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Survivors of preterm birth experience long-lasting behavioral problems characterized 

by increased risk of depression, anxiety, and impaired social functioning. The amygdala 
is a key region for social functioning, and alterations in amygdalar structure and 
connectivity are thought to underlie social functioning deficits in many disorders, 
including preterm birth. However, the trajectory of social impairments in PT and their 
association with functional connectivity of the amygdala are not well-studied in former 
preterm born individuals (PTs).  

It was hypothesized that PTs would show impaired social functioning compared to 
term controls beginning in early childhood and continuing to young adulthood. It was 
also hypothesized that amygdala resting state functional connectivity is altered in PT born 
young adults, and that alterations in amygdala functional connectivity would mediate 
increased internalizing behavior and socialization problems in PT born young adults.  

In a group of former very PT infants (600 to 1250 grams birth weight) and matched 
term (T) controls, measures of social and emotional behavior were examined using the 
Child Behavior Checklist (CBCL) administered at ages 8, 12, and 16, the Youth Self 
Report administered at age 16, and the Vineland Adaptive Behavior Scales (VABS) 
administered at ages 8 and 18. Amygdalar functional connectivity was examined using 
resting-state functional magnetic resonance imaging at age 20.   

By parent report, preterm-born children and adolescents exhibit behaviors 
demonstrating increased social impairment compared to their term-born peers, starting at 
school-age and becoming more prominent by young adulthood. PT demonstrate a 
worsening trajectory in CBCL Withdrawn scores from school-age to young adulthood 
compared to T (group*time interaction p=0.03), and maternal education has a protective 
effect on this trajectory in the PT population (withdrawn group*time interaction p=0.01). 
Furthermore, amygdalar connectivity is altered in the formerly prematurely-born, and 
markers of social impairment correlate negatively with altered amygdala-posterior 
cingulate cortex connectivity (Social competence r=-0.37, p=0.03; socialization r=-0.42, 
p=0.01).  

As this cohort of PTs does not include individuals who suffered any form of 
neurologic injury, their parent-reported increase in behavioral markers of social 
impairment may be attributable to prematurity rather than to neurologic injury. Moreover, 
these data suggest that previously established social impairments in PT as compared to T 
worsen during the critical period of transition from school-age to adolescence and suggest 
a possible neural underpinning for these impairments experienced by prematurely-born 
individuals. 
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Introduction1 

Premature Birth: Overall Implications 

Emerging data suggest that preterm-born children are at high risk for social 

impairment and emotional problems in addition to the well-established risk of 

neurodevelopmental handicap; however, the latter is much more well-described and 

remains largely the focus of counseling families about the longterm risks to prematurely 

born individuals. 

Preterm birth is a significant global public health problem: in 2017, 9.93% of US 

births were preterm, with 2.76% born before 34 weeks (2). Globally, as many as 11% live 

births occur before 37 weeks of gestation (3, 4).  In the US, the rate of PT birth increased 

from the 1980s through 2006 and has recently begun increasing again over the last few 

years (5). There are racial, ethnic, and socioeconomic disparities in rates of preterm birth, 

with non-Hispanic African Americans having the highest rates and even higher rates 

among mothers with low educational attainment (6).  

The consequences of preterm birth are far-reaching and include acutely increased 

mortality as well as significant long-term morbidity and increased societal costs. 

Advances in obstetric and neonatal care have improved survival for preterm born 

neonates; however, these children are still at high risk for significant health problems, 

including physical as well as neurodevelopmental problems (6, 7). These include 

pulmonary and cardiovascular problems, major neurologic impairments such as cerebral 

palsy, cognitive impairment, and sensory impairments, and more subtle learning, 

                                                        
1 Portions of thesis text are taken from the author’s published manuscript:  
1. Johns CB, Lacadie C, Vohr B, Ment LR, and Scheinost D. Amygdala functional 
connectivity is associated with social impairments in preterm born young adults. 
Neuroimage Clin. 2018. 
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behavioral, and emotional problems (6, 8-10). In 2010, about 2.7% of PT survivors 

globally were estimated to have moderate or severe neurodevelopmental impairments, 

and the number of PT survivors with subtler emotional or behavioral problems is likely 

much higher though not well established (3). 

Emotional and Social Problems in the Prematurely Born 

Survivors of preterm birth experience long-lasting behavioral problems 

characterized by increased risk for depression, anxiety, and impairments in social 

functioning (8-13).  Social difficulties in PT emerge in early childhood and persist into 

adolescence. In early childhood, PTs show increased internalizing behavior, impaired 

emotional regulation, and poorer peer play, and are reported by parents to have increased 

social problems (14-17). Specific domains in which PT commonly struggle compared to 

T include social withdrawal and difficulties with peers (18).  

The transition to adolescence appears to be especially difficult for PTs. A recent 

prospective study of behavioral and emotional problems in extremely PT-born children 

from school-age to young adulthood showed consistent increase in emotional symptoms 

and peer problems in PT compared to T controls which was greater in young adulthood 

compared to school-age (19). This is concordant with an increased risk of bullying in PT 

in adolescence (20, 21). Furthermore, PTs show increased internalizing behaviors both by 

parent and teacher report in early adolescence (22) and fail to follow the age-related 

normal decline in these behaviors during the transition from adolescence to adulthood 

(23). It is theorized that decreased social skills in early childhood and a rise in 

internalizing behaviors may lead to difficult social relationships in adolescence and 

young adulthood in PT, which then manifests as social withdrawal (18).  
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Even in adulthood, PT are less extraverted, take fewer risks, and have lower self-

esteem compared to their term-born peers (12, 24).  Because of these impairments in 

social functioning, PT-born adults are less likely to maintain committed relationships or 

become parents (25).  In addition, these symptoms have been linked to increased 

psychiatric morbidity in the PT population at young adulthood, including anxiety, 

depression, and social phobias (10, 11, 26-28). Interestingly, most of these reports are 

from parents or caregivers, and self-report data are rarer. However, in general, even when 

parents report social, emotional, and behavioral problems, PT-born adolescents do not 

report significant problems compared to term peers (29, 30).  

Neurodevelopment in Prematurely Born Individuals 

Preterm birth is associated with alterations in cortical and subcortical regional 

volume as well as with disruptions in neural connectivity networks that can persist into 

adolescence and adulthood (31-33). While some of these changes may be due to perinatal 

factors including procedures (34) during what would normally be a period of significant 

neurodevelopment while in utero (35), there is increasing evidence that pre-natal factors 

such as maternal stress may play a role (36, 37).  While many cortical and subcortical 

areas may be affected by preterm birth, the limbic areas are of particular interest given 

their role in responding to stress and coordinating emotional responses.  

The Amygdala: Function and Connectivity 

 A key brain region for social functioning is the amygdala (38).  Lesion studies 

show that damage to the amygdala impairs individuals’ abilities to recognize complex 

social emotions in facial expressions (39, 40).  Amygdalar volume and functional 

connectivity with cortical regions correlates with social network size in young adults (41, 

42), and alterations to amygdalar circuitry contribute to social processing deficits in many 



 5 

disorders, such as autism spectrum and anxiety disorders (43-45).  Similarly, reduced 

social functioning in PTs has been attributed to alterations in amygdalar structure and 

function (13, 46-48).  

The amygdala develops early in life and exhibits some volume and connectivity 

changes from infancy to adulthood in typically developing individuals. The amygdala 

grows rapidly during infancy in healthy full-term born children and reaches its maximum 

volume by late school-age, with small volume changes during adolescence and adulthood 

(49, 50).   Amygdalar functional connectivity develops similarly early in life: in healthy 

full-term infants, the amygdala is positively correlated with subcortical regions including 

the contralateral amygdala, hippocampus, insula, hypothalamus, and thalamus and 

negatively correlated with the prefrontal cortex, posterior cingulate cortex, and visual 

cortex (36, 46).  In late infancy and early childhood, amygdalar-thalamic connectivity 

decreases and amygdalar-right ventral temporal lobe connectivity increases (51), but 

from early childhood to adulthood, amygdalar connectivity with subcortical regions 

remains largely unchanged with the exception of a few regions (52). Amygdalar 

connectivity with the medial prefrontal cortex increases with age beginning around age 

10, whereas connectivity with a region including the insula and superior temporal sulcus 

as well as with the posterior cingulate cortex decreases with age after early adolescence 

(52). Additional subtle amygdalar connectivity changes are mediated by both post-natal 

factors such as parental interactions (53-55) and pre-natal factors including maternal 

stress (36, 37) with potential subsequent consequences for emotional and social 

development. 

While alterations in functional connectivity for specific networks, such as 

language, are well characterized across development in those prematurely born (32), 
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functional connectivity of the amygdala in PT has been less well-studied. In PT neonates, 

amygdalar connectivity is decreased to frontal cortex and sub-cortical regions (36, 46) 

and correlates with internalizing symptoms at 2 years of age (46).  In PT adults at 30 

years of age, amygdalar connectivity is decreased to the right posterior cingulate cortex, 

left precuneus, and increased to the superior temporal sulcus (47).  However, despite 

evidence that amygdalar connectivity in typically developing individuals exhibits 

changes during adolescence and young adulthood (52, 56), this age range has not been 

examined in previous studies of amygdalar connectivity in PTs. Together, these studies 

suggest the need to investigate the association between social functioning and amygdalar 

connectivity in PT young adults.  

In this work, we examined social functioning from school age to young adulthood 

and amygdalar connectivity during young adulthood in a cohort of very PT and term 

control participants. Measures of social and emotional development were evaluated by 

both parent and self-report at ages 8, 12, 16 and 18. Neuropsychological scores were 

examined longitudinally for both PT and T. Assessment scores were then compared to 

amygdalar functional connectivity using resting-state functional magnetic resonance 

imaging between study groups at age 20, and finally, social behavior differences were 

correlated with alterations in the amygdala.  
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Specific Hypotheses and Aims 

Hypotheses: 

Hypothesis 1: Preterms without any history of perinatal brain injury will show 

significantly more internalizing behavior and social difficulties beginning at age 8 

compared to term-born peers, and these difficulties will persist into young adulthood. 

Hypothesis 2: Resting fMRI patterns of amygdala - cortical connectivity will differ 

between term and preterm born young adults. 

Hypothesis 3: Alterations in functional connectivity will correlate with increased 

internalizing behavior and socialization problems seen in adolescents and young adults 

who were born preterm.  

Specific Aims  

Specific Aim 1: To further clarify the trajectory of internalizing behavior and social 

problems from school-age to young adulthood in preterms without any significant history 

of perinatal brain injury. 

Specific Aim 2: To elucidate the development of amygdala - cortical 

functional connectivity in adolescents and young adults who were born preterm. 

Specific Aim 3: To correlate those connectivity differences with differences in 

internalizing behaviors and socialization problems in children and adolescents born 

preterm vs. full-term.  
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Methods 

 This study was designed by Christina Johns, Laura Ment, MD, and Dustin 

Scheinost, PhD. The neuropsychological data and rs-fMRI data were collected as part of 

the follow-up MRI component of the Multicenter Randomized Indomethacin 

Intraventricular Hemorrhage Prevention Trial (NS27116), which was designed and led by 

Dr. Ment and performed at the Yale University School of Medicine in New Haven, CT, 

the Warren Alpert Medical School of Brown University in Providence, RI, and Maine 

Medical Center in Portland, ME (57, 58). The protocols for this study were reviewed and 

approved by institutional review boards at each study center. Children provided written 

assent; parent(s) or guardians provided written consent for the study. Brain scans were 

obtained and analyzed at the Yale University School of Medicine. 

 Statistical analyses of the neuropsychological data were designed by Christina 

Johns with the guidance of Drs. Ment and Scheinost. Analyses of the rs-fMRI data were 

designed by Dr. Scheinost as described in detail by him below (see Image Parameters, 

Common Space Registration, Connectivity Processing, Amygdalar Seed Connectivity, 

and Motion Analysis below).  Rs-fMRI analysis was performed by Christina Johns, Dr. 

Scheinost, and Cheryl Lacadie. Connectivity and neuropsychological correlations were 

performed by Christina Johns. 

Participants 

The PT neuropsychological cohort consisted of the 437 surviving former PT 

participants enrolled in the follow-up MRI component of the Multicenter Randomized 

Indomethacin Intraventricular Hemorrhage Prevention Trial (57, 58).  The PT 

participants all weighed between 600-1250 grams at birth. These participants were 

evaluated at ages 8, 12, 16 and 18 with neuropsychological testing.  At each age point, 
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PTs were excluded from the neuropsychological analysis for any of three reasons: 1. Any 

evidence of perinatal brain injury, defined by intraventricular hemorrhage, low-pressure 

ventriculomegaly, and/or periventricular leukomalacia, 2. Incomplete demographic, 

WISC, or neuropsychological questionnaires, and 3. Outlier scores on any of the included 

neuropsychological measures. Outlier scores were defined as scores at least 3 

interquartile range above the third quartile on any of the included measures.  

A subset of participants recruited from the Yale site only was tested with the 

Youth Self Report (YSR) at age 16. Participants were excluded from analysis of this 

questionnaire for the same reasons as above.  

Term (T) control participants were recruited at age 8 years from the local 

community or randomly selected from a telemarketing list and matched to the PT 

participants in terms of age, gender, and zip code, as a proxy for socio-economic status. 

Term controls participated in the 8, 12, 16, and 18-year visits.  

A subset of participants from the neuropsychological cohort was recruited for 

MRI testing at age 20 years.  

Neuropsychological Assessment 

 All participants were tested with the CBCL (59) at ages 8, 12, and 16 years and 

the VABS (60) at ages 8 and 18 years to assess social and emotional development and 

adaptive behavior. Participants also completed the Weschler Intelligence Scale for 

Children, Third Edition (WISC-III) (61) at ages 8, 12, and 16 years to assess intellectual 

ability, from which Full IQ (FIQ) scores were used in the analysis. A subset of 

participants was tested with the YSR (62) at age 16 years to assess social and emotional 

development from the participant’s, rather than the parent’s, point of view.  T scores for 

each domain were used for the CBCL, YSR, and VABS. 
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The CBCL is a validated, parent/caregiver-completed questionnaire of child 

emotional and behavioral problems over the past 6 months.  Measures of social 

development included in this study included scores in the following scales: Social 

Competence, Social Problems, Anxiety Problems, Anxious/Depressed, Withdrawn, and 

Affect Problems.  At ages 8 and 12 years, only the Social Problems, Anxious/Depressed, 

and Withdrawn scales were assessed. In this questionnaire, higher scores for Social 

Problems, Anxiety Problems, Anxious/Depressed, Withdrawn, and Affect Problems 

reflect a worse level of functioning, whereas lower scores in Social Competence reflect a 

worse level of functioning. The Social Competence scale includes items such as 

participation in activities and frequency of contact with friends, and the Social Problems 

scale includes items such as a child’s ability to get along with peers, amount of play time 

spent with peers of same age, and whether a child acts his/her age. The Withdrawn scale 

includes items such as avoiding eye contact and refusing activity, the Anxious/Depressed 

scale includes items such as frequency that the child’s feelings are hurt, whether the child 

is upset by separation, and frequency of sadness. The Anxiety Problems scale assesses 

dependency, not sleeping alone, and number of fears. Clinical range scores for these 

scales are defined as being in the bottom two percentiles of T scores for Social 

Competence (T scores £ 37) and the top two percentiles for the remainder of the scales (T 

scores ³ 70). 

The YSR is similar to the CBCL, but is self-administered (62).  Measures from 

this instrument included in this study include the following: Activities and Social 

(subscales) and Anxious/Depressed, Withdrawn, and Social Problems (syndrome scales). 

DSM Affective Problems and DSM Anxiety Problems scales were also included.  These 

scales assess items similar to those assessed in the CBCL. These DSM-oriented scales are 
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comprised of measures consistent with DSM-5 categories (Affective Problems: 

dysthymia and major depressive disorder; Anxiety Problems: generalized anxiety 

disorder, separation anxiety, and specific phobia) as identified by experts (63). Clinical 

range scores on the YSR are defined as in the CBCL: for the Syndrome and DSM-

oriented scales, scores ³ 70 are in the clinical range, and for the subscales scores £ 31 are 

in the clinical range. 

The VABS is a parent/caregiver-completed questionnaire that evaluates adaptive 

and maladaptive behavior in children. Measures of social development used from the 

VABS included scores in the following domains: Adaptive Behavior, Socialization, 

Interpersonal Relationships, Play and Leisure Time, and Coping Skills.  The latter three 

scales are subsets of the “socialization” scale in the VABS.  Items assessed in each 

domain include the following: Socialization – amount of time playing with peers, helping 

others, and sharing toys/possessions, Interpersonal Relationships – asking others to play 

and taking turns in activities, Play and Leisure Time – playing in games and playing with 

peers, and Coping Skills – controlling anger during unexpected events and cooperation 

with others. The Adaptive Behavior domain is a composite measure of the above 

domains. At age 8 years, only the Adaptive Behavior and Socialization domains were 

assessed. A higher score reflects a better level of function in that domain. Scores £70 for 

the Adaptive Behavior and Socialization domains and £10 for the Interpersonal, Play and 

Leisure, and Coping domains are designated as clinical range. 

Image parameters 

Participants were scanned in a Siemens 3T Tim Trio scanner as previously 

described at age 20.  After a first localizing scan, a high-resolution 3D volume was 

collected using a magnetization prepared rapid gradient echo (MPRAGE) sequence (176 
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contiguous sagittal slices, slice thickness 1mm, matrix size 192×192, FoV = 256mm, TR 

= 2530 ms, TE = 2.77 ms, flip angle = 7°). Next, a T1-weighted anatomical scan (TR = 

300 ms, TE = 2.55 ms, FoV = 220 mm, matrix size 256×256, thickness = 6 mm thick, 

gap = 1mm) was collected with 25 AC-PC aligned axial-oblique slices. After these 

structural images, acquisition of functional data began in the same slice locations as the 

axial-oblique T1-weighted 2D Flash image.  Functional images were acquired using a 

T2* sensitive gradient-recalled single shot echo-planar pulse sequence (TR = 1550ms, TE 

= 30ms, flip angle = 80, Bandwidth = 2056 Hz/pixel, 64*64 matrix, field of view: 

220mm x 220mm, interleaved acquisition). Two functional runs consisted of 190 

volumes (5-minute scan length) with the first four volumes discarded to allow the 

magnetization to reach the steady-state. 

Common Space Registration 

 First, anatomical images were skull stripped using FSL 

(https://fsl.fmrib.ox.ac.uk/fsl/) and any remaining non-brain tissue was manually 

removed. All further analyses were performed using BioImage Suite (64) unless 

otherwise specified. Anatomical images were linearly aligned to the MNI brain using a 

12-parameter affine registration by maximizing the normalized mutual information 

between images. Next, anatomical images were non-linearly registered to an evolving 

group average template in an iterative fashion using a previously validated algorithm. 

This algorithm iterates between estimating a local transformation to align individual 

brains to a group average template and creating a new group average template based on 

the previous transformations. The local transformation was modeled using a free-form 

deformation parameterized by cubic B-splines. This transformation deforms an object by 

manipulating an underlying mesh of control points. The deformation for voxels in 
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between control points was interpolated using B-splines to form a continuous 

deformation field. Positions of control points were optimized using a conjugate gradient 

descent to maximize the normalized mutual information between the template and 

individual brains. After each iteration, the quality of the local transformation was 

improved by increasing the number of control points and decreasing the spacing between 

control points to capture a more precise alignment. A total of 5 iterations were performed 

with decreasing control point spacings of 15 mm, 10 mm, 5 mm, 2.5, and 1.25 mm. To 

help prevent local minimums during optimization, a multi-resolution approach was used 

with three resolution levels at each iteration. The functional data were linearly registered 

to the 2D Flash image. The 2D Flash image was linearly registered to the MPRAGE 

image. All transformation pairs were calculated independently and combined into a single 

transform, warping the single participant results into common space. This single 

transformation allows the individual participant images to be transformed to the common 

space with only one transformation, thereby reducing interpolation error.  

Connectivity Processing 

Images were slice time and motion corrected using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/). Several covariates of no interest were regressed from 

the data, including linear and quadratic drifts, mean cerebral-spinal-fluid (CSF) signal, 

mean white-matter signal, and mean gray matter signal. For additional control of possible 

motion-related confounds, a 24-parameter motion model (including six rigid-body motion 

parameters, six temporal derivatives, and these terms squared) was regressed from the 

data. The functional data were temporally smoothed with a Gaussian filter (approximate 

cutoff frequency=0.12Hz). A gray matter mask was applied to the data, so only voxels in 

the gray matter were used in further calculations.  
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Amygdalar Seed Connectivity 

A seed comprised of the bilateral amygdala was defined for the connectivity 

analyses (shown in Figure 5) on the reference brain and transformed back (via the inverse 

of the transforms described above) into individual participant space. To account for 

possible drop-out effect and poor amygdala coverage in the fMRI scans, the overlap 

between the amygdala seed and individual participant space was calculated, and 

participants with less than 30% overlap were excluded (6 PT and 4 T were excluded from 

the analysis based on this). The time course of the reference region in a given participant 

was then computed as the average time course across all voxels in the reference region. 

This time course was correlated with the time course for every other voxel in gray matter 

to create a map of r-values, reflecting seed-to-whole-brain connectivity. These r-values 

were transformed to z-values using Fisher's transform, yielding a map representing the 

strength of correlation with the seed for each participant. Finally, the connectivity maps 

were smoothed with a 6 mm full width half maximum Gaussian kernel.  

Motion Analysis 

As group differences in motion have been shown to confound connectivity 

studies, we calculated the average frame-to-frame displacement for each participant’s 

data. In line with current reports, one PT with an average frame-to-frame displacement 

>0.30 were removed from the analysis. We detected no significant difference between 

PTs and Ts (PTs: motion=-0.14±0.07; Ts: motion=0.11±0.04; p>0.05). 

Statistical Analyses 

We analyzed differences in demographic characteristics between PT and T using 

Fisher’s exact test for categorical variables and t test for continuous variables. 

Demographic variables included gender (reported by the participant at each age point and 



 15 

classified as male or female), maternal education, and race/ethnicity. Maternal education 

was classified in a binary fashion as less than a high school education or greater than or 

equal to a high school education, and race/ethnicity was classified as White or non-

White.  

Linear regression was used to compare neuropsychological outcomes between 

PTs and Ts at each age, with covariate adjustment for age at instrument administration, 

gender, race/ethnicity, maternal education status, instrument respondent, and full IQ. 

Significance was assessed at p<0.05. 

 Repeated measures ANOVA was used to analyze neuropsychological outcomes 

longitudinally. For these analyses, only subjects with complete testing at ages 8, 12, and 

16 (for CBCL measures) and ages 8 and 18 (for VABS measures) were included.  

Repeated measures ANOVA was also used in a secondary, exploratory analysis to assess 

the effect of maternal education level on CBCL and VABS scores over time in PT 

individuals. For the purposes of this analysis, maternal education was classified in a 

binary fashion as less than a high school education or greater than or equal to a high 

school education. There were not enough T subjects with complete data to further stratify 

by maternal education. Pearson’s correlation coefficients were used to assess associations 

of CBCL and VABS measures over time for PT participants with complete 

neuropsychological data at each age. There were not enough T subjects with complete 

neuropsychological data at all ages to perform a correlation analysis. Significance was 

assessed for each of these analyses at p<0.05. 

Imaging data were analyzed using voxels t-tests. Significance was assessed at a 

cluster-level threshold of p<0.01 family-wise error correction for between group 

comparisons. All maps were corrected for multiple comparisons across gray matter using 
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cluster-level correction estimated via Monte Carlo simulations. AFNI's 3dClustSim 

(version 16.3.05 which fixed the 3dClustSim “bug”) was used to estimate a cluster size of 

1701 mm3 using 10,000 iterations, an initial p-value threshold of 0.01, the gray matter 

mask using in preprocessing, and smoothness values estimated from the residuals using 

3dFWHMx.  

  Exploratory analyses were performed in the sub-cohort of imaged participants to 

assess the association between functional connectivity and behavior using Pearson’s 

correlation coefficients. This analysis was restricted to only brain regions and social 

behavior scores that differed significantly between PTs and Ts in the full behavioral 

cohort. Additionally, associations were tested within the PT and T groups separately in 

order to minimize bias. The significance level was p<0.05.  
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Results 

Participants 

The PT neuropsychological cohort consisted of the 437 surviving former PT 

participants enrolled in the follow-up MRI component of the Multicenter Randomized 

Indomethacin Intraventricular Hemorrhage Prevention Trial (57, 58).  Figure 1 details the 

number of participants included in the analysis at each age point.  

 

Figure 1A. Participants included in neurobehavioral analyses at each age. All 
participants were drawn from the 437 surviving former PT participants enrolled in the 
follow-up MRI component of the Multicenter Randomized Indomethacin Intraventricular 
Hemorrhage Prevention Trial. Questionnaire data required for inclusion were a 
demographic questionnaire and the WISC-III at all age points and the CBCL and VABS 
at age 8, CBCL at age 12, CBCL at age 16, and VABS at age 18. Outliers were defined 
as participants scoring at least 3 times the interquartile range above the third or below the 
first quartile for any of the neurobehavioral outcome measures assessed. 
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At age 8, 199 PTs were included in the analysis of Child Behavior Checklist 

(CBCL) and Vineland Adaptive Behavior Scales (VABS) testing.  238 participants were 

excluded from analysis: 62 were lost to follow-up, 100 had evidence of perinatal brain 

injury, and 61 were excluded due to incomplete testing on the Weschler Intelligence 

Scale for Children (WISC), CBCL, VABS, or demographic questionnaires.  An 

additional 15 PTs with outlier scores on included measures in the CBCL and/or VABS 

were excluded from the analysis. The participants who were lost to follow-up at age 8 

and who had available demographic data were similar to the included participants in 

gender makeup and race, but had significantly lower maternal education levels 

(percentage of participants with maternal education < high school: 11% in included 

group, 32% in lost to follow-up group, p=0.0002). 

At age 12, 211 PTs were included in the CBCL analysis. 226 were excluded: 62 

were lost to follow-up, 102 had evidence of perinatal brain injury, and 52 had incomplete 

testing on the WISC, CBCL, or demographic questionnaires.  An additional 10 PTs with 

Figure 1B. Participants included in the YSR 
analysis at age 16 years. These participants were 
drawn from the 437 surviving former PT 
participants enrolled in the follow-up MRI 
component of the Multicenter Randomized 
Indomethacin Intraventricular Hemorrhage 
Prevention Trial, but were only recruited from the 
Yale site. Questionnaire data required for 
inclusion were a demographic questionnaire, the 
WISC-III, and the YSR. Outliers were defined as 
participants scoring at least 3 times the 
interquartile range above the third or below the 
first quartile for any of the neurobehavioral 
outcome measures assessed. 
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outlier CBCL scores were excluded. Again, the participants who were lost to follow-up 

were similar in gender and race to the included participants but had significantly lower 

maternal education levels (percentage of participants with maternal education < high 

school: 9% in included group, 39% in lost to follow-up group, p<0.0001). 

At age 16, 161 PTs were included in the analysis. 276 participants were excluded: 

100 were lost to follow-up, 86 had evidence of perinatal brain injury, and 89 had 

incomplete testing on the WISC, CBCL or demographic questionnaires.  One PT was 

labeled as an outlier based on CBCL scores and excluded from analysis.  Participants 

who were lost to follow-up at the 16-year visit were similar in gender and race but had 

lower maternal education levels (percentage of participants with maternal education < 

high school: 8% in included group, 36% in lost to follow-up group, p<0.0001). 

45 PTs (all recruited from the Yale site only) were included in the YSR analysis 

at age 16.  From the full cohort of PT, 100 participants were excluded due to being lost to 

follow up, 86 had perinatal brain injury, and 193 were not tested with the YSR.  An 

additional 3 subjects were excluded due to having incomplete WISC or demographic 

questionnaires. 10 subjects with outlier YSR scores were excluded from the analysis. 

At age 18, 191 PTs were included in the analysis.  Of the 245 participants who 

were excluded from analysis, 143 were lost to follow-up, 75 had evidence of perinatal 

brain injury, and 28 had incomplete testing on the WISC, VABS or demographic 

questionnaires.  There were no PTs excluded due to outlier scores on the VABS. The PTs 

who were lost to follow-up at the 18-year visit were similar in gender makeup to the 

included PTs but had significantly higher proportions of minority participants (25% 

included, 42% lost to follow-up, p=0.003) and of participants with low maternal 

education levels (10% included, 33% lost to follow-up, p<0.0001). 
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At age 8, 25 Ts were included in the CBCL and the VABS analysis, after 

excluding 18 participants for incomplete questionnaires and 9 for outlier scores.  At age 

12, 90 Ts were included in the CBCL analysis after excluding 17 participants for 

incomplete questionnaires and 4 for outlier scores.  At age 16, 66 Ts were included in the 

CBCL analysis, after excluding 27 participants for incomplete questionnaires and 9 for 

outlier scores. Also at age 16, 56 Ts were included in the YSR analysis, after excluding 

41 participants for incomplete data and 5 for outlier scores.  At age 18, 71 Ts were 

included in the VABS analysis, after excluding 10 participants for missing data and 14 

participants for outlier scores. 

 PT and T participants (n=47) from the neuropsychological cohort were recruited 

for the MRI study at age 20 years.  In total, 17 Ts and 19 PTs, all with complete 

neuropsychological data at ages 16 and 18, met data quality criteria (described in 

Methods above) and were included in the imaging portion of the study. 

Demographic Characteristics 

Demographic data for the PTs and Ts for the 8, 12, 16, 18 and 20-year visits are 

shown in Table 1. The PTs and Ts included in all age cohorts were similar in gender 

makeup, race, and maternal education level. At ages 8, 12, and 16, there was a 

statistically significant difference in age between PTs and Ts at time of 

neuropsychological testing, likely due to consistent recruitment efforts for PTs for each 

visit around the time of their birthday, whereas Ts were recruited at any point during that 

year and therefore demonstrated increased age spread. Although this age difference may 

be clinically significant at age 8, it likely becomes clinically insignificant as the 

participants aged. There was no significant difference in the age at scan for PTs and Ts 

included in the imaged sub-cohort. 
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TABLE 1. Demographic data for study participants in the neuropsychological cohorts 

 
Neuropsychological cohort 

8 year - CBCL and VABS 12 year - CBCL 
T (n=25) PT (n=199) p T (n=90) PT (n=211) p 

Female n (%) 12 (48%) 94 (47%) 0.94 49 (54%) 102 (48%) 0.33 
White n (%) 20 (80%) 145 (73%) 0.45 63 (70%) 149 (71%) 0.91 
Caregiver 

education <high 
school*, n (%) 

3 (12%) 22 (11%) 0.89 7 (8%) 18 (9%) 0.83 

IQ, M ± SD 111.4 ± 
14.0 94.8 ±16.4 <0.001 105.2 ± 15.2 92.0 ± 16.0 <0.001 

Gestational age 
(weeks), M ± 

SD 
- 28.1 ± 2.0 - - 28.1 ± 2.1 - 

Birthweight 
(grams), M ± 

SD 
- 958.2 ± 177.4 - - 966.1 ± 173.2 - 

Age at CBCL 
(years), M ± SD 9.1 ± 0.6 8.3 ± 0.2 <0.001 12.7 ± 0.8 12.2 ± 0.3 <0.001 

Age at VABS, 
M ± SD 9.1 ± 0.6 8.3 ± 0.2 <0.001 - - - 

 16 year - CBCL 16 year - YSR 
T (n=66) PT (n=161) p T (n=56) PT (n=45) p 

Female n (%) 40 (53%) 77 (48%) 0.41 32 (57%) 21 (47%) 0.62 
White n (%) 50 (67%) 106 (65%) 0.85 40 (63%) 26 (47%) 0.07 
Caregiver 

education <high 
school*, n (%) 

4 (5%) 13 (8%) 0.46 4 (6%) 6 (11%) 0.38 

IQ, M ± SD 102.8 ± 
16.5 89.5 ± 17 <0.001 102.8 ± 15 91.1 ±17 <0.001 

Gestational age 
(weeks), M ± 

SD 
- 28.3 ± 2 - - 28.5 ± 2 - 

Birthweight 
(grams), M ± 

SD 
- 969.0 ± 172 - - 952.9 ± 184 - 

Age at 
CBCL/YSR 

(years), M ± SD 
16.2 ± 0.3 16.1 ± 0.2 0.01 16.2 ± 0.3 16.0 ± 0.1 <0.001 

 18 year - VABS 20 year - Imaged 
T (n=71) PT (n=190) p T (n=17) PT (n=19) p 

Female n (%) 39 (55%) 87 (46%) 0.26 7 (41%) 9 (47%) 0.75 
White n (%) 63 (74%) 143 (75%) 0.89 12 (71%) 16 (84%) 0.43 
Caregiver 

education <high 
school*, n (%) 

4 (5%) 20 (10%) 0.12 1 (6) 2 (11%) 1.0 

IQ, M ± SD 103.8 ±16 91.6 ±16 <0.001 99.4 ± 17 93.1 ± 10 0.20 
Gestational age 
(weeks), M ± 

SD 
- 28.1 ± 2 - - 28 ±1.8 - 
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Birthweight 
(grams), M ± 

SD 
- 960.7 ± 181 - - 957±171 - 

Age at 
questionnaire/sc
an (years), M ± 

SD 
18.1 ± 0.9 18.4 ± 1.4 0.09 19.9 ± 1 19.9 ± 1 0.93 

*For 8, 12, and 16-year-olds, this reflects maternal education, whereas for 18-year-olds, this 
reflects the education of the subject’s caregiver (mother or other caregiver) 
 
Neuropsychological Testing Analysis – Parent Report 

Neuropsychological instruments evaluating social and emotional behavior were 

administered to parents of both PTs and Ts at ages 8, 12, 16, and 18. Full data for each 

instrument are shown in Table 2.  
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TABLE 2. Social and emotional behavior scores (parent reported) of 
neurodevelopmental cohort, separated by age 

Behavioral domains 8T (n=25) 8PT (n=199) p 
Respondent other than mother, n (%) 1 (4%) 11 (5.5%) 0.75 

CBCL 
Withdrawn 51.2 ± 2.81 52.53 ± 3.87 0.03 

Anxious/Depressed 52.04 ± 3.99 52.94 ± 5.13 0.13 
Social Problems 50.60 ± 1.53 53.55 ± 5.63 0.15 

VABS 
Socialization 102.16 ± 12.44 89.38 ± 12.13 0.001* 

Adaptive Behavior 107.08 ± 12.66 88.36 ± 15.48 0.0001* 
Maladaptive Behavior 5.4 ± 4.22 5.09±- 4.88 0.12 

Behavioral Domains - CBCL 12T (n=90) 12PT (n=211) P 

Respondent other than mother, n (%) 5 (5.56%) 14 (6.64%) 0.72 
Withdrawn 51.34 ± 2.88 52.56 ± 4.94 0.37 

Anxious/Depressed 51.61 ± 3.10 53.42 ± 5.31 0.09 
Social Problems 52.47 ± 4.75 55.21 ± 7.04 0.19 

Behavioral domains - CBCL 16T (n=66) 16PT (n=161) P 
Respondent other than mother, n (%) 0 (0%) 0 (0%) 1.00 

Social Competence 51.91 ± 8.49 45.57 ± 9.15 0.002* 
Social Problems 51.42 ± 2.87 54.59 ± 6.37 0.07 

Anxious/Depressed 50.89 ± 1.64 53.81 ± 5.57 0.001* 
Anxiety Problems 50.86 ± 1.82 54.28 ± 5.91 <0.001* 

Withdrawn/Depressed 52.21 ± 3.29 56.27 ± 7.68 0.003* 
Affect Problems 51.83 ± 3.26 55.24 ± 7.16 0.01 

Behavioral domains - VABS 18T (n=71) 18PT (n=190) p 
Respondent other than mother, n (%) 8 (11%) 31 (16%) 0.31 

Adaptive Behavior 103.83 ± 13.18 95.28 ± 17.46 0.10 
Socialization 108.08 ± 10.34 98.12 ± 15.44 0.01+ 
Interpersonal 16.04 ± 2.40 14.32 ± 2.86 0.03 

Play and Leisure 16.59 ± 1.09 14.61 ± 3.01 <0.001+ 
Coping 16.30 ± 2.19 15.24 ± 2.90 0.45 

Covariates include gender, race, caregiver education, age at time of response, respondent, 
and full IQ. 
Scores are Mean±SD 
*, +:Bonferroni correction for multiple comparisons (*: corrected p<0.008, +: corrected 
p<0.01) 
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           PTs showed impaired social and emotional behavior according to parent report 

beginning at age 8. At that time, PTs had significantly higher (worse) scores in the 

Withdrawn domain of the CBCL (p=0.03) and significantly lower (worse) scores in the 

Socialization (p=0.001) and Adaptive Behavior (p=0.0001) domains of the VABS when 

compared to T born peers.  At age 12, after controlling for demographic variables and full 

IQ scores, PTs and Ts did not show any significant differences in any of the social and 

emotional behavior domains on the CBCL. At age 16, PTs had significantly lower 

(worse) scores in Social Competence (p=0.001) and significantly higher (worse) scores in 

the Anxious/Depressed (p=0.001), Anxiety Problems (p<0.001), Withdrawn/Depressed 

(p=0.003), and Affect Problems (p=0.01) domains on the CBCL. At age 18, again in the 

parent-reported analysis, PTs had significantly lower (worse) scores in the Socialization 

(p=0.01), Interpersonal (p=0.03), and Play and Leisure (p<0.001) domains of the VABS. 

Notably, the majority of differences seen at ages 8, 16, and 18 between PT and T survive 

a Bonferroni correction for multiple comparisons (see Table 2 for corrected p values).  

In a gender-stratified regression analysis of the above neuropsychological testing, 

there emerged differences in social and emotional behavior scores between PTs and Ts. 

This analysis is presented in Table 3. At age 8, there were no significant differences 

between PT and T in either females or males in the CBCL. However, at age 8, female 

PTs scored significantly worse than female Ts in all domains on the VABS (Socialization 

(p=0.005), Adaptive Behavior (p<0.001), and Maladaptive Behavior (p=0.008)) whereas 

male PTs only scored worse in the Maladaptive Behavior domain (p=0.04). At age 12, 

there were no significant differences between PT and T on the CBCL domains in either 

females or males. At age 16, female PTs scored worse than female Ts on the Social 

Competence (p=0.047) and Anxiety Problems (p=0.02) domains of the CBCL, whereas 
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male PTs scored worse than male Ts on the Anxious/Depressed (0.045), Anxiety 

Problems (0.04), and Withdrawn/Depressed (p=0.04) domains on the CBCL. At age 18, 

there were no significant differences between female PTs and Ts on the VABS, but the 

male PTs scored worse on the Socialization (p=0.04) and Play and Leisure (p=0.001) 

domains when compared to male Ts.  

TABLE 3. Social and emotional behavior scores (parent reported) of neuropsychological 
cohort, separated by gender 

 Female Male 
CBCL 8T (n=12) 8PT (n=94) p 8T (n=13) 8PT (n=105) p 

Respondent other 
than mother, n (%) 0 (0%) 4 (4.2%) 0.47 1 (7.7%) 7 (6.7%) 0.89 

Withdrawn 51.17 ± 3.21 52.66 ± 3.82 0.13 51.23 ± 2.52 52.42 ± 3.92 0.05 
Anxious/Depressed 52.25 ± 3.84 52.39 ± 4.67 0.62 51.85 ± 4.28 53.44 ± 5.50 0.11 

Social Problems 50.75 ± 2.05 52.71 ± 4.13 0.17 50.46 ± 0.88 54.30 ± 6.63 0.26 
VABS 8T (n=18) 8PT (n=102) p 8T (n=16) 8PT (n=111) p 

Socialization 101.39 ± 12.45 89.61 ± 12.58 0.005* 96.88 ± 13.37 88.52 ± 12.40 0.37 
Adaptive Behavior 107.78 ± 14.66 89.30 ± 16.56 <0.001* 98.69 ± 12.93 86.67 ± 15.64 0.16 

Maladaptive 
Behavior 7.33 ± 5.74 4.95 ± 4.82 0.008* 8.19 ± 7.30 5.91 ± 5.50 0.04 

CBCL 12T (n=49) 12PT (n=102) p 12T (n=41) 12PT (n=109) p 
Respondent other 

than mother, n (%) 2 (4.08%) 6 (5.88%) 0.64 3 (7.32%) 8 (7.33%) 1.0 

Withdrawn 51.10 ± 2.65 52.59 ± 5.15 0.33 51.63 ± 3.14 52.56 ± 4.75 0.83 
Anxious/Depressed 51.76 ± 3.14 53.26 ± 5.16 0.23 51.44 ± 3.09 53.57 ± 5.46 0.28 

Social Problems 51.92 ± 4.09 54.68 ± 6.45 0.28 53.12 ± 5.42 55.72 ± 7.54 0.45 
CBCL 16T (n=34) 16PT (n=76) p 16T (n=32) 16PT (n=85) p 

Respondent other 
than mother, n (%) 0 (0%) 0 (0%) 1 0 (0%) 1 (0%) 0.54 

Social Competence 52.79 ± 8.43 46.75 ± 8.69 0.047 50.97 ± 8.58 44.52 ± 9.47 0.07 
Social problems 51.44 ± 3.06 54.59 ± 6.50 0.10 51.41 ± 2.71 54.59 ± 6.28 0.52 

Anxious/depressed 50.94 ± 1.65 53.71 ± 5.47 0.07 50.84 ± 1.65 53.91 ± 5.70 0.045 
Anxiety problems 50.53 ± 1.21 53.96 ± 5.83 0.02 51.22 ± 2.27 54.56 ± 6.00 0.043 

Withdrawn/depressed 51.32 ± 2.20 56.12 ± 8.07 0.20 53.16 ± 3.98 56.40 ± 7.36 0.04 
Affect Problems 51.82 ± 3.12 55.86 ± 8.13 0.18 51.84 ± 3.45 54.69 ± 6.17 0.17 

VABS 18T (n=39) 18PT (n=87) p 18T (n=32) 18PT (n=104) p 
Respondent other 

than mother, n (%) 3 (7.7%) 13 (14.9%) 0.21 5 (15.6%) 18 (17.3%) 0.82 

Adaptive Behavior 107.97 ± 11.08 96.45 ± 16.97 0.33 98.78 ± 13.92 94.13 ± 17.88 0.27 

Socialization 109.28 ± 9.91 98.35 ± 14.45 0.20 106.63 ± 
10.82 97.85 ± 16.25 0.04 

Interpersonal 16.03 ± 2.35 14.25 ± 2.71 0.16 16.06 ± 2.50 14.35 ± 3.00 0.10 
Play and Leisure 16.72 ± 0.83 14.76 ± 3.26 0.36 16.44 ± 1.34 14.35 ± 3.12 0.001+ 

Coping 16.77 ± 1.94 15.24 ± 2.86 0.82 15.72 ± 2.37 15.25 ± 2.93 0.56 
Controlling for gender, race, caregiver education, age at time of response, respondent, and full IQ. 
Scores are Mean±SD 
*Bonferroni correction for multiple comparisons (*: corrected p<0.02; +: corrected p<0.01) 
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Neuropsychological Testing Analysis – Child Report 

At age 16, a subset of the PTs and Ts were evaluated with the YSR, which is a 

self-report instrument evaluating similar domains as the CBCL. Interestingly, in this self-

report analysis, PTs had significantly lower (better) scores in the DSM Affective 

Problems scale (p=0.04, see Table 4). In all other domains, there was no significant 

difference between PTs and Ts.  There were no significant differences between PT and T 

when stratified by gender for any of the measures on the YSR (data not shown). 

TABLE 4. Social and emotional behavior scores (child reported) of YSR sub-cohort 

Behavioral domains 16T (n=56) 16PT (n=45) p 

Respondent other than self, n (%) 0 (0%) 0 (0%) 1.00 

Activities 48.28 ± 10.40 48.09 ± 11.05 0.42 

Social 52.84 ± 7.82 49.38 ± 9.41 0.07 

Anxious/Depressed 52.21 ± 4.15 52.27 ± 3.48 0.62 

Withdrawn 52.91 ± 4.24 53.20 ± 5.07 0.86 

Social Problems 53.43 ± 4.63 51.98 ± 2.94 0.13 

DSM scale: affective problems 52.86 ± 4.26 51.47 ± 2.10 0.04 

DSM scale: anxiety problems 52.43 ± 4.02 52.62 ± 3.87 0.54 
Controlling for gender, race, caregiver education, age at time of response, respondent, and full IQ. 
Scores are Mean±SD 
 
Longitudinal Analysis of Neuropsychological Testing 

 For this analysis, only PT and T with complete CBCL or VABS testing at each 

age point were included. For the CBCL analysis, 119 PT and 20 T were included, and for 

the VABS analysis, 154 PT and 21 T were included.  The three CBCL domains that were 

measured at ages 8, 12, and 16 were Withdrawn, Anxious/Depressed, and Social 

Problems.  Means for PT and T at each age are shown in Table 5 and depicted in Figure 

2.  In the Withdrawn domain, PT showed significantly worsening scores by age 16 when 

compared to Ts (group p=0.11; time p=0.03; group*time p=0.03).  There were no 
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significant effects in the Anxious/Depressed domain, but in the Social Problems domain 

PT had consistently worse scores compared to Ts; there was also an effect of time (group 

p=0.01; time p=0.003; group*time p=0.63).  The VABS domains measured at ages 8 and 

18 were Socialization and Adaptive Behavior. In both domains, PT scored significantly 

more poorly than Ts at both ages (Socialization group p=0.0002, Adaptive Behavior 

group p<0.0001). Both PT and T Socialization scores significantly improved with time 

(time p=0.0003). There were no significant interactions of group and time for either of 

the VABS measures.  
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TABLE 5. Longitudinal analysis of neuropsychological scores in PT and T from school-
age to young adulthood 

CBCL T (n=20) PT (n=119) Analysis p 

Withdrawn 
8 years 51.1 51.98 Group 0.11 
12 years 52.4 52.24 Time 0.03 
16 years 51.85 55.50 Group*Time 0.03 

 

Anxious/Depressed 
8 years 51.6 52.77 Group 0.06 
12 years 52.25 52.97 Time 0.62 
16 years 50.45 53.78 Group*Time 0.06 

 

Social Problems 
8 years 50.65 53.01 Group 0.01 
12 years 51.9 54.85 Time 0.003 
16 years 50.45 53.91 Group*Time 0.74 

VABS T (n=21) PT (n=154) Analysis p 

Socialization 
8 years 100.67 90.22 Group 0.0002 

18 years 106.9 98.34 Time 0.0003 
Group*Time 0.63 

 

Adaptive Behavior 
8 years 89.46 104.81 Group <0.0001 

18 years 95.27 104.95 Time 0.13 
Group*Time 0.15 

PT and T were included in this analysis only if they had complete data at each age point. 
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FIGURE 2. Mean scores for CBCL domains and VABS domains for PT and T over 
time. PTs demonstrate significantly worsening scores over time compared to Ts in the 
Withdrawn domain of the CBCL (A – group: p=0.11, time: p=0.03, group*time 
interaction: p=0.03). There were no significant differences between PT and T in the 
Anxious/Depressed domain of the CBCL (B – group: p=0.06, time: p=0.62, group*time 
interaction: p=0.06). In the Social Problems domain of the CBCL (C), PTs have 
significantly worse scores than Ts (group: p=0.01), and both groups demonstrate 
worsening over time (time: p=0.003), though there is no significant group*time 
interaction (p=0.75). In the Socialization (D) and Adaptive Behavior (E) domains of the 
VABS, PTs have significantly worse scores than Ts (Socialization – group p=0.0002, 
Adaptive Behavior - group p<0.0001). Both groups demonstrate improvement in 
Socialization scores over time (time: p=0.0003). There was no significant group*time 
interaction for either Socialization (p=0.63) or Adaptive Behavior (p=0.15). 
  

For PTs with complete neuropsychological data at each age, 8-year scores in all 

domain were significantly positively correlated with scores in adolescence and young 

adulthood. The largest correlations were between Withdrawn scores at ages 8 and 12 

(r=0.44, p<0.0001), Social Problems scores at ages 8 and 12 (r=0.54, p<0.0001), and 

Adaptive Behavior scores at ages 8 and 18 (r=0.38, r<0.0001). Correlation coefficients 
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for all domains and ages are shown in Table 6 and graphical representations are shown in 

Figure 3.  

TABLE 6. Correlation of neuropsychological scores between school-age, early 
adolescence and young adulthood in PT participants 

 
8 years and 12 years 8 years and 16 years 

Correlation 
Coefficient P Correlation 

Coefficient P 

Withdrawn 0.439 <0.0001 0.276 0.002 
Anxious/Depressed 0.343 0.0001 0.313 0.0005 

Social Problems 0.526 <0.0001 0.354 <0.0001 
 8 years and 18 years 

Socialization 0.236 0.003 
Adaptive Behavior 0.382 <0.0001 

PT were included in this analysis only if they had complete data at each age point. 

Exploratory Analysis of Maternal Education and Social Behavior  

PT subjects with complete neuropsychological data at each age were further 

compared in a secondary exploratory analysis by maternal education level (see Table 7 

and Figure 4). T subjects were not compared by maternal education level due to low 

subject numbers. On the CBCL, PT children of mothers with less than a high school 

education demonstrated worsening scores in the Withdrawn and Social Problems 

domains over time, as compared to PT children of mothers with greater than or equal to a 

high school education. There was a significant effect of both time and a significant 

interaction between group and time on the trajectory of Withdrawn (group p=0.24; time: 

p=0.0003, group*time: p=0.01) and Social Problems (group p=0.48; time: p=0.0002, 

group*time: p=0.009) scores in this cohort. There were no significant effects of group or 

time nor any interaction between group and time on Anxious/Depressed scores.  

 On the VABS, PT children of mothers with greater than or equal to a high school 

education scored higher on both the Socialization (group: p=0.0001, time: p=0.004; 

group*time p=0.63) and Adaptive Behavior (group: p<0.0001, time: p=0.02; group*time 
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p=0.15) domains at ages 8 and 18. There were no significant interactions between group 

and time in this model.    
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FIGURE 3. Scores in all CBCL (Withdrawn – A and B, Anxious/Depressed – C and D, 
and Social Problems – E and F) and all VABS (Socialization – G and Adaptive Behavior 
– H) domains are significantly positively correlated between ages 8 and 12 (CBCL), 8 
and 16 (CBCL) and 8 and 18 (VABS) (p<0.01 for all).  
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TABLE 7. Longitudinal analysis of neuropsychological scores in PT from school-age to 
young adulthood, by maternal education level 

 

 
 

<High 
School 

Education 
(n=8) 

³High 
School 

Education 
(n=111) 

Analysis p 

Withdrawn 
8 years 51.00 52.05 Group 0.24 
12 years 55.75 51.98 Time 0.0003 
16 years 57.75 55.33 Group*Time 0.01 

 

Anxious/Depressed 
8 years 51.38 52.87 Group 0.95 
12 years 54.25 52.88 Time 0.33 
16 years 53.63 53.79 Group*Time 0.35 

 

Social Problems 
8 years 50.50 53.19 Group 0.48 
12 years 58.38 54.6o Time 0.0002 
16 years 56.50 53.72 Group*Time 0.009 

 

<High 
School 

Education 
(n=15) 

³High 
School 

Education 
(n=139) 

Analysis p 

Socialization 
8 years 81.47 91.17 Group 0.0001 

18 years 86.67 99.6 Time 0.004 
Group*Time 0.63 

 

Adaptive Behavior 
8 years 76.13 90.90 Group <0.0001 

18 years 81.00 96.81 Time 0.02 
Group*Time 0.15 
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FIGURE 4. Mean scores for CBCL and VABS domains for PT over time, separated by 
maternal education level. Higher maternal education is associated with decreased 
worsening of Withdrawn (A – group p=0.24, group*time interaction p=0.01) and Social 
Problems (C – group p=0.48, group*time interaction p=0.009) scores in PT. There is a 
significant effect of time for both education groups in Withdrawn (A – time p= 0.0003), 
Social Problems (C – time p=0.0002), Socialization (D – time p=0.004), and Adaptive 
Behavior (E – time p=0.02) scores. Overall, PT scored significantly lower in the 
Socialization (D – group p=0.0001) and Adaptive Behavior (E – group p<0.0001) 
domains. There were no significant effects of group, time, or group*time interaction for 
the Anxious/Depressed domain (B – group p=0.95, time p=0.33, group*time p=0.35) and 
no significant group*time interactions for Socialization (D – p=0.63) or Adaptive 
Behavior (E – p=0.15). 
 

Amygdalar Seed Connectivity Analysis 

For both PTs (Figure 5B) and Ts (Figure 5C), regions positively connected to the 

amygdala include the insula, temporal region/left superior temporal gyrus, and 

hippocampus. Regions negatively connected to the amygdala include the posterior 

cingulate (PCC) for both study groups, and dorsal lateral prefrontal cortex, medial 

prefrontal cortex, and lateral parietal cortex for PTs. In PTs compared to Ts, the 

amygdala showed significantly increased connectivity to a region in the parietal lobe that 
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included the left precuneus and bilateral PCC (Figure 5D). Additionally, when total PT 

connectivity was compared to total T connectivity, the amygdala showed significantly 

increased positive connectivity to the left superior temporal gyrus (LSTG) (Figure 5E).  

  
FIGURE 5: Amygdalar seed connectivity. A) The bilateral amygdala seed is shown in 
orange and red. The amygdalar connectivity based on the bilateral seed is shown B) for 
preterms and C) for terms. For both groups, the amygdala is connected positively to the 
insula, temporal region/left superior temporal gyrus, and hippocampus. Regions 
negatively connected to the amygdala include the posterior cingulate (PCC) for both 
study groups, and dorsal lateral prefrontal cortex, medical prefrontal cortex, and lateral 
parietal cortex for PTs. D) Total amygdala connectivity differences between PTs and Ts: 
for PTs compared to Ts, the amygdala showed significantly increased connectivity to a 
region in the parietal lobe that included the left precuneus and bilateral PCC. Two 
sequential slices are depicted for complete visualization of this region.  
E) Total amygdala connectivity differences between PTs and Ts: For PTs compared to 
Ts, the amygdala showed significantly increased positive connectivity to the left superior 
temporal gyrus. Four sequential slices are depicted for complete visualization of this 
region. Images are thresholded at p<0.01, corrected. Slices are shown in radiological 
convention. 
 
Amygdala Connectivity and Behavioral Correlation  

In the sub-cohort consisting of only participants with imaging data at age 20, PT 

had worse scores in Social Competence at age 16 (p=0.03) and in Adaptive Behavior 

(p=0.02) and Coping (p=0.01) at age 18 (see Table 8). These analyses did not control for 

demographic variables or IQ due to the small sample sizes. Behavioral scores for the PTs 
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and Ts included in the imaging sub-cohort were not significantly different from 

behavioral scores in the full neuropsychological cohort. 

TABLE 8. Social and emotional behavior scores in imaged sub-cohort 
CBCL Imaged sub-cohort 

Behavioral domains 16T (n=17) 16PT (n=18) p 

Respondent other than mother, n (%) 0 (0%) 0 (0%) 1.00 

Social Competence 50.8 ± 10 43.3 ± 9.2 0.03 

Social Problems 54.2 ± 6.6 54.7 ± 8 0.83 

Anxious/Depressed 52.5 ± 4.6 55.6 ± 7.1 0.14 

Anxiety Problems 52.5 ± 5.1 55.2 ± 6.0 0.17 

Withdrawn/Depressed 54.3 ± 6.1 56.2 ± 6.8 0.38 

Affect Problems 55.4 ± 6.8 56.6 ± 9.2 0.68 

VABS 18T (n=17) 18PT (n=19) p 

Respondent other than mother, n (%) 1 (6%) 2 (11%) 1.00 

Adaptive Behavior 102.7 ± 17 90.3 ± 14 0.02 

Socialization 105.7 ± 14 97.0 ± 14 0.07 

Interpersonal 15.7 ± 2.4 14.7 ± 2.8 0.25 

Play and Leisure 15.4 ± 2.6 15.1 ± 2.7 0.69 

Coping 16.6 ± 2.5 14.2 ± 2.9 0.01 

Scores are Mean ± SD 

 

Combined, PT and T amygdala-PCC connectivity was significantly negatively 

correlated with Social Competence on the CBCL (r=-0.37, p=0.03) and Socialization on 

the VABS (r=-0.42, p=0.01) (Figure 6 and Table 9). Independently, PTs and Ts showed 

negative fit lines between both measures and amygdala-PCC connectivity, suggesting 

that group differences in the measures or connectivity were not responsible for the 

observed correlation. However, these associations did not reach significance when PTs 

and Ts were analyzed separately. Additionally, while Anxious/Depressed, Withdrawn, 
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and Affect Problems were significantly correlated with amygdala-PCC connectivity, 

these correlations were driven by high leverage points. No significant correlations 

between social and emotional behavioral scores and amygdala-LSTG connectivity were 

observed (Table 9). 

TABLE 9. Correlation between amygdala connectivity and social and emotional 
behavior scores 

Amygdala-PCC Amygdala-L STG 

Domains measured at 16 

years by CBCL 

Rho P Domains measured at 16 

years by CBCL 

Rho P 

Social Competence (n=35) -0.37 0.03 Social Competence (n=35) -0.31 0.07 

Anxious/Depressed (n=32) 0.38 0.02 Anxious/Depressed (n=32) 0.23 0.20 

Anxiety Problems (n=33) 0.27 0.13 Anxiety Problems (n=33) 0.29 0.10 

Withdrawn (n=35) 0.35 0.04 Withdrawn (n=35) 0.02 0.92 

Affect Problems (n=35) 0.34 0.04 Affect Problems (n=35) 0.07 0.70 

Domains measured at 18 

years by VABS 

Rho P Domains measured at 18 

years by VABS 

Rho P 

Socialization (n=36) -0.42 0.01 Socialization (n=36) -0.19 0.26 

Play and Leisure (n=36) -0.22 0.20 Play and Leisure (n=36) -0.03 0.86 

Interpersonal (n=36) -0.19 0.26 Interpersonal (n=36) -0.09 0.62 
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FIGURE 6: Association between amygdala-PCC connectivity and social 
vulnerability. Combined, PT and T amygdala-PCC connectivity was significantly 
negatively correlated with A) Socialization on the VABS and B) Social Competence on 
the CBCL. Independently, PTs and Ts showed negative fit lines between both measures 
(Socialization and Social Competence) and amygdala-PCC connectivity, suggesting that 
group differences in the measures of connectivity were not responsible for the observed 
correlation. Best fit line for PTs is shown in red, for Ts is shown in blue, and for both 
groups combine is shown in grey. 
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Discussion 

Beginning at school age and continuing into young adulthood, very preterm-born 

individuals are more vulnerable to social impairments than their term-born peers.  

Employing longitudinal neurobehavioral testing and resting state fMRI, we demonstrate 

worsening trajectories in social and emotional domains critical for the successful 

transition to young adulthood in preterm subjects compared to term controls.  In 

exploratory analyses, higher maternal education levels appear to be protective for the PT 

group, and PT social and emotional scores at school-age are significantly positively 

correlated with scores in early adolescence and young adulthood. Investigation of the 

neural pathways contributing to these findings demonstrates that that amygdalar 

connectivity is altered for those prematurely-born and behavioral markers of social 

functioning correlate with altered amygdala-PCC connectivity. The correlation between 

amygdala hyperconnectivity and measures of social functioning in these PT young adults 

suggests one possible neural underpinning for the PT social phenotype, a constellation of 

symptoms including increased social difficulties, heightened levels of anxiety and 

depression, decreased extroversion, and poor self-esteem that has been previously 

described (10, 12, 20, 24).  Finally, our cohort of PTs does not include participants who 

suffered any form of perinatal neurological injury, suggesting that the findings we report 

may be attributable solely to prematurity.  

Compared to term-born peers, PTs in this cohort show decreased parent-reported 

social competence and socialization beginning in school-age and lasting to young 

adulthood, which are composite measures of social skills including interpersonal 

relationships, involvement in activities, and coping skills in social situations. PTs in this 

cohort also show increased anxiety, depression, and affect problems, which is consistent 
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with previous work showing that individuals who are born preterm are at higher risk for 

psychiatric disorders such as anxiety, depression, and phobias beginning in early school 

age (65), and persisting into adolescence and young adulthood (10, 26, 28).  These 

findings echo previous descriptions of social and emotional behavior in PTs (9) providing 

further evidence that social impairment seen in PT children without perinatal neurologic 

injury persists from school age into adolescence and young adulthood.  

 This social impairment appears to worsen from school-age to young adulthood 

when PT are compared to T.  In the Withdrawn domain on the CBCL, which assesses 

behaviors and characteristics including shyness, preferring to be alone, and refusing to 

talk, the PT score trajectory demonstrates significant worsening compared to T. As 

described above, these characteristics align with previous descriptions of PT in cross-

sectional studies; however, to our knowledge there are few studies assessing the specific 

trajectory of social and emotional problems in PT during the transition from school-age 

to adolescence and young adulthood, which is a tumultuous period in social and 

emotional development (66). Linsell et al described overall stable differences in 

emotional and behavioral problems between PT and T, with similar overall trajectories 

between the two groups (19); however, in the emotional problems sub-category, PT 

demonstrated a worsening in scores compared to T, similar to this study. It is possible 

that this worsening of social impairment in PT represents underlying subtle social 

impairments that, though present in PT from early childhood, become increasingly 

evident to parents and caregivers as typically developing peers undergo developmentally 

normal social growth in adolescence.   

Among PT, maternal education appears to be a protective factor in the trajectory 

of social and emotional problems during adolescence. In both the Withdrawn and Social 
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Problems domain, PT children of mothers with a high school education or higher 

demonstrated slower worsening than PT children of mothers with lower education levels. 

Although the number of subjects with low maternal education among the cohort with 

complete neuropsychological data is small, this trend suggests that the trajectory of social 

development in PT may be modifiable. Similar effects of maternal education have been 

reported on the trajectories of PT language development (67), further supporting the 

importance of optimal external influences on PT neurodevelopment throughout childhood 

and adolescence. 

Adolescence is an important time for social development and changing demands 

and expectations of PT adolescents may exacerbate subtle differences that began in early 

childhood.  Indeed, in this study, PT social and emotional scores in all domains at school-

age were significantly positively correlated with scores in early adolescence and young 

adulthood, suggesting that early impairments may be predictive of later problems. Prior 

studies have shown similar correlations of social-emotional behavior across ages in PT 

born children (68). This relationship should be leveraged to intervene on these patients 

during early childhood and school age, when problems first present, which may lessen 

the morbidity for PTs in adolescence and young adulthood.  We are unaware of any 

existing interventions designed to increase social skills for PT-born children and 

adolescents, but there is promising literature supporting similar interventions for children 

and adolescents with other conditions, including social phobia, ADHD and autism 

spectrum disorders, who are at risk of social vulnerability (69-72). These interventions, 

which range from play therapy to structured social interaction simulations, may be 

adaptable to PT and should be further explored in order to optimize lifetime outcomes 

from a social and emotional standpoint.  
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In contrast to robust differences seen in PTs compared to Ts by parent report, PTs 

in this study did not show any difference in social competence or in anxiety and 

depression when measured by child self-report, and in fact scored significantly lower on 

the DSM: Affective Problems scale on the YSR, which consists of measures that are 

consistent with dysthymia and major depressive disorder (62). This discordance between 

parent and child report of characteristics of PT children and adolescents has been 

previously described (30, 73). These results support the notion that PT do not view 

themselves as impaired in social functioning or as having increased anxiety or depression 

compared to term born peers. It is possible that PTs do not value the same level of social 

interaction as Ts, and therefore don’t perceive altered social functioning where their 

parents do. It is also possible that PTs view themselves as on par with T born peers in 

terms of social development, whereas parents perceive a difference. Further study, 

including more objective measures of social functioning, will be necessary to fully 

explore this difference between parent and child reports of PT social functioning. 

When PTs and Ts are segregated by gender, some differences in social 

functioning appear from school age to young adulthood. At age 12, female PTs appear to 

be more impaired than male PTs when compared to their T peers, but these impairments 

shift towards male PTs by young adulthood. Previous studies examining gender 

differences in behavioral and mental health outcomes among PT are variable (74). Many 

report that PT males have increased internalizing symptoms and social problems 

compared to T males, but reports differ for PT females. Some studies report similar social 

and emotional phenotypes for PT and T females, whereas others report increased 

internalizing and social problems in PT females, both in adolescence and young 

adulthood (30, 75, 76). Although typically developing adolescent females have higher 
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rates of internalizing behaviors, depression and anxiety (77), in the PTs included in this 

study, males appear to exhibit increased internalizing behaviors and social problems 

compared to females.  

Our data provide further evidence that alterations in PT amygdalar connectivity 

are observed in a continuum across the lifespan. The amygdala is among those regions 

that experience the earliest prenatal structural and functional growth (50) and is a major 

hub of the “social brain” (38, 40, 45).  Amygdalar functional connectivity is altered in 

PT-born neonates (36, 46) as well as in PT-born adults (47).  Although early adolescence 

represents a period of amygdala connectivity changes in typically developing controls 

(52), to the best of our knowledge, there are no published studies of amygdalar 

connectivity in PT during adolescence or young adulthood.  The overall pattern of 

amygdala connectivity in PTs in this study was similar to previously described amygdala 

connectivity in healthy adults (78).  Nevertheless, the PTs have decreased negative 

connectivity from the amygdala to the left precuneus and bilateral PCC and increased 

positive connectivity to the left STG when compared to term-born peers. Both are areas 

that have previously been implicated in social perception and social behavior in both 

typically developing adults and in adults with social anxiety disorder (79-81). These 

findings are similar to connectivity differences found in a separate cohort of PT-born 

adults at age 30 (47).  

 Connectivity between the amygdala and PCC negatively correlates with measures 

of social functioning in a cohort of combined PTs and Ts. Hyperconnectivity of the 

amygdala to the PCC has been associated with childhood anxiety disorders (82) and 

altered amygdala-PCC connectivity has been associated with social anxiety disorder in 

adults (79, 83). Together, these studies suggest that the association between behavior and 
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amygdala-PCC connectivity is not specific to PTs, and that hyper-connectivity in this 

circuit is related generally to social and emotional behavioral problems. 

The posterior cingulate cortex is part of the default mode network (DMN) and is 

also thought to play a role in social cognition (84), in particular in evaluating others’ 

mental states (85) and in emotion processing (86).  As impaired emotion recognition 

contributes to decreased social competence (87), this may be a factor underlying the 

relationship between altered amygdala connectivity and social impairments.  

Together, the persistence of social deficits in PT from school-age through young 

adulthood and the presence of correlations between these deficits and clear alterations in 

amygdalar connectivity add to the large body of knowledge that PT face substantial 

social difficulties during formative years and suggest that they may be due to underlying 

changes in functional connectivity.  Though PT scores in this study do not reach the 

“clinical range,” the consistent and significant differences between PT and T in social and 

emotional problems and large body of knowledge that social difficulties in PT may have 

serious and lasting developmental impact make these findings concerning. To our 

knowledge, it is not yet common practice to discuss these risks with parents of PT infants 

at the time of birth or NICU discharge; however, given the significant risks associated 

with these deficits including increased bullying in adolescence (20, 21), increased 

psychiatric illness in PT adults who were bullied as adolescents (88), and low educational 

attainment (25) it seems imperative that the full spectrum of PT social and psychological 

outcomes be discussed with families.  

Our study has several strengths: we provide further evidence of increased social 

and emotional impairments in a large cohort of PTs from school-age to young adulthood, 

further elucidate a concerning trajectory of worsening PT social function during 
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adolescence, and demonstrate a negative correlation between social functioning and 

amygdala-PCC connectivity in participants with clinically unremarkable MRI studies at 

18 years of age. These data provide an evaluation of the relationship between the PT 

social functioning and amygdala connectivity during adolescence, a time of significant 

change in both social demands and neural connectivity. Furthermore, the participants 

included in this analysis had no history of neurologic injury and normal clinical MRI 

scans at the time of study, suggesting that alterations in connectivity and function are due 

to prematurity rather than prior injury. 

There are several limitations to this analysis. First, while we believe the 

longitudinal nature of this study and significant retainment of subjects a strength of this 

work, there were many subjects lost to follow up in the PT cohort. The participants who 

were lost to follow-up had significantly lower maternal education than those who were 

included in the analyses at ages 8, 12, 16, and 18. As we found that maternal education 

has a protective effect on the trajectory of social and emotional problems in PT 

adolescents, the participants who were lost to follow-up may have actually been more 

impaired than those who were included, potentially biasing our results. Additionally, our 

longitudinal study may have been underpowered due to significant increase in loss to 

follow-up at ages 16 and 18. By this time, many participants were no longer residing 

locally and could not continue to participate in the study. Nevertheless, we believe these 

findings to be important and hypothesis-generating, and the longitudinal trajectory of 

social impairment among PT deserves further study.  

Second, we acknowledge that there are significant differences in IQ score 

between PTs and Ts in our large neurobehavioral cohort, consistent with existing 

literature (89).  Lower IQ may predispose the PTs to increased social impairments 
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compared to typically developing term controls; likewise, it may alter the PTs’ self-

perception of this condition. While the differences in social behavior between PT and T 

in the large neurobehavioral cohort remained present after controlling for IQ, we were 

unable to control for IQ in our imaging analysis due to small sample size.   

Third, while our imaging data is a strength of this study, the size of our imaging 

cohort was limited. As such, we were not able to adequately analyze the imaging-

behavior correlations for PTs and Ts separately; nor were we able to control for 

demographic covariates.  Furthermore, we did not have sufficient power to examine the 

relationship between all connections and social behavior to confirm that these 

correlations are specific to altered amygdala-PCC connectivity. We were also unable to 

correlate imaging findings with our longitudinal analysis of CBCL and VABS scores due 

to sample size. This analysis would be extremely valuable in parsing out the underlying 

neural cause of the PT social and emotional developmental trajectory, and in determining 

which, if any, interventions may alter underlying functional connectivity and thus 

behavior.  

Fourth, while our findings demonstrate increased social impairment among PT, it 

is non-specific and could be due to impairments in different functional domains. Given 

the format of the instruments we used to evaluate social functioning, we are unable to 

parse out the specific mechanisms leading to this social impairment.  

Finally, we do not have perinatal and longitudinal data about other factors that 

may impact long term cortical development and neurodevelopmental outcomes. For 

example, prenatal exposure to maternal stress impacts amygdala functional connectivity 

(37) and exposure to increased painful procedures in the neonatal period alters brain 

architecture and increases incidence of internalizing behaviors in PT born children (90-
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92). Furthermore, there is evidence that differing parenting styles can impact 

neurodevelopment (53-55), but unfortunately, we are unable to assess these factors in our 

study population. Therefore, it will be important to re-examine the relationship between 

amygdala connectivity and social impairment in groups of PT with more detailed 

information about pre and perinatal exposures, parental stress and parenting styles in 

order to more accurately risk-stratify this population. 

 As survival continues to improve for prematurely born neonates, it is increasingly 

important to more accurately determine risk for adverse neurodevelopmental outcomes 

and develop interventions to mitigate these morbidities. Adolescence is a time of major 

social and emotional changes, including increased social pressure from peers, emerging 

independence from parents, and changing interpersonal relationships (66), and our results 

affirm that PTs continue to experience significant and worsening social and emotional 

difficulties during this stage of life. Future work should interrogate the relationship 

between developmental trajectories of altered amygdala connectivity and social 

impairment in PT to develop and test interventions that may be successful in decreasing 

this lifelong social vulnerability.  
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