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Abstract

This paper analyzes the trade of information between a data buyer and a data seller.

The data buyer faces a decision problem under uncertainty and seeks to augment his

initial private information with supplemental data. The data seller is uncertain about

the willingness-to-pay of the data buyer due to this private information. The data seller

optimally offers a menu of (Blackwell) experiments as statistical tests to the data buyer.

The seller exploits differences in the beliefs of the buyer’s types to reduce information

rents while limiting the surplus that must be sacrificed to provide incentives.
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1 Introduction

The mechanisms by which information is traded help shape the creation and the distribution

of surplus in many important markets. Information about individual borrowers guides banks’

lending decisions, information about consumers’ characteristics facilitates targeted online

advertising, and information about a patient’s genome enhances health care delivery. In

all these settings, information buyers (i.e., lenders, advertisers, and health care providers)

have private knowledge relevant to their decision problem at the time of contracting (e.g.,

independent or informal knowledge of a borrower, prior interactions with specific consumers,

access to a patient’s family history). Thus, potential data buyers seek to acquire supplemental

information to improve the quality of their decision-making.

In this paper, we develop a canonical framework to analyze the sale of supplemental

information. We consider a data buyer who faces a decision problem under uncertainty.

A monopolist data seller owns a database containing information about a “state”variable

relevant to the buyer’s decision. Initially, the data buyer has private and partial information

about the state. The precision of this private information affects the buyer’s willingness to

pay for any supplemental information. Thus, from the point of view of the data seller, there

are many possible types of the data buyer. We investigate the revenue-maximizing policy

for the data seller in terms of how much information the seller should provide and how the

seller should price access to her data.

In order to screen the heterogeneous types of the data buyer, the seller offers a menu of

products. In our context, these products are Blackwell experiments, i.e., signals that reveal

information about the buyer’s payoff-relevant state. Only the information product itself is

assumed to be contractible. By contrast, payments cannot be made contingent on either the

buyer’s action or the realized state and signal. Consequently, the value of an experiment for

a given buyer can be computed independently of its price. Finally, even though the buyer

is partially informed by his initial private beliefs, the analysis differs considerably from a

belief-elicitation problem. Instead, we cast the problem into a nonlinear pricing framework

where the buyer’s type is determined by his prior belief. The seller’s problem then reduces

to designing and pricing information products in different versions.

The design of information can be phrased in terms of a hypothesis test. Indeed, the entire

analysis can be viewed as a pricing model for statistical tests. For concreteness, consider

a medical expert (the “data buyer”) who seeks to distinguish a null hypothesis H0 from a

mutually exclusive alternative hypothesis H1. The medical expert is a Bayesian decision

maker with a prior distribution over the true hypothesis. The expert can take one of two

actions, and each one is optimal under the respective hypothesis.
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Figure 1: Conditional Distributions of the Test Statistic

The genetic testing company (the “data seller”) has access to a test statistic that is

distributed conditional on the true state of the world, H0 or H1, as in Figure 1. We study

how the data seller should reveal (possibly partial) information about the test statistic and

how she should price this information. For instance, the seller can reveal the exact value of

the test statistic to the buyer. The buyer then chooses the action corresponding to H1 if

the test statistic is above a certain threshold. This information structure induces type-I and

type-II errors (α, β) as in Figure 1. It also improves the buyer’s payoff relative to acting on

his prior information only. The novel aspect in our analysis is that the seller does not know

the buyer’s prior beliefs and, hence, the buyer’s willingness to pay for this information. She

therefore must employ a richer mechanism to screen the heterogeneous buyers.

Among other options, the seller can offer the buyer a menu of binary (“Pass/Fail”) tests.

Each test reports the outcome “Pass”when, say, the actual test statistic is below a different

threshold and leads the buyer to take the optimal action under H0. Each one of these tests

yields a different combination of type-I and type-II errors (α, β). Given the information

available to the seller in Figure 1, the set of feasible statistical tests is described by the area

between the red line and the blue curve in the left panel of Figure 2.

Figure 2: Feasible Information Structures
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In this paper, we study a canonical version of this problem. We assume that providing

information (e.g., running tests) is costless and that all information structures are available

to the seller. In the right panel of Figure 2, this is illustrated by the horizontal and vertical

lines which describe statistical tests that minimize one type of error while holding fixed the

other type of error at a given level. We then characterize the revenue-maximizing menu of

experiments, i.e., statistical tests.

The very nature of information products enriches the scope of price discrimination and

leads to new insights relative to the classic nonlinear pricing problem of Mussa and Rosen

(1978) and Maskin and Riley (1984). Because information is valuable only if it affects the

decision maker’s action, buyers with heterogeneous beliefs do not simply value informative

signals differently– they disagree on their ranking. In this sense, the value of information

naturally has both a vertical quality element and a horizontal positioning element akin to

the trade-off between type-I and type-II errors in Figure 2. The data seller can therefore

profitably exploit the incompleteness of Blackwell’s order and design a menu of information

structures that appeal to different buyer types.

As expected, the optimal menu contains, in general, both the fully informative experi-

ment and partially informative, “distorted” experiments. However, the distorted informa-

tion products are not simply noisy versions of the same data. Instead, optimality imposes

considerable structure on the distortions in the information provided. In particular, every

experiment offered as part of the optimal menu is non-dispersed, i.e., the seller induces each

buyer to take the correct action in at least one state with probability one. In other words,

with two states and actions, the seller induces some buyers to make either type-I or type-II

errors, but not both.

We first provide a full characterization of the optimal menu for the case of two types.

We rank the types according to the probability that they make the correct decision in the

absence of additional information. Indeed, the seller can provide a larger incremental value

to a buyer with a smaller probability of making the correct decision. Thus, the “high”type

is the ex ante less informed type, while the “low”type is the ex ante more informed type.

In the optimal mechanism, the high type purchases the fully informative experiment,

while the low type buys a distorted experiment. The seller’s screening problem is facilitated

by the possibility of providing “directional”information: the optimally distorted experiment

introduces a type-II error in a subset of signals that the low type considers relatively less

likely than the high type, allowing the seller to optimally reduce the information rents of

the less-informed type without the need to exclude the more-informed type. As a result,

discriminatory pricing can be profitable even if all buyer types have congruent prior beliefs,

i.e., they would take identical actions in the absence of new information.

4



Then, we restrict attention to binary states and actions but allow more than two types.

This setting yields sharper insights into the profitability of discriminatory pricing for selling

information. In the binary-state environment, the buyer’s types are one dimensional and

the utilities linear. An intuition analogous to the monopoly pricing problems of Myerson

(1981) and Riley and Zeckhauser (1983) suggests that the seller should simply post a price

for the fully informative experiment. Instead, we show that the seller’s problem consists of

screening both within and across the two subsets of buyer types with congruent priors.

If the seller could perfectly discriminate across groups, the intuition from linear monopoly

problems would apply, and the optimal menu would involve two (generically different) posted

prices for the fully informative experiment. Flat pricing of the complete information structure

is still optimal under strong regularity conditions on the distribution of types. More generally,

the optimal menu for a continuum of types contains at most two experiments: one is fully

informative, and the other contains two signals, one of which perfectly reveals the true

state. In particular, the optimal menu involves discriminatory pricing (i.e., two different

experiments) when “ironing”is required (Myerson, 1981). Intuitively, the second experiment

intends to serve buyers in one group, while charging higher prices to the other group.

Our findings have concrete implications for the sale of information. In Section 6, we

illustrate our results in the context of the markets discussed above, i.e., medical and genetic

testing, credit reports, and targeted advertising.

Our paper joins the literature on selling information and monopolistic screening. A

large body of literature studies the problem of versioning goods, emphasizing how digital

production allows sellers to easily customize (or degrade) the attributes of such products

(Shapiro and Varian, 1999). This argument applies even more forcefully to information

products (i.e., experiments) and suggests that versioning should be an attractive price-

discrimination technique (Sarvary, 2012). In this paper, we investigate the validity of these

claims in a simple contracting environment à la Mussa and Rosen (1978).

Admati and Pfleiderer (1986, 1990) provide the classic treatment of selling information to

a continuum of agents with ex-ante identical information who trade in a rational expectations

equilibrium. They show that the provision of noisy and hence heterogeneous information

turns traders into local monopolists over their idiosyncratic signals, thus preserving the value

of acquiring information even in the presence of competition. In contrast, our paper focuses

on ex ante heterogeneous buyer whose value of information differs due their different prior

beliefs. Consequently, the data seller in our setting offers noisy versions of the data to screen

the buyer’s initial information and to extract more surplus, leading to profound differences

in the optimal information structures.
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Eső and Szentes (2007b) and Hörner and Skrzypacz (2015) make more recent contri-

butions to the problem of selling information, focusing on specific, distinct aspects of the

problem (i.e., bundling products and information or dynamic information disclosure) in very

different contracting environments.

Within the mechanism design literature, our approach is related to, yet conceptually

distinct from, models of discriminatory information disclosure in which the seller of a good

both discloses horizontal match-value information and sets a price. Several papers, including

Ottaviani and Prat (2001), Johnson and Myatt (2006), Bergemann and Pesendorfer (2007),

Eső and Szentes (2007a), Krähmer and Strausz (2015), and Li and Shi (2015), analyze this

problem from an ex ante perspective, where the seller commits (simultaneously or sequen-

tially) to a disclosure rule and to a pricing policy.1 In related contributions, Lizzeri (1999)

considers vertical information acquisition and disclosure by a monopoly intermediary, and

Abraham, Athey, Babaioff, and Grubb (2014) study vertical information disclosure in auc-

tions. In a setting similar to ours, Babaioff, Kleinberg, and Paes Leme (2012) derive the

optimal dynamic mechanism for selling information sequentially.

Commitment to a disclosure policy is also present in the literature on Bayesian persuasion,

e.g., Rayo and Segal (2010), Kamenica and Gentzkow (2011), and Kolotilin, Li, Mylovanov,

and Zapechelnyuk (2015). In contrast to this line of work, our model admits monetary

transfers and rules out any direct effect of the buyer’s ex post action on the seller’s utility.

2 Model

A single decision maker faces a decision problem under uncertainty. The state of nature ω

is drawn from a finite set Ω. The decision maker must choose an action a from a finite set

A. We assume without loss of generality that the sets of actions and states have the same

cardinality |A| = |Ω| = N.

Payoffs The ex post utility function of the decision maker is denoted by u (a, ω). We

specialize the utility function by assuming that the decision maker seeks to match the state

and the action. His ex post utility function u (a, ω) is therefore given by

u (a, ω) = 1[a=ω]. (1)

This formulation assumes that the decision maker assigns uniform gains and losses across

states. More general formulations are equally tractable but complicate the exposition.

1In addition, a number of more recent papers, among which Balestrieri and Izmalkov (2014), Celik (2014),
Koessler and Skreta (2014), and Mylovanov and Tröger (2014) analyze this question from an informed
principal perspective.
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Prior Information The type of the decision maker, θ ∈ Θ = ∆Ω, consists of his interim

beliefs about the states; these beliefs θ ∈ Θ are private information and can be generated from

a common prior and privately observed signals. In particular, suppose there is a common

prior µ ∈ ∆Ω. The decision maker privately observes an informative signal r ∈ R according
to a commonly known information structure

λ : Ω→ ∆R.

The decision maker then forms his interim beliefs θ ∈ ∆Ω via Bayes’rule:

θ (ω | r) =
λ (r | ω)µ (ω)∑
ω′ λ (r | ω′)µ (ω′)

.

The interim beliefs θ (ω | r), simply denoted by θ, are thus the private information of the
decision maker. From the data seller’s point of view, the common prior µ ∈ ∆Ω and the

distribution of signals λ : Ω→ ∆R induce a distribution of private beliefs of the data buyer,

F ∈ ∆Θ,

which we take as a primitive of our model.

Incremental Information The data buyer seeks to augment his initial private informa-

tion with additional information —or experiments —from the data seller in order to improve

the quality of his decision making. An experiment (or an information structure) I = {π, S}
consists of a set of signals s ∈ S and a likelihood function:

π : Ω→ ∆S.

We assume throughout that the realizations of the buyer’s private signal r ∈ R and of the

signal s ∈ S from any experiment I are independent, conditional on the state ω. In other

words, the buyer and the seller draw their information from independent sources.2

Experiment (or Information Structure) For a given information structure I, we de-

note by πij the conditional probability of signal sj in state ωi,

πij = Pr (sj | ωi) ,
2As usual, the model allows for the alternative interpretations of a single buyer and a continuum of buyers.

With a continuum of buyers, we will assume that states ω are identically and independently distributed across
buyers and that different buyers’signals are conditionally independent.
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where πij ≥ 0 and
∑

j πij = 1 for all i. We then obtain the stochastic matrix

I s1 · · · sj · · · sJ

ω1 π11 · · · π1j · · · π1J

...
...

. . .

ωi πi1 πij
...

...
. . .

ωN πN1 πNJ

(2)

The following experiments are of particular interest:

1. the fully informative experiment with πii = 1 for all i and |N | = |J |;

2. a non-dispersed experiment that contains a unit row vector, πii = 1 for some i;

3. a noise-free experiment that contains a column sj with only one positive entry, πjj > 0

for some j.

A non-dispersed experiment conveys the information about some state i with a single

signal si. Conversely, any signal other than si rules out the state ωi. A noise-free experiment

reveals some state ωi without noise, i.e., the posterior belief after observing si is concentrated

at ωi. The fully informative experiment is non-dispersed and noise-free everywhere.

An information policy or simply amenuM = {I, t} consists of a collection of information
structures and an associated tariff function, i.e.,

I = {I} , t : I → R+.

Our goal is to characterize the revenue-maximizing menu for the seller.

We deliberately focus on the pure problem of designing and selling information structures.

We therefore assume that the seller commits to a menu before the realization of the state ω

and the type θ, and that neither the buyer’s action a, the realized state ω nor the signal s are

contractible. Thus, while the data buyer holds private information, scoring rules and other

belief-elicitation schemes are not available to the seller to the extent that the conditioning

event is not verifiable. The timing of the game is as follows:

1. the seller posts a menuM;

2. the true state ω and the buyer’s type θ are realized;

3. the buyer chooses an experiment I ∈ I and pays the corresponding price t;

4. the buyer observes a signal s from the experiment I and chooses an action a.

8



The data seller is unconstrained in her choice of information structures (e.g., the seller

can improve upon the buyer’s original information with arbitrarily accurate signals), and

the marginal cost of providing the information is nil. These assumptions capture settings in

which sellers own very precise datasets and distribution costs are negligible.

3 Information Design

We now describe the value of the buyer’s initial information and the incremental value of an

information structure I = {π, S}. Let θi denote the interim probability that type θ assigns

to state ωi, with i = 1, ..., N . For an arbitrary utility function u (a, ω), the value of the

buyer’s problem under prior information is given by

u (θ) , max
a

{∑N

i=1
θiu (a, ωi)

}
.

Now, suppose that the buyer has access to an incremental information structure I = {π, S}
that generates signals π : Θ→ ∆S, where the number of signal realizations is |S| = J . The

buyer chooses an action after updating her beliefs, leading to the expected (gross) utility

u (θ, sj) , max
a

{∑N

i=1

θiπij∑N
i=1 θiπij

u (a, ωi)

}
. (3)

The marginal distribution of signals sj from the perspective of type θ is given by

Pr [sj | θ] =
∑N

i=1
θiπij.

Integrating over all signal realizations sj and subtracting the value of prior information, the

(net) value of an information structure I for type θ is given by

V (I, θ) , Es [u (θ, s)]− u (θ) =
J∑
j=1

max
a

{∑N

i=1
u (a, ωi) θiπij

}
− u (θ) .

With the restriction to utility functions that match action to state, as defined earlier in (1),

the value of information takes the simpler form:

V (I, θ) =
J∑
j=1

max
i
{θiπij} −max

i
{θi} . (4)
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The value of the prior information, given by maxi θi, is generated by choosing the action

that has the highest prior probability. The value of the information structure is generated

by choosing an action on the basis of the posterior belief θiπij induced by every signal sj.

Quite simply, the value of an information structure is given by the incremental probability

of the buyer choosing the correct action given the state.

An information structure I is valuable only if different signals sj lead to different actions

ai. In particular, if arg maxi θiπij is constant across all the signals sj, then (4) immediately

implies that V (I, θ) = 0. Conversely, the fully informative experiment I∗ guarantees that

the buyer takes the correct action in every realization of state ωi. The value of the fully

informative experiment is therefore given by

V (I∗, θ) = 1−max
i
θi. (5)

In Figure 3, we illustrate the value of an information structure in a model with three

states ωi ∈ {ω1, ω2, ω3}. The prior belief of each agent is therefore an element of the

two-dimensional simplex, θ = (θ1, θ2, 1− θ1 − θ2). We display below the fully informative

experiment I∗ and a partial information experiment I as a function of the buyer’s prior.3

Figure 3: Value of Fully and Partially Informative Experiments, N = 3

Viewed as a function of the types, the value of an experiment V (I, θ) is piecewise linear

in θ with a finite number of kinks. The linearity of the value function is a consequence of

3The information structure in the right panel is given by the likelihood matrix:

I s1 s2 s3
ω1 1/2 1/4 1/4
ω2 0 3/4 1/4
ω3 0 1/4 3/4
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the Bayesian nature of our problem, where types are prior probabilities over states. The

downward kinks are due to the max operator in the buyer’s reservation utility u (θ). They

correspond to changes in the buyer’s action without incremental information. The upward

kinks are generated by the max operator in (3) and reflect changes in the buyer’s preferred

action upon observing a signal.

We now characterize the menu of experiments that maximizes the seller’s profits. By

the revelation principle, we may state the seller’s problem as designing a direct mechanism

M = {I (θ) , t (θ)}that assigns an information structure I denoted by I (θ) to each type θ of

the buyer at a price t (θ). The seller’s problem consists of maximizing the expected transfers

max
{I(θ),t(θ)}

∫
θ∈Θ

t (θ) dF (θ) (6)

subject to incentive-compatibility constraints

V (I (θ) , θ)− t (θ) ≥ V (I (θ′) , θ)− t (θ′) , ∀ θ, θ′ ∈ Θ,

and individual rationality constraints

V (I (θ) , θ)− t (θ) ≥ 0, ∀θ ∈ Θ.

The seller’s problem can be simplified by reducing the set of optimal information struc-

tures: a very tractable class of experiments can generate every outcome (i.e., distribution of

buyer actions and seller profits) attainable with an incentive-compatible menu.

Proposition 1 (Responsive Information Structures)
Every incentive-compatible menuM can be represented as a collection of information struc-

tures I (θ) in which every type θ takes a different action after observing each signal s ∈ S (θ) .

This result follows from the insight of Myerson (1986) for multi-stage games, where sig-

nals consist of recommendations over actions. The intuition is straightforward: consider an

incentive-compatible information policy that contains an experiment I (θ) with more signals

than actions; the seller could combine all signals in I(θ) that lead to the same choice of

action for type θ; clearly, the value of this experiment remains constant for type θ (who does

not modify his behavior). In addition, because the original signal is strictly less informative

than the new one, V (I(θ), θ′) decreases (weakly) for all θ′ 6= θ, relaxing the incentive con-

straints. We refer to incentive-compatible information structures in which the truthtelling

agent chooses a distinct action for every distinct signal in a responsive information structure.
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An immediate corollary of Proposition 1 is that, without loss of generality, we can restrict

attention to experiment in which the signal space has at most the cardinality of the action

space. This process allows us to write the likelihood function of every information structure,

described earlier in (2), as a square matrix with |J | = |N |

I (θ) s1 si · · · sN

ω1 π11 π1i · · · π1N

. . .

ωi πi1 πii
...

...
. . .

ωN πN1 πNN

. (7)

Moreover, because every signal sent with positive probability under experiment I (θ) leads to

a different action, we can order signals so that each si ∈ S (θ) recommends the corresponding

action ai to type θ. The resulting value of experiment I (θ) for type θ can be written as

V (I (θ) , θ) =
N∑
i=1

θiπii −max
i
{θi} . (8)

Thus, the diagonal entries of the matrix generate the value of the experiment I (θ) for type

θ. By contrast, the off-diagonal entries serve as instruments to guarantee the incentive-

compatibility constraints across types.4

We emphasize that the square matrix property does not require that every action ai is

recommended with strictly positive probability. In particular, some signals si may never be

sent, thus corresponding to a column vector of zeros at the i-th position. Finally, the nature

of the value of information imposes additional structural properties on an optimal menu.

Proposition 2 (Non-Dispersed Information)
In any optimal menu of experiments:

1. the fully informative experiment I∗ is part of the menu;

2. every experiment is non-dispersed, i.e., πii = 1 for some i.

The first part of this result can be established via contradiction. Every type θ values

the fully informative experiment I∗ the most among all experiments. Suppose, then, that

I∗ is not part of the menu and denote the most expensive item currently on the menu by I.

4Given responsive information structures, we can discard the first max operator in the value of experiment
I (θ) for any truthtelling type θ. We still need to use the original formulation (4) when computing type θ’s
value of misreporting and buying experiment I

(
θ′
)
.
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The seller can replace experiment Ī with the complete information structure I∗, keeping all

other prices constant, and charging a strictly higher price for I∗ than for Ī. The new menu

increases the revenue of the seller without lowering the net utility of any buyer type.

The second part implies that, for every experiment I, there exists a state ωi that leads

buyer θ to take the correct action with probability one. In other words, any time the realized

state is ωi, signal si is sent, and the buyer takes action ai. Conversely, the buyer can rule

out the state ωi after observing any other signal sk 6= si. This result can also be established

by an improvement argument. Consider an experiment I and suppose there was no diagonal

entry πii = 1. The seller can profitably increase all diagonal elements πii by the same

amount until the first diagonal entry reaches 1. Concurrently, the seller can raise the price

of the experiment by the same amount. Since the beliefs of each type θ over the states sum

to one, the uniform increase in the probability of matching the state is valued uniformly

across all types θ ∈ Θ. Thus, a commensurate increase in the price completely offsets the

value of the additional information provided and, hence, leaves all incentive-compatibility

and participation constraints unaffected.

Having established the general structural properties of the optimal information policy, we

now provide a complete characterization of the optimal menu in two important environments.

In Section 6, we discuss the implications of these properties for the observable characteristics

of real-world information products.

4 Optimal Menu with Binary Types

In this section, we allow for any finite number N of states and actions but restrict the private

information to consist of two types only. A type is thus a N -dimensional probability vector.

By contrast, in the next section, we restrict the state and action space to be binary but allow

the private information to consist of a continuum of (one-dimensional) private beliefs. These

two settings provide complementary results regarding the nature of the optimal pricing and

design of information. We discuss towards the end of this section the diffi culties that arise in

generalizing the results beyond two types and two states (and actions) simultaneously. This

will also give us the chance to discuss the current model’s relationship with the multi-item

bundling problem.

We thus consider a setting with N states and actions and two possible buyer types, θ ∈
{θ′, θ′′}. In the absence of additional information, each type θ would choose the action that
matches the state that has the highest prior probability in the vector θ = (θ1, ..., θi, ..., θN).

The value of a perfectly informative experiment (5) is therefore larger for the type θ ∈ {θ′, θ′′}
who displays a lower prior probability on the state he deems most likely. This suggests that
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the data seller can provide the largest value to the type θ whose largest prior probability

is smallest. Equivalently, the lower of the two types is willing to pay more to resolve the

uncertainty completely. We therefore identify the high type as

θH , arg min
θ∈{θ′,θ′′}

max
i∈N

θi,

and the low type as

θL , arg max
θ∈{θ′,θ′′}

max
i∈N

θi.

We denote the probability that the high type appears in the population by

γ , Pr(θ = θH).

To facilitate the description of the seller’s problem, we establish two familiar properties:

“no distortion at the top,”confirming the intuition that the least-informed type is the “high

type”who receives an effi cient allocation; and “no rent at the bottom,”i.e., for the low type,

which coincides with the ex ante more-informed type.

Proposition 3 (Binding Constraints)
In any optimal menu, type θH purchases the fully informative experiment I∗; the incentive-

compatibility constraint of type θH binds; and the participation constraint of type θL binds.

With this result in place, the remaining question is what kind of information the low

and ex ante more-informed type receives in the optimal menu and what prices the seller can

charge. It is useful to develop some intuition for the case of two actions and two states.

4.1 Binary Actions and States

For the moment, consider an environment with two actions a ∈ {a1, a2} and two states
ω ∈ {ω1, ω2}. The buyer type is a two-dimensional vector θ = (θ1, θ2). However, with minor

abuse of notation, we identify each type simply with the prior probability of the state ω1:

θ , Pr [ω = ω1] . (9)

The definition of high and low types therefore implies

∣∣θH − 1/2
∣∣ ≤ ∣∣θL − 1/2

∣∣ .
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In light of Proposition 1, it is suffi cient to consider for every type θ information structures

I (θ) that generate (at most) two signals:

I (θ) s1 s2

ω1 π11 (θ) 1− π11(θ)

ω2 1− π22(θ) π22(θ)

. (10)

Without loss of generality, we assume π11(θ) + π22(θ) ≥ 1. In other words, signal s1 is

relatively more likely to occur than signal s2 under state ω1 than under state ω2, or

π11 (θ)

1− π22 (θ)
≥ 1− π11 (θ)

π22 (θ)
.

As explained in (8) above, the diagonal entries of the matrix π generate the probability that

information structure I (θ) allows type θ to match the realized state ωi with his action ai.

Therefore, we can write type θ’s value for an arbitrary information structure I as

V (I, θ) = max {π11θ + π22 (1− θ)−max{θ, 1− θ}, 0} , (11)

where the first max operator accounts for the possibility that type θ may not follow the

recommendation of one of the signals and, hence, derive no value from the incremental

information. (For each type θ and experiment I (θ), Proposition 1 also implies that we can

ignore themax operator.) In Figure 4, we illustrate how the value of information changes as a

function of the type θ for two different experiments, namely, the fully informative experiment

I ′ = (π′11, π
′
22) = (1, 1) and a partially informative experiment I ′′ = (π′′11, π

′′
22) = (1/2, 1).

Figure 4: Value of Fully and Partially Informative Experiments, N = 2

The behavior of the value of information as a function of the buyer’s interim beliefs θ

reflects many properties that we have already formally established. First, the most valuable
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type for the seller is the ex ante least-informed type, namely, θ = 1/2. Conversely, the

most-informed types θ ∈ {0, 1} have zero value of information. The linear decline in each
direction away from θ = 1/2 follows from the linearity of the value of information in the

interim probability. Second, when we consider any asymmetric experiment, such as the one

displayed in the right panel of Figure 4, the distance from the least-informed type |θ − 1/2|
is not a suffi cient statistic for the value of information. The different slopes on each side

of θ = 1/2 indicate different marginal benefits for matching state ω1 versus state ω2 on the

basis of differences in the interim beliefs θ.

Thus, even in an environment where types are clearly one dimensional, information prod-

ucts are inherently high-dimensional (in this case, two dimensional). In particular, informa-

tion always has both a vertical (quality) and a horizontal (positioning) dimension. Unlike in

models of nonlinear pricing (with respect to either quantity or quality) where all the types

agree on the relative ranking of all the products, in the current environment, the types dis-

agree on the ranking of all partial information structures, and agree only on the top ranking

of the complete information structure.

Towards more general results, we offer the following distinction: the interim beliefs of the

two types are said to be congruent if both types would choose the same action in the absence

of the additional information. If we adopt the convention that the high type chooses action

a1 under prior information (i.e., θ
H ≥ 1/2), then priors are congruent if 1/2 ≤ θH ≤ θL and

are noncongruent if θL ≤ 1/2 ≤ θH . In Proposition 4, we complete the characterization of

the optimal menu in the setting with binary states.

Proposition 4 (Partial Information)

1. With congruent priors, the low type receives either zero or complete information.

2. With noncongruent priors, the low type receives either partial or complete information.

Congruent Priors. In the case of congruent priors, the argument is related to the classic
monopoly pricing problem. By Proposition 2, we know that the optimal information struc-

ture has to be non-dispersed. With congruent priors, both types would choose action a1

absent any additional information. As we establish formally in Proposition 5, the seller sets

π11(θL) = 1. The issue is therefore how much information to provide about state ω2, i.e.,

I
(
θL
)

s1 s2

ω1 1 0

ω2 1− π22(θL) π22(θL)

.
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Any partially informative experiment with π22(θL) ∈ (0, 1) is also valuable for the high type,

whose incentive constraint in this case reduces to

t
(
θH
)
− t
(
θL
)
≤
(
1− θH

)︸ ︷︷ ︸
Pr(ω2)

·
(
1− π22

(
θL
))︸ ︷︷ ︸

additional precision

.

Hence, we observe that the utility of the buyer type and both the objective and the con-

straints in the seller’s problem are linear in the choice variable π22. We can therefore appeal

to the result of Riley and Zeckhauser (1983) on monopoly pricing that establishes the op-

timality of an extremal policy. Such a policy consists of either allocating the object (here,

the information) with probability one or not to allocate it all, hence π22 ∈ {0, 1}. As in
the monopoly pricing problem, which policy is optimal depends on the size of each segment.

Thus, the low type receives the fully informative experiment if the high type is suffi ciently

infrequent relative to the willingness to pay for the information, or

1− θL ≤ γ
(
1− θH

)
⇐⇒ γ ≤ 1− θH

1− θL
.

Noncongruent Priors. In the case of noncongruent priors, or θL < 1/2 < θH , both the

argument and the result are rather distinct from those of the classic monopoly problem.

With noncongruent priors, in the absence of any information, the two types would choose

different actions. Therefore, each type has a willingness to pay to learn more about the state

that the other type believes to be more likely. Thus, the seller can provide information that

is valuable to one type but has zero value for the other type. For example, suppose that

π22(θL) = 1 and π11(θL) is chosen such that, after receiving signal s2, the high type θ
H places

equal posterior probability on ω1 and ω2:

θH (1− π′11) =
(
1− θH

)
⇐⇒ π′11 =

2θH − 1

θH
∈ (0, 1) . (12)

Type θH is thus indifferent between action a1 and a2. Because he would choose action a1

absent any information, the information structure I ′

I ′ s1 s2

ω1 π′11 1− π′11

ω2 0 1

(13)

does not lead to a strict improvement in his decision making (and, hence, his utility). By

contrast, the low type assigns positive value to I ′ since signal s1 would lead type θ
L to match
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his action to state ω1, which type θ
L would never have achieved absent any information.

Thus, the seller can offer partial information to the low type without incurring any implicit

cost in terms of surplus extraction vis-à-vis the high type.

In fact, since the seller could charge the low type a positive price for the above information

structure I ′, whereas the high type would assign zero value to it, the incentive constraint

of the high type would not bind. Hence, the seller can offer an even more informative

experiment I ′′ to the low type until the incentive constraint of the high type eventually

becomes binding. As the partially informative signal I ′′ has a positive price tailored to

type θL, i.e., t
(
θL
)

= θLπ′′11, the high type can be made indifferent between buying the

information structure or not by setting

1− θH︸ ︷︷ ︸
t(θH)

− θLπ′′11︸ ︷︷ ︸
t(θL)

= θH︸︷︷︸
Pr(ω1)

· (1− π′′11)︸ ︷︷ ︸
additional precision

⇐⇒ π′′11 =
2θH − 1

θH − θL
. (14)

Experiment I ′′ is as informative as possible while satisfying the high type’s incentive

compatibility constraint and both participation constraints with equality. The argument in

support of a partially informative experiment is illustrated below in Figure 5, which depicts

the value of two experiments net of the price as a function of the buyer’s type θ ∈ [0, 1]. We

consider the case on noncongruent preferences with θL = 1/5 < 1/2 < 7/10 = θH . Both

types are equally likely.

Figure 5: Suboptimal Menu: (π11, π22) ∈ {(1, 1), (4/7, 1)}

The net value of the fully informative experiment I∗ is depicted by the straight line at a

price t
(
θH
)

= 1− θH that leaves the type θH indifferent between buying and not buying the
fully informative experiment. The dashed line depicts the partial information experiment

given by π′11 , as described by (12). The associated partial information experiment I
′ leaves

the low type θL indifferent between buying and not buying. As for the high type θH ,
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this experiment offers zero value at a positive price, leaving his incentive constraint slack.

Correspondingly, the net value of the partial information experiment I ′ is strictly below the

net value of the fully informative experiment for the high type.

In fact, the incentive compatibility constraints are slack with this menu of experiments

for both types. Therefore, the seller can increase the quality of the experiment sold to the

low type θL while satisfying the incentive constraint for the high type θH . The corresponding

experiment I ′′ with the associated π′′11 as given by (14) is illustrated in Figure 6.

Figure 6: Optimal Menu: (π11, π22) ∈ {(1, 1), (4/5, 1)}

This example highlights the “horizontal”aspect of selling information that increases the

scope of screening: the high type θH buys the perfectly informative experiment; the low

type θL buys a partially informative experiment; and the seller extracts the entire surplus

(which, however, falls short of the socially effi cient surplus). In the optimal menu, the partial

informative experiment I ′′ is eventually replaced by the fully informative experiment if the

proportion of low types becomes large.

To summarize the results in the binary model, (i) with congruent priors, both types

receive complete information if they are suffi ciently similar or if the low type is relatively

frequent, while (ii) with noncongruent priors, the optimal menu offers the perfect information

structure to both types if they are suffi ciently similar in their prior information or if the low

type is suffi ciently frequent. Offering two experiments becomes optimal if the two types

are suffi ciently different in their level of informativeness. Importantly, the low type always

receives some information in that case and is not excluded, as we would expect from a

conventional screening model.5 Furthermore, the high type receives positive rents only if he

is pooled with the low type. Otherwise, the seller extracts the entire surplus generated.

5In Section 4.2, we show that exclusion requires not only that types agree on the most likely state but
also that their relative beliefs about any two other states coincide. This requirement is vacuous with two
states only but non-generic with N > 2.
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Relationship to Type I/II Errors In a binary action environment, any information

structure can be readily interpreted as a statistical test offered to the buyer. The test may

be subject to type-I and type-II statistical errors.6 In line with the standard notation in

statistics, we denote the probability of type-I and type-II errors as α and β, respectively. We

can then represent the information structure as a hypothesis test, say for the low type who

has a null hypothesis H0 = {ω2},

I s1 s2

ω1 1− β β

ω2 α 1− α

In the case of noncongruent priors, in view of Proposition 4, the optimal test offered to the

low type has the following structure:

I s1 s2

ω1 1− β β

ω2 0 1

.

Proposition 4 thus asserts that the optimal hypothesis test eliminates the type-I error (α = 0)

and allows for some type-II error (β > 0). In fact, the optimal hypothesis test minimizes the

type-II error subject to the incentive compatibility constraint. Conversely, we can ask what

would happen if the high type who has a null hypothesis H0 = {ω1} (as θH > 1/2) were

to misreport his type and attempt to purchase the hypothesis test meant for the low type,

θL < 1/2. Then, he would purchase a hypothesis test with strikingly different properties,

namely, one that induces no type-II errors but substantial type-I errors. The difference in

the error structure of the test across types supports the separation in the optimal menu.

We now examine the comparative statics of the optimal menu. Because the high type

buys the fully informative experiment and the low type’s experiment always has zero type-I

error, the optimal information structure is determined by the level of type II error.

Corollary 1 (Comparative Statics of Type II Error)
The type II error β in the optimal experiment I(θL) is

1. increasing in the frequency γ of the high type;

2. increasing in the precision of the prior of the high type
∣∣θH − 1/2

∣∣;
3. decreasing in the precision of the prior of the low type

∣∣θL − 1/2
∣∣.

6A type-I error leads the decision maker to reject the null hypothesis even though it is true. By contrast,
a type-II error leads the decision maker to accept the null hypothesis even though it is false.
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Thus, even though the shape of the optimal menu depends on whether types have congru-

ent or noncongruent priors, the comparative statics of the optimal information structure are

robust across the different scenarios. The rent extraction vs. effi ciency trade-off is resolved

at the expense of the low type whenever (i) the fraction of high types is larger, (ii) the

high type has a higher willingness to pay for information, or (iii) the low type has a lower

willingness to pay for the complete information structure.

4.2 Many States and Actions

With more than two states and actions, the seller’s problem involves all the diffi culties associ-

ated with multidimensional screening. Nevertheless, the structural properties of the optimal

experiments extend to multidimensional settings. We first characterize the optimal menu

within a binary type environment and then discuss the issues that arise with an arbitrary

finite number of types, as well as the relationship with monopoly bundling problems.

We allow for N states and actions but momentarily only two types of buyers, θ ∈{
θL, θH

}
. We recall that the high-value type satisfies maxi θ

H
i < maxi θ

L
i and that Propo-

sition 3 reduces the seller’s problem to finding the low type’s experiment I
(
θL
)
and the

two payments tL, tH . Our approach is to solve a relaxed problem where we require the

high-value type to take action ai upon observing signal si even when buying the low-value

type’s experiment. We then show that the solution to the relaxed problem satisfies the orig-

inal constraints; hence, it also solves the full problem. Formally, we replace the incentive

compatibility constraint

U
(
θH
)
≥

N∑
j=1

max
i

{
θHi πij(θ

L)
}
−max

i

{
θHi
}
− t(θL),

with the weaker constraint that

U
(
θH
)
≥

N∑
j=1

θHj πjj(θ
L)−max

i

{
θHi
}
− t(θL).

Without loss of generality, we arrange the signals in the experiment I(θL) so that the

low type chooses action ai when observing signal si. Under these assumptions and ignoring

additive constant terms, the seller’s problem consists of choosing the information rent for the

high type, U(θH) ≥ 0, and the diagonal entries πii ∈ [0, 1] of the low-value type’s information
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structure I(θL) to maximize

(1− γ)

(
n∑
i=1

θLi πii(θ
L)−max

i
θLi

)
︸ ︷︷ ︸

t(θL)=V (I(θL),θL)

+ γ
(

1−max
i
θHi − U(θH)

)
︸ ︷︷ ︸

t(θH)=V (I∗,θH)−U(θH)

, (15)

subject to the high type’s incentive-compatibility constraint, which can be rewritten as

n∑
i=1

(θLi − θHi )πii ≥ max
i
θLi −max

i
θHi − U(θH). (16)

By inspecting (15) and (16), it is immediate that a higher πii increases profits and relaxes

the constraint for all ωi such that θ
L
i > θHi . In other words, if the low type believes a given

state ωi is more likely to occur than does the high type, the seller should send signal si
with probability one in that state. In particular, the optimal menu has πii = 1 for the state

corresponding to the low type’s default action.

With two states only (e.g., in example of Proposition 4), this implies the remaining entry

in row i is πij = 0. With N > 2 states, the seller has considerably more instruments to

distort the low type’s allocation. In particular, the partially informative experiment may

contain fewer signals than available actions—and, thus, the seller may “drop”some signals

from I(θL) to reduce the information rents. The logic above then suggests that the seller

should distort the signal distribution in states the high type deems very likely but the low

type does not.

To formalize this intuition, we re-order the states ωi by the likelihood ratios of the two

types’beliefs. In particular, let

θL1
θH1
≤ · · · ≤ θLi

θHi
≤ · · · ≤ θLN

θHN
. (17)

We then define two particular states. The first state is defined as

i∗ = min

{
i :

θLi
θHi
≥ γ

}
, (18)

which is well-defined because the likelihood ratio must exceed one for some i.

To define the second state, consider the following quantity:

kj ,
∑n

i=j+1

(
θLi − θHi

)
−maxi θ

L
i + maxi θ

H
i

θHj − θLj
. (19)
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In particular, kj corresponds to the value of πjj that satisfies (16) with equality when the

high type’s rent is nil, πii = 1 for all states i > j, and πii = 0 for all i < j. Let

j∗ , min j : kj ≥ 0, (20)

which is also well-defined since the definition of the low type implies that at least kN ≥ 0.

Proposition 5 establishes several properties of any optimal menu.

Proposition 5 (Optimal Menu with Two Types)

1. Experiment I(θL) has πii = 0 for all i < min {i∗, j∗} and πii = 1 for all i > min {i∗, j∗}.

2. If j∗ < i∗, then I(θL) has πj∗j∗ = kj∗ and U(θH) = 0.

3. If j∗ ≥ i∗, then I(θL) has πi∗i∗ = 1 and U(θH) > 0.

To complete the description of the optimal experiment I(θL), we need to specify the

distribution of signals πij for i < min {i∗, j∗}. In the Appendix, we construct an algorithm
that assigns the entries πij in such a way that both types always follow the recommendation

implied by each signal. Therefore, the solution to the relaxed problem solves our original

problem. The resulting optimal experiment I(θL) has a lower triangular shape, with πii ∈
{ki, 1} depending on whether i∗ ≶ j∗, as described in Proposition 5:

0 · · · 0 π1i · · · · · · π1n

...
...

...
...

...
... πii · · · · · · πin

...
... 0 1 · · · 0

...
...

...
...

. . .
...

0 · · · 0 0 0 · · · 1

(21)

Intuitively, the seller’s choice of experiments in the optimal menu depends on two fac-

tors: (a) the two types’relative beliefs, and (b) the distribution of types in the population.

Proposition 5 shows that the problem is separable in this respect. In particular, the optimal

experiment I(θL) is chosen from a discrete set that depends only on the two types
(
θH , θL

)
.

Each element of this set distorts progressively more signals, as in (21). The distribution of

types γ then determines the optimal element of the set, i.e., the number of null columns and

value of the diagonal entry in the critical state min {i∗, j∗}.
More specifically, the extent of the two types’belief disagreement guides the seller’s choice

of a partially informative experiment. The seller is most willing to introduce noise in signals
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that the low type considers relatively less likely than the high type because these distortions

facilitate screening without sacrificing surplus. That is, distortions are more likely to occur

in states that maximize relative disagreement. The extent of disagreement is captured by the

critical state j∗ that represents the minimum number of signals that must be eliminated in

order to satisfy incentive compatibility, while holding the high type to his reservation utility.

Finally, the profitability of distorting experiment I(θL) depends on the distribution of

types. In particular, the measure of high types (captured by the critical state i∗) represents

the shadow cost of providing information to the low types. For high shadow cost, the

monopolist is willing to distort the allocation by removing as many signals as necessary to

satisfy (16) and hold the high type to his participation constraint. For low opportunity cost,

the monopolist prefers to limit distortions and concede rents to the high type. Thus, the

informativeness of the low type’s experiment is decreasing in the fraction of high types γ.

The following examples with three states and actions illustrate Proposition 5.

Example 1 (Noncongruent Priors) Let θL = (1/10, 1/10, 4/5) and θH = (2/5, 3/10, 3/10).

Because k1 < 0 < k2, the partially informative experiment I(θL) can involve dropping signal

s1, i.e., setting π11 = 0. In particular, the optimal experiment I(θL) is given by

I(θL) s1 s2 s3

ω1 1 0 0

ω2 0 1 0

ω3 0 0 1

if γ < 1/3,

I(θL) s1 s2 s3

ω1 0 1/4 3/4

ω2 0 1 0

ω3 0 0 1

if γ ∈ [1/4, 1/3] ,

I(θL) s1 s2 s3

ω1 0 1/4 3/4

ω2 0 1/2 1/2

ω3 0 0 1

if γ > 1/3.

The high type obtains positive rents only if γ < 1/3.

Example 2 shows that discriminatory pricing can be profitable even if the two types have

congruent beliefs, as long as the likelihood ratio θLi /θ
H
i takes more than two distinct values.

Example 2 (Congruent Priors) Let θH = (3/10, 2/5, 3/10) and θL = (1/10, 1/2, 2/5).

Because k1 > 0, an optimal experiment I(θL) is given by

I(θL) s1 s2 s3

ω1 1 0 0

ω2 0 1 0

ω3 0 0 1

if γ ≤ 1/3,

I(θL) s1 s2 s3

ω1 1/2 0 1/2

ω2 0 1 0

ω3 0 0 1

if γ > 1/3.

The high type obtains positive rents only if γ < 1/3.
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The key property of Example 2 is that, even though both types initially deem state ω2 the

most likely, they disagree on the relative likelihood of states ω1 and ω3, i.e., θ
H
1 /θ

H
3 6= θL1 /θ

L
3 . If

γ > 1/3, then in the optimal menu, the seller offers type θL an experiment I(θL) that reveals

state ω1 with a conditional probability of 1/2. Because type θL assigns prior probability

1/10 to state ω1 only, this distortion does not reduce his willingness to pay considerably.

Conversely, the prior beliefs of type θH assign a much larger weight to state ω1, which means

he perceives the quality of experiment I(θL) as significantly lower, enabling the seller to

charge a high price for the full information structure I(θH).

Thus, with more than two states, the seller can exploit disagreement along any dimension

and extract all the surplus through discriminatory pricing. Nonetheless, it is not always

profitable to offer two distinct experiments. In Example 2, if high-value types are suffi ciently

scarce (γ ≤ 1/3), the seller prefers to pool the two types. Corollary 2 identifies two polar

cases in which the distribution of types pins down the rent of the high type.

Corollary 2 (Information Rents)

1. If γ < mini θ
L
i /θ

H
i , both types purchase the fully informative experiment I

∗ and the high

type obtains positive rent U(θH) > 0.

2. If γ > θLi /θ
H
i for all i such that θ

L
i /θ

H
i < 1, the high type obtains no rent.

Finally, Corollary 3 deals with the case of exclusion. It generalizes the intuition from the

fully binary model in which noncongruent priors remove the need to exclude the low type.

Corollary 3 (Exclusion)

1. If priors are noncongruent or if they are congruent but the two types do not lie on a

ray in the simplex, it is never optimal to exclude type θL.

2. In both cases, the experiment I(θL) is partially informative if γ is suffi ciently large.

4.3 More than Two Types

With more than two types and N > 2, our relaxed approach is not always valid– in the

optimal menu, different types would choose different actions in response to the same signal

realizations. More formally, it is always without loss of generality —see Proposition 1 —to

assume that type θ follows the recommendation of each signal in his own experiment I (θ).

However, type θ need not follow the recommendation of every signal in other experiments

I(θ′). The full incentive-compatibility constraints can then be written as

N∑
j=1

θjπjj (θ)− t (θ) ≥
N∑
j=1

max
i
θiπij (θ′)− t (θ′) . (22)
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In this case, computing the optimal menu is more diffi cult. Nevertheless, the max operator

in (22) can be captured by a set of additional linear inequality constraints. Thus, for a

discrete type space and at the cost of additional complexity, the monopolist’s problem can

still be solved via (numerical) linear programming, as illustrated by the following example.

Example 3 (Signals and Actions) Let types θ1 = (1/6, 1/6, 2/3), θ2 = (1/2, 1/2, 0), and

θ3 = (1/2, 0, 1/2) be uniformly distributed. In the relaxed problem, the monopolist sells the

fully informative experiment to types θ2 and θ3. Type θ1 buys

I(θ1) s1 s2 s3

ω1 1/2 0 1/2

ω2 0 1 0

ω3 0 0 1

.

However, when contemplating buying I
(
θ1
)
, type θ2 would choose action a1 when observing

signal s3. In the solution to the full problem, I
(
θ1
)
is given by

I(θ1) s1 s2 s3

ω1 1/2 0 1/2

ω2 1/2 1/2 0

ω3 0 0 1

. (23)

It is easy to see that, in Example 3, no experiment I(θ1) can lead both types θ2 and θ3

to follow the action recommended by every signal. Thus, the solutions to the relaxed and

general problems must differ.

Relationship with the Monopoly Bundling Problem At a first glance, the problem

of the data buyer resembles a consumer’s demand for multiple goods or bundles of charac-

teristics. We recall that the value of an information structure is given by:

V (I, θ) =
∑
j

max
i
{πijθi} −max

i
{θi} . (24)

We can interpret the buyer’s type θ as a vector of tastes, states ωi as products, and the

likelihood function π as the quantity of each product available to the consumer. With this

interpretation, an experiment I generates a random allocation s ∈ S. Observing signal sj
is then analogous to being offered the set of options (π1j, . . . , πNj). Finally, the consumer

chooses a single product from the set according to his tastes. Consequently, the consumer’s

utility is convex in the probability distribution over options, generating the upward kinks
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in (24). In addition, type-dependent reservation utilities generate the downward kinks. In

contrast, in bundling problems, buyers’utilities are typically linear in the goods they acquire,

and their outside options are nil.

Now, as the data buyer must ultimately choose an action, acquiring information intro-

duces an additional choice variable (and optimality condition) represented by the first max

operator in (24). Hence, the data buyer’s problem does not reduce to selecting a bundle of

goods from a menu. Indeed, a buyer of incremental information behaves like a consumer

with unit demand who faces a stochastic choice problem. This property of buying informa-

tion brings additional incentive constraints to the seller’s problem differentiating it from a

multiproduct monopolist’s problem. Furthermore, the outside option for the buyer is given

by his initial information. This is reflected in the second max operator in (24). Thus, the

participation constraint is naturally type dependent.

Despite these important differences, our seller’s problem bears some resemblance to a

bundling problem. In particular, when buyers’types are multidimensional (i.e., N > 2 in

our case), it is well-known– see, for example, Pavlov (2011b)– that the single-price result of

Myerson (1981) and Riley and Zeckhauser (1983) does not hold. Indeed, the optimal menu

involves stochastic bundling quite generally, and the structure of the bundles offered can be

quite rich.7 Partially informative experiments are the analog of stochastic bundles in our

model. To further mark the difference to these classic multidimensional problems, stochastic

bundling can arise in our setting even when buyer types are one-dimensional. This aspect

emerged in the fully binary setting of Proposition 4, which we generalize in the next section.

5 Optimal Menu with a Continuum of Types

Finally, we return to the environment with binary actions and states and allow for a contin-

uum of types. Letting θ , Pr [ω1], the value of information is given in (11), i.e.,

V (I, θ) , max {π11θ + π22 (1− θ)−max{θ, 1− θ}, 0} .

Because types are one dimensional, we can define for each experiment I (θ) the following

measure of relative informativeness,

q(θ) , π11(θ)− π22(θ) ∈ [−1, 1] .

7For example, see Manelli and Vincent (2006), Pycia (2006), Pavlov (2011a), and Rochet and Thanassoulis
(2015). In particular, Daskalakis, Deckelbaum, and Tzamos (2015) construct an example where types follow
a Beta distribution, and the optimal menu contains a continuum of stochastic allocations.
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For each θ, Proposition 2 implies that either π11 (θ) = 1 or π22 (θ) = 1 (or both). There-

fore, we adopt the convention that q (θ) > 0 implies π11 (θ) = 1 and q (θ) < 0 implies

π22 (θ) = 1. We can then more succinctly rewrite the value of an experiment q as

V (q, θ) = max {θq −max{q, 0}+ min{θ, 1− θ}, 0} . (25)

With this notation, the two information structures q ∈ {−1, 1} correspond to releasing no
information to the buyer. (These experiments show the same signal with probability one.)

Conversely, the fully informative experiment is given by q = 0.

The value of information in (25) reflects the more general properties of our screening

problem: (a) buyers have type-dependent participation constraints;8 (b) buyer type θ = 1/2

has the highest willingness to pay for any experiment q; (c) the experiment q = 0 is the

most valuable for all types θ; (d) different types θ rank partially informative experiments

differently; and (e) the utility function V (q, θ) has the single-crossing property in (θ, q).

The single-crossing property indicates that buyers with a higher θ, who are relatively

more optimistic about state ω1, assign a relatively higher value to experiments with a higher

q– such experiments contain a signal that is more revealing of state ω2, which they deem

less likely. However, the “vertical quality” and “horizontal position” of an information

product cannot be chosen separately by the seller. In particular, it is not possible to change

the relative informativeness of a product (i.e., choose a very high or very low q) without

reducing its overall informativeness.

Recall that Proposition 1 allows us to focus on responsive allocations. Therefore, we

simplify the problem by eliminating the first max operator from (25). Next, we derive a

characterization of all implementable responsive allocations q. Observe that the buyer’s util-

ity function has a downward kink in θ. This is a consequence of having an interior type

(θ = 1/2) assign the highest value to any allocation and of the linearity of the buyer’s prob-

lem. We thus compute the buyer’s rents U(θ) on [0, 1/2] and [1/2, 1] by applying the envelope

theorem to each interval separately. We then obtain two possibly different expressions for

the rent of type θ = 1/2. However, continuity of the rent function then requires that

U(1/2) = U(0) +

∫ 1/2

0

Vθ(q, θ)dθ = U(1)−
∫ 1

1/2

Vθ(q, θ)dθ.

Because types θ = 0 and θ = 1 assign zero value to any experiment and transfers are non-

negative, incentive compatibility requires U (0) = U (1) = 0. Therefore, while any type’s

8In general, our setting involves both bunching and exclusion, making it diffi cult to directly apply existing
approaches, such as the one in Jullien (2000).
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utility can always be written in the above form, the novel element of our model is that no

further endogenous variables appear.9 Differentiating (25) with respect to θ and simplifying,

we obtain the following restriction on an incentive-compatible allocation∫ 1/2

0

(q (θ) + 1)dθ = −
∫ 1

1/2

(q (θ)− 1)dθ. (26)

The constraint (26) is a new condition that sets our framework apart from most other screen-

ing problems. In particular, incentive constraints impose an aggregate (integral) constraint

on the allocation.10 We formalize this in the following result.

Lemma 1 (Implementable Allocations)
Any responsive allocation q is implementable if and only if the following two conditions hold:

q (θ) ∈ [−1, 1] is non-decreasing;

and
∫ 1

0

q (θ) dθ = 0. (27)

The transfers t (θ) associated with the allocation q(θ) can be computed in the usual

way on the two intervals [0, 1/2] and [1/2, 1] separately. With the addition of the integral

constraint (27) for implementability, we can state the seller’s problem as follows:

max
q(·)

∫ 1

0

[(
θ − F (1/2)− F (θ)

f (θ)

)
q (θ)−max {q (θ) , 0}

]
dF (θ) , (28)

s.t. q (θ) ∈ [−1, 1] non-decreasing,∫ 1

0

q (θ) dθ = 0.

5.1 Optimal Menu

In order to solve the seller’s problem (28) and characterize the optimal menu, we rewrite the

objective with the density f(θ) explicitly in each term:∫ 1

0

[(θf (θ) + F (θ)) q (θ)−max {q (θ) , 0} f (θ)] dθ.

9For instance, in Mussa and Rosen (1978) and in Myerson (1981), the rent of the highest type U(1)
depends on the entire allocation q.
10The integral constraint thus differs from other instances of screening under integral constraints (e.g.,

constraints on transfers due to budget or enforceability, or capacity constraints). In the model of persuasion
with private information of Kolotilin, Li, Mylovanov, and Zapechelnyuk (2015) a similar integral constraint
appears as a persuasion budget constraint. However, because theirs is a model without transfers, the con-
straint operates differently and has very different implications.
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This minor modification highlights two important features of our problem: (i) the constraint

and the objective have generically different weights, dθ and dF (θ); and, hence, (ii) the

problem is non-separable in the type and the allocation, which interact in two different

terms. In particular, consider the “virtual values”φ (θ, q), defined as the partial derivative

of the integrand with respect to q. Unlike in standard separable models, the virtual values

are a function of the allocation. Because our objective is piecewise linear, the function φ(θ, q)

takes on two values only, i.e.,

φ(θ, q) :=

θf (θ) + F (θ) for q < 0,

(θ − 1)f (θ) + F (θ) for q > 0.

Heuristically, the two virtual values represent the marginal benefit to the seller (ignoring the

constraint) of increasing each type’s allocation from −1 to 0, and from 0 to 1, respectively.

If ironing à la Myerson is required, we denote the ironed virtual value for experiment q

as φ̄ (θ, q). Finally, we say that the allocation satisfies the pooling property if it is constant

on any interval where the relevant (ironed) virtual value is constant. The solution to the

seller’s problem is then obtained by combining standard Lagrange methods with the ironing

procedure developed by Toikka (2011), which extends the approach of Myerson (1981).

Proposition 6 (Optimal Allocation Rule)
The allocation q∗(θ) is optimal if and only if:

1. there exists λ∗ > 0 such that, for all θ,

q∗(θ) = arg max
q

[∫ q

−1

(
φ̄ (θ, x)− λ∗

)
dx

]
;

2. q∗ has the pooling property and satisfies the integral constraint (27).

To gain some intuition, observe that the problem is piecewise-linear (but concave) in the

allocation. Thus, absent the integral constraint, the seller would choose an allocation that

takes values at the kinks, i.e. q∗(θ) ∈ {−1, 0, 1} for all θ. In other words, the seller would
offer a menu containing the fully informative experiment only. Flat pricing turns out to be

optimal for the seller in a number of circumstances. The main novel result of this section is

that the seller can sometimes do better by offering one additional experiment.
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Proposition 7 (Optimal Menu)
An optimal menu consists of at most two experiments.

1. The first experiment is fully informative.

2. The second experiment contains a signal that perfectly reveals one state.

To obtain some intuition for this result, consider a relaxed problem where the seller

contracts separately with buyers θ < 1/2 and θ > 1/2. Because of the linearity of the

problem, the optimal menu for each group is degenerate: the seller offers the perfectly

revealing experiment at a flat price. Now, consider the solution to the full problem. If

the optimal prices for each separate group are similar, the seller offers the fully informative

experiment at an intermediate price. If they are quite different, the seller prefers to distort the

information sold to one group to maintain a high price for the fully informative experiment.

However, the linearity of the environment prevents the seller from offering more than one

distorted experiment, i.e., no further versioning is optimal.

We now illustrate the optimal menu under flat and discriminatory pricing separately.

5.2 Flat vs. Discriminatory Pricing

Let types be uniformly distributed, F (θ) = θ, and consider the virtual values φ(θ, q) for

q < 0 and q ≥ 0 separately. These values are constant in q; hence, we refer to φ(θ,−1) and

φ (θ, 1), respectively. For a given value of the multiplier λ, the allocation that maximizes

the expected virtual surplus in Proposition 6 assigns q∗(θ) = −1 to all types θ for which

φ(θ,−1) < λ; it assigns q∗(θ) = 0 to all types θ for which φ(θ,−1) > λ > φ(θ, 1); and

q∗(θ) = 1 for all types θ for which φ(θ, 1) > λ.

Figure 7: Uniform Distribution: Virtual Values and Optimal Allocation

Figure 7 illustrates the resulting allocation rule. In order to satisfy the integral constraint,

the optimal value of the multiplier λ∗ must identify two symmetric threshold types (θ1, θ2)
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that separate types receiving the effi cient allocation q = 0 from those receiving no information

at all, q = −1 or q = 1. The allocation then clearly satisfies the integral constraint (27).

More generally, if both virtual values φ (θ,−1) and φ (θ, 1) are strictly increasing in θ, the

optimal menu consists of charging the monopoly price for the fully informative experiment.

Flat pricing is optimal under weaker conditions than strictly increasing virtual values.

We now summarize the suffi cient conditions for this result.

Proposition 8 (Flat Pricing) Suppose any of the following conditions hold:

1. F (θ) + θf(θ) and F (θ) + (θ − 1)f(θ) are strictly increasing;

2. the density f(θ) = 0 for all θ > 1/2 or θ < 1/2;

3. or the density f(θ) is symmetric around θ = 1/2.

The optimal menu contains only the fully informative experiment.

An implication of Proposition 8 is that the seller offers a second experiment only if ironing

is required. At the same time, there exist examples with non-monotone virtual values and

one-item menus. Distributions that are symmetric around 1/2 are one such instance: for

any distribution F (θ), the solution to the restricted problem on [0, 1/2] or [1/2, 1] is a cutoff

policy. Because the cutoffs under symmetric distribution are themselves symmetric, the

solutions to the two subproblems satisfy the integral constraint and, hence, provide a tight

upper bound to the seller’s profits.

The monotonicity conditions of Proposition 8 that guarantee increasing virtual values

are quite demanding. When types correspond to interim beliefs, it is natural to consider

bimodal densities (e.g., a well-informed population in a binary model) that fail the regularity

conditions and, therefore, introduce the need for ironing. For example, starting from the

common prior, if buyers observe binary signals, a bimodal distribution of beliefs would

result with types holding beliefs above and below the mean of the common prior µ. Thus,

non-monotone densities and distributions violating the standard monotonicity conditions are

a natural benchmark. Therefore, ironing is not a technical curiosity in our case, but rather a

technique that becomes unavoidable because of the features of the information environment.

We now illustrate the ironing procedure when virtual values are not monotone and how

it leads to a richer (two-item) optimal menu. Figure 8 considers a bimodal distribution of

types, illustrating the probability density function and the associated virtual values.11

11The distribution in the left panel represents a “perturbation”of the two-type example in Section 4.1. In
particular, it is a mixture (with equal weights) of two Beta distributions with parameters (8, 30) and (60, 30).
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Figure 8: Probability Density Function and Virtual Values

We therefore consider the “ironed”versions of each virtual value and identify the equi-

librium value of the multiplier λ∗. In this example, the value of the multiplier must equal

the constant level of one of the virtual values.

Figure 9 illustrates the optimal two-item menu. For types in the “pooling”region θ ∈
[0.17, 0.55], the seller is indifferent among all values of q ∈ [−1, 0]. The optimal allocation

(q∗ ≈ −0.22) is pinned down by (the pooling property and) the integral constraint.

In both examples, extreme types with a low value of information are excluded from

the purchase of informative signals. In the latter example, the monopolist offers a second

information structure that is tailored towards relatively lower types. This structure (with

q < 0) contains one signal that perfectly reveals the high state. This experiment is relatively

unattractive for higher types, and it allows the monopolist to increase the price for the large

mass of types located around θ ≈ 0.7.

Figure 9: Ironed Virtual Values and Optimal Allocation

The properties of the optimal discriminatory pricing scheme reflect the fact that the type

structure is quite different from the standard screening environment. While information

rents U (θ) peak at θ = 1/2, the ex ante least informed type θ = 1/2 need not purchase the
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fully informative experiment, despite having the highest value of information.12 In the above

example, inducing the types around θ = 1/2 to purchase the fully informative experiment

would require further distortions (hence, a lower price) for the second experiment. This leads

to a loss of revenue from types around θ ≈ 0.2. Because such types are quite frequent, this

loss more than offsets the gain in revenue from types around 1/2.

6 Implications for Data Pricing

Menu pricing of information products is widely used by many data sellers, including genetic

testing companies, credit score agencies, and big data brokers. The former two offer menus

of products consisting of tests or inquiries that reveal, with varying degrees of confidence, a

patient’s predisposition to develop a disease or a borrower’s risk of default. The latter offer

both standardized and customized data services that facilitate targeting advertisements to

specific consumers.13

In this Section, we relate the solution to our screening problem to the practical design of

information products. In a nutshell, our seller’s problem consists of degrading the quality of

the information sold to some buyers in order to charge higher prices to “premium”buyers.14

Our results contribute to identifying systematic patterns in the optimal design of “distorted”

partially informative experiments.

Remark 1 (No White Noise) No product in an optimal menu adds unbiased noise to the
seller’s information. Instead, each product contains “directionally informative”signals.

Proposition 2 shows that every experiment is non-dispersed and, therefore, the buyer

always takes the correct action in at least one state. In reality, sellers hardly have perfect

information about the state. Nonetheless, in the special case of binary states and actions,

every optimal experiment minimizes the type-II error for any level of type-I error (as in

Figure 2). This result has several practical implications.

Genetic testing companies such as Ambry Genetics exploit advances in sequencing tech-

nology to identify gene mutations associated with various diseases. The tests on its menu

12This feature of the optimal menu already emerges in three type examples. Type θ = 1/2 nevertheless
obtains the highest information rent.
13Brokers such as Acxiom and Oracle offer Data Management Platforms– customized software that

automates the integration of 1st- and 3rd-party data, enabling websites to track their users and place
them into more precise market segments– as well as less flexible data packages (see, for example,
http://www.acxiom.com/data-packages/). Similarly, AddThis offers a choice between using a customized
consumer audience and a standard audience (http://www.addthis.com/custom-audiences).
14Our setting differs from the “damaged goods”model of Deneckere and McAfee (1996) because degrading

quality is costless.
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vary mainly in the number of genes tested for each medical condition. Importantly, the low-

end products always test a strict subset of the genes tested by the higher-end products.15

Through the lens of our model, all such tests eliminate the type-I error, and buyers are

screened on the basis of their relative distaste for different types of statistical errors.

Similarly, credit reporting agencies such as Equifax do not offer both precise and noisy

versions of the same information (e.g., computing a consumer’s credit score on the basis of

more or less detailed data). Instead, Equifax offers its business customers products such as

“Prescreen”and “Undisclosed Debt Monitoring.”The former identifies consumers who are

likely to open and maintain an account. Among other criteria, it uses a flexible threshold

on the credit score to construct the target list. Varying the threshold then corresponds to

varying the information provided in an optimal way, balancing the trade-off between type-

I and type-II errors. The latter identifies default risk based on new information arriving

between the time of the original credit inquiry and the closing of the loan. This product’s

versions differ in the number of events (e.g., late payments or inquiries made to competing

agencies Experian and Transunion) that are monitored for potentially “bad news.”

This approach to selling consumer-level information is in sharp contrast to earlier meth-

ods. For instance, mailing lists are typically sold at the level of mail-carrier routes.16 From

the information buyer’s point of view, using approximate information (e.g., one’s home ad-

dress as a proxy for income) inevitably allows for both types of statistical errors.

Remark 2 (Targeted and Residual Categories) With two buyer types, all states (ex-
cept one at most) are partitioned into targeted states that send non-dispersed information

and residual states that send dispersed signals. Only actions corresponding to targeted states

are chosen with positive probability.

Proposition 5 characterizes the optimal menu for the binary type setting. With two

buyer types, the partially informative experiment is represented by the triangular matrix

(21). This means that the seller chooses a subset of “targeted”realized states in which the

buyer always takes the correct action. Conversely, when a “residual” state is realized, the

buyer never takes the correct action. In other words, some states are used to “degrade”the

information revealed about the targeted states. This property of the optimal menu resonates

with the design of the information products offered by online data brokers.

In the online advertising market, data brokers record several attributes for each individual

consumer. They then offer “data packages”to advertisers. Such packages can be viewed as

15For example, breast and ovarian cancer tests examine between 2 and 17 genes. Their prices range from
$400 to $3900 (http://www.ambrygen.com/sites/default/files/Master_Pricelist_testCode_2.pdf).
16See http://mailways.net or the paper by Anderson and Simester (2013) on direct marketing.
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experiments where each signal “flags”a consumer segment. If we view a state realization as

a specific consumer profile (i.e., a combination of attributes), every optimal signal will flag

a segment consisting of all consumers fitting a single profile and will also include additional,

heterogeneous consumers.

Data brokers choose which segments to include in each package on the basis of the relative

demand for each individual consumer profile. A very coarse data package would, for example,

partition the consumer population into segments corresponding to an “Advertise”and a “Do

Not Advertise” recommendation. Depending on which consumer profiles advertisers wish

to include and exclude– both kinds of targeting strategies are empirically relevant– data

packages may lead to excessively broad or excessively narrow campaigns.17

Remark 3 (Simple Menus for Simple Problems) Regardless of the heterogeneity in the
consumer population, the optimal menu for binary choice problems contains two items– a

“full”version and a “light”version of the seller’s information.

Proposition 7 establishes the optimality of two-item menus for binary state and action

problems. While there are other reasons to offer relatively coarse menus, our results shed

light on how the complexity of the buyer’s decision problem is related to the complexity of

the optimal menu– not just to the cardinality of the signal space by Proposition 1.

For example, in the case of genetic testing, the main choice of action consists of whether

to order additional exams or increase the frequency with which a patient is monitored. In

line with our results, Ambry Genetics offers a rich product line targeting several diseases.

However, within each condition (e.g., a certain type of cancer or cardiac disease), very few

options are typically available– one that covers all the genes the company is able to test and

another that induces type-II errors.18

Two-item menus are also used by LinkedIn to sell member profiles to potential employers

who, essentially, must decide whom to interview: a Lite version that allows one to condition

searches on a limited number of criteria and a Premium version that grants access to the

entire database. Conversely, in the case of online advertising, the action space is much

larger (e.g., how much to invest and which product to advertise). Customization of the data

packages then leads to a menu with a far greater number of options.

17In our earlier work (Bergemann and Bonatti, 2015), we examined a linear pricing problem for individual
consumer profiles, i.e., “cookies.”
18Passing the genetic test does not guarantee that the patient will not develop the disease. In that sense,

the seller has only partial information (whose accuracy depends on the disease). For our purposes, we can,
however, identify the fully informative experiment with the revelation of all the seller’s information.
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7 Conclusions

We have studied the problem of a monopolist who sells incremental information to pri-

vately informed buyers. Fundamental to the seller’s incentives to degrade information is

the Bayesian nature of the buyer’s problem. In particular, selling information introduces a

novel aspect of horizontal differentiation across buyer types that widens the scope for price

discrimination through directional information.

We have deliberately focused on the “packaging”or versioning problem of a seller who

is (a) free to acquire and degrade information, and (b) uninterested in the buyer’s actions.

Thus, our results provide only a first pass at understanding the trade-offs involved in selling

information products. A richer model would distinguish the cost of acquiring information

(i.e., building the database) from the cost of duplicating and distributing the information.

Furthermore, in many applications, it is costly to introduce noise in the data . This occurs,

for instance, when the seller is concerned with preserving the anonymity of her information.

Selling pre-packaged data is just one mechanism for trading information. For instance,

large providers of online advertising space, such as Google and Microsoft, do not just sell

information– they also internalize advertisers’ spending decisions. Thus, they effectively

bundle data and advertising products by offering a menu of targeting opportunities. In

this sense, our approach is better suited to analyze a data broker’s pricing problem when

merchants wish to buy targeted “advertising products”from a different seller. At the same

time, this application suggests an interesting model with a richer contract space.

Finally, we have relied solely on belief heterogeneity to motivate the sale of incremental

information. However, buyers of information may differ along several alternative or addi-

tional dimensions. For example, buyers of time-sensitive data can be screened according to

how much they value timely information.19 Each of these extensions can be implemented in

the framework we have outlined. Combining different sources of heterogeneity (e.g., beliefs

and discount rates) appears more challenging but promises additional insights.

19Essentially homogeneous information products that differ in availability timing include: the Consumer
Sentiment Index released by Thomson-Reuters and the University of Michigan, as well as the Exome tests
for prenatal genetic diagnoses offered by Ambry Genetics.
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A Appendix

Proof of Proposition 1. Consider any type θ and experiment I. Let SaI denote the sets
of the signals in experiment I that induce type θ to choose action a. Thus, ∪a∈ASaI = SI .

Construct the experiment I ′ as a recommendation for type θ based on the experiment I,

SI′ = {sa}a∈A and

πI′ (sa|ω) =

∫
SaI

πI (s | ω) ds ω ∈ Ω, a ∈ A.

By construction, I ′ induces the same outcome distribution for type θ as I so V (I ′, θ) =

V (I, θ). At the same time, I ′ is a garbling of I so by Blackwell’s theorem V (I ′, θ′) ≤
V (I, θ′) ∀ θ′. Thus, for any incentive compatible and individually rational direct mechanism
{I (θ) , t (θ)} we can construct another direct mechanism {I ′ (θ) , t (θ)} with its experiments
leading type θ to take a different action after observing each signal s ∈ S (θ) that is also

incentive compatible and individually rational, and yields weakly larger profits. �

Proof of Proposition 2. The argument for part (1.) is given in the text. For part

(2.), consider any individually rational and incentive compatible direct mechanism M =

{I (θ) , t (θ)}. Fix a type θ with the associated experiment I (θ) and let πij (θ) denote the

conditional probability of signal sj in state ωi under experiment I (θ). By Proposition 1,

each type θ has a different optimal action for each signal in I (θ). Without loss of generality,

we then arrange the signals in I (θ) so that type θ takes action ai when observing si. If type

θ never takes action ai, we drop signal si from I (θ), i.e. we set the i-th column of π (θ) to

zero. Because beliefs Σiθi = 1, we can write the value of information (4) as

V (I (θ) , θ) =

[
N∑
i=1

θiπii (θ)−max
i
θi

]+

=

[
N−1∑
i=1

θi (πii (θ)− πNN (θ)) + πNN (θ)−max
i
θi

]+

. (29)

Now define ε (θ) := 1 − maxπii (θ), and construct a new experiment I ′ (θ) where π′ii (θ) =

πii (θ)+ε (θ) for all i and for all θ. For each state ωi, the off-diagonal entries πij (θ) with j 6= i,

are correspondingly reduced by ε (θ), without further restrictions on how this is operation is

performed. It then follows from (29) that

[V (I ′ (θ) , θ)− ε (θ)]
+

= V (I (θ) , θ) .

Furthermore, for all types θ′ 6= θ, the value of mimicking type θ increases by less than ε (θ)
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(strictly so, if type θ′ 6= θ responds to the signals in I (θ) differently from type θ). Suppose

type θ′ chooses action ai(j) upon observing signal sj from experiment I (θ). We then have

V (I (θ) , θ′) =

[
N∑
j=1

θ′i(j)πi(j)j (θ)−max
i
θ′i

]+

.

Furthermore, because i (j) need not coincide with j, the entries πi(j)j in V (I (θ) , θ′) increase

at most by ε (θ). Therefore, we have

[V (I ′ (θ) , θ′)− ε (θ)]
+ ≤ V (I (θ) , θ′) .

Consequently, the direct mechanismM′ = {I ′ (θ) , t (θ) + ε (θ)} is also individually rational
and incentive compatible. Moreover, all experiments I (θ) are non-dispersed by construction,

and all transfers are weakly greater than in the original mechanismM. �

Proof of Proposition 3. (i) We know from Proposition 2 that at least one type must buy
the fully informative experiment I∗. Suppose only type θL buys I∗ as part of the optimal

menu. Then the price of I∗ is at most V (I∗, θL). By incentive compatibility, if the high

type θH purchases I 6= I∗, it must be that t(θH) < V (I∗, θL). Therefore, eliminating the

experiment I(θH) from the menu strictly improves the seller’s profits. Contradiction. (iii)

The participation constraint of θL must bind. Indeed, some participation constraint must

bind, otherwise increase both prices. To the contrary, let the constraint of θH bind and not of

θL. Since θH is served by I∗ then t(θH) = V
(
I∗, θH

)
≥ V

(
I∗, θL

)
. Hence can increase t(θL)

without violating incentive compatibility. (ii) The incentive constraint of θH must bind. To

the contrary, assume that it does not bind. Then there are two cases. If θH participation

constraint doesn’t bind then can increase t(θH). If θH participation constraint binds then it

must be that I(θL) is not equal to I∗. Since payoffs are continuous in πij we can increase

both informativeness of I(θL) and t(θL). �

Proof of Proposition 4. (1.) Consider the case of congruent priors. It follows from

Proposition 5 that an optimal menu contains the fully informative experiment only. The

value for this experiment are 1− θH and 1− θL for the high and the low type, respectively.
The profits from non-exclusive and exclusive pricing are γ

(
1− θH

)
and 1 − θL. Thus, it is

optimal for both types to participate if and only if γ ≤ (1− θL)/(1− θH).

(2.) Consider the case of noncongruent priors. Let q , π11 − π22 and denote qL =

q(θL), qH = q(θH). It follows again from Proposition 5 that in, an optimal menu, we have

qL ≤ 0 and qH = 0. If γ < θL/θH , we wish to show that flat pricing is optimal, i.e.,

qL = qH = 0 and t1 = t2 = 1 − θL. Now, for an arbitrary incentive compatible menu
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(
qH , qL, tH , tL

)
define the following modification:

(
qH′, tH′, qL′, tL′

)
=
(
qH , tH − ε

(
θH − θL

)
, qL + ε, tL + ε

(
1− θL

))
. (30)

If qL < 0, the modification (30) with ε ∈ (0,−qL) preserves incentive compatibility and

improves profits by εθH(θL) > 0, which yields a contradiction.

Finally, we wish to show that if γ > θL/θH , then discriminatory pricing is optimal. Notice

first that the individual rationality of the high type must bind, qH = 0, tH = 1−θH , otherwise
modification (30) would be profitable for some ε < 0. Second, the qL and tL maximize the

payment of the low type, subject to his individual rationality constraint and to the high

type’s incentive-compatibility constraint. At the optimum, both constraints bind, and the

solution is given by

qL =
θH + θL − 1

θH − θL
, tL =

(
2θH − 1

)
θL

θH − θL
.

Substituting the definition of q yields the expression (14) in the statement. �

Proof of Proposition 5. We know from Proposition 3 that the high type θH purchases

the fully informative experiment. We now derive the optimal experiment I(θL). Suppose (as

we later verify) that both types θH and θL would choose action ai after observing signal si
from the optimal experiment I(θL). The seller then chooses πii ∈ [0, 1] , i = 1, . . . n to solve

the linear program (15) subject to (16). We can write the Lagrangian as

L = (1− γ)

[
n∑
i=1

πii
(
θLi + λ

(
θLi − θHi

))
− λmax

i
θLi + λmax

i
θHi + λU(θH)

]
− γU(θH),

where λ ≥ 0 represents the shadow value of increasing type the informational rent U(θH).

It follows immediately that

πii =


0 if θLi + λ

(
θLi − θHi

)
< 0,

[0, 1] if θLi + λ
(
θLi − θHi

)
= 0,

1 if θLi + λ
(
θLi − θHi

)
> 0.

(31)

and that

U(θH) =

{ ∑n
i=1(θH)πii + maxi θ

L
i −maxi θ

H
i if γ < λ (1− γ) ,

0 if γ ≥ λ (1− γ) .
(32)

To characterize the solution, we need only identify the value of the multiplier λ∗. We proceed

in the following steps.
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1. Recall states ωi are ordered by increasing likelihood ratio of beliefs θ
L
i /θ

H
i , and consider

state ω1. If ω1 is the only state i for which πii < 1, (31) implies that the multiplier is

given by

λ∗ = min
i

1
θHi
θLi

+ 1
=

θL1
θL1 + θH1

. (33)

Therefore, π11 solves (16) with equality, i.e., the candidate optimal value is π11 = k1

as defined in (19). If k1 ≥ 0 and θL1 /θ
H
1 < γ, then (32) implies U(θH) = 0 and (31)

implies we must set πii = 1 for all i ≥ 2. If instead γ < θL1 /θ
H
1 then then π11 = 1

and U(θH) > 0 solves (16), i.e., U(θH) = maxi θ
L
i − maxi θ

H
i . Finally, if k1 < 0 and

θL1 /θ
H
1 < γ, there is no solution with the value of λ∗ given in (33).

2. Suppose the above candidate solution is not, in fact, the optimum. The value of

the multiplier must then satisfy λ∗ > θL1 /(θ
L
1 + θH1 ), which implies the non-negativity

constraint binds, i.e., π11 = 0. This means the optimal partially informative experiment

has less than full rank. The next candidate value for the multiplier λ∗ is θL2 /(θ
L
2 + θH2 ).

Again, if k2 ≥ 0 and θL2 /θ
H
2 < γ, then (32) implies U(θH) = 0 and (31) implies πii = 1

for all i ≥ 3. If instead γ < θL1 /θ
H
1 then then π11 = 1 and U(θH) > 0 solves (16)

with equality. Finally, if k2 < 0 and θL2 /θ
H
2 < γ, there is no solution with the value

of λ∗ = θL2 /(θ
L
2 + θH2 ) and the next candidate is λ∗ = θL3 /(θ

L
3 + θH3 ), which implies

π11 = π22 = 0.

3. The procedure iterates until either (a) state i∗ is reached, i.e., θLi /θ
H
i > γ, or (b) state

j∗ is reached, i.e., kj ≥ 0.

4. We must then verify that the off-diagonal entries πij, i 6= j can be set to ensure both

types θH and θL choose action ai when observing signal si. This requires

πiiθi ≥ πjiθj

for both θL and θH and for all j < i, because the signal matrix can be taken to be

lower triangular. Fix a signal i and an alternative action aj. We need

θi
θj
≥ πji
πii
.

By construction we have θHi /θ
H
j < θLi /θ

L
j for all i > j, hence, we need only worry

about the incentives of type θH . We can then assign the probabilities πji following

the procedure described in Algorithm 1: for any i′ > i, we make type θH indifferent

between following the recommendation of signal i′ and choosing actions ai; we do so
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beginning with πjn and proceeding backward as long as required; if the procedure

assigns positive weight to πji then it must be that πji = 1 − Σn
s=i+1θ

H
s /θ

H
j . It follows

that type θH has strict incentives to follow the recommendation of signal i. Note that

πii ∈ {ki, 1}, hence, if πii = ki, we have by definition

kiθ
H
i =

∑n
s=i+1

(
θLs − θHs

)
−maxj θ

L
j + maxj θ

H
j

θHi − θLi
θHi .

Now, because arg maxj θ
L
j > i we can bound the above expression by

kiθ
H
i >

θHi
θHi − θLi

(
θHj − Σn

s=i+1θ
H
s

)
> θHj − Σn

s=i+1θ
H
s = θHj πji.

A fortiori, type θH has strict incentives to choose ai if πii = 1.

This ends the proof. �

Algorithm 1 (Optimal Menu with Binary Type) We construct the two optimal ex-
periments as a function of the distribution of types. This algorithm contains three sub-

routines, beginning with the construction of the allocation described in part (1.) of Propo-

sition 5. We refer to this allocation as the maximally informative zero rent experiment.

Maximally Informative Zero Rent Experiment. Order states i in increasing order of
the likelihood ratios θLi /θ

H
i and set U(θH) = 0. Let πii = 1 for i = 2, . . . , n and solve (16)

with equality with respect to π11. The solution is given by k1 in (19). If k1 ≥ 0, stop. If

k1 < 0, set π11 = 0 and πii = 1 for i = 3, . . . , n. Solve (16) with equality with respect to π22,

which yields k2. If k2 ≥ 0, stop, otherwise iterate the procedure. The procedure terminates

at state j∗ defined in (20).

We now use the distribution of types to identify which step of the construction yields the

profit-maximizing experiment.

Optimal Experiment. Begin at state j∗. If γ > θLj∗/θ
H
j∗ the maximally informative zero

rent experiment is part of the optimal menu. If γ < θLj∗/θ
H
j∗, set πj∗j∗ = 1 and consider j∗−1.

If γ > θLj∗−1/θ
H
j∗−1, stop, and choose U(θH) > 0 to satisfy (16) with equality. Otherwise set

πj∗−1,j∗−1 = 1 and consider j∗ − 2, iterating until reaching state i∗ defined in (18) and

adjusting the rent U(θH) to satisfy the incentive constraint.

Thus, as the fraction of high types γ increases, the optimal menu involves potentially

steeper distortions. Conversely, when i∗ = 1, the menu involves bunching both types at
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the fully informative experiment. Finally, we illustrate a simple procedure to assign the

off-diagonal probabilities to the partially informative experiment.

Off-Diagonal Entries. Suppose the optimal menu sets πii = 0 for all i < ı̂, for some

ı̂ > 1. To assign the off diagonal entries πi,j with i < ı̂ and j ≥ ı̂, fix a state i < ı̂ and

begin with signal n. Let πin = min{θHn /θHi , 1}. If θHn /θHi > 1, stop. If θHn /θ
H
i < 1, set

πi,n−1 = min{θHn−1/θ
H
i , 1−θHn /θHi }, and proceed backwards until reaching πi,i+1. The entries

so constructed satisfy the recommendation constraint because, by the definition of kj in (19),

we have θHı̂ > kı̂θ
H
ı̂ > θHi

(
1− Σn

j=ı̂+1θ
H
j /θ

H
i

)
.

Proof of Lemma 1. We begin with necessity. Consider an incentive compatible allocation
q. For any two types θ2 > θ1 we have

V (q1, θ1)− t1 ≥ V (q2, θ1)− t2,
V (q2, θ2)− t2 ≥ V (q1, θ2)− t1,

V (q2, θ2)− V (q1, θ2) ≥ t2 − t1 ≥ V (q2, θ1)− V (q1, θ1) .

It follows from the single-crossing property of V (q, θ) that q2 ≥ q1 hence q (θ) is increasing.

Because the buyer’s rent is differentiable with respect to θ on [0, 1/2] and [1/2, 1] respec-

tively, we can compute the function U (θ) on these two intervals separately. We obtain the

expression in the text,

U(1/2) = U (0) +

∫ 1/2

0

Vθ (q, θ) dθ = U (1)−
∫ 1

1/2

Vθ (q, θ) dθ.

By the envelope theorem Vθ (q, θ) = q + 1 for θ < 1/2 and = q − 1 for θ > 1/2. Finally,

because U (0) = U (1) we obtain ∫ 1

0

q (θ) dθ = 0.

We now turn to suffi ciency. Suppose the allocation q is increasing and satisfies the integral

constraint. Then construct the following transfers

t (θ) =

{
θq (θ)−max {q (θ) , 0} −

∫ θ
0
q (x) dx if θ < 1/2,

θq (θ)−max {q (θ) , 0}+
∫ 1

θ
q (x) dx if θ ≥ 1/2.

(34)

Because the allocation satisfies the integral constraint, we have∫ θ

0

q (x) dx = −
∫ 1

θ

q (x) dx,
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and we can express all transfers t (θ) as

t (θ) = q (θ) θ −max {q (θ) , 0} −
∫ θ

0

q (x) dx.

Finally, the expected utility of type θ from reporting type θ′ is given by

V (q (θ′) , θ)− t (θ′) = (θ − θ′) q (θ′) +

∫ θ′

0

q (x) dx+ min {θ, 1− θ} .

Because q is monotone, the expression on the right-hand side is maximized at θ′ = θ and,

hence, the incentive constraints are satisfied. Finally, because the rent function U (θ) =

V (q (θ) , θ)− t (θ) is non-negative for all θ ∈ [0, 1], the participation constraints are satisfied

as well. �

Proof of Proposition 6. We first derive the seller’s objective in the usual way. Using (34),
we write the expected transfers as∫ 1

0

t (θ) dF (θ) =

∫ 1

0

(θq (θ)−max {q (θ) , 0}) dF (θ)

−
∫ 1/2

0

∫ θ

0

q (x) dxdF (θ) +

∫ 1

1/2

∫ 1

θ

q (x) dxdF (θ) .

Integrating the last two terms by parts, we obtain

−F (1/2)

∫ 1/2

0

q (x) dx+

∫ 1/2

0

q (x)F (x) dx− F (1/2)

∫ 1

1/2

q (x) dx+

∫ 1

1/2

q (x)F (x)dx,

and hence∫ 1

0

t (θ) dF (θ) =

∫ 1

0

[(θq (θ)−max {q (θ) , 0}) f (θ)− (F (1/2)− F (θ)) q (θ)] dθ.

We now establish that the solution to the seller’s problem (28) can be characterized

through Lagrangian methods. For necessity, note that the objective is concave in the allo-

cation rule; the set of non-decreasing functions is convex; and the integral constraint can be

weakened to the real-valued inequality constraint∫ 1

0

q(θ)dθ ≤ 0. (35)

Necessity of the Lagrangian then follows from Theorem 8.3.1 in Luenberger (1969). Suffi -
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ciency follows from Theorem 8.4.1 in Luenberger (1969). In particular, any solution maxi-

mizer of the Lagrangian q(θ) with ∫ 1

0

q(θ)dθ = q̄

maximizes the original objective subject to the inequality constraint∫ 1

0

q(θ)dθ ≤ q̄.

Thus, any solution to the Lagrangian that satisfies the constraint solves the original problem.

Because the Lagrangian approach is valid, we apply the results of Toikka (2011) to solve

the seller’s problem for a given value of the multiplier λ on the integral constraint. Write

the Lagrangian as ∫ 1

0

[(θf (θ) + F (θ)− λ) q (θ)−max {q (θ) , 0} f (θ)] dθ.

In order to maximize the Lagrangian subject to the monotonicity constraint, consider the

generalized virtual surplus

J̄(θ, q) :=

∫ q

−1

(
φ̄ (θ, x)− λ∗

)
dx,

where φ̄ (θ, x) denotes the ironed virtual value for allocation x. Note that J̄(θ, q) is weakly

concave in q. Because the multiplier λ shifts all virtual values by a constant, the result in

Proposition 6 then follows from Theorem 4.4 in Toikka (2011). Finally, note that φ̄(θ, q) ≥ 0

for all θ implies the value λ∗ is strictly positive (otherwise the solution q∗ would have a

strictly positive integral). Therefore, the integral constraint (35) binds. �
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Proof of Proposition 7. From the Lagrangian maximization, we have the following nec-

essary conditions

q∗(θ) =



−1 if φ̄(θ,−1) < λ∗,

q̄ ∈ [−1, 0] if φ̄(θ,−1) = λ∗,

0 if φ̄(θ,−1) > λ∗ > φ̄(θ, 1),

q̄′ ∈ [0, 1] if φ̄(θ, 1) = λ∗,

1 if φ̄(θ,−1) > λ∗,

and ∫ 1

0

q∗(θ)dθ = 0.

If λ∗ coincides with the flat portion of one virtual value, then by the pooling property of

Myerson (1981), the optimal allocation rule must be constant over that interval, and the

level of the allocation is uniquely determined by the integral constraint. Finally, suppose λ∗

equals the value of φ̄(θ, q∗(θ)) over more than one flat portion of the virtual values φ̄(θ,−1)

and φ̄(θ, 1). Without loss of generality, we can select an allocation q∗ that assigns experiment

q = 0 or q ∈ {−1, 1} to all types in one of the two intervals. �

Proof of Proposition 8. (1.) If F (θ) + θf (θ) and F (θ) + (θ − 1) f (θ) are strictly increas-

ing, then ironing is not required and it follows from the analysis in the text that the optimal

solution has q ∈ {−1, 0, 1} for all θ.
(2.) If all types are located at one side from 1/2 then the integral constraint has no bite

since the allocation rule q (θ) can always be adjusted on the other side to satisfy it. The

solution on each side of 1/2 involves a cutoff type and q ∈ {−1, 0} or q ∈ {0, 1} , both of
which result in flat pricing.

(3.) If types are symmetrically distributed, then the separately optimal menus for types

θ < 1/2 and θ > 1/2 are identical. Therefore, the union of the two solutions satisfies the

integral constraint, and hence solves the original problem. �
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