistent when �u" 6= 0. It
is emphasized that this result pertains to the model (1)-(4) in which it is
assumed that the drift parameter is equal to zero. When the drift parameter
is non-zero, Lieberman and Phillips (2016) showed that the least squares
estimator of a is consistent even when �u" 6= 0.
The present paper develops consistent IV and GMM estimators for a and

derives their limit distributions in the important case in which the model�s
localized STUR coe¢ cient equals to zero. The conditions imposed on the
instruments are similar to those that are used in linear model IV. The re-
sults are used to test the null hypothesis of a unit root against the STUR
alternative which is given by eq�ns (1)-(2).

3 Instrumental Variable Estimation of the STUR
Model

Let Zt be an q � 1 vector of instruments for ut, q � K, and ��t be a
(K + q + 1)� 1- random vector. We extend the setup of (5) by letting

w�t =

0@ ut
"t
Zt

1A = G� (L) ��t =
1X
j=0

G�j�
�
t�j =

0@ G1 (L)
G2 (L)
G3 (L)

1A0@ �1t
�2t
�3t

1A
=

0@ G11 (L) G12 (L) G13 (L)
G21 (L) G22 (L) G23 (L)
G31 (L) G32 (L) G33 (L)

1A0@ �1t
�2t
�3t

1A =

0@ P1
j=0G1;j�t�jP1
j=0G2;j�t�jP1
j=0G3;j�t�j

1A :
Assumption 2: The vector w�t satis�es

1X
j=1

j


G�j

 <1, G� (1) is full rank,

��t is iid, zero mean with E (��t��0t ) = ��� > 0 and maxE j��i0j
p < 1, for
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some p > 4.

This framework is su¢ ciently rich to include many known models, includ-
ing the stationary and ergodic ARMA model.

Assumption 3: For all t,

E (Zt"t) =

1X
j=0

G3j���G
0
2j = 0; (8)

E (Ztu0t) = �Zu =
1X
j=0

G3j���G
0
1j has full rank K: (9)

In the remainder of this section we shall consider the q = K case, in
which the IV estimator, âIVn , solves the K-moment conditions:

nX
t=2

�
Yt � �t

�
âIVn ;n

�
Yt�1

�
Zt = 0: (10)

The more general q � K case will be discussed in Section 6. Under Assump-
tion 2,

n�1=2
bnrcX
t=1

Zt"t ) BZ" (r) ; (11)

where BZ" (r) is a Brownian motion with a covariance matrix


`rZ" =
1X

h=�1

E
�
ZtZ

0
t+h"t"t+h

�
=

1X
h=�1

E
�
ZtZ

0
t+h)E("t"t+h

�
(12)

if Zt is uncorrelated with "s for all s; t.
The asymptotic distribution of the IV estimator is given in the following

theorem.

Theorem 3 For the model (1)-(4), under Assumptions 2-3, for q = K,

p
n
�
âIVn � a

�
) ��1ZuBZ" (1)R 1

0
Ga (r) dr

: (13)

It is emphasized that the matrix �Zu appearing on the rhs of (13) is the
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contemporaneous covariance between Z and u. Several remarks are in place.

Remark 3 Unlike the least squares estimator, Theorem 3 implies that âIVn
is consistent for a, whether or not �u" = 0:

Remark 4 The role of the usual IV orthogonality condition (8) in Assump-
tion 3 is evident in eq�n (45) of the Appendix, where it is clear that if
E (Zt"t) 6= 0, then

�Zu

�Z 1

0

Ga (r) dr

��
âIVn � a

�
) E (Zt"t) :

Hence, a violation of condition (8) renders âIVn inconsistent as expected.

Remark 5 The limit distribution in (13) is not de�ned if the relevance con-
dition (9) of Assumption 3, that �Zu has full rank, is violated. In particular,
if some instruments are irrelevant and �Zu has de�cient rank, then the IV
estimator will be inconsistent, although in such cases some contrasts (linear
combinations) of a may be consistently estimable.

Remark 6 In the K = 1 case, under the null hypothesis H0 : a = 0,Z 1

0

Ga (r) dr =

Z 1

0

B" (r) dr =d N
�
0;
�
�lr"
�2
=3
�
;

so that,
p
nâIVn )

N
�
0; 
lrZ"

�
�ZuN

�
0; (�lr" )

2 =3
� (14)

where �Zu = Cov (Z; u). If, in addition, Zt and "t are independent mds
processes, then

p
nâIVn ) N (0; �2"�

2
Z)

�ZuN (0; �2"=3)
; (15)

where �2Z = V ar (Zt), 8t.

The limit distributions (14) and (15) are scaled ratios of normal variates
which have heavy Cauchy tails because the denominator has positive density
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at the origin and is not perfectly correlated with the numerator2. This feature
of the limit distribution is manifest in �nite samples and a¤ects the simulation
results of Section 7, where large outliers occurred in the computation of
simulated means and variances.
To explore this issue further, we rewrite the result (14) as

p
nâIVn ) N (0; �2"�

2
Z)

�ZuN (0; �2"=3)
=

�1
�Zu�2

; :

say. The vector (�1; �2)
0 is N

�
0;��

�
, �� is positive de�nite and with compo-

nents
n
��11; �

�
12; �

�
22

o
. Then

p
nâIVn ) �1:2

�Zu�2
+

��12

�Zu�
�
22

=:
�1:2
�Zu�2

+B;

say, giving the bias B = ��12=�Zu�
�
22 in the limit distribution. When the

covariance parameters in B are estimated, which will be at a
p
n rate if the

variables form an mds or at a lower than
p
n rate if they are weakly dependent

and long run variances/covariances need to be estimated, we will e¤ectively
end up with centred asymptotics of the following form. Thus, if the rate
of convergence is

p
kn for kn

n
! 0 and we have

p
kn

�
B̂ �B

�
) N (0; VB) ;

then we will have

p
nâIVn � B̂ =

p
nâIVn �B +

�
B̂ �B

�
=
p
nâIVn �B +Op

�
1p
kn

�

) �1:2
�Zu�2

=
1

�Zu

 
��11:2

��22

!1=2
C:

2If � = �1
�2
where (�1; �2) � N

�
0;��

�
and �� > 0 has components

n
��11; �

�
12; �

�
22

o
;

then � = �1:2
�2
+

��12
��22
; where �1:2 = �1 �

��12
��22
�2 � N

�
0; ��11:2

�
; and ��11:2 = �

�
11 �

��12
��22

2

> 0:

Since �1:2 is independent of �2; the ratio
�1:2
�2
�
�
��11:2
��22

�1=2
C, where C is standard Cauchy,

and so � = ��12
��22

+
�
��11:2
��22

�1=2
C is non-central Cauchy and has Cauchy tails.

9



Now, under Assumption 2,

��12 = Cov (�1; �2) = E

 
1p
n

nX
t=1

Zt"t

! 
1

n3=2

nX
s=1

sX
j=1

"j

!
:

If Zt is independent of "t, as assumed in the second part of Remark 6, then
��12 = 0 and so, B = 0. Otherwise,

��12 =
1

n2

nX
t=1

nX
s=1

E

 
Zt"t

sX
j=1

"j

!

=
1

n2

nX
t=1

nX
s=1

E

 1X
k=0

G3;k�t�k

1X
l=0

G2;l�t�l

sX
j=1

1X
m=0

G2;m�j�m

!

=
1

n2

nX
t=1

nX
s=1

E

 1X
k=0

1X
l=0

sX
j=1

1X
m=0

G3;kG2;lG2;m�t�k�t�l�j�m

!

=
1

n2

nX
t=1

nX
s=1

1X
k=0

sX
j=1

1X
m=0

G3;kG2;kG2;mE
�
�3t�k

�
1 ft� k = j �mg :

This term will be zero if �t has a symmetric distribution. In these cases then,
(14) simpli�es to

p
nâIVn ) �Zu

 
��11:2

��22

!1=2
C =

1

�Zu

 
��11

��22

!1=2
C =

1

�Zu

�

lrZ"

(�lr" )
2 =3

�1=2
C

and (15) reduces to
p
nâIVn )

p
3�Z
�Zu

C, (16)

respectively. For inference then, the scaled Cauchy distribution should be
used.
We note that, unlike the ADF t-test in the linear case, the estimated

standard deviation of âIVn does not have a closed form. In principle then, t-
and Wald tests might be constructed by simulating the standard deviation
of the rhs of (13) and extacting the corresponding limit theory of the ratio.
Such a construction substantially complicates implementation relative to the
coe¢ cient test and it is unclear whether this approach brings any bene�t
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over the simpler coe¢ cient test implied by (13).
To complete this section we compare the STUR approach to a direct

DF test of the UR null implied by H0 : a = 0. Simple calculations based
on the earlier asymptotic theory show that the usual UR coe¢ cient test of
�t (a;n) = � = 1, 8t, has the following limit theory

n
�
�̂ � 1

�
)

R 1
0 B"dB"+�""R 1

0 B
2
"

under H0 : a = 0R 1
0 GadB"+�""+a

0 R 1
0 dBuG

2
a+2a

0�u"
R 1
0 Ga(r)drR 1

0 G
2
a

under H1 : a 6= 0;
:

(17)
In particular, under the null the usual UR limit theory (Phillips, 1987) applies
and under the alternative we have

�Yt =
�
ea

0ut=
p
n � 1

�
Yt�1 + "t � a0

utp
n
Yt�1 + "t;

which leads to the following limit behavior

n
�
�̂ � 1

�
=
n�1

Pn
t=1 Yt�1�Yt

n�2
Pn

t=1 Y
2
t�1

�
n�1

�
(
Pn

t=1 Yt�1"t) +
�
a0
Pn

t=1
utp
n
Y 2t�1

��
n�2

Pn
t=1 Y

2
t�1

)

hR 1
0
GadB" + �""

i
+
h
a0
R 1
0
dBuG

2
a + 2a

0�u"

R 1
0
Ga (r) dr

i
R 1
0
G2a

;

(18)

where we use results from Ibragimov and Phillips (2008) for the sample co-
variance n�3=2

Pn
t=1 utY

2
t�1. The limit (18) shows that standard UR tests

based on the estimate �̂ have local power which depends on the magnitude
of a and the process Ga (r). Finite sample performance is investigated nu-
merically in Section 7.

4 Estimation of the covariance parameters

The least squares-based estimators of �2", �u and �u" are given by

�̂2";n =
1

n

nX
t=2

�
Yt � eâ

0
nut=

p
nYt�1

�2
; vech

�
�̂u;n

�
=
1

n

nX
t=1

vech (utu
0
t) ; (19)
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and

�̂u";n =
1

n

nX
t=2

�
Yt � eâ

0
nut=

p
nYt�1

�
ut;

respectively. Their limit theory was given in Theorem 3 of Lieberman and
Phillips (2016) in the case where wt is a strictly stationary and ergodic mds
process and is presented here again for convenience.

Theorem 4 For the model (1)�(4), if wt is a strictly stationary and ergodic
mds process,
(1)

�̂2";n � �2" ) �

�R 1
0
Ga (r) dr

�2
R 1
0
G2a (r) dr

�0u"�
�1
u �u":

(2) If ut has �nite fourth moments, centred partial sums of utu0t satisfy
the invariance principle

1p
n

bnrcX
t=1

vech (utu
0
t � �u)) � (r) ;

where � (r) is vector Brownian motion with covariance matrix

�u
u = E (Le (ut 
 ut � E (ut 
 ut)) (u0t 
 u0t � E (u0t 
 u0t))L0e)

and Le is the elimination matrix satisfying vech (uu0) = Le (u
 u) :
(3)

�̂u";n � �u" ) �

�R 1
0
Ga (r) dr

�2
R 1
0
G2a (r) dr

�u":

The implication of Theorem 4 is that �̂2";n and �̂u";n are both inconsistent.
Let

eIVt = Yt � eâ
IV 0
n ut=

p
nYt�1; t = 2; :::; n: (20)

We show in the following theorem that for j = 0; 1; 2; :::, the IV-based esti-
mators


̂IV";n (j) =
1

n

nX
t=j+2

eIVt e
IV
t�j;
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̂IVu;";n (j) =
1

n

nX
t=j+2

ute
IV
t�j;

and


̂IVZ";n (j) =
1

n

nX
t=j+2

ZtZ
0
t�je

IV
t e

IV
t�j;

of 
" (j) = Cov ("t; "t�j), 
u;" (j) = Cov (ut; "t�j) and 
Z" (j) = Cov
�
Zt"t; Z

0
t�j"t�j

�
,

respectively, are consistent. In particular, 
̂IV";n (0) =
�
�̂IV";n

�2
is consistent for

�2". It also holds that �̂Zu;n = 1
n

Pn
t=2 Ztu

0
t is

p
n-consistent for �Zu by

ergodicity.

Theorem 5 Under Assumptions 2-3, for q = K,

1. 
̂IV";n (j)� 
" (j) = Op
�
n�1=2

�
.

2. 
̂IVu;";n (j)� 
u;" (j) = Op
�
n�1=2

�
.

3. 
̂IVZ";n (j)� 
Z" (j) = Op
�
n�1=2

�
.

We remark that �̂u;n, de�ned in (19), does not depend on a and is
p
n-

consistent.

5 A Test Statistic with Nuisance Parameters
Estimated

The limit distribution in (13) depends on the unknown parameter �Zu. It is
obvious from eq�n (45) of the Appendix that under Assumption 1,

p
n

�Z 1

0

Ga (r) dr

�
�Zu

�
âIVn � a

�
= BZ" (1) +Op

�
n�1=2

�
: (21)
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The lhs of (21) is equal to

p
n

�Z 1

0

Ga (r) dr

�
�̂Zu;n

�
âIVn � a

�
+
p
n

�Z 1

0

Ga (r) dr

��
�Zu � �̂Zu;n

� �
âIVn � a

�
=

p
n

�Z 1

0

Ga (r) dr

�
�̂Zu;n

�
âIVn � a

�
+Op

�
n�1=2

�
= BZ" (1) +Op

�
n�1=2

�
:

Therefore, to �rst order, we may replace the rhs of (13) and (15) by�
�̂Zu;n

��1
BZ" (1)R 1

0
Ga (r) dr

(22)

and
BZ" (1)

�̂Zu;n
R 1
0
B" (r) dr

; (23)

respectively. The long run covariances associated with the distributions in
(22) and (23) can be consistently estimated using the results of Theorem 5
and a standard tapering argument. For instance, the covariance matrix 
lrZ"
of BZ" (1) may be consistently estimated by a Bartlett-Newey-West HAC
estimator using the autocovariance estimates 
̂IVZ";n (j).

6 GMM Estimation and a Test for Overiden-
tifying Restrictions

The approach may be extended to allow for q > K instruments in Zt: In such
cases, we may estimate a by GMM and a Sargan-Hansen-type test may be
used to test for overidentifying restrictions. This section develops this analy-
sis and provides limit theory for the GMM estimator and overidenti�cation
test. Let

gn (a) =
1

n

nX
t=1

(Yt � �t (a)Yt�1)Zt;

14



âGn = â
G
n

�
Ŵ
�
= argmin

a
Jn

�
a; Ŵ

�
; (24)

where
Jn

�
a; Ŵ

�
= ng0n (a) Ŵgn (a) ;

Ŵ is a q � q, symmetric positive de�nite matrix, possibly dependent on the
sample, such that Ŵ !p W , and W is a weighting matrix. In this case �Zu
is given by (9) but is (q �K), with the possibility that q � K. The limit
theory for âGn is as follows.

Theorem 6 For the model (1)-(4), under Assumptions 2-3 and for q � K,

p
n
�
âGn � a

�
) (�0ZuW�Zu)

�1
�0ZuW

BZ" (1)�R 1
0
Ga (r) dr

� : (25)

Remark 7 If the model is just identi�ed, the result of the Theorem collapses
to (13).

Remark 8 Consider the linear model

Yt = x
0
t� + "t;

where xt is K�1. Let Zt be a q�1 vector of instruments for xt, with q � K,
and Ŵ is de�ned above. It is well known (e.g., Hayashi, 2000) that the GMM

estimator �̂
G

n of � in this model is

�̂
G

n =
�
S 0ZXŴSZX

��1
S 0ZXŴsXy; (26)

where

SZX =
1

n

nX
t=1

Ztx
0
t and sXy =

1

n

nX
t=1

xtYt:

The correspondence between (25) and the usual linear formulation (26) is
clear.

A Sargan-Hansen-type test for overidentifying restrictions in this context
can be based on the statistic

Jn

�
âGn

��

̂`rZ";n

��1�
;
�

̂`rZ";n

��1�
= nĝ0n

�

̂`rZ";n

��1
ĝn;

15



where

ĝn = gn

�
âGn

��

̂`rZ";n

��1��
=
1

n

nX
t=1

Zt

�
Yt � �t

�
âGn

��

̂`rZ";n

��1��
Yt�1

�
;

and 
̂`rZ";n is a consistent estimator of 

`r
Z";n, de�ned in (12). The limit theory

for this statistic has the usual �2q�K form, as given in (27) below.

Theorem 7 For the model (1)-(4), under Assumptions 2-3 and for q � K,

Jn

�
âGn

��

̂`rZ";n

��1�
;
�

̂`rZ";n

��1�
= nĝ0n

�

̂`rZ";n

��1
ĝn ) �2q�K : (27)

Remark 9 The �2q�K limit distribution for the overidentifying test again
corresponds to that in linear model discussed in Remark 8.

7 Simulations

This section reports an investigation of the �nite sample performance of the
limit theory for the coe¢ cient estimator âIVn ; the coe¢ cient test (23), the
e¢ cient GMM estimator âGn ; and the overidenti�cation test. We consider the
following scenarios.
Case 1:

ut
iid� N

�
0; �2u

�
; �2u = 0:1; "t

iid� but + �t; �t
iid� U [�1; 1] ; Zt

iid� ut � 3b�2u�t:

Case 2:

ut
iid� N

�
0; �2u

�
; �2u = 0:1; "t

iid� but + 2�t; �t
iid� U [�1; 1] ; Zt

iid� ut � 3b�2u�t:

Case 3:

ut
iid� N

�
0; �2u

�
; �2u = 0:1; "t

iid� N
�
0; �2u

�
;

ut are independent of "t; �t
iid� U [�1; 1] ; Zt

iid� ut � 3b�2u�t:
Case 4:
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ut
iid� N

�
0; �2u

�
; �2u = 0:1; "t

iid� N
�
0; �2u

�
+ 2�t;

ut are independent of "t; �t
iid� U [�1; 1] ; Zt

iid� ut � 3b�2u�t:
For each case, we simulated 5000 replications with n = 100, 1000, 10000

and b = 0:2. These scenarios are summarized in Table 1 below.

Table 1. Covariances in each case.
Case �u" �Z" �Zu
1 6= 0 = 0 6= 0
2 6= 0 6= 0 6= 0
3 = 0 = 0 6= 0
4 = 0 6= 0 6= 0

Cases 1-2 correspond to the situation in which �u" 6= 0, but Assumption
3 holds for Case 1, because

E ("tZt) = E
�
(but + �t)

�
ut � 3b�2u�t

��
= b�2u � 3b�2uV ar (�t) = 0;

whereas in Case 2, �Z" 6= 0. Similarly, Cases 3-4 correspond to the situa-
tion in which �u" = 0, but Assumption 3 holds for Case 3, whereas in Case
4, �Z" 6= 0. For each case we consider also two subcases: a = 0:15 and
a = 0. The data was simulated according to (1) and (2) and the IV esti-
mator was solved in each replication as a solution to the nonlinear moment
condition (10). To assess the adequacy of the results of Section 4, we have
also added Cases 5 and 6, which are cases 1 and 3 with �̂Zu;n replacing �Zu.
A 1%-trimming was enforced in the simulations because large outliers were
encountered, some due to the limit distribution being a scaled ratio of nor-
mals and some due to the fact that large simulated ut-values can result in
large exponentials and consequently, numerically unstable results.
PP Plots of the lhs of (13) against its limit distribution (coded as rhs)

and against the estimated normal distribution of the lhs were formed. A
selection of the plots is presented. The typical situation is given in Figures
1-2. As expected, for cases 1,3,5, in which Assumption 3 holds, the lhs
and rhs in each case are very close for as little as n = 100. There is no
noticeable di¤erence between the �u" = 0 and �u" 6= 0 cases. On the other
hand, as expected, the lhs and rhs become very di¤erent as n grows in cases
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2,4,6, when �Z" 6= 0. Figure 3 reveals that replacing �Zu by �̂Zu;n does not
cause a noticeable di¤erence. In cases 1,3,5, in which Assumption 3 holds,
the asymptotic distribution of the test statistic has a peaked distribution
compared with the normal distribution. This is evident in the PP plots and
Figure 4, which provides kernel density estimates of the lhs, rhs and estimated
normal density of the lhs. Finally, for the case a = 0, the comparisons drawn
in Figures 5-7 between the distribution of

p
nâIVn and the scaled Cauchy

variate, given in (16), show a perfect �t.
In the second part of the analysis we investigated the rejection rates (RR)

of the hypothesis test H0 : a = 0 using (23). The results are of interest for
applications with small to moderate n and/or a. Each of the experiments
were based on 2000 replications. We considered the process

�1t
iid� N

�
0; �2�1

�
, �2t

iid� N
�
0; �2�2

�
, �3t

iid� N
�
0; �2�3

�
(28)

�2�1 = 0:673; �
2
�2
= 0:129; �2�3 = 0:5

ut = �1;t + 0:432�1;t�1 � 0:21�2;t�1
"t = �2;t � 0:251�1;t�1 + 0:12�2;t�1
Zt = �3;t + 0:3�1t + 0:4�3;t�1: (29)

In this setting, Cov (u; ") 6= 0, Cov (u; Z) 6= 0 and Cov ("; Z) = 0. For the
�rst part of the analysis, we set n = 2000 and varied the true a over the
values 0, 0:2, 0:5, 1, 2, 5. The results are given in Table 2 and Figure 8. For
the second part of the analysis, we �xed a at 0:2 and 1 and varied n over
the values 100, 500, 1000, 1500, 2000, 5000. The results for this part of the
analysis are given in Tables 3-4. Clearly, as a increases, both the one-sided
and two-sided RRs increase from about 0:5 to about 0:99 and the sample
mean of âIVn is accurate. In Table 3-4 we also observe an increase in the RRs
and a decrease in the standard deviations of the estimator, as n increases, as
expected.
For the same setting we simulated RRs of the DF statistic against the

distribution of (n�1
Pn

t=1 Yt�1�Yt) =
�
n�2

Pn
t=1 Y

2
t�1
�
with Yt generated under

the null hypothesis and under all the true parameters of the process as given
by (28)-(29). Accordingly, the simulation reports performance of an �ideal�
DF test because the parameters �"" and �2" that are needed for the simulation
of the rhs of (17) were taken to be known. Even with this prior advantage that
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the (one-sided) DF test has over this paper�s coe¢ cient test in which nuisance
parameters are estimated, it is clear from Tables 2-4 that the DF test lacks
power when applied in a single direction. More speci�cally, Table 2 reveals
that one-sided DF test power increases very slowly (and much slower than
the coe¢ cient based test) as a increases. Tables 3-4 show that this relative
performance does not change as the sample size increases and that the power
function of the DF test is essentially �at and close to 0:5 over the full range
n 2 f100; 500; 1000; 1500; 2000; 5000g when a = 0:2: In contrast, this paper�s
coe¢ cient test has power that increases from 0.75 to 0.95 over this range of
sample sizes. The performance of the DF test in these simulations is obviously
a¤ected by the (conventional) one-sided implementation of this test. We
expect the one-sided DF test against a STUR model to have power limited
by the fact that in the STUR model we get mildly explosive departures 50%
of the time with a symmetric ut - distribution. In such (subperiod) cases
the departures will not aid the signi�cance of the left sided UR test. This
transpires in the simulations in the reduction in power to approximately
50%. Figures3 9-10 emphasize this point in showing that the kernel density
estimates of the di¤erence between n

�
�̂ � 1

�
and the limit null distribution

in the a = 0:2 and 1 cases are centered at zero. In summary, our one-sided
test has good power which increases with both a and n - all better than the
usual DF test.
In the third part of the analysis we analyzed the small sample performance

of the distributions of the e¢ cient two-step e¢ cient GMM estimator and the
Jn-test for overidentifying restrictions based on it. The �rst step weighting
matrix was taken to be Ŵ = n (

Pn
t=1 ZtZ

0
t)
�1 �see, for instance, Hayashi

(2000, p. 213). To this end we generated 5000 samples of n = 100, 500,
according to the following law:

�t � N (0; I4) , "t = �1t

ut = g21�1t +
�
g22;0�2t + g22;1�2;t�1

�
+
�
g23;0�3t + g23;1�3;t�1

�
+
�
g24;0�4t + g24;1�4;t�1

�
3In the construction of Figures 9-10 we have used the same generating mechanism

error inputs with a = 0 (for the null) and a = 0:2; 1 (for the alternatives), so that the

simulation kernel density estimates are essentially equivalent to those of {n
�
�̂ � 1

�
under

the alternative} � {n
�
�̂ � 1

�
under the null}.
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Z1t =
�
g32;0�2t + g32;1�2;t�1

�
+
�
g33;0�3t + g33;1�3;t�1

�
+
�
g34;0�4t + g34;1�4;t�1

�
Z2t =

�
g42;0�2t + g42;1�2;t�1

�
+
�
g43;0�3t + g43;1�3;t�1

�
+
�
g44;0�4t + g44;1�4;t�1

�
:

The g�s were generated from a uniform distribution U [0:1; 0:35] once only and
a = 0 and 0:15. Clearly, Assumptions 2-3 are satis�ed with q = 2 and K = 1.
Figures 11-12 show that the pp-plots for the distribution of âGn against the
rhs of (25) is very accurate for as little as n = 100 observations, in both the
a = 0 and a 6= 0 cases. Figures 13-16 reveal that the asymptotic distribution
of Jn against the �2 (1) limit distribution is reasonable for n = 100 and is
excellent for n = 500.

8 Conclusion

In the context of the multivariate driftless STUR model with endogenous
driver variables that appear in the STUR AR coe¢ cient, nonlinear least
squares estimation of the localizing STUR coe¢ cient is known to be incon-
sistent. This paper explores the structural STUR model and extends the
existing limit theory for both the output process and for the NLLS estima-
tor of the localizing STUR coe¢ cient in the general weakly dependent time
series case. Just as in linear and nonlinear models involving only stationary
variables, instrumental variables are shown here to be useful in providing
consistent estimates of the localizing coe¢ cients of the driver variables in
a structural version of the STUR model under orthogonality and relevance
conditions that mirror those used in other implementations of IV. The limit
distribution of the NLIV estimators in the just identi�ed case turns out to be
Cauchy-like and involves a bias term. The limit distribution of the Sargan-
Hansen test for overidentifying restrictions turns out to be �2q�K , as in the
linear case.
It is of particular interest in empirical applications of STUR models to

be able to test for the presence of driver variables in determining the STUR
coe¢ cient. The coe¢ cient-based test for the relevance of driver variables
that is proposed in the present paper has a convenient limit theory and
simulations show that its performance in �nite samples is satisfactory. The
theory is potentially useful in cases where the data generating process can
only be approximately described by a unit root process and which is more
likely to �t data with a time dependent coe¢ cient that is in�uenced by
covariates that may well be endogenous and correlated with the errors. The
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IV and GMM procedures given here enable inference about structural STUR
models and a mechanism for testing the local STUR model against a simple
UR null. The STUR tests appear to have promising power performance
characteristics against a standard UR coe¢ cient test both as the sample size
rises and departures from the null increase.
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Appendix
Proof of Lemma 1. In view of the functional law (4), in an appro-

priately expanded probability space we may write, for t = bnrc and any
r > 0;

n�1=2
tX
j=1

�j = B (t=n) + op (1) ; (30)

so that

n�1=2Yt = n
�1=2

t�1X
s=1

e
a0p
n

Pt
j=s+1 uj"s +Op

�
n�1=2

�
= n�1=2e

a0p
n

Pt
j=1 uj

t�1X
s=1

e
� a0p

n

Ps
j=1 uj"s +Op

�
n�1=2

�
= n�1=2efa

0Bu(t=n)+op(1)g
t�1X
s=1

e

n
� a0p

n

Ps�1
j=0 uj�

a0p
n
us
o
"s +Op

�
n�1=2

�

= n�1=2ea
0Bu(t=n)

�
t�1X
s=1

e�fa
0Bu((s�1)=n)+op(1)g

�
1� a

0usp
n
+Op

�
n�1
��
"s + op (1)

= ea
0Bu(t=n)

t�1X
s=1

e�a
0Bu((s�1)=n) "sp

n
� ea0Bu(t=n)

t�1X
s=1

e�a
0Bu((s�1)=n)

�
a0us"s
n

�
+ op (1) :

(31)

Setting t = bnrc and noting that E
�
e�a

0Bu(p)
�2
< 1; the �rst term on the

rhs of (31) has the following limit

ea
0Bu( tn)

t�1X
s=1

e�a
0Bu( s�1n )dB"

� s
n

�
(32)

!p e
a0Bu(r)

�Z r

0

e�a
0Bu(p)dB" (p)� �0u"a

Z r

0

e�a
0Bu(p)dp

�
=: G�a (r) :

The limit (32) makes use of a result on the weak convergence to stochastic
integrals with random drift of sample covariances involving functions of par-
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tial sums (see Ibragimov and Phillips, 2008, theorem 3.1; Liang et al, 2016,
theorems 2.3 and 3.1). Again, as in (30), we assume that the probability
space has been expanded to permit the representation of (32) as a limit in
probability.
The second term on the rhs of (31) is

� ea0Bu(t=n)
t�1X
s=1

e�a
0Bu( s�1n )

�
a0us"s
n

�
= �a0ea0Bu(t=n)

t�1X
s=1

e�a
0Bu( s�1n )

�
�
us"s � �u"

n
+
�u"
n

�
(33)

= �a0�u"ea
0Bu(t=n) 1

n

t�1X
s=1

e�a
0Bu((s�1)=n) +Op

�
n�1=2

�
!p � a0�su"ea

0Bu(r)

Z r

0

e�a
0Bu(p)dp:

Hence,

n�1=2Ybnrc !pG
�
a (r)� a0�u"ea

0Bu(r)

Z r

0

e�a
0Bu(p)dp

= ea
0Bu(r)

�Z r

0

e�a
0Bu(p)dB" (p)� �0u"a

Z r

0

e�a
0Bu(p)dp

�a0�u"
Z r

0

e�a
0Bu(p)dp

�
= ea

0Bu(r)

�Z r

0

e�a
0Bu(p)dB" (p)� a0�u"

Z r

0

e�a
0Bu(p)dp

�
(34)

giving (6), as required. �

The following lemma will be used in the sequel.

Lemma 8 Under Assumption 1,

nX
t=2

ut"tYt�1 = n
3=2�u"

Z 1

0

Ga (r) dr + n

Z
Ga (r) dBu" (r) + op (n) :
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Proof of Lemma 8: We have

1

n3=2

nX
t=2

ut"tYt�1 =
1

n3=2

nX
t=2

 1X
j=0

G1;j�t�j

! 1X
k=0

G2;k�t�k

!0
Yt�1:

The leading term is

1

n3=2

nX
t=2

 1X
j=0

1X
k=0

G1;jE
�
�t�j�

0
t�k
�
G02;k

!
Yt�1 =

1

n3=2

nX
t=2

 1X
j=0

G1;j��G
0
2;j

!
Yt�1

) �u"

Z 1

0

Ga (r) dr: (35)

The second order term satis�es

1

n

nX
t=2

(ut"t � �u")Yt�1 =
1

n

nX
t=2

 1X
j=0

1X
k=0

G1;j�t�j�
0
t�kG

0
2;k � �u"

!
Yt�1:

In the mds case, this term is equal to
R 1
0
Ga (r) dBu" (r). For j = k = 0,

1

n

nX
t=2

�
G1;0�t�

0
tG

0
2;0 � E

�
G1;0�t�

0
tG

0
2;0

��
Yt�1 ) G1;0

�Z 1

0

Ga (r) dB��0 (r)

�
G02;0:

For j = 0 and k = 1,

1

n
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�
G1;0�t�

0
t�1G

0
2;1 � E

�
G1;0�t�

0
t�1G

0
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��
Yt�1

=
1
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G1;0�t�
0
t�1G

0
2;1

��
1 +

a0ut�1p
n
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�
n�1=2

��
Yt�2 + "t�1

�

= G1;0

Z
Ga (r) dB��0�1 (r)G

0
2;1 +

1

n3=2

nX
t=2

E
�
G1;0�t�

0
t�1G

0
2;1a

0ut�1
	
Yt�2

+
1

n

nX
t=2

E
�
G1;0�t�

0
t�1G

0
2;1"t�1

	
+ op (1)) G1;0

Z
Ga (r) dB��0�1 (r)G

0
2;1:
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Similarly, for j = k = 1,

1

n

nX
t=2

�
G1;1�t�1�

0
t�1G

0
2;1 � E

�
G1;1�t�1�

0
t�1G

0
2;1

��
Yt�1

=
1

n
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�
G1;1�t�1�

0
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0
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a0ut�1p
n
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�
n�1=2

��
Yt�2 + "t�1

�
) G1;1

Z
Ga (r) dB��1�0�1 (r)G

0
2;1:

Higher order lags can be treated in the same fashion. Therefore,

1

n

nX
t=2

 1X
j=0

1X
k=0

G1;j�t�j�
0
t�jG

0
2;k � E

 1X
j=0

1X
k=0

G1;j�t�j�
0
t�kG

0
2;k

!!
Yt�1

=
1

n

nX
t=2

 1X
j=0

1X
k=0

G1;j�t�j�
0
t�jG

0
2;k � �u"

!
Yt�1

)
1X
j=0

G1;j

Z 1

0

Ga (r) dB��j��k (r)

 1X
k=0

G2;j

!0

=

Z 1

0

Ga (r) dBu" (r) : (36)

Eq�ns (35) and (36) give the stated result. �
Proof of Theorem 2. We trace through the proof of Theorem 2 of

Lieberman and Phillips and extend the derivations there to the linear process
case. The objective function is

Qn (a) =

nX
t=2

fYt � �t (a)Yt�1g
2 : (37)
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Minimizing (37) with respect to a yields

_Qn (ân) = �2
nX
t=2

fYt � �t (ân)Yt�1g _�t (ân)Yt�1 = 0

=)
nX
t=2

fYt � �t (ân)Yt�1gut�t (ân)Yt�1 = 0

=)
nX
t=2

Ytut�t (ân)Yt�1 =
nX
t=2

ut�
2
t (ân)Y

2
t�1: (38)

The third line in (38) is equivalent to

nX
t=2

ut�t (ân) f�t (a)Yt�1 + "tgYt�1 =
nX
t=2

ut�
2
t (ân)Y

2
t�1

or
nX
t=2

ut�
2
t (ân)Y

2
t�1 �

nX
t=2

ut�t (ân + a)Y
2
t�1 =

nX
t=2

ut"t�t (ân)Yt�1

As �2t (ân) = �t (2ân), to second order the last expression equals

1p
n

nX
t=2

utu
0
t (ân � a)Y 2t�1 +

1

2n

nX
t=2

ut

�
(2â0nut)

2 �
�
(ân + a)

0 ut
�2�

Y 2t�1

(39)

=
nX
t=2

ut"tYt�1 +
1p
n

nX
t=2

"tutu
0
tânYt�1:

Now,

1p
n

nX
t=2

utu
0
t (ân � a)Y 2t�1

= n3=2�u (ân � a)
Z 1

0

G2a (r) dr + n
nX
t=2

�
utu

0
t � �up
n

�
(ân � a)

�
Yt�1p
n

�2
:

The second term above is Op (n (ân � a)). In the �u" 6= 0, we only need to
maintain terms in (39) which are Op

�
n3=2

�
, so the second term above can
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be neglected. In the �u" = 0 case, we only need to retain terms which are
Op (n). Because in this case ân � a = Op

�
n�1=2

�
, this term is negligible also

in this case. Thus, we only need to consider in both cases

1p
n

nX
t=2

utu
0
t (ân � a)Y 2t�1 � n3=2�u (ân � a)

Z 1

0

G2a (r) dr:

The next term to consider is

1

2n

nX
t=2

ut

�
(2â0nut)

2 �
�
(ân + a)

0 ut
�2�

Y 2t�1

=
1

2n

nX
t=2

ut
�
(ân � a)0 ut (3ân + a)0 ut

	
Y 2t�1:

This term is Op (n) in the �u" 6= 0 case and Op
�
n1=2

�
in the �u" = 0 case. So,

this term is negligible in both cases. The next term in (39) is
Pn

t=2 ut"tYt�1,
whose behavior is given by Lemma 8. The last term in (39) is

1p
n

nX
t=2

"tutu
0
tânYt�1 = nE ("tutu0tân)

Z 1

0

Ga (r) dr + op (n) :

Ignoring negligible terms, we thus seek a solution to (39) as

n3=2�u (ân � a)
Z 1

0

G2a (r) dr

= n3=2�u"

Z 1

0

Ga (r) dr + n

�Z
Ga (r) dBu" (r) + E ("tutu0tân)

Z 1

0

Ga (r) dr

�
;

giving the results stated in the theorem. �
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Proof of Theorem 3. Expanding (10), we obtain

nX
t=2

�
Yt � �t

�
âIVn ;n

�
Yt�1

�
Zt

=
nX
t=2

�
�t (a;n)Yt�1 + "t � �t

�
âIVn ;n

�
Yt�1

�
Zt

=
nX
t=2

�
�t (a;n)� �t

�
âIVn ;n

�	
Yt�1Zt +

nX
t=2

Zt"t

=
nX
t=2

(�
a� âIVn

�0
utp

n
+
(a0ut)

2 �
�
âIV 0n ut

�2
2n
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�
1

n

�)
Yt�1Zt +

nX
t=2

Zt"t

= 0: (40)

Under Assumption 2,

n�1=2
bnrcX
t=1

vec (Ztu
0
t � �Zu)) BZu (r) ;

where BZu (r) is vector Brownian motion with covariance matrix

�`rZ
u =
1X

h=�1

�Z
u(h); where �Z
u(h) = E
�
ZtZ

0
t+h 
 utu0t+h

�
�E (Zt 
 ut)E (Z 0t 
 u0t) :

By an application of Lemma 8, we obtain

nX
t=1

vec (Ztu
0
t)Yt�1 � n3=2vec (�Zu)

Z 1

0

Ga (r) dr+n

Z 1

0

Ga (r) dBZu (r)+op (n) :

(41)
Hence,�
âIVn � a

�0
p
n
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utYt�1Zt =
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t=2

Yt�1Ztu
0
t

!�
âIVn � a

�
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�
n
�
âIVn � a

��
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(42)
Next,

(a0ut)
2 �

�
âIV 0n ut

�2
=
�
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�0
ut
�
a+ âIVn

�0
ut:
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Therefore, the leading term in the factor

nX
t=2

(
(a0ut)

2 �
�
âIV 0n ut

�2
2n

)
Yt�1Zt

which appears in (40), is

p
n

2
E
n�
a� âIVn

�0
ut
�
a+ âIVn

�0
utZt

oZ 1

0

Ga (r) dr = Op
�p
n
�
a� âIVn

��
:

(43)
Finally, by (11),

nX
t=2

Zt"t = nE (Zt"t) +
p
nBZ" (1) + op (n) ; (44)

where, temporarily, we have not imposed Assumption 3 requiring E (Zt"t) =
0, in order to examine its role in Remark 4. Collecting the dominant terms
in (41)-(44), we need a solution to the equation�

n�Zu

Z 1

0

Ga (r) dr +Op
�p
n
�� �

âIVn � a
�
=
p
nBZ" (1) + nE (Z") : (45)

The desired result follows immediately upon imposition of Assumption 3. �
Proof of Theorem 5. Using (20), we have

eIVt = Yt � �t
�
âIVn
�
Yt�1

= Yt � �t (a) �t
�
âIVn � a

�
Yt�1
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Yt�1: (46)
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As
�
âIVn � a

�
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�
n�1=2

�
,

�t (a)

�
âIVn � a

�0
utp

n
Yt�1 = �t (a)

�
âIVn � a

�0
ut (Ga (r) + op (1))
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�
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The next order term in the expansion (46) is

�t (a)
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��
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Therefore,
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�
"t +Op

�
n�1=2

�� �
"t�j +Op

�
n�1=2

��
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" (j) +Op

�
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�
;

and part (1) of the Theorem is established. The proofs for parts (2)-(3) are
similar and are therefore omitted. �
Proof of Theorem 6. The solution to (24) must satisfy 
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�
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0
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so, we need to solve 
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�
âGn
�
Yt�1utZ

0
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Ŵ

 
nX
t=1

��
�t (a)� �t
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We shall need the following results.
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The result of the theorem follows upon substitution of (48)-(50) into (47). �
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Proof of Theorem 7. We know from (44) that
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âGn

��

̂`rZ";n

��1��
Yt�1

�
=

1

n

nX
t=1

Zt"t +
1

n

nX
t=1

Zt

�
�t (a)Yt�1 � �t

�
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The second term above is equal to
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say. Thus,

Jn

�
âGn

��

̂`rZ";n

��1�
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̂`rZ";n

��1�
= n�g0

�

̂`rZ";n

��1=2
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��1=20
�g + op (1) :

The result of the theorem follows from the facts that
�

̂`rZ";n

��1=20
�g ) N (0; Iq)

and M̂n is symmetric and idempotent with rank q �K. �
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Table 2. Rejection rates (RR) and estimates

a 0 0:2 0:5 1 2 5
One sided RR 0:503 0:934 0:943 0:943 0:974 0:995
DF one sided RR 0:489 0:502 0:521 0:546 0:565 0:878
Two sided RR 0:492 0:675 0:828 0:900 0:953 0:986

ân �0:047 0:231 0:482 0:999 2:0029 5:003
�̂ (ân) 0:676 0:623 0:532 0:602 0:513 0:147

Note: n = 2000, the number of replications is equal to 2000. The values
were obtained for the model (1) and (2) with a 1% trimming from each tail.

Table 3. Rejection rates (RR) and estimates

n 100 500 1000 1500 2000 5000
One sided RR 0:748 0:888 0:915 0:934 0:934 0:950
DF one sided RR 0:508 0:501 0:515 0:502 0:502 0:505
Two sided RR 0:494 0:587 0:627 0:656 0:675 0:770

ân 0:196 0:173 0:177 0:163 0:231 0:200
�̂ (ân) 1:719 1:202 0:817 0:812 0:623 0:415

Note: a = 0:2, the number of replications is equal to 2000. The values were
obtained for the model (1) and (2) with a 1% trimming from each tail.

Table 4. Rejection rates (RR) and estimates

n 100 500 1000 1500 2000 5000
One sided RR 0:836 0:908 0:930 0:944 0:947 0:958
DF one sided RR 0:507 0:528 0:539 0:543 0:546 0:514
Two sided RR 0:636 0:808 0:865 0:876 0:895 0:926

ân 0:893 0:967 1:029 1:024 0:966 0:990
�̂ (ân) 1:723 1:033 0:969 0:668 0:534 0:443

Note: a = 1, the number of replications is equal to 2000. The values were
obtained for the model (1) and (2) with a 1% trimming from each tail.
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Figure 1: PP plot of
√

¡
̂ − 0

¢
(blue) and  (1) 

¡


R
 () 

¢
(gold) against the estimated normal distribution of

√

¡
̂ − 0

¢
, with  =

100, Σ 6= 0, Σ = 0,  6= 0,  = 015.

36



Figure 2: PP plot of
√

¡
̂ − 0

¢
(blue) and  (1) 

¡


R
 () 

¢
(gold) against the estimated normal distribution of

√

¡
̂ − 0

¢
, with  =

1000, Σ 6= 0, Σ 6= 0,  6= 0,  = 015.

Figure 3: PP plot of
√

¡
̂ − 0

¢
(blue) and  (1) 

¡
̂

R
 () 

¢
(gold) against the estimated normal distribution of

√

¡
̂ − 0

¢
, with  =

100, Σ 6= 0, Σ = 0, Σ =  6= 0,  = 015.
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Figure 4: Kernel density estimates of
√

¡
̂ − 0

¢
(blue) and

 (1) 
¡


R
 () 

¢
(gold) against the estimated normal distribution

of
√

¡
̂ − 0

¢
, with  = 10000, Σ 6= 0, Σ = 0,  6= 0,  = 015.

Figure 5: PP plot of
√

¡
̂ − 0

¢
against the scaled Cauchy variate,  =

100, Σ 6= 0, Σ = 0,  6= 0,  = 0.
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Figure 6: PP plot of
√

¡
̂ − 0

¢
against the scaled Cauchy variate, with

the scaling factor estimated,  = 100, Σ 6= 0, Σ = 0,  6= 0,  = 0.

Figure 7: Kernel density estimates of
√

¡
̂ − 0

¢
(blue) against the scaled

Cauchy variate (brown),  = 100, Σ 6= 0, Σ = 0,  6= 0,  = 0.
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Figure 8: Trimmed (1% from each side) RHS (blue) and LHS kernel distrib-

utions, corresponds to 2000 replications with  = 2000 . light brown ( = 0),

green ( = 02), red ( = 05), magenta ( = 1), dark brown ( = 2).

Figure 9: Kernel density estimate of 
³
̂ − 1

´
−
³R 1

0
 + 

´

R 1
0
2
 ,

with  = 02,  = 2000.
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Figure 10: Kernel density estimate of 
³
̂ − 1

´
−
³R 1

0
 + 

´

R 1
0
2
 ,

with  = 1,  = 2000.

Figure 11: PP plot of
√

¡
̂ − 0

¢
against (

1R
0

())
−1(Σ0

Σ)
−1Σ0(1), with  = 100, Σ 6= 0, Σ = 0,  6= 0,  = 015.
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Figure 12: PP plot of
√

¡
̂ − 0

¢
against (

1R
0

())
−1(Σ0

Σ)
−1Σ0(1), with  = 100, Σ 6= 0, Σ = 0,  6= 0,  = 0.

Figure 13: PP plot of (̂

  ̂ ) against (1 ) distribution, with  = 100,

Σ 6= 0, Σ = 0,  6= 0,  = 015.
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Figure 14: PP plot of (̂

  ̂ ) against (1 ) distribution, with  = 100,

Σ 6= 0, Σ = 0,  6= 0,  = 0.

Figure 15: PP plot of (̂

  ̂ ) against (1 ) distribution, with  = 500,

Σ 6= 0, Σ = 0,  6= 0,  = 015.
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Figure 16: PP plot of (̂

  ̂ ) against (1 ) distribution, with  = 500,

Σ 6= 0, Σ = 0,  6= 0,  = 0.
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