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Abstract

We consider the problem of constructing honest confidence intervals (CIs) for a scalar

parameter of interest, such as the regression discontinuity parameter, in nonparametric

regression based on kernel or local polynomial estimators. To ensure that our CIs are

honest, we derive novel critical values that take into account the possible bias of the

estimator upon which the CIs are based. We show that this approach leads to CIs that

are more efficient than conventional CIs that achieve coverage by undersmoothing or

subtracting an estimate of the bias. We give sharp efficiency bounds of using different

kernels, and derive the optimal bandwidth for constructing honest CIs. We show that

using the bandwidth that minimizes the maximum mean-squared error results in CIs

that are nearly efficient and that in this case, the critical value depends only on the rate

of convergence. For the common case in which the rate of convergence is n−2/5, the

appropriate critical value for 95% CIs is 2.18, rather than the usual 1.96 critical value.

We illustrate our results in a Monte Carlo analysis and an empirical application.
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1 Introduction

This paper considers the problem of constructing confidence intervals (CIs) for a scalar param-

eter T (f) of a function f , which can be a conditional mean or a density. The scalar parameter

may correspond, for example, to a conditional mean, or its derivatives at a point, the regression

discontinuity or the regression kink parameter, or the value of a density or its derivatives at

a point. A popular approach to estimation of T (f) is to use kernel or local polynomial esti-

mators. These estimators are both simple to implement, and highly efficient in terms of their

mean squared error (MSE) properties (Fan, 1993; Cheng et al., 1997). CIs are typically formed

by undersmoothing (choosing the bandwidth to shrink more quickly than the MSE optimal

bandwidth) or bias-correction (subtracting an estimate of the estimator’s bias).

In this paper, we propose a simple alternative approach to forming CIs based on these

estimators that is more efficient than both undersmoothing and bias-correction in the sense

that it leads to shorter CIs while maintaining coverage over the same parameter space F for f

(which typically places bounds on derivatives of f). In particular, one simply adds and subtracts

the estimator’s standard error times a critical value that is larger than the usual normal quantile

z1−α/2, and takes into account the possible bias of the estimator.1 Asymptotically, these CIs

correspond to fixed-length CIs as defined in Donoho (1994), and so we refer to them as fixed-

length CIs. We show that the critical value depends only on (1) the order of the derivative that

one bounds to define the parameter space F ; and (2) the criterion used to choose the bandwidth.

In particular, if the MSE optimal bandwidth is used with a local linear estimator, computing

our CI at the 95% coverage level amounts to replacing the usual critical value z0.975 = 1.96 with

2.18.

When the criterion for bandwidth choice is the length of the resulting CI, we show that the

resulting bandwidth is in fact larger than the MSE optimal bandwidth. This contrasts with the

work of Hall (1992) and Calonico et al. (2017) on optimality of undersmoothing. Importantly,

these papers restrict attention to CIs that use the usual critical value z1−α/2. It then becomes

necessary to choose a small enough bandwidth so that the bias is asymptotically negligible

relative to the standard error, since this is the only way to achieve correct coverage. Our

results imply that rather than choosing a smaller bandwidth, it is better to use a larger critical

value that takes into account the potential bias; this also ensures correct coverage regardless of

the bandwidth sequence. While the fixed-length CIs shrink at the optimal rate, undersmoothed

CIs shrink more slowly. We also show that fixed-length CIs are about 30% shorter than the

bias-corrected CIs, once the standard error is adjusted to take into account the variability of

the bias estimate (Calonico et al. (2014) show that doing so is important in order to maintain

1An R package implementing our CIs in regression discontinuity designs is available at https://github.

com/kolesarm/RDHonest.
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coverage). The oversmoothing relative to the MSE optimal bandwidth is relatively modest:

under a range of conditions most commonly used in practice, a fixed-length CI centered at the

MSE optimal bandwidth is 99% efficient relative to using the CI optimal bandwidth. Therefore,

a practically attractive implementation of our CIs is to simply center them around an estimator

with MSE optimal bandwidth, rather than reoptimizing the bandwidth for length and coverage

of the CI.

A key requirement that underlies our results is the notion of honesty: as in Li (1989), we

require that the CIs cover the true parameter asymptotically at the nominal level uniformly over

the parameter space F . Furthermore, we allow this parameter space to grow with the sample

size. The notion of honesty is closely related to the use of the minimax criterion used to derive

the MSE efficiency results: in both cases, one requires good performance uniformly over the

parameter space F . The requirement that the CIs be honest is necessary for good finite-sample

performance. In contrast, approaches to inference based on pointwise-in-f asymptotics, such

as using bandwidths that optimize the pointwise-in-f asymptotic MSE can lead to arbitrarily

poor finite-sample behavior, as we discuss further in Section 4.1. To illustrate the practical

importance of this point, we conduct a Monte Carlo study in which we show that commonly

used CIs based on plug-in bandwidths that attempt to estimate this pointwise-in-f optimal

bandwidth exhibit severe undercoverage, even when combined with undersmoothing or bias-

correction.

When the parameter space places a bound M on a derivative of f , our CIs require this

bound to be specified explicitly. While this may appear to be a disadvantage of our particular

approach, we note that, due to impossibility results of Low (1997), Cai and Low (2004), and

Armstrong and Kolesár (2018), this cannot be avoided, regardless of how one forms the CI. In

particular, these papers show that, without additional assumptions on the parameter space, one

cannot use a data-driven method to estimateM and maintain coverage over the whole parameter

space—any other method that appears to avoid making this choice must do so implicitly. For

example, an apparent advantage of undersmoothing is that it leads to correct coverage for any

fixed smoothness constant M . However, as we discuss in detail in Section 4.2, a more accurate

description of undersmoothing is that for each sample size n, it implicitly chooses a constant

Mn under which coverage is controlled. Given a sequence of undersmoothed bandwidths, we

show how Mn can be calculated explicitly. One can then obtain a shorter CI with the same

coverage properties by computing a fixed-length CI for the corresponding Mn.

Given these results, we recommend that, whenever possible, problem-specific knowledge be

used to decide what choice of M is reasonable a priori. We also propose a data-driven rule

of thumb for choosing M , although, by the above impossibility results, one needs to impose

additional assumptions on f in order for the resulting CI to have correct coverage. Regardless

of how one chooses M , the fixed-length CIs we propose are more efficient than undersmoothed

3



or bias-corrected CIs that use the same (implicit or explicit) choice of M . In fact, it follows

from the calculations in Donoho (1994) and Armstrong and Kolesár (2018) that our CIs, when

constructed using a length-optimal or MSE-optimal bandwidth, are highly efficient among all

honest CIs: no other approach to inference can substantively improve on their length, while

still maintaining coverage.

In addition to calculating the relative efficiency of CIs constructed using different band-

widths, our results allow us to calculate the relative efficiency of CIs constructed using different

kernels. In particular, we show that the relative efficiency of kernels for the CIs we propose is

the same as the relative efficiency of the estimates in terms of MSE. Thus, relative efficiency cal-

culations for MSE, such as the ones in Fan (1993), Cheng et al. (1997), and Fan et al. (1997) for

estimation of a nonparametric mean at a point (estimation of f(x0) for some x0) that motivate

much of empirical practice in the applied regression discontinuity literature, translate directly

to CI construction. Despite their importance in motivating empirical practice, however, such

results are subject to a technical critique about how the parameter space is specified: rather

than placing a bound on a derivative of f (a Hölder condition), currently available relative

efficiency results place assumptions directly on the error of a Taylor approximation at a partic-

ular point, so that some “nonsmooth” functions are in fact not ruled out.2 To address this, we

derive the minimax performace of local polynomial estimators under Hölder restrictions on f .

These results confirm that the local polynomial estimators used in empirical practice are also

highly efficient under Hölder restrictions on f , a finding which may be of interest in its own

right.

The requirement of honesty is also important to ensure that our concept of optimality is

well-defined and consistent. As discussed above, it allows us to consider bandwidth or kernel

efficiency for constructing CIs. In addition, it also allows us to formally show that using local

polynomial regression of an order that’s too high given the amount of smoothness imposed is

suboptimal. In contrast, under pointwise-in-f asymptotics, high-order local polynomial esti-

mates are superefficient at every point in the parameter space (see Chapter 1.2.4 in Tsybakov,

2009, and Brown et al., 1997).

To illustrate the implementation of the honest CIs, we reanalyze the data from Ludwig and

Miller (2007), who, using a regression discontinuity design, find a large and significant effect of

receiving technical assistance to apply for Head Start funding on child mortality at a county level.

However, this result is based on CIs that ignore the possible bias of the local linear estimator

around which they are built, and an ad hoc bandwidth choice. We find that, if one bounds

the second derivative globally by a constant M using a Hölder class, the uncertainty associated

with the effect size is much larger than originally reported, unless one is very optimistic about

the constant M , allowing f to only be linear or nearly-linear.

2See Imbens and Wager (2017), as well as our discussion in Section 3 for an elaboration of this critique.
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Our results build on the literature on estimation of linear functionals in normal models with

convex parameter spaces, as developed by Donoho (1994), Ibragimov and Khas’minskii (1985)

and many others. As with the results in that literature, our setup gives asymptotic results

for problems that are asymptotically equivalent to the Gaussian white noise model, including

nonparametric regression (Brown and Low, 1996) and density estimation (Nussbaum, 1996).

Our main results build on the “renormalization heuristics” of Donoho and Low (1992), who

show that many nonparametric estimation problems have renormalization properties that allow

easy computation of minimax mean squared error optimal kernels and rates of convergence. As

we show in Appendix C, our results hold under essentially the same conditions, which apply

in many classical nonparametric settings. The CIs we consider in this paper are applications

of the fixed-length CIs proposed by Donoho (1994), which have also been studied recently in

Armstrong and Kolesár (2018) and in contemporaneous work by Kolesár and Rothe (2018) and

Imbens and Wager (2017). In contrast to the finite-sample approach taken in these papers,

we focus on asymptotic results. This allows for the additional simplifications and insights into

relative efficiency that are the subject of this paper.

The rest of this paper is organized as follows. Section 2 gives the main results. Section 3

applies our results to inference at a point, Section 4 gives a theoretical comparison of our fixed-

length CIs to other approaches, and Section 5 compares them in a Monte Carlo study. Finally,

Section 6 applies the results to RD, and presents an empirical application based on Ludwig and

Miller (2007). Appendix A discusses implementation details and includes a proposal for a rule of

thumb for choosing M . Appendix B gives proofs of the results in Section 2. The supplemental

materials contain further appendices and additional tables and figures. Appendix C verifies

our regularity conditions for some examples, and includes proofs of the results in Section 3.

Appendix D calculates the efficiency gain from using different bandwidths on either side of

a cutoff in RD that is used in Section 6. Appendix E contains details on optimal kernel

calculations discussed in Section 3.

2 General results

We are interested in a scalar parameter T (f) of a function f , which is typically a conditional

mean or density. The function f is assumed to lie in a function class F = F(M), which places

“smoothness” conditions on f , where M indexes the level of smoothness. We focus on classical

nonparametric function classes, in which M corresponds to bound on a derivative of f of a

given order. We allow M = Mn to grow with the sample size n.

We have available a class of estimators T̂ (h; k) based on a sample of size n, which depend
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on a bandwidth h = hn > 0 and a kernel k. Let

bias(T̂ ) = sup
f∈F
|Ef T̂ − T (f)|

denote the worst-case bias of an estimator T̂ , and let sdf (T̂ ) = varf (T̂ )1/2 denote its stan-

dard deviation. We assume, without loss of generality, that the estimator T̂ (h; k) is centered

so that its maximum and minimum bias over F sum to zero, supf∈F Ef (T̂ (h; k) − T (f)) =

− inff∈F Ef (T̂ (h; k)− T (f)).3

Our main assumption is that the variance and the worst-case bias scale as powers of h. In

particular, we assume that, for some γb > 0, γs < 0, B(k) > 0 and S(k) > 0,

bias(T̂ (h; k)) = hγbMB(k)(1 + o(1)), sdf (T̂ (h; k)) = hγsn−1/2S(k)(1 + o(1)), (1)

where the o(1) term in the second equality is uniform over f ∈ F . Note that the second

condition implies that the standard deviation does not depend on the underlying function f

asymptotically. As we show in Appendix C in the supplemental materials, this condition (as

well as the other conditions used in this section) holds whenever the renormalization heuristics

of Donoho and Low (1992) can be formalized. This includes most classical nonparametric

problems, such as estimation of a density or a conditional mean, or its derivative, evaluated at

a point (which may be a boundary point). In Section 3, we show that (1) holds with γb = p,

and γs = −1/2 under mild regularity conditions when T̂ (h; k) is a local polynomial estimator

of a conditional mean at a point, and F(M) consists of functions with pth derivative bounded

by M .

Let t = hγb−γsMB(k)/(n−1/2S(k)) denote the ratio of the leading worst-case bias and stan-

dard deviation terms. Substituting h =
(
tn−1/2S(k)/(MB(k))

)1/(γb−γs) into (1), the approxi-

mate bias and standard deviation can be written as

hγbMB(k) = trn−r/2M1−rS(k)rB(k)1−r, hγsn−1/2S(k) = tr−1n−r/2M1−rS(k)rB(k)1−r (2)

where r = γb/(γb − γs). Since the bias and the standard deviation both converge at rate nr/2

when M is fixed, we refer to r as the rate exponent (this matches the definition in, e.g., Donoho

and Low 1992; see Appendix C in the supplemental materials).

Computing the ratio of the worst-case bias to standard deviation (bias-sd ratio) t associated

with a given bandwidth allows easy computation of honest CIs. Let ŝe(h; k) denote the stan-

3This centering condition holds automatically by a symmetry argument for kernel or local polynomial esti-
mators in cases where f is a conditional mean or a density, T (f) is its value or its derivative at a point, or a
regression discontinuity parameter, and F bounds its derivatives. In other cases, recentering the estimator by
subtracting (supf∈F Ef (T̂ (h; k)− T (f)) + inff∈F Ef (T̂ (h; k)− T (f)))/2 improves the estimator’s performance
under the criteria that we consider below, so recentering the estimator in this way is without loss of generality.
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dard error, an estimate of sdf (T̂ (h; k)). Assuming a central limit theorem applies to T̂ (h; k),

[T̂ (h; k) − T (f)]/ŝe(h; k) will be approximately distributed as a normal random variable with

variance 1 and bias bounded by t. Thus, an approximate 1− α CI is given by

T̂ (h; k)± cv1−α(t) · ŝe(h; k), (3)

where cv1−α(t) is the 1 − α quantile of the |N(t, 1)| distribution. The critical value cv1−α(t)

can easily be computed in statistical software as the square root of the 1 − α quantile of a

non-central χ2 distribution with 1 degree of freedom and non-centrality parameter t2. For easy

reference, we list them in Table 1 for selected values of t. The CI in (3) is an approximate

version of a fixed-length confidence interval (FLCI) studied in Donoho (1994), who replaces

ŝe(h; k) with sdf (T̂ (h; k)) in the definition of this CI, and assumes sdf (T̂ (h; k)) is constant

over f , in which case its length will be fixed. We thus refer to CIs of this form as “fixed-

length”, even though ŝe(h; k) is random. One could also form honest CIs by simply adding

and subtracting the worst case bias, in addition to adding and subtracting the standard error

times z1−α/2 = cv1−α(0), the 1 − α/2 quantile of a standard normal distribution, forming the

CI as T̂ (h; k)± (bias(T̂ (h; k)) + z1−α/2 · ŝe(h; k)). However, since the estimator T̂ (h; k) cannot

simultaneously have a large positive and a large negative bias, such CI will be conservative, and

longer than the CI given in Equation (3).

Honest one-sided 1−α CIs based on T̂ (h; k), can be constructed by simply subtracting the

maximum bias, in addition to subtracting z1−α times the standard deviation, from T̂ (h; k):

[T̂ (h; k)− hγbMB(k)− z1−αhγsn−1/2S(k) , ∞). (4)

To discuss the optimal choice of bandwidth h and compare efficiency of different kernels k in

forming one- and two-sided CIs, and compare the results to the bandwidth and kernel efficiency

results for estimation, it will be useful to introduce notation for a generic performance criterion.

Let R(T̂ ) denote the worst-case (over F) performance of T̂ according to a given criterion, and

let R̃(b, s) denote the value of this criterion when T̂ −T (f) ∼ N(b, s2). For FLCIs, we can take

their half-length as the criterion, which leads to

RFLCI,α(T̂ (h; k)) = inf
{
χ : Pf

(
|T̂ (h; k)− T (f)| ≤ χ

)
≥ 1− α all f ∈ F

}
,

R̃FLCI,α(b, s) = inf
{
χ : PZ∼N(0,1) (|sZ + b| ≤ χ) ≥ 1− α

}
= s · cv1−α(b/s).

To evaluate one-sided CIs, one needs a criterion other than length, which is infinite. A natural

criterion is expected excess length, or quantiles of excess length. We focus here on the quantiles

of excess length. For CI of the form (4), its worst-case β quantile of excess length is given by
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ROCI,α,β(T̂ (h; k)) = supf∈F qf,β(Tf − T̂ (h; k) + hγbMB(k) + z1−αh
γsn−1/2S(k)), where qf,β(Z)

is the β quantile of a random variable Z. The worst-case β quantile of excess length based on

an estimator T̂ when T̂ − T (f) is normal with variance s2 and bias ranging between −b and b

is R̃OCI,α,β(b, s) ≡ 2b + (z1−α + zβ)s. Finally, to evaluate T̂ (h; k) as an estimator we use root

mean squared error (RMSE) as the performance criterion:

RRMSE(T̂ ) = sup
f∈F

√
Ef [T̂ − T (f)]2, R̃(b, s) =

√
b2 + s2.

When (1) holds and the estimator T̂ (h; k) satisfies an appropriate central limit theorem,

these performance criteria will satisfy

R(T̂ (h; k)) = R̃(hγbMB(k), hγsn−1/2S(k))(1 + o(1)). (5)

To keep the statement of our main results simple, we make this assumption directly. As is the

case for condition (1), we show in Appendix C in the supplemental materials that this condition

will typically hold in most classical nonparametric problems. In Section 3, we verify it for the

problem of estimation of a conditional mean at a point. We will also assume that R̃ scales

linearly in its arguments (i.e. it is homogeneous of degree one): R̃(tb, ts) = tR̃(b, s). This holds

for all three criteria considered above. Plugging in (2) and using scale invariance of R̃ gives

R(T̂ (h; k)) = n−r/2M1−rS(k)rB(k)1−rtr−1R̃(t, 1)(1 + o(1)) (6)

where t = hγb−γsMB(k)/(n−1/2S(k)) is the bias-sd ratio and r = γb/(γb − γs) is the rate

exponent, as defined above. Under (6), the asymptotically optimal bandwidth for a given

performance criterion R is h∗R = (n−1/2S(k)t∗R/(MB(k)))1/(γb−γs), with t∗R = argmint t
r−1R̃(t, 1).

Assuming t∗R is finite and strictly greater than zero, the optimal bandwidth decreases at

the rate (nM2)−1/[2(γb−γs)] regardless of the performance criterion—the performance criterion

only determines the optimal bandwidth constant. Since the approximation (5) may not hold

when h is too small or large relative to the sample size, we will only assume this condition for

bandwidth sequences of order (nM2)−1/[2(γb−γs)]. For our main results, we assume directly that

optimal bandwidth sequences decrease at this rate:

M r−1nr/2R(T̂ (hn; k))→∞ for any hn with

hn(nM2)1/[2(γb−γs)] →∞ or hn(nM2)1/[2(γb−γs)] → 0. (7)

Condition (7) will hold so long as it is suboptimal to choose a bandwidth such that the bias or
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the variance dominates asymptotically, which is the case in the settings considered here.4

We collect some implications of these derivations in a theorem.

Theorem 2.1. Let R be a performance criterion with R̃(b, s) > 0 for all (b, s) 6= 0 and

R̃(tb, ts) = tR̃(b, s) for all (b, s). Suppose that Equation (5) holds for any bandwidth sequence hn

with lim infn→∞ hn(nM2)1/[2(γb−γs)] > 0 and lim supn→∞ hn(nM2)1/[2(γb−γs)] < ∞, and suppose

that Equation (7) holds. Let h∗R and t∗R be as defined above, and assume that t∗R > 0 is unique

and well-defined. Then:

(i) The asymptotic minimax performance of the kernel k is given by

M r−1nr/2 inf
h>0

R(T̂ (h; k)) = M r−1nr/2R(T̂ (h∗R; k)) + o(1)

= S(k)rB(k)1−r inf
t
tr−1R̃(t, 1) + o(1),

where h∗R = (n−1/2S(k)t∗R/(MB(k)))1/(γb−γs), and t∗R = argmint t
r−1R̃(t, 1).

(ii) The asymptotic relative efficiency of two kernels k1 and k2 is given by

lim
n→∞

infh>0R(T̂ (h; k1))

infh>0R(T̂ (h; k2))
=
S(k1)

rB(k1)
1−r

S(k2)rB(k2)1−r
.

It depends on the rate r but not on the performance criterion R.

(iii) If (1) holds, the asymptotically optimal bias-sd ratio is given by

lim
n→∞

bias(T̂ (h∗R; k))

sdf (T̂ (h∗R; k))
= argmin

t
tr−1R̃(t, 1) = t∗R.

It depends only on the performance criterion R and rate exponent r. If we consider two

performance criteria R1 and R2 satisfying the conditions above, then the limit of the ratio

of optimal bandwidths for these criteria is

lim
n→∞

h∗R1

h∗R2

=

(
t∗R1

t∗R2

)1/(γb−γs)

.

It depends only on γb and γs and the performance criteria.

Part (i) gives the optimal bandwidth formula for a given performance criterion. The per-

formance criterion only determines the optimal bandwidth constant (the optimal bias-sd ratio)

4In typical settings, we will need the optimal bandwidth h∗R to shrink at a rate such that (h∗R)−2γsn→∞ and
h∗R → 0. If M is fixed, this simply requires that γb − γs > 1/2, which basically amounts to a requirement that
F(M) imposes enough smoothness so that the problem is not degenerate in large samples. If M = Mn → ∞,
then the condition also requires nr/2Mr−1 →∞, so that M does not increase too quickly.
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t∗R.

Part (ii) shows that relative kernel efficiency results do not depend on the performance

criterion. In particular, known kernel efficiency results under the RMSE criterion such as those

in Fan (1993), Cheng et al. (1997), and Fan et al. (1997) apply unchanged to other performance

criteria such as length of FLCIs, excess length of one-sided CIs, or expected absolute error.

Part (iii) shows that the optimal bias-sd ratio for a given performance criterion depends on

F only through the rate exponent r, and does not depend on the kernel. The optimal bias-sd

ratio for RMSE, FLCI and OCI, respectively, are

t∗RMSE = argmin
t>0

tr−1R̃RMSE(t, 1) = argmin
t>0

tr−1
√
t2 + 1 =

√
1/r − 1,

t∗FLCI = argmin
t>0

tr−1R̃FLCI,α(t, 1) = argmin
t>0

tr−1 cv1−α(t), and

, t∗OCI = argmin
t>0

tr−1R̃OCI,α,β(t, 1) = argmin
t>0

tr−1[2t+ (z1−α + zβ)] = (1/r − 1)
z1−α + zβ

2
.

Figures 1 and 2 plot these quantities as a function of r. Note that the optimal bias-sd ratio

is larger for FLCIs (at levels α = .05 and α = .01) than for RMSE. Since h is increasing in

t, it follows that, for FLCI, the optimal bandwidth oversmooths relative to the RMSE optimal

bandwidth.

One can also form FLCIs centered at the estimator that is optimal for different performance

criterion R as T̂ (h∗R; k)± ŝe(h∗R; k) · cv1−α(t∗R). The critical value cv1−α(t∗R) depends only on the

rate exponent r and the performance criterion R. In particular, the CI centered at the RMSE

optimal estimator takes this form with t∗RMSE =
√

1/r − 1. Table 1 reports this critical value

cv1−α(
√

1/r − 1) for some rate exponents r commonly encountered in practice. By (6), the

resulting CI is wider than the one computed using the FLCI optimal bandwidth by a factor of

(t∗FLCI)
r−1 · cv1−α(t∗FLCI)

(t∗RMSE)r−1 · cv1−α(t∗RMSE)
. (8)

Figure 3 plots this quantity as a function of r. It can be seen from the figure that if r ≥ 4/5, CIs

constructed around the RMSE optimal bandwidth are highly efficient. For example, if r = 4/5,

to construct an honest 95% FLCI based on an estimator with bandwidth chosen to optimize

RMSE, one simply adds and subtracts the standard error multiplied by 2.18 (rather than the

usual 1.96 critical value), and the corresponding CI is only about 3% longer than the one with

bandwidth chosen to optimize CI length. The next theorem gives a formal statement.

Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold for RRMSE and for RFLCI,α̃ for

all α̃ in a neighborhood of α. Let ŝe(h∗rmse; k) be such that ŝe(h∗rmse; k)/ sdf (h
∗
rmse; k) converges
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in probability to 1 uniformly over f ∈ F . Then

lim
n→∞

inf
f∈F

Pf

(
T (f) ∈

{
T̂ (h∗rmse; k)± ŝe(h∗rmse; k) · cv1−α(

√
1/r − 1)

})
= 1− α.

The asymptotic efficiency of this CI relative to the one centered at the FLCI optimal bandwidth,

defined as limn→∞
infh>0RFLCI,α(T̂ (h;k))

RFLCI,α(T̂ (h
∗
rmse;k))

, is given by (8). It depends only on r.

3 Inference at a point

In this section, we apply the general results from Section 2 to the problem of inference about

a nonparametric regression function at a point, which we normalize to be zero, so that T (f) =

f(0). We allow the point of interest to be on the boundary on the parameter space. Because in

sharp regression discontinuity (RD) designs, discussed in detail in Section 6, the parameter of

interest can be written as the difference between two regression functions evaluated at boundary

points, the results in this section generalize naturally to sharp RD.

We write the nonparametric regression model as

yi = f(xi) + ui, i = 1, . . . , n, (9)

where the design points xi are non-random, and the regression errors ui are by definition

mean-zero, with variance var(ui) = σ2(xi). We consider inference about f(0) based on local

polynomial estimators of order q,

T̂q(h; k) =
n∑
i=1

wnq (xi;h, k)yi,

where the weights wnq (xi;h, k) are given by

wnq (x;h, k) = e′1Q
−1
n mq(x)k(x/h), Qn =

n∑
i=1

k(xi/h)mq(xi)mq(xi)
′.

Here mq(t) = (1, t, . . . , tq)′, k(·) is a kernel with bounded support, and e1 is a vector of zeros

with 1 in the first position. In particular, T̂q(h; k) corresponds to the intercept in a weighted

least squares regression of yi on (1, xi, . . . , x
q
i ) with weights k(xi/h). Local linear estimators

correspond to q = 1, and Nadaraya-Watson (local constant) estimators to q = 0. It will be

convenient to define the equivalent kernel

k∗q(u) = e′1

(∫
X
mq(t)mq(t)

′k(t) dt

)−1
mq(u)k(u), (10)
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where the integral is over X = R if 0 is an interior point, and over X = [0,∞) if 0 is a (left)

boundary point.

We assume the following conditions on the design points and regression errors ui:

Assumption 3.1. The sequence {xi}ni=1 satisfies 1
nhn

∑n
i=1 g(xi/hn) → d

∫
X g(u) du for some

d > 0, and for any bounded function g with finite support and any sequence hn with 0 <

lim infn hn(nM2)1/(2p+1) < lim supn hn(nM2)1/(2p+1) <∞.

Assumption 3.2. The random variables {ui}ni=1 are independent and normally distributed with

Eui = 0 and var(ui) = σ2(xi), and the variance function σ2(x) is continuous at x = 0.

Assumption 3.1 requires that the empirical distribution of the design points is smooth around

0. When the support points are treated as random, the constant d typically corresponds to

their density at 0. The assumption of normal errors in Assumption 3.2 is made for simplicity

and could be replaced with the assumption that for some η > 0, E[u2+ηi ] <∞.

Because the estimator is linear in yi, its variance doesn’t depend on f ,

sd(T̂q(h; k))2 =
n∑
i=1

wnq (xi)
2σ2(xi) =

(
σ2(0)

dnh

∫
X
k∗q(u)2 du

)
(1 + o(1)), (11)

where the second equality holds under Assumptions 3.1 and 3.2, as we show in Appendix C.2

in the supplemental materials. The condition on the standard deviation in Equation (1) thus

holds with

γs = −1/2 and S(k) = d−1/2σ(0)

√∫
X
k∗q(u)2 du. (12)

Tables S1 and S2 in the supplemental materials give the constant
∫
X k
∗
q(u)2 du for some common

kernels.

On the other hand, the worst-case bias will be driven primarily by the function class F . We

consider inference under two popular function classes. First, the Taylor class of order p,

FT,p(M) =
{
f :
∣∣∣f(x)−

∑p−1
j=0 f

(j)(0)xj/j!
∣∣∣ ≤M |x|p/p! x ∈ X

}
.

This class consists of all functions for which the approximation error from a (p − 1)-th order

Taylor approximation around 0 can be bounded by 1
p!
M |x|p. It formalizes the idea that the pth

derivative of f at zero should be bounded by some constant M . Using this class of functions to

derive optimal estimators goes back at least to Legostaeva and Shiryaev (1971), and it underlies

much of existing minimax theory concerning local polynomial estimators (see Fan and Gijbels,

1996, Chapter 3.4–3.5).

While analytically convenient, the Taylor class may not be attractive in some empirical

settings because it allows f to be non-smooth and discontinuous away from 0. We therefore
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also consider inference under Hölder class5,

FHöl,p(M) =
{
f : |f (p−1)(x)− f (p−1)(x′)| ≤M |x− x′|, x, x′ ∈ X

}
.

This class is the closure of the family of p times differentiable functions with the pth derivative

bounded by M , uniformly over X , not just at 0. It thus formalizes the intuitive notion that f

should be p-times differentiable with a bound on the pth derivative. The case p = 1 corresponds

to the Lipschitz class of functions.

Theorem 3.1. Suppose that Assumption 3.1 holds. Then, for a bandwidth sequence hn with

0 < lim infn hn(nM2)1/(2p+1) < lim supn hn(nM2)1/(2p+1) <∞,

biasFT,p(M)(T̂q(hn; k)) =
Mhpn
p!
BT
p,q(k)(1 + o(1)), BT

p,q(k) =

∫
X
|upk∗q(u)| du

and

biasFHöl,p(M)(T̂q(hn; k)) =
Mhpn
p!
BHöl
p,q (k)(1 + o(1)),

BHöl
p,q (k) = p

∫ ∞
t=0

∣∣∣∣∫
u∈X ,|u|≥t

k∗q(u)(|u| − t)p−1 du
∣∣∣∣ dt.

Thus, the first part of (1) holds with γb = p and B(k) = Bp,q(k)/p! where Bp,q(k) = BHöl
p,q (k) for

FHöl,p(M), and Bp,q(k) = BT
p,q(k) for FT,p(M).

If, in addition, Assumption 3.2 holds, then Equation (5) holds for the RMSE, FLCI and OCI

performance criteria, with γb and B(k) given above and γs and S(k) given in Equation (12).

The theorem verifies the regularity conditions needed for the results in Section 2, and

implies that r = 2p/(2p + 1) for FT,p(M) and FHöl,p(M). If p = 2, then we obtain r =

4/5. By Theorem 2.1(i), the optimal rate of convergence of a criterion R is R(T̂ (h∗R; k)) =

O((n/M1/p)−p/(2p+1)).

As we will see from the relative efficiency calculation below, the optimal order of the local

polynomial regression is q = p−1 for the kernels considered here. The theorem allows q ≥ p−1,

so that we can examine the efficiency of local polynomial regressions that are of order that’s

too high relative to the smoothness class (when q < p− 1, the maximum bias is infinite).

Under the Taylor class FT,p(M), the least favorable (bias-maximizing) function is given

by f(x) = M/p! · sign(wnq (x))|x|p. In particular, if the weights are not all positive, the least

favorable function will be discontinuous away from the boundary. The first part of Theorem 3.1

then follows by taking the limit of the bias under this function. Assumption 3.1 ensures that

this limit is well-defined.
5For simplicity, we focus on Hölder classes of integer order.
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Under the Hölder class FHöl,p(M), it follows from an integration by parts identity that the

bias under f can be written as a sample average of f (p)(xi) times a weight function that depends

on the kernel and the design points. The function that maximizes the bias is then obtained by

setting the pth derivative to be M or −M depending on whether this weight function is positive

or negative. This leads to a pth order spline function maximizing the bias. See Appendix C.2

in the supplemental materials for details.

For kernels given by polynomial functions over their support, k∗q also has the form of a

polynomial, and therefore BT
p,q and BHöl

p,q can be computed analytically. Tables S1 and S2 in the

supplemental materials give these constants for selected kernels.

3.1 Kernel efficiency

It follows from Theorem 2.1(ii) that the optimal equivalent kernel minimizes S(k)rB(k)1−r,

independently of the performance criterion. Under the Taylor class FT,p(M), this minimization

problem is equivalent to minimizing(∫
X
k∗(u)2 du

)p(∫
X
|upk∗(u)| du

)
, (13)

The solution to this problem follows from Sacks and Ylvisaker (1978, Theorem 1) (see also

Cheng et al. (1997)). We give details of the solution as well as plots of the optimal kernels in

Appendix E in the supplemental materials. In Table 2, we compare the asymptotic relative

efficiency of local polynomial estimators based on the uniform, triangular, and Epanechnikov

kernels to the optimal Sacks-Ylvisaker kernels.

Fan et al. (1997) and Cheng et al. (1997), conjecture that minimizing (13) yields a sharp

bound on kernel efficiency. It follows from Theorem 2.1(ii) that this conjecture is correct, and

Table 2 match the kernel efficiency bounds in these papers. One can see from the tables that

the choice of the kernel doesn’t matter very much, so long as the local polynomial is of the right

order. However, if the order is too high, q > p− 1, the efficiency can be quite low, even if the

bandwidth used was optimal for the function class or the right order, FT,p(M), especially on

the boundary. However, if the bandwidth picked is optimal for FT,q−1(M), the bandwidth will

shrink at a lower rate than optimal under FT,p(M), and the resulting rate of convergence will

be lower than r. Consequently, the relative asymptotic efficiency will be zero. A similar point

in the context of pointwise asymptotics was made in Sun (2005, Remark 5, page 8).

The solution to minimizing S(k)rB(k)1−r under FHöl,p(M) is only known in special cases.

When p = 1, the optimal estimator is a local constant estimator based on the triangular kernel.

When p = 2, the solution is given in Fuller (1961) and Zhao (1997) for the interior point problem,

and in Gao (2018) for the boundary point problem. See Appendix E in the supplemental
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materials for details, including plots of these kernels. When p ≥ 3, the solution is unknown.

Therefore, for p = 3, we compute efficiencies relative to a local quadratic estimator with a

triangular kernel. Table 3 calculates the resulting efficiencies for local polynomial estimators

based on the uniform, triangular, and Epanechnikov kernels. Relative to the class FT,p(M), the

bias constants are smaller: imposing smoothness away from the point of interest helps to reduce

the worst-case bias. Furthermore, the loss of efficiency from using a local polynomial estimator

of order that’s too high is smaller. Finally, one can see that local linear regression with a

triangular kernel achieves high asymptotic efficiency under both FT,2(M) and FHöl,2(M), both

at the interior and at a boundary, with efficiency at least 97%, which shows that its popularity

in empirical work can be justified on theoretical grounds. Under FHöl,2(M) on the boundary,

the triangular kernel is nearly efficient.

3.2 Gains from imposing smoothness globally

The Taylor class FT,p(M), formalizes the notion that the pth derivative at 0, the point of

interest, should be bounded by M , but doesn’t impose smoothness away from 0. In contrast,

the Hölder class FHöl,p(M) restricts the pth derivative to be at most M globally. How much

can one tighten a confidence interval or reduce the RMSE due to this additional smoothness?

It follows from Theorem 3.1 and from arguments underlying Theorem 2.1 that the risk of

using a local polynomial estimator of order p− 1 with kernel kH and optimal bandwidth under

FHöl,p(M) relative to using a local polynomial estimator of order p − 1 with kernel kT and

optimal bandwidth under FT,p(M) is given by

infh>0RFHöl,p(M)(T̂ (h; kH))

infh>0RFT,p(M)(T̂ (h; kT ))
=

(∫
X k
∗
H,p−1(u)2 du∫

X k
∗
T,p−1(u)2 du

) p
2p+1

(
BHöl
p,p−1(kH)

BTp,p−1(kT )

) 1
2p+1

(1 + o(1)),

where RF(T̂ ) denotes the worst-case performance of T̂ over F . If the same kernel is used, the

first term equals 1, and the efficiency ratio is determined by the ratio of the bias constants

Bp,p−1(k). Table 4 computes the resulting reduction in risk/CI length for common kernels. One

can see that in general, the gains are greater for larger p, and greater at the boundary. In the

case of estimation at a boundary point with p = 2, for example, imposing global smoothness of

f results in reduction in length of about 13–15%, depending on the kernel, and a reduction of

about 10% if the optimal kernel is used.

3.3 Practical implementation

Given a smoothness class FT,p(M) or FHöl,p(M), Theorems 2.1, 2.2, and 3.1 imply that one

can construct nearly efficient CIs for f(0) as T̂p−1(h
∗
rmse; k) ± cv1−α(

√
1/r − 1) · ŝe(h∗rmse, k).
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Alternatively, one could use the critical value cv1−α(bias(T̂p−1(h
∗
rmse; k))/ŝe(h∗rmse, k)) based on

the finite-sample bias-sd ratio (see Theorem C.1 in the supplemental materials for the finite-

sample bias expression). To implement this CI, one needs to (i) choose p, M , and k; (ii) form

an estimate ŝe(h∗rmse, k) of the standard deviation of T̂p−1(h
∗
rmse; k); and (iii) form an estimate

of h∗rmse (which depends on the unknown quantities σ2(0) and d). We now discuss these issues

in turn, with reference to Appendix A for additional details.

The choice of p depends on the order of the derivative the researcher wishes to bound, and

it determines the order of local polynomial. Since local linear estimators are the most popular

in practice, we recommend p = 2 as a default choice. In this case, both the Epanechnikov and

the triangular kernel are nearly optimal. The results of Low (1997), Cai and Low (2004) and

Armstrong and Kolesár (2018) imply that, if F(M) is convex, to maintain honesty over the

whole function class, a researcher must choose M a priori, rather than attempting to use a

data-driven method. Since both FT,p(M) and FHöl,p(M) are convex, we therefore recommend

that, whenever possible, problem-specific knowledge be used to decide what choice of M is

reasonable a priori, and that one considers a range of plausible values by way of sensitivity

analysis.6 If additional restrictions on f are imposed that make the parameter space for f non-

convex, a data-driven method for choosing M may be feasible. In Appendix A.1, we describe

a rule-of-thumb method based on the suggestion in Fan and Gijbels (1996, Chapter 4.2). We

leave the interesting question of what sort of additional restrictions on f are needed to ensure

that this rule of thumb maintains honesty to future research; its finite-sample performance is

investigated in a Monte Carlo exercise in Section 5.

For the standard error ŝe(h∗rmse, k), many choices are available in the literature. In our Monte

Carlo and empirical application, we use a nearest-neighbor estimator discussed in Appendix A.2.

To compute h∗rmse, one can plug in the constant M (discussed above) along with estimates of

d, and σ2(0). Alternatively, one can plug in M and an estimate of the function σ2(·) to the

formula for the finite-sample RMSE. We expect the latter approach to work better in finite

samples; it also has the advantage that it does not require an estimate of the density d. See

Appendix A.3 for details.

4 Comparison with other approaches

In this section, we compare our approach to inference about the parameter T (f) to three other

approaches to inference. To make the comparison concrete, we focus on the problem of inference

about a nonparametric regression function at a point, as in Section 3. The first approach, that

we term “conventional”, ignores the potential bias of the estimator and constructs the CI as

6These negative results contrast with more positive results for estimation. See Lepski (1990), who proposes
a data-driven method that automates the choice of both p and M .
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T̂q(h, k) ± z1−α/2ŝe(h; k). The bandwidth h is typically chosen to minimize the asymptotic

mean squared error of T̂q(h; k) under pointwise-in-f (or “pointwise”, for short) asymptotics, as

opposed to the uniform-in-f asymptotics that we consider. We refer to this bandwidth as h∗pt.

In undersmoothing, one chooses a sequence of smaller bandwidths, so that in large samples,

the bias of the estimator is dominated by its standard error. Finally, in bias correction, one

re-centers the conventional CI by subtracting an estimate of the leading bias term from T̂q(h; k).

In Section 4.1, we discuss the distinction between h∗pt and h∗rmse. In Section 4.2, we compare the

coverage and length properties of these CIs to the fixed-length CI (FLCI) based on T̂q(h
∗
rmse; k).

Implementing any of these CIs in practice requires tuning parameter choices. For clarity of

comparison, we keep implementation issues separate, and focus in this section on a theoretical

comparison, assuming any tuning parameters are known. The Monte Carlo exercise in Section 5

below considers their finite-sample performance when the tuning parameters need to be chosen.

4.1 RMSE and pointwise optimal bandwidth

The general results from Section 2 imply that given a kernel k and order of a local polynomial q,

the RMSE-optimal bandwidth for FT,p(M) and FHöl,p(M) in the conditional mean estimation

problem in Section 3 is given by

h∗rmse =

(
1

2pn

S(k)2

M2B(k)2

) 1
2p+1

=

(
σ2(0)p!2

2pndM2

∫
X k
∗
q(u)2 du

Bp,q(k)2

) 1
2p+1

, (14)

where Bp,q(k) = BHöl
p,q (k) for FHöl,p(M), and Bp,q(k) = BT

p,q(k) for FT,p(M). In contrast, the

optimal bandwidth based on pointwise asymptotics is obtained by minimizing the sum of the

leading squared bias and variance terms under pointwise asymptotics for the case q = p − 1.

This bandwidth is given by (see, for example, Fan and Gijbels, 1996, Eq. (3.20))

h∗pt =

(
σ2(0)p!2

2pdnf (p)(0)2

∫
X k
∗
q(u)2 du

(
∫
X t

pk∗q(t) dt)2

) 1
2p+1

. (15)

Thus, the pointwise optimal bandwidth replaces M with the pth derivative at zero, f (p)(0), and

it replaces Bp,q(k) with
∫
X t

pk∗q(t) dt.

Note that Bp,q(k) ≥ |
∫
X t

pk∗q(t) dt| (this can be seen by noting that the right-hand side

corresponds to the bias at the function f(x) = ±xp/p!, while the left-hand side is the supremum

of the bias over functions with pth derivative bounded by 1). Thus, assuming that f (p)(0) ≤M

(this holds by definition for any f ∈ F when F = FHöl,p(M)), we will have h∗pt/h
∗
rmse ≥ 1.

The ratio h∗pt/h
∗
rmse can be arbitrarily large if M exceeds f (p)(0) by a large amount. It then

follows from Theorem 2.1, that the RMSE efficiency of the estimator T̂p−1(h
∗
pt; k) relative to
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T̂p−1(h
∗
rmse; k) may be arbitrarily low.

The bandwidth h∗pt is intended to optimize RMSE at the function f itself, so one may

argue that evaluating the resulting minimax RMSE is an unfair comparison. However, the

mean squared error performance of T̂p−1(h
∗
pt; k) at a given function f can be bad even if the

same function f is used to calculate h∗pt. For example, suppose that the support of xi is finite

and contains the point of interest x = 0. Consider the function f(x) = xp+1 if p is odd,

or f(x) = xp+2 if p is even. This is a smooth function with all derivatives bounded on the

support of xi. Since f (p)(0) = 0, h∗pt is infinite, and the resulting estimator is a global pth order

polynomial least squares estimator. Its RMSE will be poor, since the estimator is not even

consistent.7

To address this problem, plug-in bandwidths that estimate h∗pt include tuning parameters

to prevent them from approaching infinity. The RMSE of the resulting estimator at such

functions is then determined almost entirely by these tuning parameters. Furthermore, if one

uses such a bandwidth as an input to an undersmoothed or bias-corrected CI, the coverage will

be determined by these tuning parameters, and can be arbitrarily bad if the tuning parameters

allow the bandwidth to be large. Indeed, we find in our Monte Carlo analysis in Section 5 that

plug-in estimates of h∗pt used in practice can lead to very poor coverage even when used as a

starting point for a bias-corrected or undersmoothed estimator.

4.2 Efficiency and coverage comparison

Let us now consider the efficiency and coverage properties of conventional, undersmoothed,

and bias-corrected CIs relative to the FLCI based on T̂p−1(h
∗
rmse, k). To keep the comparison

meaningful, and avoid the issues discussed in the previous subsection, we assume these CIs are

also based on h∗rmse, rather than h∗pt (in case of undersmoothing, we assume that the bandwidth

is undersmoothed relative to h∗rmse). Suppose that the smoothness class is either FT,p(M) and

FHöl,p(M) and denote it by F(M). For concreteness, let p = 2, and q = 1.

Consider first conventional CIs, given by T̂1(h; k)±z1−α/2ŝe(h; k). If the bandwidth h equals

h∗rmse, then these CIs are shorter than the 95% FLCIs by a factor of z0.975/ cv0.95(1/2) = 0.90.

Consequently, their coverage is 92.1% rather than the nominal 95% coverage. At the RMSE-

optimal bandwidth, the bias-sd ratio equals 1/2, so disregarding the bias doesn’t result in severe

undercoverage. If one uses a larger bandwidth, however, the bias-sd ratio will be larger, and the

undercoverage problem more severe: for example, if the bandwidth is 50% larger than h∗rmse,

so that the bias-sd ratio equals 1/2 · (1.5)(5/2) the coverage is only 71.9%.

Second, consider undersmoothing. This amounts to choosing a bandwidth sequence hn such

7To ensure consistency and finiteness of h∗pt, it is standard to assume that f (p) 6= 0. However, the RMSE
can still be arbitrarily poor whenever the pth derivative is locally small, but non-zero, and large globally, such
as when f(x) = xp+1 + ηxp for p odd and f(x) = xp+2 + ηxp if p is even, provided η is sufficiently small.
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that hn/h
∗
rmse → 0, so that for any fixed M , the bias-sd ratio tn = hγb−γsn MB(k)/(n−1/2S(k))

approaches zero, and the CI T̂ (hn; k)± cv1−α(0)ŝe(hn; k) = T̂ (hn; k)± z1−α/2ŝe(hn; k) will con-

sequently have proper coverage in large samples. However, the CIs shrink at a slower rate than

nr/2 = n4/5, and thus the asymptotic efficiency of the undersmoothed CI relative to the optimal

FLCI is zero.

On the other hand, an apparent advantage of the undersmoothed CI is that it appears

to avoid specifying the smoothness constant M . However, a more accurate description of

undersmoothing is that the bandwidth sequence hn implicitly chooses a sequence of smoothness

constants Mn → ∞ such that coverage is controlled under the sequence of parameter spaces

F(Mn). We can improve on the coverage and length of the resulting CI by making this sequence

explicit and computing an optimal (or near-optimal) FLCI for F(Mn).

To this end, given a sequence hn, a better approximation to the finite-sample coverage of the

CI T̂ (hn; k)±z1−α/2ŝe(hn; k) over the parameter space F(M) is PZ∼N(0,1)(|Z+ tn(M)| ≥ z1−α/2)

where tn(M) = hγb−γsn MB(k)/(n−1/2S(k)) is the bias-sd ratio for the given choice of M . This

approximation is exact in idealized settings, such as the white noise model in Appendix C in the

supplemental materials. For a given level of undercoverage η = ηn, one can then compute Mn as

the greatest value of M such that this approximation to the coverage is at least 1−α−η. In order

to trust the undersmoothed CI, one must be convinced of the plausibility of the assumption

f ∈ F(Mn): otherwise the coverage will be worse than 1 − α − η. This suggests that, in the

interest of transparency, one should make this smoothness constant explicit by reporting Mn

along with the undersmoothed CI. However, once the sequence Mn is made explicit, a more

efficient approach is to simply report an optimal or near-optimal CI for this sequence, either at

the coverage level 1−α−η (in which case the CI will be strictly smaller than the undersmoothed

CI while maintaining the same coverage) or at level 1−α (in which case the CI will have better

finite-sample coverage and may also be shorter than the undersmoothed CI).

Finally, let us consider bias correction. It is known that re-centering conventional CIs by

an estimate of the leading bias term often leads to poor coverage (Hall, 1992). In an important

paper, Calonico et al. (2014, CCT hereafter) show that the coverage properties of this bias-

corrected CI are much better if one adjusts the standard error estimate to account for the

variability of the bias estimate, which they call robust bias correction (RBC). For simplicity,

consider the case in which the main bandwidth and the pilot bandwidth (used to estimate the

bias) are the same, and that the main bandwidth is chosen optimally in that it equals h∗rmse. In

this case, their procedure amounts to using a local quadratic estimator, but with a bandwidth

h∗rmse, optimal for a local linear estimator. The resulting CI obtains by adding and subtracting

z1−α/2 times the standard deviation of the estimator. The bias-sd ratio of the estimator is given
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by

tRBC = (h∗rmse)5/2
MB2,2(k)/2

σ(0)(
∫
k∗2(u)2 du/dn)1/2

=
1

2

B2,2(k)

B2,1(k)

(∫
X k
∗
1(u)2 du∫

X k
∗
2(u)2 du

)1/2

. (16)

The resulting coverage is given by Φ(tRBC+z1−α/2)−Φ(tRBC−z1−α/2). The RBC interval length

relative to the 1 − α FLCI around a local linear estimator with the same kernel and minimax

MSE bandwidth is the same under both FT,p(M), and FHöl,p(M), and given by

z1−α/2
(∫
X k
∗
2(u)2 du

)1/2
cv1−α(1/2)

(∫
X k
∗
1(u)2 du

)1/2 (1 + o(1)). (17)

The resulting coverage and relative length is given in Table 5. One can see that although

the coverage properties are excellent (since tRBC is quite low in all cases), the intervals are about

30% longer than the FLCIs around the RMSE bandwidth.

Under the class FHöl,2(M), the RBC intervals are also reasonably robust to using a larger

bandwidth: if the bandwidth used is 50% larger than h∗rmse, so that the bias-sd ratio in Equa-

tion (16) is larger by a factor of (1.5)5/2, the resulting coverage is still at least 93.0% for the

kernels considered in Table 5. Under FT,2(M), using a bandwidth 50% larger than h∗rmse yields

coverage of about 80% on the boundary and 87% in the interior.

If one instead considers the classes FT,3(M) and FHöl,3(M) (but with h∗rmse still chosen

to be MSE optimal for FT,2(M) or FHöl,2(M)), then the RBC interval can be considered an

undersmoothed CI based on a second order local polynomial estimator. Following the discussion

of undersmoothed CIs above, the limiting coverage is 1− α when M is fixed (this matches the

pointwise-in-f coverage statements in CCT, which assume the existence of a continuous third

derivative in the present context). Due to this undersmoothing, however, the RBC CI shrinks

at a slower rate than the optimal CI. Thus, depending on the smoothness class, the 95% RBC

CI has close to 95% coverage and efficiency loss of about 30%, or exactly 95% coverage at the

cost of shrinking at a slower than optimal rate.

5 Monte Carlo

To study the finite-sample performance of the FLCI that we propose, and compare its perfor-

mance to other approaches, this section conducts a Monte Carlo analysis of the conditional

mean estimation problem considered in Section 3.
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We consider Monte Carlo designs with conditional mean functions

f1(x) =
M

2
(x2 − 2(|x| − 0.25)2+)

f2(x) =
M

2
(x2 − 2(|x| − 0.2)2+ + 2(|x| − 0.5)2+ − 2(|x| − 0.65)2+)

f3(x) =
M

2
((x+ 1)2 − 2(x+ 0.2)2+ + 2(x− 0.2)2+ − 2(x− 0.4)2+ + 2(x− 0.7)2+ − 0.92)

whereM ∈ {2, 6}, giving a total of 6 designs. In all cases, xi is drawn from a uniform distribution

with support [−1, 1] (so that the design is random), ui ∼ N(0, 1/4), and the sample size is

n = 500. Figure 5 plots these designs. The regression function for each design lies in FHöl,2(M)

for the corresponding M .

For each design, we implement the optimal FLCI centered at the MSE optimal estimate, as

described in Section 3.3, for each choice of M ∈ {2, 6}, and with M calibrated using the rule-

of-thumb (ROT) described Appendix A.1. The implementations with M ∈ {2, 6} allow us to

gauge the effect of using an appropriately calibrated M , compared to a choice of M that is either

too conservative or too liberal by a factor of 3. The ROT calibration chooses M automatically,

but requires additional conditions in order to have correct coverage (see Section 3.3).

In addition to these FLCIs, we consider five other methods of CI construction. The first

four are different implementations of the robust bias-corrected (RBC) CIs proposed by CCT

(discussed in Section 4). Implementing these CIs requires two bandwidth choices: a bandwidth

for the local linear estimator, and a pilot bandwidth that is used to construct an estimate of its

bias. The first CI uses a plug-in estimate of h∗pt defined in (15), as implemented by Calonico

et al. (2017), and an analogous estimate for the pilot bandwidth (this method is the default

in their accompanying software package). The second CI, also implemented by Calonico et al.

(2017), uses bandwidth estimates for both bandwidths that optimize the pointwise asymptotic

coverage error (CE) among CIs that use usual z1−α/2 critical value. This CI can be considered

a particular form of undersmoothing. For the third and fourth CIs, we set both the main and

the pilot bandwidth to h∗rmse with M = 2, and M = 6, respectively. Finally, we consider

a conventional CI centered at a plug-in bandwidth estimate of h∗pt, using the rule-of-thumb

estimator of Fan and Gijbels (1996, Chapter 4.2). All CIs are computed at the nominal 95%

coverage level.

Table 6 reports the results. The FLCIs perform well when the correct M is used. As

expected, they suffer from undercoverage if M is chosen too small, or suboptimal length when

M is chosen too large. The ROT choice of M appears to do a reasonable job of having

good coverage and length in these designs without requiring knowledge of the true smoothness

constant. However, as discussed in Section 3.3, it is impossible for the ROT choice of M (or any

other data-driven choice) to do this uniformly over the whole function class, so one must take
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care in extrapolating these results to other designs. As predicted by the theory in Section 4,

the RBC CI has good coverage when implemented using h∗rmse, although it is on average about

25% longer than the corresponding FLCI.

The other CIs all have very poor coverage for at least one of the designs. Our analysis in

Sections 4 suggests that this is due to the use of plug-in bandwidths that estimate the pointwise

MSE optimal bandwidth h∗pt. Indeed, looking at the average of the bandwidth over the Monte

Carlo draws (also reported in Table 6), it can be seen that the plug-in bandwidths used for

these bandwidths tend to be much larger than those that estimate h∗rmse. This is even the case

for the CE bandwidth, which is intended to minimize coverage errors.

Overall, the Monte Carlo analysis suggests that default approaches to nonparametric CI

construction (bias-correction or undersmoothing relative to plug-in bandwidths) can lead to

severe undercoverage, and that plug-in bandwidths justified by pointwise-in-f asymptotics are

the main culprit. Bias-corrected CIs such as the one proposed by CCT can have good coverage

if one starts from the minimax RMSE bandwidth, although they will be wider than FLCIs

proposed in this paper.

6 Application to sharp regression discontinuity

In this section, we apply the results for estimation at a boundary point from Section 3 to sharp

regression discontinuity (RD), and illustrate them with an empirical application.

Using data from the nonparametric regression model (9), the goal in sharp RD is to estimate

the jump in the regression function f at a known threshold, which we normalize to 0, so that

T (f) = limx↓0 f(x)− limx↑0 f(x). The threshold determines participation in a binary treatment:

units with xi ≥ 0 are treated; units with xi < 0 are controls. If the regression functions

of potential outcomes are continuous at zero, then T (f) measures the average effect of the

treatment for units with xi = 0 (Hahn et al., 2001).

For brevity, we focus on the most empirically relevant case in which the regression function

f is assumed to lie in the class FHöl,2(M) on either side of the cutoff:

f ∈ FRD(M) = {f+(x)1(x ≥ 0)− f−(x)1(x < 0) : f+, f− ∈ FHöl,2(M)}.

We consider estimating T (f) based on running a local linear regression on either side of the

boundary. Given a bandwidth h and a second-order kernel k, the resulting estimator can be

written as

T̂ (h; k) =
n∑
i=1

wn(xi;h, k)yi, wn(x;h, k) = wn+(x;h, k)− wn−(x;h, k),
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with the weight wn+ given by

w+(x;h, k) = e′1Q
−1
n,+m1(x)k+(x/h), k+(u) = k(u)1(u ≥ 0),

and Qn,+ =
∑n

i=1 k+(xi/h)m1(xi)m1(xi)
′. The weights wn−, Gram matrix Q̂n,− and kernel k−

are defined similarly. That is, T̂ (h; k) is given by a difference between estimates from two local

linear regressions at a boundary point, one for units with non-negative values running variable

xi, and one for units with negative values of the running variable. Let σ2
+(x) = σ2(x)1(x ≥ 0),

and let σ2
−(x) = σ2(x)1(x < 0).

In principle, one could allow the bandwidths for the two local linear regressions to be

different. We show in Appendix D in the supplemental materials, however, that the loss in

efficiency resulting from constraining the bandwidths to be the same is quite small unless the

ratio of variances on either side of the cutoff, σ2
+(0)/σ2

−(0), is quite large.

It follows from the results in Section 3 that if Assumption 3.1 holds and the functions σ2
+(x)

and σ2
−(x) are right- and left-continuous, respectively, the variance of the estimator doesn’t

depend on f and satisfies

sd(T̂ (h; k))2 =
n∑
i=1

wn(xi)
2σ2(xi) =

∫∞
0
k∗1(u)2 du

dnh

(
σ2
+(0) + σ2

−(0)
)

(1 + o(1)),

with d defined in Assumption 3.1. Because T̂ (h; k) is given by the difference between two

local linear regression estimators, it follows from Theorem 3.1 and arguments in Appendix C.2

in the supplemental materials that the bias of T̂ (h; k) is maximized at the function f(x) =

−Mx2/2 · (1(x ≥ 0)− 1(x < 0)). The worst-case bias therefore satisfies

bias(T̂ (h; k)) = −M
2

n∑
i=1

(
wn+(xi) + wn−(xi)

)
x2i = −Mh2 ·

∫ ∞
0

u2k∗1(u) du · (1 + o(1)).

The RMSE-optimal bandwidth is given by

h∗rmse =

( ∫∞
0
k∗1(u)2 du

(
∫∞
0
u2k∗1(u) du)2

·
σ2
+(0) + σ2

−(0)

dn4M2

)1/5

. (18)

Similar to the discussion in Section 4.1, this expression is similar to the optimal bandwidth

definition derived under pointwise asymptotics (Imbens and Kalyanaraman, 2012), except that

4M2 is replaced with (f
′′
+(0)− f ′′−(0))2, which gives infinite bandwidth if the second derivatives

at zero are equal in magnitude and of opposite sign. Consequently, the critique in Section 4.1

applies to this bandwidth as well.

The bias-sd ratio at h∗rmse equals 1/2 in large samples; a two-sided CI around T̂ (h∗rmse; k)
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for a given kernel k can therefore be constructed as

T̂ (h∗rmse; k)± cv1−α(1/2) · sd(T̂ (h∗rmse; k)). (19)

One can use the critical value cv1−α(bias(T̂ (h∗rmse; k))/ sd(T̂ (h∗rmse; k))) based on the finite-

sample bias-sd ratio. The choice of M , and computation of the standard error and h∗rmse are

similar to the conditional mean case, and are discussed in Appendix A.

6.1 Empirical illustration

To illustrate the implementation of feasible versions of the CIs (19), we use a subset of the

dataset from Ludwig and Miller (2007).

In 1965, when the Head Start federal program launched, the Office of Economic Opportunity

provided technical assistance to the 300 poorest counties in the United States to develop Head

Start funding proposals. Ludwig and Miller (2007) use this cutoff in technical assistance to

look at intent-to-treat effects of the Head Start program on a variety of outcomes using as a

running variable the county’s poverty rate relative to the poverty rate of the 300th poorest

county (which had poverty rate equal to approximately 59.2%). We focus here on their main

finding, the effect on child mortality due to causes addressde as part of Head Start’s health

services. See Ludwig and Miller (2007) for a detailed description of this variable. Relative to

the dataset used in Ludwig and Miller (2007), we remove one duplicate entry and one outlier,

which after discarding counties with partially missing data leaves us with 3,103 observations,

with 294 of them above the poverty cutoff.

Figure 4 plots the data (to reduce the noise in the outcome variable, we plot bin averages

of size 25). To estimate the discontinuity in mortality rates, Ludwig and Miller (2007) use a

uniform kernel8 and consider bandwidths equal to 9, 18, and 36. This yields point estimates

equal to −1.90, −1.20 and −1.11 respectively, which are large effects given that the average

mortality rate for counties not receiving technical assistance was 2.15 per 100,000. The p-values

reported in the paper, based on bootstrapping the t-statistic (which ignores any potential bias

in the estimates), are 0.036, 0.081, and 0.027. The standard errors for these estimates, obtained

using the nearest neighbor method (with J = 3) are 1.04, 0.70, and 0.52.

These bandwidth choices are optimal in the sense that they minimize the RMSE expres-

sion (22) if M = 0.040, 0.0074, and 0.0014, respectively. Thus, for these bandwidths to be

optimal, one has to be very optimistic about the smoothness of the regression function. In

comparison, the rule of thumb method for estimating M discussed in Appendix A.1 yields

M̂rot = 0.299, implying h∗rmse estimate 4.0, and the point estimate−3.17. For these smoothness

8The paper states that the estimates were obtained using a triangular kernel. However, due to a bug in the
code, the results reported in the paper were actually obtained using a uniform kernel.
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parameters, the critical values based on the finite-sample bias-sd ratio are given by 2.165, 2.187,

2.107 and 2.202 respectively, which is very close to the asymptotic value cv.95(1/2) = 2.181. The

resulting 95% confidence intervals are given by

(−4.143, 0.353), (−2.720, 0.323), (−2.215,−0.013), and (−6.352, 0.010),

respectively. The p-values based on these estimates are given by 0.100, 0.125, 0.047, and 0.051.

These values are higher than those reported in the paper, as they take into account the potential

bias of the estimates.

Using a triangular kernel helps to tighten the confidence intervals by about 2–4% in length,

as predicted by the relative asymptotic efficiency results from Table 3, yielding

(−4.138, 0.187), (−2.927, 0.052), (−2.268,−0.095), and (−5.980,−0.322)

The underlying optimal bandwidths are given by 11.6, 23.1, 45.8, and 4.9 respectively. The p-

values associated with these estimates are 0.074, 0.059, 0.033, and 0.028, tightening the p-values

based on the uniform kernel.

These results indicate that unless one is very optimistic about the smoothness of the re-

gression function, the uncertainty associated with the magnitude of the effect of Head Start

assistance on child mortality is much higher than originally reported. This is due mainly to

the relatively large bandwidths used by Ludwig and Miller (2007), which imply an optimistic

bound on the smoothness of the regression function if we assume that such bandwidths are

close to optimal for MSE. Interestingly, while the more conservative smoothness bound in our

benchmark specification leads to much wider CIs, the point estimate is larger in magnitude, so

that one still finds a statistically significant effect at a 5 or 10% level, depending on the kernel.
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Appendix A Implementation details

This section discusses implementation details. We focus on the nonparametric regression setting

of Section 3, with additional details for the RD setting of Section 6 where relevant.

A.1 Rule of thumb for M

Fan and Gijbels (1996) suggest using a global polynomial estimate of order p+2 to estimate the

pointwise-in-f optimal bandwidth. We apply this approach to estimate M , thereby giving an

analogous rule-of-thumb estimate of the minimax optimal bandwidth. To calibrate M , let f̆(x)

be the global polynomial estimate of order p + 2, and let [xmin, xmax] denote the support of xi.

We define the rule-of-thumb choice of M to be the supremum of |f̆ (p)(x)| over x ∈ [xmin, xmax].

The resulting minimax RMSE optimal bandwidth is given by (14) with the rule-of-thumb M

plugged in. In contrast, the rule-of-thumb bandwidth proposed by Fan and Gijbels (1996,

Chapter 4.2) plugs in f̆ (p)(0) to the pointwise-in-f optimal bandwidth formula (15).

We conjecture that, for any M , the resulting CI will be asymptotically honest over the

intersection of F(M) and an appropriately defined set of regression functions that formalizes

the notion that the pth derivative in a neighborhood of zero is bounded by the maximum pth

derivative of the global p+2 polynomial approximation to the regression function. Heuristically,

such condition should hold when the local smoothness of f is no smaller than its smoothness

at large scales. In contrast, we expect that calibrating M based on local smoothness estimates

may be difficult to justify, since estimating a local derivative of f is a harder problem than

the initial problem of estimating its value at a point. We leave the formalization of these

conjectures, as well as the question whether the resulting CI is optimal for this restricted class,

for future research.

In the RD setting in Section 6, the regression function has a discontinuity at a point on

the support of xi, which is normalized to zero. In this case, we define f̆ (p)(x) to be the global

polynomial estimate of order p + 2 in which the intercept and all coefficients are allowed to

be different on either side of the discontinuity (that is, we add the indicator I(xi > 0) for

observation i being above the discontinuity, as well as interactions of this indicator with each

order of the polynomial). We then take the supremum of |f̆ (p)(x)| over x ∈ [xmin, xmax] as our

rule-of-thumb choice of M , as before.

A.2 Standard errors

Because the local linear estimator T̂1(h
∗
rmse; k) is a weighted least squares estimator, one can

consistently estimate its finite-sample conditional variance by the nearest neighbor variance

estimator considered in Abadie and Imbens (2006) and Abadie et al. (2014). Given a bandwidth
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h, the estimator takes the form

ŝe(h, k)2 =
n∑
i=1

wn1 (xi;h, k)2σ̂2(xi), σ̂2(xi) =
J

J + 1

(
yi −

1

J

J∑
j=1

yj(i)

)2

, (20)

for some fixed (small) J ≥ 1, where j(i) denotes the jth closest observation to i. In contrast, the

usual Eicker-Huber-White estimator sets σ̂2(xi) = û2i , where ûi is the regression residual, and it

can be shown that this estimator will generally overestimate the conditional variance. In the RD

setting, the standard error can be estimated using the same formula with the corresponding

weight function w(n)(xi;h, k) for the local linear RD estimator, except that the jth closest

observation to i, j(i), is only taken among units with the same sign of the running variable.

A.3 Computation of h∗rmse

For h∗rmse, there are two feasible choices. The first is to use a plug-in estimator that replaces the

unknown quantities d, and σ2(0), by some consistent estimates. Alternatively, one can directly

minimize the finite-sample RMSE over the bandwidth h, which for FHöl,2(M) takes the form

RMSE(h)2 =
M2

4

(
n∑
i=1

wn1 (xi;h, k)x2i

)2

+
n∑
i=1

wn1 (xi;h, k)2σ2(xi). (21)

For FT,2(M), the sum
∑n

i=1w
n
1 (xi;h, k)x2i is replaced by

∑n
i=1|wn1 (xi;h)x2i |. Since σ2(xi) is

typically unknown, one can replace it by an estimate σ̂2(xi) = σ̂2 that assumes homoscedasticity

of the variance function. For the RD setting with the class FRD(M), the finite-sample RMSE

takes the form

RMSE(h)2 =
M2

4

(
n∑
i=1

(
wn+(xi;h) + wn−(xi;h)

)
x2i

)2

+
n∑
i=1

(
wn+(xi)

2 + wn−(xi)
2
)
σ2(xi), (22)

and h∗rmse can be chosen to minimize this expression with σ2(x) replaced with the estimate

σ̂2(xi) = σ̂2
+(0)1(x ≥ 0) + σ̂2

−(0)1(x < 0), where σ̂2
+(0) and σ̂2

−(0) are some preliminary variance

estimates for observations above and below the cutoff.

This method was considered previously in Armstrong and Kolesár (2018), who show that

the resulting confidence intervals will be asymptotically valid and equivalent to the infeasible

CI based on minimizing the infeasible RMSE (21). This method has the advantage that it

avoids having to estimate d, and it can also be shown to work when the covariates are discrete.
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Appendix B Proofs of theorems in Section 2

B.1 Proof of Theorem 2.1

Parts (ii) and (iii) follow from part (i) and simple calculations. To prove part (i), note that, if

it did not hold, there would be a bandwidth sequence hn such that

lim inf
n→∞

M r−1nr/2R(T̂ (hn; k)) < S(k)rB(k)1−r inf
t
tr−1R̃(t, 1).

By Equation (7), the bandwidth sequence hn must satisfy lim infn→∞ hn(nM2)1/[2(γb−γs)] > 0

and lim supn→∞ hn(nM2)1/[2(γb−γs)] <∞. Thus,

M r−1nr/2R(T̂ (hn; k)) = S(k)rB(k)1−rtr−1n R̃(tn, 1) + o(1)

where tn = hγb−γsn B(k)/(n−1/2S(k)). This contradicts the display above.

B.2 Proof of Theorem 2.2

The second statement (relative efficiency) is immediate from (6). For the first statement

(coverage), fix ε > 0 and let sdn = n−1/2(h∗rmse)γsS(k) so that, uniformly over f ∈ F ,

sdn / sdf (T̂ (h∗rmse; k)) → 1 and sdn /ŝe(h∗rmse; k)
p→ 1. Note that, by Theorem 2.1 and the

calculations above,

R̃FLCI,α+ε(T̂ ( ˆh∗rmse; k)) = sdn · cv1−α−ε(
√

1/r − 1)(1 + o(1))

and similarly for R̃FLCI,α−ε(T̂ (h∗rmse; k)). Since cv1−α(
√

1/r − 1) is strictly decreasing in α, it

follows that there exists η > 0 such that, with probability approaching 1 uniformly over f ∈ F ,

RFLCI,α+ε(T̂ ( ˆh∗rmse; k)) < ŝe(T̂ ( ˆh∗rmse; k)) · cv1−α(
√

1/r − 1)

< (1− η)RFLCI,α−ε(T̂ (h∗rmse; k)).

Thus,

lim inf
n

inf
f∈F

P
(
Tf ∈

{
T̂ (h∗rmse; k)± ŝe(T̂ (h∗rmse; k)) · cv1−α(

√
1/r − 1)

})
≥ lim inf

n
inf
f∈F

P
(
Tf ∈

{
T̂ (h∗rmse; k)±RFLCI,α+ε(T̂ (h∗rmse; k))

})
≥ 1− α− ε
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and

lim sup
n

inf
f∈F

P
(
Tf ∈

{
T̂ (h∗rmse; k)± ŝe(T̂ (h∗rmse; k)) · cv1−α(

√
1/r − 1)

})
≤ lim sup

n
inf
f∈F

P
(
Tf ∈

{
T̂ (h∗rmse; k)±RFLCI,α−ε(T̂ ( ˆh∗rmse; k))(1− η)

})
≤ 1− α + ε,

where the last inequality follows by definition of RFLCI,α−ε(T̂ ( ˆh∗rmse; k)). Taking ε → 0 gives

the result.
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Table 1: Critical values cv1−α(·)
1− α

r b 0.01 0.05 0.1

0.0 2.576 1.960 1.645

6/7 0.408 2.764 2.113 1.777

4/5 0.5 2.842 2.181 1.839

2/3 0.707 3.037 2.362 2.008

1/2 1.0 3.327 2.646 2.284

1.5 3.826 3.145 2.782

2.0 4.326 3.645 3.282

Notes: Critical values cv1−α(t) and cv1−α(
√

1/r − 1), correspond to the 1−α quantiles of the |N(t, 1)|
and |N(

√
1/r − 1, 1)| distribution, where b is the ratio of the worst-case bias to standard deviation,

and r is the exponent r. For b ≥ 2, cv1−α(b) ≈ b + z1−α/2 up to 3 decimal places for these values of
1− α.

Table 2: Relative efficiency of local polynomial estimators for the function class FT,p(M).

Boundary Point Interior point

Kernel Order p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

1(|u| ≤ 1)

0 0.9615 0.9615

1 0.5724 0.9163 0.9615 0.9712

2 0.4121 0.6387 0.8671 0.7400 0.7277 0.9267

Triangular

(1− |u|)+

0 1 1

1 0.6274 0.9728 1 0.9943

2 0.4652 0.6981 0.9254 0.8126 0.7814 0.9741

Epanechnikov
3
4
(1− u2)+

0 0.9959 0.9959

1 0.6087 0.9593 0.9959 1

2 0.4467 0.6813 0.9124 0.7902 0.7686 0.9672

Notes: Efficiency is relative to the optimal equivalent kernel k∗SY . The functional Tf corresponds to
the value of f at a point.
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Table 3: Relative efficiency of local polynomial estimators for the function class FHöl,p(M).

Boundary Point Interior point

Kernel Order p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

1(|u| ≤ 1)

0 0.9615 0.9615

1 0.7211 0.9711 0.9615 0.9662

2 0.5944 0.8372 0.9775 0.8800 0.9162 0.9790

Triangular

(1− |u|)+

0 1 1

1 0.7600 0.9999 1 0.9892

2 0.6336 0.8691 1 0.9263 0.9487 1

Epanechnikov
3
4
(1− u2)+

0 0.9959 0.9959

1 0.7471 0.9966 0.9959 0.9949

2 0.6186 0.8602 0.9974 0.9116 0.9425 1

Notes: For p = 1, 2, efficiency is relative to the optimal kernel, for p = 3, efficiency is relative to the
local quadratic estimator with triangular kernel. The functional Tf corresponds to the value of f at
a point.

Table 4: Gains from imposing global smoothness

Boundary Point Interior point

Kernel p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform 1 0.855 0.764 1 1 0.848

Triangular 1 0.882 0.797 1 1 0.873

Epanechnikov 1 0.872 0.788 1 1 0.866

Optimal 1 0.906 1 0.995

Notes: Table gives the relative asymptotic risk of local polynomial estimators of order p − 1 and a
given kernel under the class FHöl,p(M) relative to the risk under FT,p(M). “Optimal” refers to using
the optimal kernel under a given smoothness class.
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Table 5: Performance of RBC CIs based on h∗rmse bandwidth for local linear regression under
FT,2 and FHöl,2.

FT,2 FHöl,2

Kernel Length Coverage tRBC Length Coverage tRBC

Boundary

Uniform 1.35 0.931 0.400 1.35 0.948 0.138

Triangular 1.32 0.932 0.391 1.32 0.947 0.150

Epanechnikov 1.33 0.932 0.393 1.33 0.947 0.148

Interior

Uniform 1.35 0.941 0.279 1.35 0.949 0.086

Triangular 1.27 0.940 0.297 1.27 0.949 0.110

Epanechnikov 1.30 0.940 0.298 1.30 0.949 0.105

Legend: Length—CI length relative to 95% FLCI based on a local linear estimator and the same kernel
and bandwidth h∗rmse; tRBC—ratio of the worst-case bias to standard deviation;
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Table 6: Monte Carlo simulation: Inference at a point.
M = 2 M = 6

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL

Design 1

RBC h = ĥ∗pt, b = b̂∗pt 0.063 0.035 0.75 55.6 0.73 0.157 0.036 0.62 0.1 0.60

RBC h = ĥce, b = b̂ce 0.030 0.041 0.45 85.9 0.85 0.059 0.045 0.34 72.5 0.75

RBC h = b = ĥ∗rmse,M=2 0.001 0.061 0.36 94.5 1.27 0.002 0.061 0.36 94.5 1.00

RBC h = b = ĥ∗rmse,M=6 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.24

Conventional ĥ∗pt,rot 0.032 0.036 0.56 76.6 0.76 0.049 0.046 0.31 77.4 0.76

FLCI, M = 2 ĥ∗rmse,M=2 0.021 0.043 0.36 94.9 1.00 0.065 0.043 0.36 75.2 0.79

FLCI, M = 6 ĥ∗rmse,M=6 0.009 0.054 0.23 96.6 1.25 0.028 0.053 0.23 94.7 0.99

FLCI, M = M̂rot ĥ∗
rmse,M=M̂rot

0.008 0.056 0.22 95.6 1.29 0.010 0.069 0.14 96.3 1.28

Design 2

RBC h = ĥ∗pt, b = b̂∗pt 0.043 0.035 0.77 75.9 0.72 0.129 0.035 0.77 4.6 0.57

RBC h = ĥce, b = b̂ce 0.028 0.040 0.49 87.5 0.83 0.074 0.041 0.44 54.3 0.68

RBC h = b = ĥ∗rmse,M=2 0.002 0.061 0.36 94.5 1.27 0.006 0.061 0.36 94.4 1.00

RBC h = b = ĥ∗rmse,M=6 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.24

Conventional ĥ∗pt,rot 0.032 0.032 0.78 74.4 0.67 0.073 0.040 0.44 53.0 0.66

FLCI, M = 2 ĥ∗rmse,M=2 0.020 0.043 0.36 95.1 1.00 0.061 0.043 0.36 78.1 0.79

FLCI, M = 6 ĥ∗rmse,M=6 0.009 0.054 0.23 96.6 1.25 0.028 0.053 0.23 94.7 0.99

FLCI, M = M̂rot ĥ∗
rmse,M=M̂rot

0.013 0.048 0.30 94.3 1.13 0.020 0.059 0.20 94.3 1.08

Design 3

RBC h = ĥ∗pt, b = b̂∗pt -0.043 0.035 0.77 75.7 0.72 -0.122 0.035 0.74 10.2 0.58

RBC h = ĥce, b = b̂ce -0.026 0.040 0.49 88.2 0.83 -0.063 0.043 0.43 64.6 0.71

RBC h = b = ĥ∗rmse,M=2 -0.002 0.061 0.36 94.5 1.27 -0.007 0.061 0.36 94.4 1.00

RBC h = b = ĥ∗rmse,M=6 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.24

Conventional ĥ∗pt,rot -0.032 0.033 0.72 74.7 0.69 -0.065 0.042 0.39 62.0 0.69

FLCI, M = 2 ĥ∗rmse,M=2 -0.020 0.043 0.36 95.0 1.00 -0.060 0.043 0.36 78.1 0.79

FLCI, M = 6 ĥ∗rmse,M=6 -0.009 0.054 0.23 96.5 1.25 -0.027 0.053 0.23 94.7 0.99

FLCI, M = M̂rot ĥ∗
rmse,M=M̂rot

-0.010 0.052 0.25 95.6 1.22 -0.013 0.065 0.16 96.1 1.21

Legend: E[h]—average (over Monte Carlo draws) bandwidth; SE—average standard error, Cov—coverage of CIs (in %); RL—relative (to optimal FLCI) length.

Bandwidth (bw) descriptions: ĥ∗pt—plugin estimate of pointwise MSE optimal bw; b̂∗pt—analog for estimate of the bias; ĥce—plugin estimate of coverage error optimal bw;

b̂ce—analog for estimate of the bias; The implementation of Calonico et al. (2017) is used for all four bws. ĥ∗rmse,M=2, ĥ
∗
rmse,M=6—RMSE optimal bw, assuming M = 2,

and M = 6, respectively. ĥ∗pt,rot—Fan and Gijbels (1996) rule of thumb; ĥ∗
rmse,M=M̂rot

—RMSE optimal bw, using ROT for M . See Appendix A for detailed description of

ĥ∗rmse,M=2, ĥ
∗
rmse,M=6, ĥ

∗
rmse,M=M̂rot

, and ĥ∗pt,rot. 50,000 Monte Carlo draws.
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Figure 1: Optimal ratio of the worst-case bias to standard deviation for fixed length CIs (FLCI),
and maximum MSE (MSE) performance criteria.
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Figure 2: Optimal ratio of the worst-case bias to standard deviation for one-sided CIs (OCI),
and maximum MSE (MSE) performance criteria.
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Figure 3: Efficiency of fixed-length CIs based on minimax MSE bandwidth relative to fixed-
length CIs based on optimal bandwidth.
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Figure 4: Average county mortality rate per 100,000 for children aged 5–9 over 1973–83 due
to causes addressed as part of Head Start’s health services (labeled “Mortality rate”) plotted
against poverty rate in 1960 relative to the 300th poorest county. Each point corresponds to
an average for 25 counties. Data are from Ludwig and Miller (2007).
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Figure 5: Monte Carlo simulation Designs 1–3, and M = 2.
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