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Abstract 

We consider the problem of constructing honest confidence intervals (CIs) for a scalar 

parameter of interest, such as the regression discontinuity parameter, in nonparametric 

regression based on kernel or local polynomial estimators. To ensure that our CIs are 

honest, we derive and tabulate novel critical values that take into account the possible 

bias of the estimator upon which the CIs are based. We show that this approach leads to 

CIs that are more efficient than conventional CIs that achieve coverage by undersmoothing 

or subtracting an estimate of the bias. We give sharp efficiency bounds of using different 

kernels, and derive the optimal bandwidth for constructing honest CIs. We show that 

using the bandwidth that minimizes the maximum mean-squared error results in CIs 

that are nearly efficient and that in this case, the critical value depends only on the rate 
−2/5of convergence. For the common case in which the rate of convergence is n , the 

appropriate critical value for 95% CIs is 2.18, rather than the usual 1.96 critical value. 

We illustrate our results in a Monte Carlo analysis and an empirical application. 
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1 Introduction 

This paper considers the problem of constructing confidence intervals (CIs) for a scalar param-

eter T (f) of a function f , which can be a conditional mean or a density. The scalar parameter 

may correspond, for example, to a conditional mean, or its derivatives at a point, the regression 

discontinuity parameter, or the value of a density or its derivatives at a point. When the goal 

is to estimate T (f), a popular approach is to use kernel or local polynomial estimators. These 

estimators are both simple to implement, and highly efficient in terms of their mean squared 

error (MSE) properties (Fan, 1993; Cheng et al., 1997). 

In this paper, we show that one can also use these estimators to construct simple, and 

highly efficient confidence intervals (CIs): simply add and subtract its standard error times a 

critical value that is larger than the usual normal quantile z1−α/2, and takes into account the 

possible bias of the estimator.1 We tabulate these critical values, and show that they depend 

only on (1) the optimal rate of convergence (equivalently, the order of the derivative that one 

bounds to obtain the asymptotic MSE); and (2) the criterion used to choose the bandwidth. 

In particular, if the MSE optimal bandwidth is used with a local linear estimator, computing 

our CI at the 95% coverage level amounts to replacing the usual critical value z0.975 = 1.96 

with 2.18. Asymptotically, our CIs correspond to fixed-length CIs as defined in Donoho (1994), 

and so we refer to them as fixed-length CIs. We show that these CIs are near optimal in 

terms of their length in the class of honest CIs. As in Li (1989), we formalize the notion of 

honesty by requiring that the CI cover the true parameter asymptotically at the nominal level 

uniformly over a parameter space F for f (which typically places bounds on derivatives of 

f). Furthermore, we allow this parameter space to grow with the sample size. The notion of 

honesty is closely related to the use of the minimax criterion used to derive the MSE efficiency 

results: in both cases, one requires good performance uniformly over the parameter space F . 
In deriving these results, we answer three main questions. First, how to optimally form a CI 

based on a given class of kernel-based estimators? Popular approaches include undersmoothing 

(choosing the bandwidth to shrink more quickly than the MSE optimal bandwidth) and bias-

correction (subtracting an estimate of the bias). We show that widening the CI to take into 

account bias is more efficient (in the sense of leading to a smaller CI while maintaining coverage) 

than both of these approaches. In particular, we show that, in contrast to the practice of 

undersmoothing, the optimal bandwidth for CI construction is larger than the MSE optimal 

bandwidth. This contrasts with the work of Hall (1992) and Calonico et al. (2017) on optimality 

of undersmoothing. Importantly, these papers restrict attention to CIs that use the usual critical 

value z1−α/2. It then becomes necessary to choose a small enough bandwidth so that the bias 

1An R package implementing our CIs in regression discontinuity designs is available at https://github. 
com/kolesarm/RDHonest. 
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is asymptotically negligible relative to the standard error, since this is the only way to achieve 

correct coverage. Our results imply that rather than choosing a smaller bandwidth, it is better 

to use a larger critical value that takes into account the potential bias; this also ensures correct 

coverage regardless of the bandwidth sequence. While the fixed-length CIs shrink at the optimal 

rate, undersmoothed CIs shrink more slowly. We also show that fixed-length CIs are about 30% 

shorter than the bias-corrected CIs, once the standard error is adjusted to take into account 

the variability of the bias estimate (Calonico et al. (2014) show that doing so is important in 

order to maintain coverage). 

Second, since the MSE criterion is typically used for estimation, one may prefer to report a 

CI that is centered around the MSE optimal estimator, rather than reoptimizing the bandwidth 

for length and coverage of the CI. How much is lost by using the MSE optimal bandwidth to 

construct the CI? We show that, under a range of conditions most commonly used in practice, 

the loss in efficiency is very small: a fixed-length CI centered at the MSE optimal bandwidth 

is 99% efficient in these settings. Therefore, there is little efficiency loss from not re-optimizing 

the bandwidth for inference. 

Third, how much is lost by using a kernel that is not fully optimal? We show that the 

relative kernel efficiency for the CIs that we propose, in terms of their length, is the same as the 

relative efficiency of the estimates in terms of MSE. Thus, relative efficiency calculations for 

MSE, such as the ones in Fan (1993), Cheng et al. (1997), and Fan et al. (1997) for estimation 

of a nonparametric mean at a point (estimation of f(x0) for some x0) that motivate much of 

empirical practice in the applied regression discontinuity literature, translate directly to CI con-

struction. Moreover, it follows from calculations in Donoho (1994) and Armstrong and Kolesár 

(2017) that our CIs, when constructed using a length-optimal or MSE-optimal bandwidth, are 

highly efficient among all honest CIs: no other approach to inference can substantively improve 

on their length. 

The requirement of honesty, or uniformity the parameter space F , that underlies our anal-
ysis, is important for two reasons. First, it leads to a well-defined and consistent concept of 

optimality. For example, it allows us to formally show that using local polynomial regression of 

an order that’s too high given the amount of smoothness imposed is suboptimal. In contrast, 

under pointwise-in-f asymptotics (which do not require such uniformity), high-order local poly-

nomial estimates are superefficient at every point in the parameter space (see Chapter 1.2.4 in 

Tsybakov, 2009, and Brown et al., 1997). 

Second, it is necessary for good finite-sample performance. For example, as we show in Sec-

tion 4.1, bandwidths that optimize the asymptotic MSE derived under pointwise-in-f asymp-

totics can lead to arbitrarily poor finite-sample behavior. This point is borne out in our Monte 

Carlo study, in which we show that commonly used plug-in bandwidths that attempt to estimate 

this pointwise-in-f optimal bandwidth can lead to severe undercoverage, even when combined 
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with undersmoothing or bias-correction. In contrast, fixed-length CIs perform as predicted by 

our theory. 

Our approach requires an explicit definition of the parameter space F . When the parameter 

space bounds derivatives of f , the parameter space will depend on this particular bound M . 

Unfortunately, the results of Low (1997), Cai and Low (2004), and Armstrong and Kolesár 

(2017) show that it is impossible to avoid choosing M a priori without additional assumptions on 

the parameter space: one cannot use a data-driven method to estimate M and maintain coverage 

over the whole parameter space. We therefore recommend that, whenever possible, problem-

specific knowledge be used to decide what choice of M is reasonable a priori. We also propose 

a data-driven rule of thumb for choosing M , although, by the above impossibility results, one 

needs to impose additional assumptions on f in order to guarantee honesty. Regardless of 

how one chooses M , the fixed-length CIs we propose are more efficient than undersmoothed or 

bias-corrected CIs that use the same (implicit or explicit) choice of M . 

While our results show that undersmoothing is inefficient, an apparent advantage of under-

smoothing is that it leads to correct coverage for any fixed smoothness constant M . However, 

as we discuss in detail in Section 4.2, a more accurate description of undersmoothing is that it 

implicitly chooses a sequence Mn →∞ under which coverage is controlled. Given a sequence of 

undersmoothed bandwidths, we show how this sequence Mn can be calculated explicitly. One 

can then obtain a shorter CI with the same coverage properties by computing a fixed-length 

CI for the corresponding Mn. 

To illustrate the implementation of the honest CIs, we reanalyze the data from Ludwig and 

Miller (2007), who, using a regression discontinuity design, find a large and significant effect of 

receiving technical assistance to apply for Head Start funding on child mortality at a county 

level. However, this result is based on CIs that ignore the possible bias of the local linear 

estimator around which they are built, and an ad hoc bandwidth choice. We find that, if one 

bounds the second derivative globally by a constant M using a Hölder class, the effect is not 

significant at the 5% level unless one is very optimistic about the constant M , allowing f to 

only be linear or nearly-linear. 

Our results build on the literature on estimation of linear functionals in normal models with 

convex parameter spaces, as developed by Donoho (1994), Ibragimov and Khas’minskii (1985) 

and many others. As with the results in that literature, our setup gives asymptotic results 

for problems that are asymptotically equivalent to the Gaussian white noise model, including 

nonparametric regression (Brown and Low, 1996) and density estimation (Nussbaum, 1996). 

Our main results build on the “renormalization heuristics” of Donoho and Low (1992), who 

show that many nonparametric estimation problems have renormalization properties that allow 

easy computation of minimax mean squared error optimal kernels and rates of convergence. As 

we show in Appendix C, our results hold under essentially the same conditions, which apply in 
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many classical nonparametric settings. 

The rest of this paper is organized as follows. Section 2 gives the main results. Section 3 

applies our results to inference at a point, Section 4 gives a theoretical comparison of our fixed-

length CIs to other approaches, and Section 5 compares them in a Monte Carlo study. Finally, 

Section 6 applies the results to RD, and presents an empirical application based on Ludwig and 

Miller (2007). Appendix A discusses implementation details and includes a proposal for a rule of 

thumb for choosing M . Appendix B gives proofs of the results in Section 2. The supplemental 

materials contain further appendices and additional tables and figures. Appendix C verifies 

our regularity conditions for some examples, and includes proofs of the results in Section 3. 

Appendix D calculates the efficiency gain from using different bandwidths on either side of 

a cutoff in RD that is used in Section 6. Appendix E contains details on optimal kernel 

calculations discussed in Section 3. 

2 General results 

We are interested in a scalar parameter T (f) of a function f , which is typically a conditional 

mean or density. The function f is assumed to lie in a function class F = F(M), which places 

“smoothness” conditions on f , where M indexes the level of smoothness. We focus on classical 

nonparametric function classes, in which M corresponds to bound on a derivative of f of a 

given order. We allow M = Mn to grow with the sample size n. 

We have available a class of estimators T̂ (h; k) based on a sample of size n, which depend 

on a bandwidth h = hn > 0 and a kernel k. Let 

ˆbias(T̂ ) = sup |Ef T − T (f)|
f∈F

denote the worst-case bias of an estimator T̂ , and let sdf (T̂ ) = varf (T̂ )
1/2 denote its standard 

deviation. We assume that the estimator T̂ (h; k) is centered so that its maximum and minimum 

bias over F sum to zero, supf ∈F Ef (T̂ (h; k) − T (f)) = − inff∈F Ef (T̂ (h; k) − T (f)). 

Our main assumption is that the variance and worst-case bias scale as powers of h. In 

particular, we assume that, for some γb > 0, γs < 0, B(k) > 0 and S(k) > 0, 

bias(T̂ (h; k)) = hγb MB(k)(1 + o(1)), sdf (T̂ (h; k)) = hγs n −1/2S(k)(1 + o(1)), (1) 

where the o(1) term in the second equality is uniform over f ∈ F . Note that the second 

condition implies that the standard deviation does not depend on the underlying function f 

asymptotically. As we show in Appendix C in the supplemental materials, this condition (as 

well as the other conditions used in this section) holds whenever the renormalization heuristics 
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of Donoho and Low (1992) can be formalized. This includes most classical nonparametric 

problems, such as estimation of a density or conditional mean, or its derivative, evaluated at a 

point (which may be a boundary point). In Section 3, we show that (1) holds with γb = p, and 

γs = −1/2 under mild regularity conditions when T̂ (h; k) is a local polynomial estimator of a 

conditional mean at a point, and F(M) consists of functions with pth derivative bounded by 

M . 

Let t = hγb−γs MB(k)/(n−1/2S(k)) denote the ratio of the leading worst-case bias and stan-� �1/(γb−γs)dard deviation terms. Substituting h = tn−1/2S(k)/(MB(k)) into (1), the approxi-

mate bias and standard deviation can be written as 

−r/2M1−rS(k)rB(k)1−r −r/2M1−rS(k)rB(k)1−rhγb MB(k) = tr n , hγs n −1/2S(k) = tr−1 n (2) 

where r = γb/(γb − γs). Since the bias and the standard deviation both converge at rate nr/2 

when M is fixed, we refer to r as the rate exponent (this matches the definition in, e.g., Donoho 

and Low 1992; see Appendix C in the supplemental materials). 

Computing the wost-case bias-standard deviation ratio (bias-sd ratio) t associated with a 

given bandwidth allows easy computation of honest CIs. Let bse(h; k) denote the standard error, 

an estimate of sdf (T̂ (h; k)). Assuming a central limit theorem applies to T̂ (h; k), [ T̂ (h; k) − 

T (f)]/ bse(h; k) will be approximately distributed as a normal random variable with variance 1 

and bias bounded by t. Thus, an approximate 1 − α CI is given by 

T̂ (h; k) ± cv1−α(t) · b (3)se(h; k), 

where cv1−α(t) is the 1 − α quantile of the |N(t, 1)| distribution (see Table 1). This is an 

approximate version of a fixed-length confidence interval (FLCI) studied in Donoho (1994), 

who replaces se(b h; k) with sdf (T̂ (h; k)) in the definition of this CI, and assumes sdf (T̂ (h; k)) 

is constant over f , in which case its length will be fixed. We thus refer to CIs of this form 

as “fixed-length”, even though bse(h; k) is random. One could also form honest CIs by simply 

adding and subtracting the worst case bias, in addition to adding and subtracting the standard 

error times z1−α/2 = cv1−α(0), the 1 − α/2 quantile of a standard normal distribution, forming 

the CI as T̂ (h; k)±(bias( ̂ se(h; k)). However, since the estimator ˆT (h; k))+z1−α/2 · b T (h; k) cannot 

simultaneously have a large positive and a large negative bias, such CI will be conservative, 

and longer than the CI given in Equation (3). 

Honest one-sided 1 − α CIs based on T̂ (h; k), can be constructed by simply subtracting the 

maximum bias, in addition to subtracting z1−α times the standard deviation, from T̂ (h; k): 

[T̂ (h; k) − hγb MB(k) − z1−αh
γs n −1/2S(k) , ∞). (4) 
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To discuss the optimal choice of bandwidth h and compare efficiency of different kernels k in 

forming one- and two-sided CIs, and compare the results to the bandwidth and kernel efficiency 

results for estimation, it will be useful to introduce notation for a generic performance criterion. 

Let R(T̂ ) denote the worst-case (over F) performance of T̂ according to a given criterion, and 

let R̃(b, s) denote the value of this criterion when T̂ − T (f) ∼ N(b, s2). For FLCIs, we can take 

their half-length as the criterion, which leads to n � � o 
RFLCI,α(T̂ (h; k)) = inf χ : Pf |T̂ (h; k) − T (f)| ≤ χ ≥ 1 − α all f ∈ F , �

R̃FLCI,α(b, s) = inf χ : PZ∼N(0,1) (|sZ + b| ≤ χ) ≥ 1 − α = s · cv1−α(b/s). 

To evaluate one-sided CIs, one needs a criterion other than length, which is infinite. A natural 

criterion is expected excess length, or quantiles of excess length. We focus here on the quantiles 

of excess length. For CI of the form (4), its worst-case β quantile of excess length is given by 

ROCI,α,β(T̂ (h; k)) = supf∈F qf,β (Tf − T̂ (h; k) + hγb MB(k) + z1−αhγs n−1/2S(k)), where qf,β(Z) 

is the β quantile of a random variable Z. The worst-case β quantile of excess length based on 

an estimator T̂ when T̂ − T (f) is normal with variance s2 and bias ranging between −b and b 
˜ ˆis ROCI,α,β (b, s) ≡ 2b + (z1−α + zβ)s. Finally, to evaluate T (h; k) as an estimator we use root 

mean squared error (RMSE) as the performance criterion: q √ 
2RRMSE (T̂ ) = sup Ef [T̂ − T (f)]2 , R̃(b, s) = b2 + s . 

f∈F 

ˆWhen (1) holds and the estimator T (h; k) satisfies an appropriate central limit theorem, 

these performance criteria will satisfy 

R(T̂ (h; k)) = R̃(hγb MB(k), hγs n −1/2S(k))(1 + o(1)). (5) 

To keep the statement of our main results simple, we make this assumption directly. As is the 

case for condition (1), we show in Appendix C in the supplemental materials that this condition 

will typically hold in most classical nonparametric problems. In Section 3, we verify it for the 
˜problem of estimation of a conditional mean at a point. We will also assume that R scales 

linearly in its arguments (i.e. it is homogeneous of degree one): R̃(tb, ts) = tR̃(b, s). This holds 

for all three criteria considered above. Plugging in (2) and using scale invariance of R̃ gives 

−r/2M1−rS(k)rB(k)1−rtr−1 ˜R(T̂ (h; k)) = n R(t, 1)(1 + o(1)) (6) 

where t = hγb−γs MB(k)/(n−1/2S(k)) is the bias-sd ratio and r = γb/(γb − γs) is the rate 

exponent, as defined above. Under (6), the asymptotically optimal bandwidth for a given 
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performance criterion R is h∗ 
R = (n−1/2S(k)t ∗ /(MB(k)))1/(γb−γs), with t ∗ = argmint t

r−1R̃(t, 1).R R 

Assuming t ∗ is finite and strictly greater than zero, the optimal bandwidth decreases at R 

the rate (nM2)−1/[2(γb−γs)] regardless of the performance criterion—the performance criterion 

only determines the optimal bandwidth constant. Since the approximation (5) may not hold 

when h is too small or large relative to the sample size, we will only assume this condition for 

bandwidth sequences of order (nM2)−1/[2(γb−γs)]. For our main results, we assume directly that 

optimal bandwidth sequences decrease at this rate: 

M r−1 r/2R( ˆn T (hn; k)) →∞ for any hn with 

(nM2)1/[2(γb−γs)] →∞ or hn(nM
2)1/[2(γb−γs)] → 0.hn (7) 

Condition (7) will hold so long as it is suboptimal to choose a bandwidth such that the bias or 

the variance dominates asymptotically, which is the case in the settings considered here.2 

We collect some implications of these derivations in a theorem. 

˜Theorem 2.1. Let R be a performance criterion with R(b, s) > 0 for all (b, s) 6 0 and= 

R̃(tb, ts) = tR̃(b, s) for all (b, s). Suppose that Equation (5) holds for any bandwidth sequence hn 

with lim infn→∞ hn(nM
2)1/[2(γb−γs)] > 0 and lim supn→∞ hn(nM

2)1/[2(γb−γs)] < ∞, and suppose 

that Equation (7) holds. Let h∗ and t ∗ be as defined above, and assume that tR 
∗ > 0 is unique R R 

and well-defined. Then: 

(i) The asymptotic minimax performance of the kernel k is given by 

M r−1 r/2R( ˆnr/2 inf R(T̂ (h; k)) = M r−1 n T (h ∗ 
R; k)) + o(1) 

h>0 

tr−1 ˜= S(k)rB(k)1−r inf R(t, 1) + o(1), 
t 

−1/2S(k)t ∗ tr−1 ˜where h∗ = (n /(MB(k)))1/(γb−γs), and t ∗ = argmin R(t, 1).R R R t 

(ii) The asymptotic relative efficiency of two kernels k1 and k2 is given by 

infh>0 R(T̂ (h; k1)) S(k1)
rB(k1)

1−r 

lim = . 
n→∞ infh>0 R(T̂ (h; k2)) S(k2)rB(k2)1−r 

It depends on the rate r but not on the performance criterion R. 

2In typical settings, we will need the optimal bandwidth h∗ to shrink at a rate such that (h∗ )−2γs n →∞ andR R

h∗ → 0. If M is fixed, this simply requires that γb − γs > 1/2, which basically amounts to a requirement that R 
F(M) imposes enough smoothness so that the problem is not degenerate in large samples. If M = Mn → ∞, 
then the condition also requires nr/2M r−1 →∞, so that M does not increase too quickly. 
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(iii) If (1) holds, the asymptotically optimal bias-sd ratio is given by 

bias(T̂ (h∗ 

tr−1 ˜ ∗R; k))lim = argmin R(t, 1) = tR. 
n→∞ sdf (T̂ (h∗ ; k)) tR

It depends only on the performance criterion R and rate exponent r. If we consider two 

performance criteria R1 and R2 satisfying the conditions above, then the limit of the ratio 

of optimal bandwidths for these criteria is � �1/(γb−γs)h∗ t ∗ 
R1 R1lim = . 

n→∞ h∗ t ∗ 
R2 R2 

It depends only on γb and γs and the performance criteria. 

Part (i) gives the optimal bandwidth formula for a given performance criterion. The per-

formance criterion only determines the optimal bandwidth constant (the optimal bias-sd ratio) 

t ∗ 
R. 

Part (ii) shows that relative kernel efficiency results do not depend on the performance 

criterion. In particular, known kernel efficiency results under the RMSE criterion such as those 

in Fan (1993), Cheng et al. (1997), and Fan et al. (1997) apply unchanged to other performance 

criteria such as length of FLCIs, excess length of one-sided CIs, or expected absolute error. 

Part (iii) shows that the optimal bias-sd ratio for a given performance criterion depends on 

F only through the rate exponent r, and does not depend on the kernel. The optimal bias-sd 

ratio for RMSE, FLCI and OCI, respectively, are 

√ p
∗ tr−1 ˜ tr−1tRMSE = argmin RRMSE (t, 1) = argmin t2 + 1 = 1/r − 1, 

t>0 t>0 

∗ tr−1 ˜ tr−1t = argmin RF LCI,α(t, 1) = argmin cv1−α(t), andF LCI 
t>0 t>0 

∗ tr−1 ˜ z1−α + zβ 
tOCI = argmin ROCI,α(t, 1) = argmin tr−1[2t + (z1−α + zβ)] = (1/r − 1) . 

t>0 t>0 2 

Figures 1 and 2 plot these quantities as a function of r. Note that the optimal bias-sd ratio 

is larger for FLCIs (at levels α = .05 and α = .01) than for RMSE. Since h is increasing in 

t, it follows that, for FLCI, the optimal bandwidth oversmooths relative to the RMSE optimal 

bandwidth. 

One can also form FLCIs centered at the estimator that is optimal for different performance 

criterion R as T̂ (h∗ se(h∗ · cv1−α(t ∗ ). The critical value cv1−α(t ∗ ) depends only on the R; k) ± b R; k) R R

rate exponent r and the performance criterion R. In particular, the CI centered at the RMSE p
optimal estimator takes this form with t ∗ = 1/r − 1. Table 1 reports this critical value p RMSE 

cv1−α( 1/r − 1) for some rate exponents r commonly encountered in practice. By (6), the 
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resulting CI is wider than the one computed using the FLCI optimal bandwidth by a factor of 

(t ∗ )r−1 · cv1−α(t ∗ )FLCI FLCI . (8) 
RMSE · cv1−α(t ∗ )(t ∗ )r−1 

RMSE 

Figure 3 plots this quantity as a function of r. It can be seen from the figure that if r ≥ 4/5, CIs 

constructed around the RMSE optimal bandwidth are highly efficient. For example, if r = 4/5, 

to construct an honest 95% FLCI based on an estimator with bandwidth chosen to optimize 

RMSE, one simply adds and subtracts the standard error multiplied by 2.18 (rather than the 

usual 1.96 critical value), and the corresponding CI is only about 3% longer than the one with 

bandwidth chosen to optimize CI length. The next theorem gives a formal statement. 

Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold for RRMSE and for RFLCI,α̃ for 

all α̃ in a neighborhood of α. se(h∗ se(h∗ ; k)/ sdf (h
∗ ; k) converges Let b ; k) be such that brmse rmse rmse

in probability to 1 uniformly over f ∈ F . Then � n o�p
lim inf T (f) ∈ T̂ (h ∗ se(h ∗ ; k) · cv1−α( 1/r − 1); k) ± b = 1 − α. Pf rmse rmse
n→∞ f ∈F 

The asymptotic efficiency of this CI relative to the one centered at the FLCI optimal bandwidth, 
infh>0 RFLCI,α(T̂ (h;k))

defined as limn→∞ , is given by (8). It depends only on r. 
RFLCI,α(T̂ (h∗ ;k))rmse

3 Inference at a point 

In this section, we apply the general results from Section 2 to the problem of inference about 

a nonparametric regression function at a point, which we normalize to be zero, so that T (f) = 

f(0). We allow the point of interest to be on the boundary on the parameter space. Because in 

sharp regression discontinuity (RD) designs, discussed in detail in Section 6, the parameter of 

interest can be written as the difference between two regression functions evaluated at boundary 

points, the results in this section generalize naturally to sharp RD. 

We write the nonparametric regression model as 

yi = f(xi) + ui, i = 1, . . . , n, (9) 

where the design points xi are non-random, and the regression errors ui are by definition 

mean-zero, with variance var(ui) = σ2(xi). We consider inference about f(0) based on local 

polynomial estimators of order q, 

nX 
T̂q(h; k) = wq

n(xi; h, k)yi, 
i=1 
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where the weights wq
n(xi; h, k) are given by 

nX 
wq

n(x; h, k) = e 0 1Qn 
−1 mq(x)k(x/h), Qn = k(xi/h)mq(xi)mq(xi)

0 . 
i=1 

Here mq(t) = (1, t, . . . , tq)0 , k(·) is a kernel with bounded support, and e1 is a vector of zeros 

with 1 in the first position. In particular, T̂q(h; k) corresponds to the intercept in a weighted 

least squares regression of yi on (1, xi, . . . , xi
q) with weights k(xi/h). Local linear estimators 

correspond to q = 1, and Nadaraya-Watson (local constant) estimators to q = 0. It will be 

convenient to define the equivalent kernel �Z �−1 

k ∗ 0 
q (u) = e1 mq(t)mq(t)

0k(t) dt mq(u)k(u), (10) 
X 

where the integral is over X = R if 0 is an interior point, and over X = [0, ∞) if 0 is a (left) 

boundary point. 

We assume the following conditions on the design points and regression errors ui: P R 
Assumption 3.1. The sequence {xi}n satisfies 1 n g(xi/hn) → d g(u) du for some i=1 nhn i=1 X 

d > 0, and for any bounded function g with finite support and any sequence hn with 0 < 

(nM2)1/(2p+1) < ∞.lim infn hn(nM
2)1/(2p+1) < lim supn hn

Assumption 3.2. The random variables {ui}ni=1 are independent and normally distributed with 

Eui = 0 and var(ui) = σ2(xi), and the variance function σ2(x) is continuous at x = 0. 

Assumption 3.1 requires that the empirical distribution of the design points is smooth around 

0. When the support points are treated as random, the constant d typically corresponds to 

their density at 0. The assumption of normal errors in Assumption 3.2 is made for simplicity 
2+ηand could be replaced with the assumption that for some η > 0, E[ui ] < ∞. 

Because the estimator is linear in yi, its variance doesn’t depend on f , 

n � Z �X 
n σ2(0)

sd(T̂q(h; k))
2 = wq (xi)

2σ2(xi) = kq 
∗ (u)2 du (1 + o(1)), (11)

dnh Xi=1 

where the second equality holds under Assumptions 3.1 and 3.2, as we show in Appendix C.2 

in the supplemental materials. The condition on the standard deviation in Equation (1) thus 

holds with sZ 
γs = −1/2 and S(k) = d−1/2σ(0) kq 

∗(u)2 du. (12) 
X R 

Tables S1 and S2 in the supplemental materials give the constant X kq 
∗(u)2 du for some common 

kernels. 
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On the other hand, the worst-case bias will be driven primarily by the function class F . We 

consider inference under two popular function classes. First, the Taylor class of order p, n P o 
FT,p(M) = f : 

���f(x) − p−1 
j=0 f

(j)(0)xj /j! 
��� ≤ M |x|p/p! x ∈ X . 

This class consists of all functions for which the approximation error from a (p − 1)-th order 

Taylor approximation around 0 can be bounded by 1 M |x|p. It formalizes the idea that the pth 
p! 

derivative of f at zero should be bounded by some constant M . Using this class of functions to 

derive optimal estimators goes back at least to Legostaeva and Shiryaev (1971), and it underlies 

much of existing minimax theory concerning local polynomial estimators (see Fan and Gijbels, 

1996, Chapter 3.4–3.5). 

While analytically convenient, the Taylor class may not be attractive in some empirical 

settings because it allows f to be non-smooth and discontinuous away from 0. We therefore 

also consider inference under Hölder class3 , 

� 
FHöl,p(M) = f : |f (p−1)(x) − f (p−1)(x 0)| ≤ M |x − x 0|, x, x 0 ∈ X . 

This class is the closure of the family of p times differentiable functions with the pth derivative 

bounded by M , uniformly over X , not just at 0. It thus formalizes the intuitive notion that f 

should be p-times differentiable with a bound on the pth derivative. The case p = 1 corresponds 

to the Lipschitz class of functions. 

Theorem 3.1. Suppose that Assumption 3.1 holds. Then, for a bandwidth sequence hn with 

(nM2)1/(2p+1) < ∞,0 < lim infn hn(nM
2)1/(2p+1) < lim supn hn Z 

Mhp
n BT BT pk ∗ biasFT,p(M )(T̂q(hn; k)) = (k)(1 + o(1)), (k) = |u (u)| dup,q p,q qp! X 

and 

n BHölbiasFH¨ (M )(T̂q(hn; k)) = 
Mhp 

(k)(1 + o(1)),
ol,p p,qp! Z ���� Z ���� dt. ∞ 

BHöl 
p,q (k) = p k ∗ (u)(|u| − t)p−1 duq 

t=0 u∈X ,|u|≥t 

Thus, the first part of (1) holds with γb = p and B(k) = Bp,q(k)/p! where Bp,q(k) = BHöl(k) forp,q 

FHöl,p p,q(M), and Bp,q(k) = BT (k) for FT,p(M). 

If, in addition, Assumption 3.2 holds, then Equation (5) holds for the RMSE, FLCI and OCI 

performance criteria, with γb and B(k) given above and γs and S(k) given in Equation (12). 

3For simplicity, we focus on Hölder classes of integer order. 
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The theorem verifies the regularity conditions needed for the results in Section 2, and 

implies that r = 2p/(2p + 1) for FT,p(M) and FHöl,p(M). If p = 2, then we obtain r = 

4/5. By Theorem 2.1 (i), the optimal rate of convergence of a criterion R is R(T̂ (h∗ 
R; k)) = 

O((n/M1/p)−p/(2p+1)). 

As we will see from the relative efficiency calculation below, the optimal order of the local 

polynomial regression is q = p−1 for the kernels considered here. The theorem allows q ≥ p−1, 

so that we can examine the efficiency of local polynomial regressions that are of order that’s 

too high relative to the smoothness class (when q < p − 1, the maximum bias is infinite). 

Under the Taylor class FT,p(M), the least favorable (bias-maximizing) function is given 

by f(x) = M/p! · sign(wq
n(x))|x|p. In particular, if the weights are not all positive, the least 

favorable function will be discontinuous away from the boundary. The first part of Theorem 3.1 

then follows by taking the limit of the bias under this function. Assumption 3.1 ensures that 

this limit is well-defined. 

Under the Hölder class FHöl,p(M), it follows from an integration by parts identity that the 

bias under f can be written as a sample average of f (p)(xi) times a weight function that depends 

on the kernel and the design points. The function that maximizes the bias is then obtained by 

setting the pth derivative to be M or −M depending on whether this weight function is positive 

or negative. This leads to a pth order spline function maximizing the bias. See Appendix C.2 

in the supplemental materials for details. 

For kernels given by polynomial functions over their support, kq 
∗ also has the form of a 

polynomial, and therefore BT and BHöl can be computed analytically. Tables S1 and S2 in the p,q p,q 

supplemental materials give these constants for selected kernels. 

3.1 Kernel efficiency 

It follows from Theorem 2.1 (ii) that the optimal equivalent kernel minimizes S(k)rB(k)1−r . 

Under the Taylor class FT,p(M), this minimization problem is equivalent to minimizing �Z �p �Z � 
k ∗ (u)2 du |upk ∗ (u)| du , (13) 

X X 

The solution to this problem follows from Sacks and Ylvisaker (1978, Theorem 1) (see also 

Cheng et al. (1997)). We give details of the solution as well as plots of the optimal kernels in 

Appendix E in the supplemental materials. In Table 2, we compare the asymptotic relative 

efficiency of local polynomial estimators based on the uniform, triangular, and Epanechnikov 

kernels to the optimal Sacks-Ylvisaker kernels. 

Fan et al. (1997) and Cheng et al. (1997), conjecture that minimizing (13) yields a sharp 

bound on kernel efficiency. It follows from Theorem 2.1 (ii) that this conjecture is correct, and 
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Table 2 match the kernel efficiency bounds in these papers. One can see from the tables that 

the choice of the kernel doesn’t matter very much, so long as the local polynomial is of the right 

order. However, if the order is too high, q > p − 1, the efficiency can be quite low, even if the 

bandwidth used was optimal for the function class or the right order, FT,p(M), especially on 

the boundary. However, if the bandwidth picked is optimal for FT,q−1(M), the bandwidth will 

shrink at a lower rate than optimal under FT,p(M), and the resulting rate of convergence will 

be lower than r. Consequently, the relative asymptotic efficiency will be zero. A similar point 

in the context of pointwise asymptotics was made in Sun (2005, Remark 5, page 8). 

The solution to minimizing S(k)rB(k)1−r under FHöl,p(M) is only known in special cases. 

When p = 1, the optimal estimator is a local constant estimator based on the triangular kernel. 

When p = 2, the solution is given in Fuller (1961) and Zhao (1997) for the interior point problem, 

and in Gao (2018) for the boundary point problem. See Appendix E in the supplemental 

materials for details, including plots of these kernels. When p ≥ 3, the solution is unknown. 

Therefore, for p = 3, we compute efficiencies relative to a local quadratic estimator with a 

triangular kernel. Table 3 calculates the resulting efficiencies for local polynomial estimators 

based on the uniform, triangular, and Epanechnikov kernels. Relative to the class FT,p(M), the 

bias constants are smaller: imposing smoothness away from the point of interest helps to reduce 

the worst-case bias. Furthermore, the loss of efficiency from using a local polynomial estimator 

of order that’s too high is smaller. Finally, one can see that local linear regression with a 

triangular kernel achieves high asymptotic efficiency under both FT,2(M) and FHöl,2(M), both 

at the interior and at a boundary, with efficiency at least 97%, which shows that its popularity 

in empirical work can be justified on theoretical grounds. Under FHöl,2(M) on the boundary, 

the triangular kernel is nearly efficient. 

3.2 Gains from imposing smoothness globally 

The Taylor class FT,p(M), formalizes the notion that the pth derivative at 0, the point of 

interest, should be bounded by M , but doesn’t impose smoothness away from 0. In contrast, 

the Hölder class FHöl,p(M) restricts the pth derivative to be at most M globally. How much 

can one tighten a confidence interval or reduce the RMSE due to this additional smoothness? 

It follows from Theorem 3.1 and from arguments underlying Theorem 2.1 that the risk of 

using a local polynomial estimator of order p − 1 with kernel kH and optimal bandwidth under 

FHöl,p(M) relative to using a local polynomial estimator of order p − 1 with kernel kT and 

optimal bandwidth under FT,p(M) is given by 

1 
2p+1 BHöl 2p+1 

R ! p ! 
infh>0 RFH¨ (M)(T̂ (h; kH )) k∗ (u)2 du (kH )ol,p X H,p−1 p,p−1

= R (1 + o(1)),
k∗ (u)2 du BT (kT )infh>0 RFT,p(M)(T̂ (h; kT )) T,p−1 p,p−1X 
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where RF (T̂ ) denotes the worst-case performance of T̂ over F . If the same kernel is used, the 

first term equals 1, and the efficiency ratio is determined by the ratio of the bias constants 

Bp,p−1(k). Table 4 computes the resulting reduction in risk/CI length for common kernels. One 

can see that in general, the gains are greater for larger p, and greater at the boundary. In the 

case of estimation at a boundary point with p = 2, for example, imposing global smoothness of 

f results in reduction in length of about 13–15%, depending on the kernel, and a reduction of 

about 10% if the optimal kernel is used. 

3.3 Practical implementation 

Given a smoothness class FT,p(M) or FHöl,p(M), Theorems 2.1, 2.2, and 3.1 imply that one p
can construct nearly efficient CIs for f(0) as T̂p−1(h

∗ ; k) ± cv1−α( 1/r − 1) · se(h∗b , k).rmse rmse

Alternatively, one could use the critical value cv1−α(bias(T̂p−1(h
∗ ; k))/ b rmse, k)) based on rmse se(h∗ 

the finite-sample bias-sd ratio (see Theorem C.1 in the supplemental materials for the finite-

sample bias expression). To implement this CI, one needs to (i) choose p, M , and k; (ii) form 

an estimate b rmse Tp−1(h
∗ ; k); and (iii) form an estimate se(h∗ , k) of the standard deviation of ˆ rmse

of h∗ (which depends on the unknown quantities σ2(0) and d). We now discuss these issues rmse 

in turn, with reference to Appendix A for additional details. 

The choice of p depends on the order of the derivative the researcher wishes to bound and it 

determines the order of local polynomial. Since local linear estimators are the most popular in 

practice, we recommend p = 2 as a default choice. In this case, both the Epanechnikov and the 

triangular kernel are nearly optimal. For M , the results of Low (1997), Cai and Low (2004) and 

Armstrong and Kolesár (2017) imply that to maintain honesty over the whole function class, 

a researcher must choose the constant a priori, rather than attempting to use a data-driven 

method. We therefore recommend that, whenever possible, problem-specific knowledge be used 

to decide what choice of M is reasonable a priori, and that one considers a range of plausible 

values by way of sensitivity analysis.4 If additional restrictions on f are imposed, a data-driven 

method for choosing M may be feasible. In Appendix A.1, we describe a rule-of-thumb method 

based on the suggestion in Fan and Gijbels (1996, Chapter 4.2). 

For the standard error b rmse are Inse(h∗ , k), many choices available in the literature. our 

Monte Carlo and application, we use a nearest-neighbor estimator discussed in Appendix A.2. 

To compute h∗ , one can plug in the constant M (discussed above) along with estimates of rmse

d, and σ2(0). Alternatively, one can plug in M and an estimate of the function σ2(·) to the 

formula for the finite-sample RMSE. See Appendix A.3 for details. 

4These negative results contrast with more positive results for estimation. See Lepski (1990), who proposes 
a data-driven method that automates the choice of both p and M . 
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4 Comparison with other approaches 

In this section, we compare our approach to inference about the parameter T (f) to three other 

approaches to inference. To make the comparison concrete, we focus on the problem of inference 

about a nonparametric regression function at a point, as in Section 3. The first approach, that 

we term “conventional”, ignores the potential bias of the estimator and constructs the CI as 

T̂q(h, k) ± z1−α/2 b The bandwidth h is typically chosen to minimize the asymptotic se(h; k). 

mean squared error of T̂q(h; k) under pointwise-in-f (or “pointwise”, for short) asymptotics, as 

opposed to the uniform-in-f asymptotics that we consider. We refer to this bandwidth as h∗ 
pt. 

In undersmoothing, one chooses a sequence of smaller bandwidths, so that in large samples, 

the bias of the estimator is dominated by its standard error. Finally, in bias correction, one 

re-centers the conventional CI by subtracting an estimate of the leading bias term from T̂q(h; k). 

In Section 4.1, we discuss the distinction between h∗ 
pt and h∗ .rmse In Section 4.2, we compare the 

coverage and length properties of these CIs to the fixed-length CI (FLCI) based on T̂q(h
∗ ; k).rmse

4.1 RMSE and pointwise optimal bandwidth 

The general results from Section 2 imply that given a kernel k and order of a local polynomial q, 

the RMSE-optimal bandwidth for FT,p(M) and FHöl,p(M) in the conditional mean estimation 

problem in Section 3 is given by R� � � � 
h ∗ 1 S(k)2 2p

1
+1 σ2(0)p!2 

X kq 
∗(u)2 du 2p

1
+1 

rmse = = , (14)
2pn M2B(k)2 2pndM2 Bp,q(k)2 

BHöl BTwhere Bp,q(k) = p,q (k) for FHöl,p(M), and Bp,q(k) = p,q(k) for FT,p(M). In contrast, the 

optimal bandwidth based on pointwise asymptotics is obtained by minimizing the sum of the 

leading squared bias and variance terms under pointwise asymptotics for the case q = p − 1. 

This bandwidth is given by (see, for example, Fan and Gijbels, 1996, Eq. (3.20)) 

R 1� 
σ2(0)p!2 

X kq 
∗(u)2 du 

� 
2p+1 

h ∗ = R . (15)pt 2pdnf (p)(0)2 ( X t
pkq 
∗(t) dt)2 

Thus, the pointwise optimal bandwidth replaces M with the pth derivative at zero, f (p)(0), and R 
it replaces Bp,q(k) with X t

pkq 
∗(t) dt. R 

Note that Bp,q(k) ≥ | X t
pkq 
∗(t) dt| (this can be seen by noting that the right-hand side 

corresponds to the bias at the function f(x) = ±xp/p!, while the left-hand side is the supremum 

of the bias over functions with pth derivative bounded by 1). Thus, assuming that f (p)(0) ≤ M 

(this holds by definition for any f ∈ F when F = FHöl,p(M)), we will have h∗ /h∗ ≥ 1.pt rmse 

The ratio h∗ 
pt/h

∗ can be arbitrarily large if M exceeds f (p)(0) by a large amount. rmse It then 
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follows from Theorem 2.1, that the RMSE efficiency of the estimator T̂p−1(h
∗ ; k) relative to pt

T̂p−1(h
∗ ; k) may be arbitrarily low. rmse

The bandwidth h∗ is intended to optimize RMSE at the function f itself, so one may pt 

argue that evaluating the resulting minimax RMSE is an unfair comparison. However, the 

mean squared error performance of T̂p−1(h
∗ ; k) at a given function f can be bad even if the pt

same function f is used to calculate h∗ For example, suppose that the support of xi is finite pt. 
p+1and contains the point of interest x = 0. Consider the function f(x) = x if p is odd, 

p+2or f(x) = x if p is even. This is a smooth function with all derivatives bounded on the 

support of xi. Since f (p)(0) = 0, h∗ is infinite, and the resulting estimator is a global pth order pt 

polynomial least squares estimator. Its RMSE will be poor, since the estimator is not even 

consistent. 

To address this problem, plug-in bandwidths that estimate h∗ include tuning parameters pt 

to prevent them from approaching infinity. The RMSE of the resulting estimator at such 

functions is then determined almost entirely by these tuning parameters. Furthermore, if one 

uses such a bandwidth as an input to an undersmoothed or bias-corrected CI, the coverage will 

be determined by these tuning parameters, and can be arbitrarily bad if the tuning parameters 

allow the bandwidth to be large. Indeed, we find in our Monte Carlo analysis in Section 5 that 

plug-in estimates of h∗ used in practice can lead to very poor coverage even when used as a pt 

starting point for a bias-corrected or undersmoothed estimator. 

4.2 Efficiency and coverage comparison 

Let us now consider the efficiency and coverage properties of conventional, undersmoothed, 

and bias-corrected CIs relative to the FLCI based on T̂p−1(h
∗ , k). To keep the comparison rmse

meaningful, and avoid the issues discussed in the previous subsection, we assume these CIs are 

also based on h∗ , rather than h∗ (in case of undersmoothing, we assume that the bandwidth rmse pt 

is undersmoothed relative to h∗ 
rmse). Suppose that the smoothness class is either FT,p(M) and 

FHöl,p(M) and denote it by F(M). For concreteness, let p = 2, and q = 1. 

Consider first conventional CIs, given by T̂1(h; k)±z1−α/2 bse(h; k). If the bandwidth h equals 

h∗ , then this CIs are shorter than the 95% FLCIs by a factor of z0.975/ cv0.95(1/2) = 0.90.rmse

Consequently, their coverage is 92.1% rather than the nominal 95% coverage. At the RMSE-

optimal bandwidth, the bias-sd ratio equals 1/2, so disregarding the bias doesn’t result in severe 

undercoverage. If one uses a larger bandwidth, however, the bias-sd ratio will be larger, and the 

undercoverage problem more severe: for example, if the bandwidth is 50% larger than h∗ , so rmse

that the bias-sd ratio equals 1/2 · (1.5)(5/2) the coverage is only 71.9%. 

Second, consider undersmoothing. This amounts to choosing a bandwidth sequence hn such 

hγb−γsthat hn/h
∗ → 0, so that for any fixed M , the bias-sd ratio tn = n MB(k)/(n−1/2S(k))rmse 
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approaches zero, and the CI T̂ (hn se(hn T (hn se(hn; k) will con-; k) ± cv1−α(0) b ; k) = ˆ ; k) ± z1−α/2 b
sequently have proper coverage in large samples. However, the CIs shrink at a slower rate than 

nr/2 = n4/5, and thus the asymptotic efficiency of the undersmoothed CI relative to the optimal 

FLCI is zero. 

On the other hand, an apparent advantage of the undersmoothed CI is that it appears 

to avoid specifying the smoothness constant M . However, a more accurate description of 

undersmoothing is that the bandwidth sequence hn implicitly chooses a sequence of smoothness 

constants Mn → ∞ such that coverage is controlled under the sequence of parameter spaces 

F(Mn). We can improve on the coverage and length of the resulting CI by making this sequence 

explicit and computing an optimal (or near-optimal) FLCI for F(Mn). 

To this end, given a sequence hn, a better approximation to the finite-sample coverage of the 

CI T̂ (hn; k)±z1−α/2 b ; k) over the parameter space F(M) is PZ∼N(0,1)(|Z + tnse(hn (M)| ≥ z1−α/2) 

where tn(M) = hn
γb−γs MB(k)/(n−1/2S(k)) is the bias-sd ratio for the given choice of M . This 

approximation is exact in idealized settings, such as the white noise model in Appendix C. 

For a given level of undercoverage η = ηn, one can then compute Mn as the greatest value of 

M such that this approximation to the coverage is at least 1 − α − η. In order to trust the 

undersmoothed CI, one must be convinced of the plausibility of the assumption f ∈ F(Mn): 

otherwise the coverage will be worse than 1 − α − η. This suggests that, in the interest of 

transparency, one should make this smoothness constant explicit by reporting Mn along with 

the undersmoothed CI. However, once the sequence Mn is made explicit, a more efficient 

approach is to simply report an optimal or near-optimal CI for this sequence, either at the 

coverage level 1 − α − η (in which case the CI will be strictly smaller than the undersmoothed 

CI while maintaining the same coverage) or at level 1 − α (in which case the CI will have better 

finite-sample coverage and may also be shorter than the undersmoothed CI). 

Finally, let us consider bias correction. It is known that re-centering conventional CIs by 

an estimate of the leading bias term often leads to poor coverage (Hall, 1992). In an important 

paper, Calonico et al. (2014, CCT hereafter) show that the coverage properties of this bias-

corrected CI are much better if one adjusts the standard error estimate to account for the 

variability of the bias estimate, which they call robust bias correction (RBC). For simplicity, 

consider the case in which the main bandwidth and the pilot bandwidth (used to estimate the 

bias) are the same, and that the main bandwidth is chosen optimally in that it equals h∗ . Inrmse

this case, their procedure amounts to using a local quadratic estimator, but with a bandwidth 

h∗ , optimal for a local linear estimator. The resulting CI obtains by adding and subtracting rmse

z1−α/2 times the standard deviation of the estimator. The bias-sd ratio of the estimator is given 

by �R �1/2 

)5/2 MB2,2(k)/2 1 B2,2(k) k1
∗(u)2 du 

tRBC = (h ∗ R = RX . (16)rmse k∗σ(0)( 2 (u)
2 du/dn)1/2 2 B2,1(k) X k2

∗(u)2 du 
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The resulting coverage is given by Φ(tRBC +z1−α/2)−Φ(tRBC −z1−α/2). The RBC interval length 

relative to the 1 − α FLCI around a local linear estimator with the same kernel and minimax 

MSE bandwidth is the same under both FT,p(M), and FHöl,p(M), and given by 

�R �1/2 
k∗ z1−α/2 (u)2 duX�R 2 (1 + o(1)). (17)�1/2 

cv1−α(1/2) X k1 
∗(u)2 du 

The resulting coverage and relative length is given in Table 5. One can see that although the 

coverage properties are excellent (since tRBC is quite low in all cases), the intervals are about 

30% longer than the FLCIs around the RMSE bandwidth. 

Under the class FHöl,2(M), the RBC intervals are also reasonably robust to using a larger 

bandwidth: if the bandwidth used is 50% larger than h∗ , so that the bias-sd ratio in Equa-rmse

tion (16) is larger by a factor of (1.5)5/2, the resulting coverage is still at least 93.0% for the 

kernels considered in Table 5. Under FT,2(M), using a bandwidth 50% larger than h∗ yieldsrmse 

coverage of about 80% on the boundary and 87% in the interior. 

If one ol,3(M) (but with h∗ still chosen instead considers the classes FT,3(M) and FH¨ rmse 

to be MSE optimal for FT,2(M) or FHöl,2(M)), then the RBC interval can be considered an 

undersmoothed CI based on a second order local polynomial estimator. Following the discussion 

of undersmoothed CIs above, the limiting coverage is 1 − α when M is fixed (this matches the 

pointwise-in-f coverage statements in CCT, which assume the existence of a continuous third 

derivative in the present context). Due to this undersmoothing, however, the RBC CI shrinks 

at a slower rate than the optimal CI. Thus, depending on the smoothness class, the 95% RBC 

CI has close to 95% coverage and efficiency loss of about 30%, or exactly 95% coverage at the 

cost of shrinking at a slower than optimal rate. 

5 Monte Carlo 

To study the performance of the FLCI that we propose, and compare its performance to other 

approaches, we conduct a Monte Carlo analysis of the conditional mean estimation problem 

considered in Section 3. We consider Monte Carlo designs with conditional mean functions 

M 
f1(x) = (x 2 − 2(|x| − 0.25)2 )

2 +

M 
f2(x) = (x 2 − 2(|x| − 0.2)2 + 2(|x| − 0.5)2 − 2(|x| − 0.65)2 )+ + +2 

f3(x) = 
M 

((x + 1)2 − 2(x + 0.2)2+ + 2(x − 0.2)2 − 2(x − 0.4)2+ + 2(x − 0.7)2 − 0.92)
2 + + 
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where M ∈ {2, 6}, giving a total of 6 designs. In all cases, xi is uniform on [−1, 1], ui ∼ 

N(0, 1/4), and the sample size is n = 500. Figure 5 plots these designs. The regression 

function for each design lies in FHöl,2(M) for the corresponding M . 

For each design, we implement the optimal FLCI centered at the MSE optimal estimate, as 

described in Section 3.3, for each choice of M ∈ {2, 6}, and with M calibrated using the rule-

of-thumb (ROT) described Appendix A.1. The implementations with M ∈ {2, 6} allow us to 

gauge the effect of using an appropriately calibrated M , compared to a choice of M that is either 

too conservative or too liberal by a factor of 3. The ROT calibration chooses M automatically, 

but requires additional conditions in order to have correct coverage (see Section 3.3). 

In addition to these FLCIs, we consider five other methods of CI construction. The first 

four are different implementations of the robust bias-corrected (RBC) CIs proposed by CCT 

(discussed in Section 4). Implementing these CIs requires two bandwidth choices: a bandwidth 

for the local linear estimator, and a pilot bandwidth that is used to construct an estimate of its 

bias. The first CI uses a plug-in estimate of h∗ defined in (15), as implemented by Calonico pt 

et al. (2017), and an analogous estimate for the pilot bandwidth (this method is the default 

in their accompanying software package). The second CI, also implemented by Calonico et al. 

(2017), uses bandwidth estimates for both bandwidths that optimize the pointwise asymptotic 

coverage error (CE) among CIs that use usual z1−α/2 critical value. This CI can be considered 

a particular form of undersmoothing. For the third and fourth CIs, we set both the main and 

the pilot bandwidth to h∗ with M = 2, and M = 6, respectively. Finally, we considerrmse 

a conventional CI centered at a plug-in bandwidth estimate of h∗ , using the rule-of-thumb pt

estimator of Fan and Gijbels (1996, Chapter 4.2). All CIs are computed at the nominal 95% 

coverage level. 

Table 6 reports the results. The FLCIs perform well when the correct M is used. As 

expected, they suffer from undercoverage if M is chosen too small, or suboptimal length when 

M is chosen too large. The ROT choice of M appears to do a reasonable job of having 

good coverage and length in these designs without requiring knowledge of the true smoothness 

constant. However, as discussed in Section 3.3, it is impossible for the ROT choice of M (or any 

other data-driven choice) to do this uniformly over the whole function class, so one must take 

care in extrapolating these results to other designs. As predicted by the theory in Section 4, 

the RBC CI has good coverage when implemented using h∗ , although it is on average about rmse

25% longer than the corresponding FLCI. 

The other CIs all have very poor coverage for at least one of the designs. Our analysis in 

Sections 4 suggests that this is due to the use of plug-in bandwidths that estimate the pointwise 

MSE optimal bandwidth h∗ Indeed, looking at the average of the bandwidth over the Monte pt. 

Carlo draws (also reported in Table 6), it can be seen that the plug-in bandwidths used for 

these bandwidths tend to be much larger than those that estimate h∗ .rmse This is even the case 
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for the CE bandwidth, which is intended to minimize coverage errors. 

Overall, the Monte Carlo analysis suggests that default approaches to nonparametric CI 

construction (bias-correction or undersmoothing relative to plug-in bandwidths) can lead to 

severe undercoverage, and that plug-in bandwidths justified by pointwise-in-f asymptotics are 

the main culprit. Bias-corrected CIs such as the one proposed by CCT can have good coverage 

if one starts from the minimax RMSE bandwidth, although they will be wider than FLCIs 

proposed in this paper. 

6 Application to sharp regression discontinuity 

In this section, we apply the results for estimation at a boundary point from Section 3 to sharp 

regression discontinuity (RD), and illustrate them with an empirical application. 

Using data from the nonparametric regression model (9), the goal in sharp RD is to estimate 

the jump in the regression function f at a known threshold, which we normalize to 0, so that 

T (f) = limx↓0 f(x)− limx↑0 f(x). The threshold determines participation in a binary treatment: 

units with xi ≥ 0 are treated; units with xi < 0 are controls. If the regression functions 

of potential outcomes are continuous at zero, then T (f) measures the average effect of the 

treatment for units with xi = 0 (Hahn et al., 2001). 

For brevity, we focus on the most empirically relevant case in which the regression function 

f is assumed to lie in the class FHöl,2(M) on either side of the cutoff: 

f ∈ FRD(M) = {f+(x)1(x ≥ 0) − f−(x)1(x < 0) : f+, f− ∈ FHöl,2(M)}. 

We consider estimating T (f) based on running a local linear regression on either side of the 

boundary. Given a bandwidth h and a second-order kernel k, the resulting estimator can be 

written as 

nX 
ˆ n nT (h; k) = w n(xi; h, k)yi, w n(x; h, k) = w+(x; h, k) − w−(x; h, k), 

i=1 

with the weight wn given by + 

w+(x; h, k) = e1
0 Q−1 m1(x)k+(x/h),n,+ k+(u) = k(u)1(u ≥ 0), 

P n nand Qn,+ = i=1 k+(xi/h)m1(xi)m1(xi)
0 . The weights w−, Gram matrix Q̂n,− and kernel k− 

are defined similarly. That is, T̂ (h; k) is given by a difference between estimates from two local 

linear regressions at a boundary point, one for units with non-negative values running variable 

xi, and one for units with negative values of the running variable. Let σ2 (x) = σ2(x)1(x ≥ 0),+
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and let σ2 
−(x) = σ2(x)1(x < 0). 

In principle, one could allow the bandwidths for the two local linear regressions to be 

different. We show in Appendix D in the supplemental materials, however, that the loss in 

efficiency resulting from constraining the bandwidths to be the same is quite small unless the 

ratio of variances on either side of the cutoff, σ+
2 (0)/σ2 

−(0), is quite large. 

It follows from the results in Section 3 that if Assumption 3.1 holds and the functions σ2 (x)+

and σ2 
−(x) are right- and left-continuous, respectively, the variance of the estimator doesn’t 

depend on f and satisfies 

n R∞X k1 
∗(u)2 du � � 

sd(T̂ (h; k))2 = w n(xi)
2σ2(xi) = 0 σ2 

−(0)+(0) + σ2 (1 + o(1)),
dnh 

i=1 

ˆwith d defined in Assumption 3.1. Because T (h; k) is given by the difference between two 

local linear regression estimators, it follows from Theorem 3.1 and arguments in Appendix C.2 
ˆin the supplemental materials that the bias of T (h; k) is maximized at the function f(x) = 

−Mx2/2 · (1(x ≥ 0) − 1(x < 0)). The worst-case bias therefore satisfies 

n ZX� � ∞M n n 2 2k ∗ bias(T̂ (h; k)) = − w+(xi) + w−(xi) xi = −Mh2 · u 1(u) du · (1 + o(1)). 
2 0i=1 

The RMSE-optimal bandwidth is given by 

� R∞ �1/5 
0 + −(0)k1

∗(u)2 du σ2 (0) + σ2 

h ∗ = R∞ · . (18)rmse ( 
0 u2k1 

∗(u) du)2 dn4M2 

Similar to the discussion in Section 4.1, this expression is similar to the optimal bandwidth 

definition derived under pointwise asymptotics (Imbens and Kalyanaraman, 2012), except that 
00 00 

4M2 is replaced with (f+(0) − f−(0))
2, which gives infinite bandwidth if the second derivatives 

at zero are equal in magnitude and of opposite sign. Consequently, the critique in Section 4.1 

applies to this bandwidth as well. 

The bias-sd ratio at h∗ 
rmse equals 1/2 in large samples; a two-sided CI around T̂ (h∗ 

rmse; k) 

for a given kernel k can therefore be constructed as 

T̂ (h ∗ ; k) ± cv1−α(1/2) · sd(T̂ (h ∗ ; k)). (19)rmse rmse

One can use the critical value cv1−α(bias(T̂ (hrmse
∗ ; k))/ sd(T̂ (hrmse

∗ ; k))) based on the finite-

sample bias-sd ratio. The choice of M , and computation of the standard error and h∗ arermse 

similar to the conditional mean case, and are discussed in Appendix A. 
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6.1 Empirical illustration 

To illustrate the implementation of feasible versions of the CIs (19), we use a subset of the 

dataset from Ludwig and Miller (2007). 

In 1965, when the Head Start federal program launched, the Office of Economic Opportunity 

provided technical assistance to the 300 poorest counties in the United States to develop Head 

Start funding proposals. Ludwig and Miller (2007) use this cutoff in technical assistance to 

look at intent-to-treat effects of the Head Start program on a variety of outcomes using as a 

running variable the county’s poverty rate relative to the poverty rate of the 300th poorest 

county (which had poverty rate equal to approximately 59.2%). We focus here on their main 

finding, the effect on child mortality due to causes addressed as part of Head Start’s health 

services. See Ludwig and Miller (2007) for a detailed description of this variable. Relative to 

the dataset used in Ludwig and Miller (2007), we remove one duplicate entry and one outlier, 

which after discarding counties with partially missing data leaves us with 3,103 observations, 

with 294 of them above the poverty cutoff. 

Figure 4 plots the data. To estimate the discontinuity in mortality rates, Ludwig and Miller 

(2007) use a uniform kernel5 and consider bandwidths equal to 9, 18, and 36. This yields 

point estimates equal to −1.90, −1.20 and −1.11 respectively, which are large effects given that 

the average mortality rate for counties not receiving technical assistance was 2.15 per 100,000. 

The p-values reported in the paper, based on bootstrapping the t-statistic (which ignores any 

potential bias in the estimates), are 0.036, 0.081, and 0.027. The standard errors for these 

estimates, obtained using the nearest neighbor method (with J = 3) are 1.04, 0.70, and 0.52. 

These bandwidth choices are optimal in the sense that they minimize the RMSE expres-

sion (22) if M = 0.040, 0.0074, and 0.0014, respectively. Thus, for these bandwidths to be 

optimal, one has to be very optimistic about the smoothness of the regression function. In 

comparison, the rule of thumb method for estimating M discussed in Appendix A.1 yields 

M̂rot = 0.299, implying h∗ estimate 4.0, and the point estimate −3.17. For these smoothness rmse 

parameters, the critical values based on the finite-sample bias-sd ratio are given by 2.165, 2.187, 

2.107 and 2.202 respectively, which is very close to the asymptotic value cv.95(1/2) = 2.181. 

The resulting 95% confidence intervals are given by 

(−4.143, 0.353), (−2.720, 0.323), (−2.215, −0.013), and (−6.352, 0.010), 

respectively. The p-values based on these estimates are given by 0.100, 0.125, 0.047, and 0.051. 

These values are higher than those reported in the paper, as they take into account the potential 

bias of the estimates. Thus, unless one is confident that the smoothness parameter M is very 

5The paper states that the estimates were obtained using a triangular kernel. However, due to a bug in the 
code, the results reported in the paper were actually obtained using a uniform kernel. 
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small, the results are not significant at 5% level. 

Using a triangular kernel helps to tighten the confidence intervals by about 2–4% in length, 

as predicted by the relative asymptotic efficiency results from Table 3, yielding 

(−4.138, 0.187), (−2.927, 0.052), (−2.268, −0.095), and (−5.980, −0.322) 

The underlying optimal bandwidths are given by 11.6, 23.1, 45.8, and 4.9 respectively. The p-

values associated with these estimates are 0.074, 0.059, 0.033, and 0.028, tightening the p-values 

based on the uniform kernel. 
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Appendix A Implementation details 

This section discusses implementation details. We focus on the nonparametric regression setting 

of Section 3, with additional details for the RD setting of Section 6 where relevant. 

A.1 Rule of thumb for M 

Fan and Gijbels (1996) suggest using a global polynomial estimate of order p+2 to estimate the 

pointwise-in-f optimal bandwidth. We apply this approach to estimate M , thereby giving an 

analogous rule-of-thumb estimate of the minimax optimal bandwidth. To calibrate M , let f̆(x) 

be the global polynomial estimate of order p + 2, and let [xmin, xmax] denote the support of xi. 

We define the rule-of-thumb choice of M to be the supremum of |f̆ (p)(x)| over x ∈ [xmin, xmax]. 

The resulting minimax RMSE optimal bandwidth is given by (14) with the rule-of-thumb M 

plugged in. In contrast, the rule-of-thumb bandwidth proposed by Fan and Gijbels (1996, 

Chapter 4.2) plugs in f̆ (p)(0) to the pointwise-in-f optimal bandwidth formula (15). 

We conjecture that, for any M , the resulting CI will be asymptotically honest over the 

intersection of F(M) and an appropriately defined set of regression functions that formalizes 

the notion that the pth derivative in a neighborhood of zero is bounded by the maximum pth 

derivative of the global p + 2 polynomial approximation to the regression function. We leave 

this question, as well as optimality of the resulting CI for this class, for future research. 

In the RD setting in Section 6, the regression function has a discontinuity at a point on 

the support of xi, which is normalized to zero. In this case, we define f̆ (p)(x) to be the global 

polynomial estimate of order p + 2 in which the intercept and all coefficients are allowed to 

be different on either side of the discontinuity (that is, we add the indicator I(xi > 0) for 

observation i being above the discontinuity, as well as interactions of this indicator with each 

order of the polynomial). We then take the supremum of |f̆ (p)(x)| over x ∈ [xmin, xmax] as our 

rule-of-thumb choice of M , as before. 

A.2 Standard errors 

Because the local linear estimator T̂1(hrmse
∗ ; k) is a weighted least squares estimator, one can 

consistently estimate its finite-sample conditional variance by the nearest neighbor variance 

estimator considered in Abadie and Imbens (2006) and Abadie et al. (2014). Given a bandwidth 

h, the estimator takes the form 

n J
!2X X 

nb = 1 (xi; h, k)
2σ̂2(xi), σ2(xi) = 

J
yi − 

1 
yj(i) (20)se(h, k)2 w ˆ ,

J + 1 J 
i=1 j=1 
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for some fixed (small) J ≥ 1, where j(i) denotes the jth closest observation to i. In contrast, the 

usual Eicker-Huber-White estimator sets σ̂2(xi) = û2 
i , where ûi is the regression residual, and it 

can be shown that this estimator will generally overestimate the conditional variance. In the RD 

setting, the standard error can be estimated using the same formula with the corresponding 

weight function w(n)(xi; h, k) for the local linear RD estimator, except that the jth closest 

observation to i, j(i), is only taken among units with the same sign of the running variable. 

A.3 Computation of h∗ rmse 

For h∗ , there are two feasible choices. The first is to use a plug-in estimator that replaces the rmse

unknown quantities d, and σ2(0), by some consistent estimates. Alternatively, one can directly 

minimize the finite-sample RMSE over the bandwidth h, which for FHöl,2(M) takes the form 

n
!2 n

M2 X X 
n 2 nRMSE(h)2 = w1 (xi; h, k)xi + w1 (xi; h, k)

2σ2(xi). (21)
4 

i=1 i=1 P P n n 2 n n 2For FT,2(M), the sum w1 (xi; h, k)x is replaced by |w1 (xi; h)x |. Since σ2(xi) is i=1 i i=1 i 

typically unknown, one can replace it by an estimate σ̂2(xi) = σ̂2 that assumes homoscedasticity 

of the variance function. For the RD setting with the class FRD(M), the finite-sample RMSE 

takes the form 

n
!2 n

M2 X� � X� � 
n n 2 n nRMSE(h)2 = w+(xi; h) + w−(xi; h) xi + w+(xi)

2 + w−(xi)
2 σ2(xi), (22)

4 
i=1 i=1 

and h∗ can be chosen to minimize this expression with σ2(x) replaced with the estimate rmse 

σ2 σ2 σ2 σ2σ̂2(xi) = ˆ+(0)1(x ≥ 0)+ ̂ −(0)1(x < 0), where ˆ+(0) and ˆ−(0) are some preliminary variance 

estimates for observations above and below the cutoff. 

This method was considered previously in Armstrong and Kolesár (2017), who show that 

the resulting confidence intervals will be asymptotically valid and equivalent to the infeasible 

CI based on minimizing the infeasible RMSE (21). This method has the advantage that it 

avoids having to estimate d, and it can also be shown to work when the covariates are discrete. 
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Appendix B Proofs of theorems in Section 2 

B.1 Proof of Theorem 2.1 

Parts (ii) and (iii) follow from part (i) and simple calculations. To prove part (i), note that, if 

it did not hold, there would be a bandwidth sequence hn such that 

M r−1 r/2R( ˆ tr−1 ˜lim inf n T (hn; k)) < S(k)rB(k)1−r inf R(t, 1). 
n→∞ t 

(nM2)1/[2(γb−γs)]By Equation (7), the bandwidth sequence hn must satisfy lim infn→∞ hn > 0 

(nM2)1/[2(γb−γs)] < ∞.and lim sup Thus, n→∞ hn

M r−1 r/2R( ˆ tr−1 n T (hn; k)) = S(k)rB(k)1−r n R̃(tn, 1) + o(1) 

where tn = hγ
n 
b−γs B(k)/(n−1/2S(k)). This contradicts the display above. 

B.2 Proof of Theorem 2.2 

The second statement (relative efficiency) is immediate from (6). For the first statement 
−1/2(h∗(coverage), fix ε > 0 and let sdn = n rmse)

γs S(k) so that, uniformly over f ∈ F , 
T (h∗ p

sdn / sdf ( ˆ ; k)) → 1 and sdn se(h∗ ; k) Note that, by Theorem 2.1 and the rmse / b → 1.rmse

calculations above, p
˜ T (h∗̂ ; k)) = sdn · cv1−α−ε( 1/r − 1)(1 + o(1))RFLCI,α+ε( ˆ rmse p

and similarly for ˜ T (h∗ ; k)). Since cv1−α( 1/r − 1) is strictly decreasing in α, it RFLCI,α−ε( ˆ rmse

follows that there exists η > 0 such that, with probability approaching 1 uniformly over f ∈ F , 

p
RFLCI,α+ε(T̂ (h∗̂  se( ̂ h∗̂ ; k)) · cv1−α( 1/r − 1); k)) < b T (rmse rmse

< (1 − η)RFLCI,α−ε(T̂ (hrmse
∗ ; k)). 

Thus, 

� n o�p
lim inf inf P Tf ∈ ˆ ; k) ± b T (h ∗ ; k)) · cv1−α( 1/r − 1)T (h ∗ se( ̂rmse rmse

n f ∈F � n o� 
≥ lim inf inf P Tf ∈ T̂ (h ∗ ; k) ± RFLCI,α+ε(T̂ (h ∗ ; k)) ≥ 1 − α − εrmse rmse

n f∈F 
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and 

� n o�p
lim sup inf P Tf ∈ ˆ

rmse se( ̂ rmse; k)) · cv1−α( 1/r − 1)T (h ∗ ; k) ± b T (h ∗ 

n f∈F � n o� 
≤ lim sup inf P Tf ∈ T̂ (h ∗ T (h∗̂ ; k))(1 − η) ≤ 1 − α + ε,rmse; k) ± RFLCI,α−ε( ˆ rmse

n f ∈F 

h∗̂where the last inequality follows by definition of RFLCI,α−ε(T̂ ( rmse; k)). Taking ε → 0 gives 

the result. 
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Table 1: Critical values cv1−α(·) 
1 − α 

r b 0.01 0.05 0.1 

0.0 2.576 1.960 1.645 

0.1 2.589 1.970 1.653 

0.2 2.626 1.999 1.677 

0.3 2.683 2.045 1.717 

0.4 2.757 2.107 1.772 

6/7 0.408 2.764 2.113 1.777 

4/5 0.5 2.842 2.181 1.839 

0.6 2.934 2.265 1.916 

0.7 3.030 2.356 2.001 

2/3 0.707 3.037 2.362 2.008 

0.8 3.128 2.450 2.093 

0.9 3.227 2.548 2.187 

1/2 1.0 3.327 2.646 2.284 

1.5 3.826 3.145 2.782 

2.0 4.326 3.645 3.282 p
Notes: Critical values cv1−α(t) and cv1−α( 1/r − 1), correspond to the 1−α quantiles of the |N(t, 1)|p
and |N( 1/r − 1, 1)| distribution, where b is the worst-case bias-standard deviation ratio, and r is 
the exponent r. For b ≥ 2, cv1−α(b) ≈ b + z1−α/2 up to 3 decimal places for these values of 1 − α. 

Table 2: Relative efficiency of local polynomial estimators for the function class FT,p(M). 
Boundary Point Interior point 

Kernel Order p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 

Uniform 

1(|u| ≤ 1) 

0 

1 

2 

0.9615 

0.5724 

0.4121 

0.9163 

0.6387 0.8671 

0.9615 

0.9615 

0.7400 

0.9712 

0.7277 0.9267 

Triangular 

(1 − |u|)+ 

0 

1 

2 

1 

0.6274 

0.4652 

0.9728 

0.6981 0.9254 

1 

1 

0.8126 

0.9943 

0.7814 0.9741 

Epanechnikov 
3 (1 − u2)+4 

0 

1 

2 

0.9959 

0.6087 

0.4467 

0.9593 

0.6813 0.9124 

0.9959 

0.9959 

0.7902 

1 

0.7686 0.9672 

Notes: Efficiency is relative to the optimal equivalent kernel k∗ The functional Tf corresponds to SY . 
the value of f at a point. 
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Table 3: Relative efficiency of local polynomial estimators for the function class FHöl,p(M). 
Boundary Point Interior point 

Kernel Order p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 

0 0.9615 0.9615 
Uniform 

1 0.7211 0.9711 0.9615 0.9662 
1(|u| ≤ 1) 

2 0.5944 0.8372 0.9775 0.8800 0.9162 0.9790 

0 1 1 
Triangular 

1 0.7600 0.9999 1 0.9892 
(1 − |u|)+ 

2 0.6336 0.8691 1 0.9263 0.9487 1 

0 0.9959 0.9959 
Epanechnikov 
3 (1 − u2)+4 

1 

2 

0.7471 

0.6186 

0.9966 

0.8602 0.9974 

0.9959 

0.9116 

0.9949 

0.9425 1 

Notes: For p = 1, 2, efficiency is relative to the optimal kernel, for p = 3, efficiency is relative to the 
local quadratic estimator with triangular kernel. The functional Tf corresponds to the value of f at 
a point. 

Table 4: Gains from imposing global smoothness 
Boundary Point Interior point 

Kernel p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 

Uniform 1 0.855 0.764 1 1 0.848 

Triangular 1 0.882 0.797 1 1 0.873 

Epanechnikov 1 0.872 0.788 1 1 0.866 

Optimal 1 0.906 1 0.995 

Notes: Table gives the relative asymptotic risk of local polynomial estimators of order p − 1 and a 
given kernel under the class FHöl,p(M) relative to the risk under FT,p(M). “Optimal” refers to using 
the optimal kernel under a given smoothness class. 
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Table 5: Performance of RBC CIs based on h∗ bandwidth for local linear regression under rmse 

FT,2 and FHöl,2. 
FT,2 FHöl,2 

Kernel Length Coverage tRBC Length Coverage tRBC 

Boundary 

Uniform 1.35 0.931 0.400 1.35 0.948 0.138 

Triangular 1.32 0.932 0.391 1.32 0.947 0.150 

Epanechnikov 1.33 0.932 0.393 1.33 0.947 0.148 

Interior 

Uniform 1.35 0.941 0.279 1.35 0.949 0.086 

Triangular 1.27 0.940 0.297 1.27 0.949 0.110 

Epanechnikov 1.30 0.940 0.298 1.30 0.949 0.105 

Legend: Length—CI length relative to 95% FLCI based on a local linear estimator and the same kernel 
and bandwidth h∗ ; tRBC—worst-case bias-standard deviation ratio; rmse
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Table 6: Monte Carlo simulation: Inference at a point. 
M = 2 M = 6 

Method Bandwidth Bias SE E[h] Cov RL Bias SE Em[h] Cov RL 

Design 1 

RBC h = h∗ b∗ 0.063 0.035 0.75 55.6 0.73 0.157 0.036 0.62 0.1 0.60ˆ
pt, b = ˆ

pt 
ˆ ˆRBC h = hce, b = bce 0.030 0.041 0.45 85.9 0.85 0.059 0.045 0.34 72.5 0.75 

ĥ∗RBC h = b = 0.001 0.061 0.36 94.5 1.27 0.002 0.061 0.36 94.5 1.00 rmse,M=2 

ĥ∗RBC h = b = 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.24 rmse,M=6 

ĥ∗Conventional 0.032 0.036 0.56 76.6 0.76 0.049 0.046 0.31 77.4 0.76pt,rot 

FLCI, M = 2 ĥ∗ 0.021 0.043 0.36 94.9 1.00 0.065 0.043 0.36 75.2 0.79 rmse,M =2 

FLCI, M = 6 ĥ∗ 0.009 0.054 0.23 96.6 1.25 0.028 0.053 0.23 94.7 0.99rmse,M =6 

FLCI, M = M̂rot ĥ∗ 0.008 0.056 0.22 95.6 1.29 0.010 0.069 0.14 96.3 1.28ˆrmse,M =Mrot 

Design 2 

ĥ∗ b̂∗RBC h = pt, b = pt 0.043 0.035 0.77 75.9 0.72 0.129 0.035 0.77 4.6 0.57 
ˆ ˆRBC h = hce, b = bce 0.028 0.040 0.49 87.5 0.83 0.074 0.041 0.44 54.3 0.68 

ĥ∗RBC h = b = 0.002 0.061 0.36 94.5 1.27 0.006 0.061 0.36 94.4 1.00 rmse,M=2 

ĥ∗RBC h = b = 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.24rmse,M=6 

ĥ∗Conventional 0.032 0.032 0.78 74.4 0.67 0.073 0.040 0.44 53.0 0.66pt,rot 

ĥ∗FLCI, M = 2 0.020 0.043 0.36 95.1 1.00 0.061 0.043 0.36 78.1 0.79 rmse,M =2 

ĥ∗FLCI, M = 6 0.009 0.054 0.23 96.6 1.25 0.028 0.053 0.23 94.7 0.99 rmse,M =6 
ˆ ĥ∗FLCI, M = Mrot ˆ 0.013 0.048 0.30 94.3 1.13 0.020 0.059 0.20 94.3 1.08 

rmse,M =Mrot 

Design 3 

RBC h = h∗ b∗ -0.043 0.035 0.77 75.7 0.72 -0.122 0.035 0.74 10.2 0.58ˆ
pt, b = ˆ

pt 
ˆ ˆRBC h = hce, b = bce -0.026 0.040 0.49 88.2 0.83 -0.063 0.043 0.43 64.6 0.71 

ĥ∗RBC h = b = -0.002 0.061 0.36 94.5 1.27 -0.007 0.061 0.36 94.4 1.00 rmse,M=2 

ĥ∗RBC h = b = 0.000 0.076 0.23 94.2 1.58 0.000 0.075 0.23 94.2 1.24 rmse,M=6 

ĥ∗Conventional -0.032 0.033 0.72 74.7 0.69 -0.065 0.042 0.39 62.0 0.69pt,rot 

ĥ∗FLCI, M = 2 -0.020 0.043 0.36 95.0 1.00 -0.060 0.043 0.36 78.1 0.79rmse,M =2 

ĥ∗FLCI, M = 6 -0.009 0.054 0.23 96.5 1.25 -0.027 0.053 0.23 94.7 0.99 rmse,M =6 
ˆ ĥ∗FLCI, M = Mrot ˆ -0.010 0.052 0.25 95.6 1.22 -0.013 0.065 0.16 96.1 1.21 

rmse,M =Mrot 

Legend: E[h]—average (over Monte Carlo draws) bandwidth; SE—average standard error, Cov—coverage of CIs (in %); RL—relative (to optimal FLCI) length. 
Bandwidth (bw) descriptions: ĥ∗ —plugin estimate of pointwise MSE optimal bw; b̂∗ —analog for estimate of the bias; ĥce—plugin estimate of coverage error optimal bw; pt pt

bce—analog for estimate of the bias; The implementation of Calonico et al. (2017) is used for all four bws. —RMSE optimal bw, assuming M = 2,ˆ ĥ∗ ĥ∗ 
rmse,M=2, rmse,M=6

and M = 6, respectively. ĥ∗ —Fan and Gijbels (1996) rule of thumb; ĥ∗ —RMSE optimal bw, using ROT for M . See Appendix A for detailed description of pt,rot ˆrmse,M=Mrot 

ĥ∗ ĥ∗ ĥ∗ , and ĥ∗ 50,000 Monte Carlo draws. rmse,M =2, rmse,M =6, ˆ pt,rot. rmse,M=Mrot 
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Figure 1: Optimal worst-case bias-standard deviation ratio for fixed length CIs (FLCI), and 
maximum MSE (MSE) performance criteria. 
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Figure 2: Optimal worst-case bias-standard deviation ratio for one-sided CIs (OCI), and max-
imum MSE (MSE) performance criteria. 
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Figure 3: Efficiency of fixed-length CIs based on minimax MSE bandwidth relative to fixed-
length CIs based on optimal bandwidth. 
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Figure 4: Average county mortality rate per 100,000 for children aged 5–9 over 1973–83 due 
to causes addressed as part of Head Start’s health services (labeled “Mortality rate”) plotted 
against poverty rate in 1960 relative to 300th poorest county. Each point corresponds to an 
average for 25 counties. Data are from Ludwig and Miller (2007). 
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Figure 5: Monte Carlo simulation Designs 1–3, and M = 2. 
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