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Simple and Honest Confidence Intervals in Nonparametric

Regression

Timothy B. Armstrong∗

Yale University

Michal Kolesár†

Princeton University

June 3, 2016

Abstract

We consider the problem of constructing honest confidence intervals (CIs) for a scalar

parameter of interest, such as the regression discontinuity parameter, in nonparametric

regression based on kernel or local polynomial estimators. To ensure that our CIs are

honest, we derive and tabulate novel critical values that take into account the possible

bias of the estimator upon which the CIs are based. We give sharp efficiency bounds of

using different kernels, and derive the optimal bandwidth for constructing honest CIs.

We show that using the bandwidth that minimizes the maximum mean-squared error

results in CIs that are nearly efficient and that in this case, the critical value depends

only on the rate of convergence. For the common case in which the rate of convergence

is n−4/5, the appropriate critical value for 95% CIs is 2.18, rather than the usual 1.96

critical value. We illustrate our results in an empirical application.

∗email: timothy.armstrong@yale.edu
†email: mkolesar@princeton.edu
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1 Introduction

This paper considers the problem of constructing confidence intervals (CIs) for a scalar pa-

rameter T (f) of a function f , which can be a conditional mean or a density. The scalar

parameter may correspond, for example, to a conditional mean, or its derivatives at a point,

the regression discontinuity parameter, or the value of a density or its derivatives at a point.

The main requirement on the CIs we impose is that they be honest in the sense of Li (1989):

they need to achieve asymptotically correct coverage for all possible model parameters, that

is, be valid uniformly in f . This requires the researcher to be explicit about the parameter

space F for f by spelling out the smoothness or shape restrictions imposed on f .

The CIs that we propose are simple to construct1, and correspond to asymptotic versions

of fixed-length CIs as defined by Donoho (1994). They are centered around a kernel or local

polynomial estimator T̂ (k;h), where k denotes a kernel and h denotes a bandwidth. Given

a desired confidence level 1 − α, they take the form T̂ (k;h) ± cv1−α(h; k)ŝe(T̂ (k;h)), where

ŝe(T̂ (k;h)) is the standard error of the estimator and cv1−α(h; k) a critical value that which

we derive and tabulate. To ensure that the CIs maintain coverage over the whole parameter

space, the critical value takes into account the worst-case bias (over the parameter space F)

of the estimator. As a result, it is larger than z1−α/2, the usual critical value corresponding to

the (1−α/2)-quantile of a standard normal distribution. (One-sided CIs can be constructed

by subtracting the worst-case bias from T̂ (k;h), in addition to subtracting the standard error

times z1−α.)

We derive three main results. First, we derive bandwidths that optimize the length of

these CIs. We show that, asymptotically, picking the length-optimal bandwidth amounts to

choosing the optimal bias-variance trade-off, which depends on the parameter T (f) and the

parameter space only through the rate of convergence r of the mean-squared error (MSE).

Consequently, the amount of over- or undersmoothing relative to the MSE-optimal bandwidth

(i.e. bandwidth that minimaxes the MSE) depends only on r and the desired confidence level

1− α. For 95% CIs, we find that the length-optimal bandwidth always oversmooths relative

to the MSE-optimal bandwidth.

Second, we consider efficiency of CIs based on MSE-optimal bandwidth. We find that

two-sided 95% CIs constructed around the MSE-optimal bandwidth are at least 99% efficient

relative to using the optimal bandwidth, so long as the rate of convergence r is greater

than 2/3. This gives a particularly simple procedure for constructing honest CIs that are

nearly asymptotically optimal: construct the CI around an estimator based on MSE-optimal

bandwidth, adding and subtracting the standard error times a critical value that takes into

account the possible bias of the estimator. Crucially, we show that if the bandwidth is chosen

1An R package implementing our CIs in regression discontinuity designs is available at https://github.

com/kolesarm/RDHonest.
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in this way, the critical value depends only on the rate of convergence r. For example, for

r = 4/5, as is the case for estimation at a point or regression discontinuity when f is assumed

to have two derivatives, the critical value for a 95% CI is 2.18, rather than the usual 1.96

critical value.

These results have implications for the common practice of constructing CIs based on

estimators that undersmooth relative to the MSE-optimal bandwidth. Questions related to

the optimality of this practice have been considered by Hall (1992) and Calonico, Cattaneo,

and Farrell (2016). Importantly, these papers restrict attention to CIs that use the usual

critical value z1−α/2. It then becomes necessary to choose a small enough bandwidth so that

the bias is asymptotically negligible relative to the standard error, since this is the only way to

achieve correct coverage. Our results imply that rather than choosing a smaller bandwidth, it

is better to use a larger critical value that takes into account the potential bias, which ensures

correct coverage regardless of the bandwidth. At the MSE- or length-optimal bandwidth, the

resulting CIs shrink at the optimal rate r/2, in contrast to CIs based on undersmoothing,

which shrink more slowly.

Third, we derive sharp efficiency bounds for one- and two-sided confidence intervals based

on different kernels. We show that the kernel efficiency depends only on the parameter

of interest and the parameter space, and not on the performance criterion. Consequently,

minimax MSE efficiencies of different kernels correspond directly to kernel efficiencies for

constructing CIs. Furthermore, it follows from calculations in Donoho (1994) and Armstrong

and Kolesár (2016) that, when constructed based on a highly efficient kernel, our CIs are

highly efficient among all CIs when the parameter space F is convex and symmetric, as is

the case when F places restrictions on the derivatives of f .

We specialize these results to the problem of inference about a nonparametric regression

function at a point (i.e. inference about f(x0) for some x0), and inference in sharp regression

discontinuity (RD) designs. For inference at a point under a bound on the error of approxi-

mating f by a Taylor approximation around x0, Fan (1993), Cheng, Fan, and Marron (1997),

and Fan, Gasser, Gijbels, Brockmann, and Engel (1997) calculate bounds on minimax MSE-

efficiency of local polynomial estimators based on different kernels. In particular, Cheng,

Fan, and Marron (1997) show that a local linear estimator with triangular kernel is 97%

efficient for minimax MSE estimation at a boundary point under a bound on the error of the

first order Taylor approximation. This result is often cited in recommending the use of this

estimator in RD (see, e.g., Calonico, Cattaneo, and Titiunik, 2014). Our results show that,

since the high efficiency of this estimator translates directly to the problem of constructing

CIs, this recommendation can also be given when the goal is to construct CIs, as is often the

case in practice.

Bounding the error from a Taylor approximation is one way to formalize the notion

that the pth derivative of f at x0 should be no larger than some constant M . In many
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applications, this restriction may too conservative, as it allows f to be non-smooth away

from x0. We therefore also consider the problem of inference under a Hölder class, which

bounds the pth derivative globally. We derive an analytic expression for the maximum bias

and kernel efficiencies of local polynomial estimators under this parameter space, and show

that when the second derivative is bounded by a constant, a local linear estimator with

triangular kernel is over 99.9% efficient at a boundary point. Furthermore, we show that, by

bounding the second derivative globally, one can tighten the CIs by about 10–15%, with the

exact gain depending on the kernel.

We also consider coverage and efficiency of alternative CIs, in particular the usual CIs

that use z1−α/2 as the critical value, and CIs based on the robust bias correction proposed

recently by Calonico, Cattaneo, and Titiunik (2014) and Calonico, Cattaneo, and Farrell

(2016). We show that while at the MSE-optimal bandwidth, the usual CIs with nominal 95%

coverage achieve honest coverage equal to 92.1%, the undercoverage problem can be quite

severe if a larger bandwidth is used. We find that CIs based on robust bias correction have

excellent coverage properties: a nominal 95% CI has asymptotic coverage equal to or just

below 95%, depending on how one defines the parameter space. However, they are longer

than the honest CIs at the length-optimal bandwidth that we propose by about 30% or shrink

at a slower rate, again depending on how one defines the parameter space.

To illustrate the implementation of the honest CIs, we reanalyze the data from Ludwig

and Miller (2007), who, using a regression discontinuity design, find a large and significant

effect of receiving technical assistance to apply for Head Start funding on child mortality at

a county level. However, this result is based on CIs that ignore the possible bias of the local

linear estimator around which they are built, and an ad hoc bandwidth choice (no principled

way of choosing the bandwidth was available at the time the paper was written). We find

that, if one bounds the second derivative globally by a constant M using a Hölder class the

effect is not significant at the 5% level unless one is very optimistic about the constant M ,

allowing f to only be linear or nearly-linear.

Our results build on the literature on estimation of linear functionals in normal models

with convex parameter spaces, as developed by Donoho (1994), Ibragimov and Khas’minskii

(1985) and many others. As with the results in that literature, our setup gives asymptotic

results for problems that are asymptotically equivalent to the Gaussian white noise model,

including nonparametric regression (Brown and Low, 1996) and density estimation (Nuss-

baum, 1996). Our main results build on the “renormalization heuristics” of Donoho and

Low (1992), who show that many nonparametric estimation problems have renormalization

properties that allow easy computation of minimax mean squared error optimal kernels and

rates of convergence. Indeed, our results hold under essentially the same conditions (see

Appendix B).

A drawback of our CIs is that they are non-adaptive: one needs to pick an a priori

4



bound on the smoothness of f , including the constant M in order to construct the CIs.

However, the results of Low (1997), Cai and Low (2004), and Armstrong and Kolesár (2016)

imply that under smoothness restrictions that lead to convex, symmetric parameter spaces F ,

forming adaptive CIs is not possible: the honest CIs based on the worst possible smoothness

constant M allowed are highly efficient at smooth functions relative to CIs that optimize

their length at these smooth functions. While adaptive CIs are not possible in our setting,

it is often possible to form estimates that achieve the minimax MSE adaptively over the

smoothness constants (up to a logn term). Cai and Low (2005) consider CIs centered at

adaptive estimators. When the parameter space is convex and symmetric, these CIs can

only shrink at the rate corresponding to the worst possible smoothness class, since adaptive

inference is not possible in such settings. In fact, Cai and Low (2005) show that, in many

cases, the rate of convergence of such CIs must be strictly worse than the rate corresponding to

the worst possible smoothness class. In contrast, we consider estimators that are minimax for

the worst possible smoothness constant allowed when defining coverage of the corresponding

CI. We find that such CIs are not only optimal in rate, but are also close to optimal in the

constant.

The rest of this paper is organized as follows. Section 2 gives the main results. Section 3

applies our results to inference at a point. Section 4 presents an empirical application to the

regression discontinuity design based on Ludwig and Miller (2007). Proofs of the results in

Section 2 are given in Appendix A. Appendix B verifies our regularity conditions for some

examples, and includes proofs of the results in Section 3 for inference at a point. Appendix C

calculates the efficiency gain from using a different bandwidth on either side of a cutoff in

RD designs.

2 General results

We are interested in a scalar parameter T (f) of a function f , which is typically a conditional

mean or density. The function f is assumed to lie in a function class F , which places

“smoothness” conditions on f . We have available a class of estimators T̂ (h; k) based on a

sample of size n, which depend on a bandwidth h = hn > 0 and a kernel k. Let

bias(T̂ ) = sup
f∈F

∣∣∣Ef (T̂ − T (f))
∣∣∣

denote the worst-case bias of an estimator T̂ , and let sdf (T̂ ) = varf (T̂ )1/2 denote its stan-

dard deviation. We assume that the estimator T̂ (h; k) is centered so that its maximum and

minimum bias over F sum to zero, supf∈F Ef (T̂ (h; k)−T (f)) = − inff∈F Ef (T̂ (h; k)−T (f)).

Our main assumption is that the variance and worst-case bias scale as powers of h. For
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some γb > 0, γs < 0, B(k) > 0 and S(k) > 0, suppose that

bias(T̂ (h; k)) = hγbB(k)(1 + o(1)), sdf (T̂ (h; k)) = hγsn−1/2S(k)(1 + o(1)), (1)

where the o(1) term in the second equality is uniform over f ∈ F . Note that the second

condition implies that the standard deviation does not depend on the underlying function f

asymptotically.

In the remainder of this section, we derive our main results. Section 2.1 presents a

heuristic derivation of the results, while Section 2.2 gives formal statements with regularity

conditions. Before continuing, we illustrate condition (1) with an example.

Example 2.1. For local linear estimation of a nonparametric regression function at an in-

terior point under a second-order Taylor smoothness class, (1) essentially follows from cal-

culations in Fan (1993). For expositional purposes, we give a full derivation of these results

in a simplified setting. We normalize the point of interest to be 0, so that we are interested

in f(0). The second-order Taylor smoothness class comprises all functions for which the

approximation error from a first-order Taylor approximation around 0 can be bounded by

Mx2/2, for some constant M ,

F = {f : |r(x)| ≤Mx2/2},

where r(x) = f(x) − f(0) − f ′(0)x. We assume that the regression error is homoskedastic,

and that the design points are non-random, and equispaced on the interval [−1/2, 1/2], so

that the data follow the model

yi = f(xi) + ui, var(ui) = σ2, xi =

− i−1
2n i odd

i
2n i even,

i = 1, . . . , n.

Assume that n is odd, so that the design points are symmetric around 0. Let k be a symmetric

kernel. Because the design points are symmetric around zero and k is symmetric, the local

linear and Nadaraya-Watson estimator are identical2, and are both given by

T̂ (h; k) =

∑n
i=1 yik(xi/h)∑n
i=1 k(xi/h)

,

where h = hn is a bandwidth sequence with h→ 0 and hn→∞. The standard deviation is

2If the design points are not symmetric, the local linear and Nadaraya-Watson estimators are different,
and the local linear estimator must be used to avoid infinite worst-case bias. See Section 3.
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constant over f and is equal to

sdf (T̂ (h; k)) =
σn−1/2h−1/2

√
1
nh

∑n
i=1 k(xi/h)2

1
nh

∑n
i=1 k(xi/h)

=
σn−1/2h−1/2

√∫
k(u)2 du∫

k(u) du
(1 + o(1)),

where the last equality holds under mild regularity conditions on k(·). The bias at a func-

tion f ∈ F is
∑n
i=1[f(xi)−f(0)]k(xi/h)∑n

i=1 k(xi/h)
=

∑n
i=1 r(xi)k(xi/h)∑n
i=1 k(xi/h)

, where the equality follows since∑n
i=1 xik(xi/h) = 0 by symmetry of k and the design points. The bias is maximized by

taking r(xi) = (M/2)x2 · sign(k(xi/h)), which gives

bias(T̂ (h; k)) =
(M/2)h2 1

nh

∑n
i=1(xi/h)2|k(xi/h)|

1
nh

∑n
i=1 k(xi/h)

=
(M/2)h2

∫
u2|k(u)| du∫

k(u) du
(1 + o(1)),

where the last equality holds under regularity conditions on k(·). Thus, under regular-

ity conditions, Equation (1) holds with γs = −1/2, γb = 2, S(k) =
σ
√∫

k(u)2 du∫
k(u) du

and

B(k) =
(M/2)

∫
u2|k(u)| du∫

k(u) du
. In Section 3, we show that this result generalizes to the case

with heteroscedastic errors and general design points.

2.1 Overview of results

Let t = hγb−γsB(k)/(n−1/2S(k)) denote the ratio of the leading worst-case bias and standard

deviation terms. Substituting h =
(
tn−1/2S(k)/B(k)

)1/(γb−γs) into (1), the approximate bias

and standard deviation can be written as

hγbB(k) = trn−r/2S(k)rB(k)1−r, hγsn−1/2S(k) = tr−1n−r/2S(k)rB(k)r−1 (2)

where r = γb/(γb − γs). Since bias and standard deviation converge at a nr/2 rate, we refer

to r as the rate exponent (note that this matches with the definition in, e.g., Donoho and

Low 1992; see Appendix B). In Example 2.1, we have r = 2/[2− (−1/2)] = 4/5.

Computing the bias-standard deviation ratio t associated with a given bandwidth allows

easy computation of honest CIs. Let ŝe(h; k) denote the standard error, an estimate of

sdf (T̂ (h; k)). Assuming a central limit theorem applies to T̂ (h; k), [T̂ (h; k) − T (f)]/ŝe(h; k)

will be approximately distributed as a normal random variable with variance 1 and bias

bounded by t. Thus, an approximate 1− α CI is given by

T̂ (h; k)± cv1−α(t) · ŝe(h; k), (3)

where

cv1−α(t) is the 1− α quantile of the |N(t, 1)| distribution. (4)
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This is an approximate version of a fixed-length confidence interval (FLCI) as defined in

Donoho (1994) (if sdf (T̂ (h; k)) is constant over f instead of approximately constant, the CI

with ŝe(h; k) replaced by sdf (T̂ (h; k)) will have fixed length). Following this definition, we

use the term fixed-length to refer to CIs of this form even though ŝe(h; k) is random. One

could also form honest CIs by simply adding and subtracting the worst case bias, in addition

to adding and subtracting the standard error times z1−α/2 = cv1−α(0), the 1− α/2 quantile

of a standard normal distribution:

T̂ (h; k)± (bias(T̂ (h; k)) + z1−α/2 · ŝe(h; k)).

However, since the estimator T̂ (h; k) cannot simultaneously have a large positive and a large

negative bias, such CI will be conservative, and longer than the CI given in Equation (3).

The usual nonparametric CIs, T̂ (h; k)±z1−α/2 · ŝe(h; k), rely on “undersmoothing:” under

the current setup, this means that the bandwidth needs to be chosen such that t = 0, so

that the bias is asymptotically negligible relative to the standard deviation of the estimator

(otherwise the CI will undercover). As a result, the CIs shrink at a slower rate than r/2. In

contrast, the honest FLCIs in Equation (3) explicitly take into account the possible bias of the

estimator by replacing the critical value with cv1−α(t), thus allowing for larger bandwidths to

be used, which, for 0 < t <∞, leads the CIs shrinking at the optimal rate r/2. Furthermore,

one can choose the bandwidth in a way that optimizes the length of the CI, which is given

by

2 · ŝe(h; k) · cv1−α(t) ≈ 2 · tr−1n−r/2S(k)rB(k)1−r · cv1−α(t). (5)

This length is minimized at the bias-standard deviation ratio t∗FLCI = argmint>0 t
r−1 ·

cv1−α(t), and the FLCI-optimal bandwidth is h∗FLCI =
(
t∗FLCIn

−1/2S(k)/B(k)
)1/(γb−γs).

Let us compare h∗FLCI to the optimal bandwidth for estimation under mean squared

error loss. Since under (1), the leading variance term is independent of f , the maximum

(over F) MSE is approximately equal to the worst-case squared bias plus the variance. For

comparison with CI length and other criteria, it will be convenient to consider the root mean

squared error (RMSE)—the square root of the maximum MSE. Under (1), the RMSE is

approximately equal to√
[hγbB(k)]2 +

[
hγsn−1/2S(k)

]2
=
√

(t2r + t2r−2)n−r/2S(k)rB(k)1−r, (6)

which minimized by t∗RMSE = argmint>0(t
2r + t2r−2) =

√
1/r − 1. The optimal bandwidth

is thus h∗RMSE =
(
t∗RMSEn

−1/2S(k)/B(k)
)1/(γb−γs) =

(√
1/r − 1 · n−1/2S(k)/B(k)

)1/(γb−γs).
These calculations have several useful consequences. First, note that both (5) and (6)

depend on k only through multiplication by S(k)rB(k)1−r. Thus, the relative efficiency of

two kernels k1 and k2 is given by [S(k1)
rB(k1)

1−r]/[S(k2)
rB(k2)

1−r] regardless of whether
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we consider CI length or RMSE.

Second, the optimal bias-standard deviation ratios for RMSE and FLCI depend only on

the rate exponent r: for nonparametric estimators that converge at rate n−r/2, the optimal

bias-standard deviation ratio for RMSE is t∗RMSE =
√

1/r − 1, and the optimal bias-standard

deviation ratio for FLCI is t∗FLCI = argmint>0 t
r−1 cv1−α(t) (the latter quantity can be found

numerically). Since h is increasing in t, it follows that the FLCI optimal bandwidth under-

smooths relative to the RMSE optimal bandwidth (i.e. h∗FLCI < h∗RMSE) if t∗FLCI < t∗RMSE

and oversmooths if t∗RMSE < t∗FLCI . For 95% CIs and r/2 in the range of rates of conver-

gence typically encountered in practice, it turns out that t∗RMSE < t∗FLCI : the FLCI optimal

bandwidth oversmooths relative to the RMSE optimal bandwidth.

Third, we get formulas for CIs centered at the RMSE optimal estimate, and for their

efficiency relative to the optimal FLCI. A fixed-length CI centered at T̂ (h∗RMSE ; k) takes the

form T̂ (h∗RMSE ; k) ± ŝe(h∗RMSE ; k) · cv1−α(
√

1/r − 1). This modified critical value depends

only on the rate r, and is given in Table 1 for some common values. By Equation (5), the

length of this CI is approximately 2 · (t∗RMSE)r−1n−r/2S(k)rB(k)1−r · cv1−α(t∗RMSE). If the

bandwidth were instead chosen to minimize the length of the CI, the length would be given

by the minimum of (5) over t, which would decrease the length of the CI by a factor of

(t∗FLCI)
r−1 · cv1−α(t∗FLCI)

(t∗RMSE)r−1 · cv1−α(t∗RMSE)
. (7)

Since t∗FLCI and t∗RMSE depend only on r, this depends only on r. Figure 1 plots this quantity

as a function of r. It can be seen from the figure that if r ≥ 4/5, CIs constructed around the

RMSE optimal bandwidth are highly efficient.

In Example 2.1, r = 4/5 for estimation of the function at a point. The optimal bias-

standard deviation ratio for RMSE is then
√

1/r − 1 = 1/2, and a 95% CI centered at the

RMSE optimal estimate adds and subtracts cv.95(1/2) ≈ 2.18 times the standard error, rather

than z.975 ≈ 1.96 times the standard error. Evaluating (7) for r = 4/5, we find that using

the RMSE optimal bandwidth to construct a CI is over 99% efficient: the width of the CI

centered at the FLCI optimal bandwidth is more than 0.99 times the width of this CI.

2.2 Formal results

We consider a slightly more general setup that encompasses other performance criteria, such

as median absolute deviation and excess length of one-sided CIs. Let R(T̂ ) denote the worst-

case (over F) performance of T̂ according to a given criterion, and let R̃(b, s) denote the
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value of this criterion when T̂ − T (f) is N(b, s2). For RMSE, these are given by

RRMSE(T̂ ) = sup
f∈F

√
Ef

[
T̂ − T (f)

]2
, R̃(b, s) =

√
b2 + s2.

For FLCI,

RFLCI,α(T̂ (h; k)) = inf
{
χ : Pf

(
|T̂ (h; k)− T (f)| ≤ χ

)
≥ 1− α all f ∈ F

}
and

R̃FLCI,α(b, s) = inf
{
χ : PZ∼N(0,1) (|sZ + b| ≤ χ) ≥ 1− α

}
= s · cv1−α(b/s)

where cv1−α(t) is the 1 − α quantile of the absolute value of a N(t, 1) random variable, as

defined in (4). Note that cv1−α(t) = R̃FLCI(t, 1).

To evaluate one-sided CIs, one needs a criterion other than length, which is infinite. A

natural criterion is expected excess length, or quantiles of excess length. We focus here on

the worst-case quantiles of excess length. For CI of the form [ĉ,∞), the worst-case β quantile

of excess length is given by supf∈F qf,β(Tf − ĉ), where qf,β(Z) is the β quantile of a random

variable Z. Under (1) and a uniform-in-f central limit theorem for T̂ (h; k), an honest one-

sided 1−α CI based on T̂ (h; k) can be formed by subtracting the maximum bias, in addition

to subtracting z1−α times the standard deviation from T̂ (h; k), leading to the interval

[T̂ (h; k)− hγbB(k)− z1−αhγsn−1/2S(k) , ∞).

We use ROCI,α,β(T̂ (h; k)) to denote the worst-case β quantile of excess length of this CI. The

worst-case β quantile of excess length based on an estimator T̂ when T̂ −T (f) is normal with

variance s2 and bias ranging between −b and b is R̃OCI,α,β(b, s) ≡ 2b+ (z1−α + zβ)s.

When (1) holds and the estimator T̂ (h; k) satisfies an appropriate central limit theorem,

these performance criteria will satisfy

R(T̂ (h; k)) = R̃(hγbB(k), hγsn−1/2S(k))(1 + o(1)). (8)

For our main results, we make this assumption directly. As we show in Section B, (8)

holds with the o(1) term equal to zero under the renormalization conditions of Donoho

and Low (1992). Thus, verifying this condition in a given setting essentially amounts to

verifying conditions for the renormalization heuristics of Donoho and Low (1992). We will

also assume that R̃ scales linearly in its arguments (i.e. it is homogeneous of degree one):

R̃(tb, ts) = tR̃(b, s). This holds for all of the criteria considered above. Plugging in (2) and
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using scale invariance of R̃ gives

R(T̂ (h; k)) = n−r/2S(k)rB(k)1−rtr−1R̃(t, 1)(1 + o(1)). (9)

where t = hγb−γsB(k)/(n−1/2S(k)) and r = γb/(γb − γs), as defined in Section 2.1. Under

(9), the asymptotically optimal bandwidth is given by h∗R = (n−1/2S(k)t∗R/B(k))1/(γb−γs)

where t∗R = argmint t
r−1R̃(t, 1). This generalizes the optimal bandwidth derivations based

on (5) and (6) to other performance criteria: for R = RFLCI , (9) essentially reduces to

(5) (note that cv1−α(t) = R̃FLCI,α(t, 1)) and for R = RRMSE , (9) reduces to (6). This

gives the optimal bias-standard deviation ratios t∗RMSE = argmint>0 t
r−1R̃RMSE(t, 1) =

argmint>0 t
r−1√t2 + 1 =

√
1/r − 1, and for FLCI, t∗FLCI = argmint>0 t

r−1R̃FLCI,α(t, 1) =

argmint>0 t
r−1 cv1−α(t). The corresponding optimal bandwidths, the same as in Section 2.1.

Assuming t∗R is finite and strictly greater than zero, the optimal bandwidth decreases

at the rate n−1/[2(γb−γs)] regardless of the performance criterion—the performance criterion

only determines the optimal bandwidth constant. Since the approximation (8) may not hold

when h is too small or large relative to the sample size, we will only assume this condition for

bandwidth sequences of order n−1/[2(γb−γs)]. For our main results, we assume directly that

optimal bandwidth sequences decrease at this rate:

n−r/2R(T̂ (hn; k))→∞ for any hn with hn/n
1/[2(γb−γs)] →∞ or hn/n

1/[2(γb−γs)] → 0. (10)

Condition (10) will hold so long as it is suboptimal to choose a bandwidth such that the bias

or the variance dominates asymptotically, which is the case in the settings considered here.

Using these conditions, we now give formal statements of the results obtained heuristically

in Section 2.1.

Theorem 2.1. Let R be a performance criterion that with R̃(b, s) > 0 for all (b, s) 6= 0

and R̃(tb, ts) = tR̃(b, s) for all (b, s). Suppose that, for any bandwidth sequence hn with

lim infn→∞ hn/n
1/[2(γb−γs)] > 0 and lim supn→∞ hn/n

1/[2(γb−γs)] < ∞, Equation (8) holds,

and suppose that Equation (10) holds. Let h∗R and t∗R be as defined above, and assume that

t∗R > 0 is unique and well defined. Then the following holds.

(i) The asymptotic minimax performance of the kernel k is given by

nr/2 inf
h>0

R(T̂ (h; k)) = nr/2R(T̂ (h∗R; k)) + o(1) = S(k)rB(k)1−r inf
t
tr−1R̃(t, 1) + o(1),

where h∗R is given above.
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(ii) The asymptotic relative efficiency of two kernels k1 and k2 is given by

lim
n→∞

infh>0R(T̂ (h; k1))

infh>0R(T̂ (h; k2))
=
S(k1)

rB(k1)
1−r

S(k2)rB(k2)1−r
.

It depends on the rate r but not on the performance criterion R.

(iii) If (1) holds, the asymptotically optimal bias-variance ratio is given by

lim
n→∞

bias(T̂ (h∗R; k))

sdf (T̂ (h∗R; k))
= argmin

t
tr−1R̃(t, 1) = t∗R.

It depends only on the performance criterion R and rate exponent r. If we consider two

performance criteria R1 and R2 such that these conditions hold, then the limit of the

ratio of optimal bandwidths for these criteria is

lim
n→∞

h∗R1

h∗R2

=

(
t∗R1

t∗R2

)1/(γb−γs)

.

It depends only on γb and γs and the performance criteria.

Part (ii) shows that that relative efficiency results for RMSE apply unchanged to fixed-

length CIs and minimax one-sided CIs. For example, Cheng, Fan, and Marron (1997) cal-

culate bounds on the minimax MSE efficiency of local linear estimators for estimating a

conditional mean and its derivatives at a boundary point. Theorem 2.1 shows that these cal-

culations apply unchanged to give efficiency comparisons for CIs based on these estimators.

Part (iii) shows that the optimal bias-standard deviation ratio depends only on r and the

performance criterion, and not on the kernel. For RMSE, we obtain t∗RMSE =
√

1/r − 1, using

the same calculations as in Section 2.1. For one-sided CIs, t∗OCI,α,β = (1/r−1)(z1−α+zβ). For

fixed-length CIs, t∗FLCI can be evaluated numerically. Figures 2 and 3 plot these quantities

as a function of r. As discussed in Section 2.1, the optimal bias-standard deviation ratio is

larger for fixed-length CI construction (at levels α = .05 and α = .01) than for RMSE. Thus,

for FLCI, the optimal bandwidth oversmooths relative to the RMSE optimal bandwidth.

The next theorem gives conditions for the asymptotic validity and relative efficiency of

a confidence interval centered at the MSE optimal bandwidth. Following the derivations in

Section 2.1, this CI takes the form T̂ (h∗RMSE ; k) ± ŝe(h∗RMSE ; k) · cv1−α(
√

1/r − 1), and its

relative efficiency is given by (7).

Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold for RRMSE and for RFLCI,α̃

for all α̃ in a neighborhood of α. Let ŝe(h∗RMSE; k) be such that ŝe(h∗RMSE; k)/ sdf (h∗RMSE; k)
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converges in probability to 1 uniformly over f ∈ F . Then

lim
n→∞

inf
f∈F

Pf

(
T (f) ∈

{
T̂ (h∗RMSE; k)± ŝe(h∗RMSE; k) · cv1−α(

√
1/r − 1)

})
= 1− α.

The asymptotic efficiency of this CI relative to the one centered at the FLCI optimal band-

width, defined as limn→∞
infh>0RFLCI,α(T̂ (h;k))

RFLCI,α(T̂ (h
∗
RMSE;k))

, is given by (7). It depends only on r.

Thus, for CIs centered at the RMSE optimal bandwidth, one forms a CI by simply adding

and subtracting cv1−α(
√

1/r − 1) times the standard error. Table 1 gives this quantity for

some common values of r. The efficiency loss from using h∗RMSE rather than h∗FLCI is given

by (7), and is plotted in Figure 1.

3 Inference at a point

In this section, we apply the general results from Section 2 to the problem of inference about

a nonparametric regression function at a point, which we normalize to be zero, so that T (f) =

f(0). We allow the point of interest to be on the boundary on the parameter space. Because in

sharp regression discontinuity (RD) designs, discussed in detail in Section 4, the parameter

of interest can be written as the difference between two regression functions evaluated at

boundary points, the efficiency results in this section generalize in a straightforward manner

to sharp RD.

We write the nonparametric regression model as

yi = f(xi) + ui, i = 1, . . . , n, (11)

where the design points xi are non-random, and the regression errors ui are by definition

mean-zero, with variance var(ui) = σ2(xi). We consider inference about f(0) based on local

polynomial estimators of order q, which can be written as

T̂q(h; k) =

n∑
i=1

wnq (xi;h, k)yi,

where the weights wnq (xi; k, h) are given by

wnq (x;h, k) = e′1Q
−1
n mq(x)k(x/h).

Here mq(t) = (1, t, . . . , tq)′, k(·) is a kernel with bounded support, e1 is a vector of zeros with
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1 in the first position, and

Qn =
n∑
i=1

k(xi/h)mq(xi)mq(xi)
′.

In other words, T̂q(h; k) corresponds to the intercept in a weighted least squares regression of

yi on (1, xi, . . . , x
q
i ) with weights k(xi/h). Local linear estimators correspond to q = 1, and

Nadaraya-Watson (local constant) estimators to q = 0. It will be convenient to define the

equivalent kernel

k∗q (u) = e′1

(∫
X
mq(t)mq(t)

′k(t) dt

)−1
mq(u)k(u), (12)

where the integral is over X = R if 0 is an interior point, and over X = [0 , ∞) if 0 is a (left)

boundary point.

We assume the following conditions on the design points and regression errors ui:

Assumption 3.1. For some d > 0, the sequence {xi}ni=1 satisfies 1
nhn

∑n
i=1 g(xi/hn) →

d
∫
X g(u) du for any bounded function g with finite support and any sequence hn with 0 <

lim infn hnn
1/(2p+1) < lim supn hnn

1/(2p+1) <∞.

Assumption 3.2. The random variables {ui}ni=1 are independent and normally distributed

with Eui = 0 and var(ui) = σ2(xi) where σ2(x) is continuous at x = 0.

Assumption 3.1 requires that the empirical distribution of the design points is smooth

around 0. When the support points are treated as random, the constant d typically corre-

sponds to their density at 0. The assumption of normal errors in Assumption 3.2 is made for

simplicity and could be replaced with the assumption that for some η > 0, E[u2+ηi ] <∞.

Because the estimator is linear in yi, its variance doesn’t depend on f , and simply cor-

responds to the conditional variance of a weighted least squares estimator. Therefore, as we

show in Appendix B.2, under Assumptions 3.1 and 3.2,

sd(T̂q(h; k))2 =

n∑
i=1

wnq (xi)
2σ2(xi) =

(
σ2(0)

dnh

∫
X
k∗q (u)2 du

)
(1 + o(1)). (13)

The condition on the standard deviation in Equation (1) thus holds with

γs = −1/2 and S(k) = d−1/2σ(0)

√∫
X
k∗q (u)2 du. (14)

Tables 2 and 3 give the constant
∫
X k
∗
q (u)2 du for some common kernels.

On the other hand, the worst-case bias will be driven primarily by the function class F .
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We consider inference under two popular function classes. First, the p-order Taylor class, a

generalization of the the second-order Taylor class from Example 2.1,

FT,p(M) =
{
f :
∣∣∣f(x)−

∑p−1
j=0 f

(j)(0)xj/j!
∣∣∣ ≤M |x|p/p! x ∈ X} .

This class consists of all functions for which the approximation error from a (p− 1)-th order

Taylor approximation around 0 can be bounded by 1
p!M |x|

p. It formalizes the idea that the

pth derivative of f at zero should be bounded by some constant M . Using this class of

functions to derive optimal estimators goes back at least to Legostaeva and Shiryaev (1971),

and it underlies much of existing minimax theory concerning local polynomial estimators (see

Fan and Gijbels, 1996, Chapter 3.4–3.5).

While analytically convenient, the Taylor class may not be attractive in some empirical

settings because it allows f to be non-smooth and discontinuous away from 0. We therefore

also consider inference under Hölder class3,

FHöl,p(M) =
{
f : |f (p−1)(x)− f (p−1)(x′)| ≤M |x− x′|, x, x′ ∈ X

}
,

This class is the closure of the family of p times differentiable functions with the pth derivative

bounded by M , uniformly over X , not just at 0. It thus formalizes the intuitive notion that

f should be p-times differentiable with a bound on the pth derivative. The case p = 1

corresponds to the Lipschitz class of functions.

Theorem 3.1. Suppose that Assumption 3.1 holds. Then, for a bandwidth sequence hn with

0 < lim infn hnn
1/(2p+1) < lim supn hnn

1/(2p+1) <∞,

biasFT,p(M)(T̂q(hn; k)) =
Mhpn
p!
BTp,q(k)(1 + o(1)), BTp,q(k) =

∫
X
|upk∗q (u)| du

and

biasFHöl,p(M)(T̂q(hn; k)) =
Mhpn
p!
BHöl
p,q (k)(1 + o(1)),

BHöl
p,q (k) = p

∫ ∞
t=0

∣∣∣∣∣
∫
u∈X ,|u|≥t

k∗q (u)(|u| − t)p−1 du

∣∣∣∣∣ dt.
Thus, the first part of (1) holds with γb = p and B(k) = MBp,q(k)/p! where Bp,q(k) = BHöl

p,q (k)

for FHöl,p(M), and Bp,q(k) = BTp,q(k) for FT,p(M).

If, in addition, Assumption 3.2 holds, then Equation (8) holds for the RMSE, FLCI

and OCI performance criteria, with γb and B(k) given above and γs and S(k) given in

Equation (14).

3For simplicity, we focus on Hölder classes of integer order.

15



As we will see from the relative efficiency calculation below, the optimal order of the

local polynomial regression is q = p− 1 for the kernels considered here. The theorem allows

q ≥ p − 1, so that we can examine the efficiency of local polynomial regressions that are of

order that’s too high relative to the smoothness class (when q < p− 1, the maximum bias is

infinite).

Under the Taylor class FT,p(M), the least favorable (bias-maximizing) function is given

by f(x) = M/p! · sign(wnq (x))|x|p. In particular, if the weights are not all positive, the

least favorable function will be discontinuous away from the boundary. The first part of

Theorem 3.1 then follows by taking the limit of the bias under this function. Assumption 3.1

ensures that this limit is well-defined.

Under the Hölder class FHöl,p(M), it follows from an integration by parts identity that

the bias under f can be written as a sample average of f (p)(xi) times a weight function that

depends on the kernel and the design points. The function that maximizes the bias is then

obtained by setting the pth derivative to be M or −M depending on whether this weight

function is positive or negative. This leads to a pth order spline function maximizing the

bias. See Appendix B.2 for details.

For kernels given by polynomial functions over their support, k∗q also has the form of a

polynomial, and therefore BTp,q and BHöl
p,q can be computed analytically. Tables 2 and 3 give

these constants for selected kernels.

3.1 Kernel efficiency

It follows from Theorem 2.1 (ii) that the optimal equivalent kernel minimizes S(k)rB(k)1−r.

Under the Taylor class FT,p(M), this minimization problem is equivalent to minimizing(∫
X
k∗(u)2 du

)p(∫
X
|upk∗(u)|du

)
, (15)

The solution to this problem follows from Sacks and Ylvisaker (1978, Theorem 1) (see also

Cheng, Fan, and Marron (1997)). The optimal equivalent kernel is given by

kSY,p(u) =
(
b+

∑p−1
j=1 αju

j − |u|p
)
+
−
(
b+

∑p−1
j=1 αju

j + |u|p
)
−
,

the coefficients b and α solving∫
X
ujkSY,p(u) du = 0, j = 1, . . . , p− 1,∫
X
kSY,p(u) du = 1.
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For p = 1, the triangular kernel kTri(u) = (1−|u|)+ is optimal both in the interior and at the

boundary. In the interior for p = 2, α1 = 0 solves the problem, yielding the Epanechnikov

kernel kEpa(u) = 3
4(1− u2)+ after rescaling. For other cases, the solution can be easily found

numerically. Figure 4 plots the solutions for p = 2, 3, and 4, rescaled to be supported on

[0, 1] and [−1, 1] in the boundary and interior case, respectively.

In Table 4, we compare the asymptotic relative efficiency of local polynomial estimators

based on the uniform, triangular, and Epanechnikov kernels to the optimal Sacks-Ylvisaker

kernels.

Fan, Gasser, Gijbels, Brockmann, and Engel (1997) and Cheng, Fan, and Marron (1997),

conjecture that minimizing (15) yields a sharp bound on kernel efficiency. It follows from

Theorem 2.1 (ii) that this conjecture is correct, and Table 4 match the kernel efficiency

bounds in these papers. One can see from the tables that the choice of the kernel doesn’t

matter very much, so long as the local polynomial is of the right order. However, if the order

is too high, q > p−1, the efficiency can be quite low, even if the bandwidth used was optimal

for the function class or the right order, FT,p(M), especially on the boundary. However, if

the bandwidth picked is optimal for FT,q−1(M), the bandwidth will shrink at a lower rate

than optimal under FT,p(M), and the resulting rate of convergence will be lower than r.

Consequently, the relative asymptotic efficiency will be zero. A similar point in the context

of pointwise asymptotics was made in Sun (2005, Remark 5, page 8).

The solution to minimizing S(k)rB(k)1−r under FHöl,p(M) is only known in special cases.

When p = 1, the optimal estimator is a local constant estimator based on the triangular

kernel. When p = 2, the solution is given in Fuller (1961) and Zhao (1997) for the in-

terior point problem, and in Gao (2016) for the boundary point problem. In both cases,

the optimal equivalent kernel has the form of a quadratic spline with infinite number of

knots on a compact interval. In particular, in the interior the optimal kernel is given by

f IntHöl,2(u)/
∫∞
−∞ f

Int
Höl,2(u) du, where

f IntHöl,2(u) = 1− 1

2
x2 +

∞∑
j=0

(−1)j(|x| − kj)2+,

with the knots kj are given by kj = (1+q)1/2

1−q1/2 (2 − qj/2 − q(j+1)/2), where q is a constant

equal to q = (3 +
√

33−
√

26 + 6
√

33)2/16. At the boundary, the optimal kernel is given by

fBd
Höl,2(u)/

∫∞
−∞ f

Bd
Höl,2(u) du, where

fBd
Höl,2(u) = (1− x0x+ x2/2)1(0 ≤ x ≤ x0) + (1− x20)f IntHöl,2((x− x0)/(x20 − 1))1(x > x0),

with x0 ≈ 1.49969, so that for x > x0, the optimal boundary kernel is given by a rescaled

version of the optimal interior kernel. The optimal kernels are plotted in Figure 5. When
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p ≥ 3, the solution is unknown. Therefore, for p = 3, we compute efficiencies relative to a

local quadratic estimator with a triangular kernel. In Table 5, plots the resulting efficiencies

for local polynomial estimators based on the uniform, triangular, and Epanechnikov kernels.

Relative to the class FT,p(M), the bias constants are smaller: imposing smoothness away from

the point of interest helps to reduce the maximum bias. Furthermore, the loss of efficiency

from using a local polynomial estimator of order that’s too high is smaller. Finally, one can

see that local linear regression with a triangular kernel achieves high asymptotic efficiency

under both FT,2(M) and FHöl,2(M), both at the interior and at a boundary, with efficiency

at least 97%, which shows that its popularity in empirical work can be justified on theoretical

grounds. Under FHöl,2(M) on the boundary, the triangular kernel is nearly efficient.

3.2 Gains from imposing smoothness globally

The Taylor class FT,p(M), formalizes the notion that the pth derivative at 0, the point of

interest, should be bounded by M , but doesn’t impose smoothness away from 0. In contrast,

the Hölder class FHöl,p(M) restricts the pth derivative to be at most M globally. How much

can one tighten a confidence interval or reduce the maximum RMSE due to this additional

smoothness?

It follows from Theorem 3.1 and from arguments underlying Theorem 2.1 that the risk

of using a local polynomial estimator of order p − 1 with kernel kH and optimal bandwidth

under FHöl,p(M) relative using an a local polynomial estimator of order p− 1 with kernel kT

and optimal bandwidth under FT,p(M) is given by

infh>0RFHöl,p(M)(T̂ (h; kH))

infh>0RFT,p(M)(T̂ (h; kT ))
=

(∫
X k
∗
H,p−1(u)2 du∫

X k
∗
T,p−1(u)2 du

) p
2p+1

(
BHöl
p,p−1(kH)

BTp,p−1(kT )

) 1
2p+1

(1 + o(1)),

where RF (T̂ ) denotes the worst-case performance of T̂ over F . If the same kernel is used, the

first term equals 1, and the efficiency ratio is determined by the ratio of the bias constants

Bp,p−1(k). Table 6 computes the resulting reduction in risk/CI length for common kernels.

One can see that in general, the gains are greater for larger p, and greater at the boundary.

In the case of estimation at a boundary point with p = 2, for example, imposing global

smoothness of f results in reduction in length of about 13–15%, depending on the kernel,

and a reduction of about 10% if the optimal kernel is used.

3.3 RMSE and pointwise optimal bandwidth

We follow the literature on nonparametric efficiency bounds by using minimaxity within a

smoothness class as our measure of efficiency: our relative efficiency comparisons are based

on the worst-case performance of T̂ over a class F , where F formalizes the notion that f
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should be “smooth.” Since we take limits of bounds that hold for all f ∈ F for a given

n, this approach can be called “uniform-in-f .” Similarly, the honesty requirement on CIs

requires that coverage converges to 1 − α uniformly over f ∈ F . An alternative is to base

relative efficiency comparisons and confidence statements on pointwise-in-f asymptotics. The

pointwise approach has been criticized, since it can lead to “superefficient” estimators that

perform poorly in finite samples (see Chapter 1.2.4 in Tsybakov, 2009). Thus, it is of interest

to know for which questions these two approaches give substantively different answers. We

now compare our optimal bandwidth calculations to optimal bandwidth calculations based

on pointwise asymptotics.

The general results from Section 2 imply that given a kernel k and order of a local

polynomial q, the RMSE-optimal bandwidth for FT,p(M) and FHöl,p(M) is given by

h∗RMSE =

(
1

2pn

S(k)2

B(k)2

) 1
2p+1

=

(
σ2(0)p!2

2pndM2

∫
X k
∗
q (u)2 du

Bp,q(k)2

) 1
2p+1

,

where Bp,q(k) = BHöl
p,q (k) for FHöl,p(M), and Bp,q(k) = BTp,q(k) for FT,p(M).

In contrast, the optimal bandwidth based on pointwise asymptotics is obtained by mini-

mizing the sum of the leading squared bias and variance terms under pointwise asymptotics

for the case q = p− 1. This bandwidth is given by (see, for example, Fan and Gijbels, 1996,

Eq. (3.20))

h∗pointwise =

(
σ2(0)p!2

2pdnf (p)(0)2

∫
X k
∗
q (u)2 du

(
∫
X t

pk∗q (t) dt)2

) 1
2p+1

.

Thus, the pointwise optimal bandwidth replaces M with the pth derivative at zero, f (p), and

Bp,q(k) with
∫
X t

pk∗q (t) dt. In general implementing this bandwidth is not feasible, because the

pth derivative cannot be estimated without assuming the existence of more than p derivatives,

and, if more than p derivatives are assumed to exist, setting the order of the local polynomial

to q = p− 1 is no longer optimal.

Suppose, therefore, that f ∈ Fp(M), where Fp(M) corresponds to either FT,p(M) and

FHöl,p(M), and that it is known that the pth derivative at zero exists and equals M . Then

both h∗RMSE and h∗pointwise are feasible, and their ratio is given by

h∗pointwise

h∗RMSE

=

(
Bp,q(k)

|
∫
X t

pk∗q (t) dt|

) 2
2p+1

≥ 1. (16)

The inequality obtains because the Taylor expansion used to derive the leading bias term

under pointwise asymptotics effectively assumes that f(x) = ±Mxp/p!, which leads to the

bias constant |
∫
X t

pk∗q (t) dt|. This choice of f is feasible under Fp(M), but may not maximize
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the bias in general.

Under FT,p(M), the inequality will be strict for p ≥ 2, so that the pointwise optimal

bandwidth will in general be too large. For example for p = 2 and local linear regression with

the triangular kernel at the boundary, the ratio of bandwidths in Equation (16) evaluates

to
(
3/16
1/10

)2/5
≈ 1.28588, so that the pointwise optimal bandwidth is about 30% too large.

Consequently, the minimax efficiency for root MSE is

(t∗MSE/tpointwise)
−1/5

(
1 + (t∗MSE)2

1 + t2pointwise

)1/2

= (8/15)−1/5
(

1 + (1/2)2

1 + (15/16)2

)1/2

≈ 0.925.

On the other hand, under FHöl,2(M), Equation (16) holds with equality, so that the pointwise

and minimax optimal bandwidths coincide, because, as we show in Appendix B.2, the least

favorable function is indeed given by Mx2/2.

3.4 Confidence intervals based on pointwise asymptotics

Let us consider the performance of confidence intervals (CIs) justified by pointwise asymp-

totics. Suppose that the smoothness class is either FT,p(M) and FHöl,p(M) and denote it

by Fp(M). Suppose, for concreteness that p = 2, and q = 1. A näıve, but popular way of

constructing confidence intervals in practice is to center the CI around the estimator T̂1(h; k),

simply add and subtract z1−α/2 times its standard deviation, disregarding the possibility that

the estimator may be biased. If bandwidth used equals h∗RMSE, then the resulting CIs are

shorter than the 95% fixed-length CIs by a factor of z0.975/ cv0.95(1/2) = 0.90. Consequently,

their coverage is 92.1% rather than the nominal 95% coverage. At the RMSE-optimal band-

width, the worst-case bias-sd ratio equals 1/2, so disregarding the bias doesn’t result in severe

undercoverage. If one uses a larger bandwidth, however, the worst-case bias-sd ratio will be

larger, and the undercoverage problem more severe: for example, if the bandwidth is 50%

larger than h∗RMSE, so that the worst-case bias-sd ratio equals 1/2 · (1.5)(5/2) the coverage is

only 71.9%.

In an important recent paper, to improve the coverage properties of the näıve CI, Calonico,

Cattaneo, and Titiunik (2014) consider recentering T̂1(h; k) by an estimate of the leading

bias term, and adjusting the standard error estimate to account for the variability of the

bias estimate. For simplicity, consider the case in which the main bandwidth and the pilot

bandwidth (used to estimate the bias) are the same, and that the main bandwidth is chosen

optimally in that it equals h∗RMSE. In this case, their procedure amounts to using a local

quadratic estimator, but with a bandwidth h∗RMSE, optimal for a local linear estimator. The

resulting CI obtains by adding and subtracting z1−α/2 times the standard deviation of the
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estimator. The maximum bias to standard deviation ratio of the estimator is given by

tCCT = (h∗RMSE)5/2
MB2,2(k)/2

σ(0)(
∫
k∗2(u)2 du/dn)1/2

=
1

2

B2,2(k)

B2,1(k)

(∫
X k
∗
1(u)2 du∫

X k
∗
2(u)2 du

)1/2

. (17)

The resulting coverage is given by Φ(tCCT + z1−α/2)− Φ(tCCT − z1−α/2). The CCT interval

length relative to the fixed-length 1 − α CI around a local linear estimator with the same

kernel and minimax MSE bandwidth is the same under both FT,p(M), and FHöl,p(M), and

given by

z1−α/2
(∫
X k
∗
2(u)2 du

)1/2
cv1−α(1/2)

(∫
X k
∗
1(u)2 du

)1/2 (1 + o(1)). (18)

The resulting coverage and relative length is given in Table 7 for the class FT,2(M), and

in Table 8 for the class FHöl,2(M) and α = 0.05. One can see that although the coverage

properties are excellent (since tCCT is quite low in all cases), the intervals are about 30%

longer than the fixed-length CIs around the RMSE bandwidth.

Under the class FHöl,2(M), the CCT intervals are also reasonably robust to using a larger

bandwidth: if the bandwidth used is 50% larger than h∗RMSE, so that the bias-sd ratio in

Equation (17) is larger by a factor of (1.5)5/2, the resulting coverage is still at least 93.0%

for the kernels considered in Table 8. Under FT,2(M), using a bandwidth 50% larger than

h∗RMSE yields coverage of about 80% on the boundary and 87% in the interior.

If one instead considers the classes FT,3(M) and FHöl,3(M) (but with h∗RMSE still chosen

to be MSE optimal for FT,2(M) or FHöl,2(M)), then the CCT interval can be considered

an undersmoothed CI based on a second order local polynomial estimator. In this case,

the limiting bias-sd ratio is tCCT = 0 and the limiting coverage is 1 − α (this matches the

pointwise-in-f coverage statements in CCT, which assume the existence of a continuous third

derivative in the present context). Due to this undersmoothing, however, the CCT CI shrinks

at a slower rate than the optimal CI. Thus, depending on the smoothness class, the 95%

CCT CI has close to 95% coverage and efficiency loss of about 30%, or exactly 95% coverage

at the cost of shrinking at a slower than optimal rate.

4 Application to sharp regression discontinuity

In this section, we apply the results for estimation at a boundary point from Section 3 to

sharp regression discontinuity (RD), and illustrate them with an empirical application.

In a sharp RD, we are given data from a nonparametric regression model (11), and the

goal is to estimate a jump in the regression function f at a known threshold, which we
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normalize to 0, so that the parameter of interest is

T (f) = lim
x↓0

f(x)− lim
x↑0

f(x).

The threshold determines participation in a binary treatment: units with xi ≥ 0 are treated;

units with xi < 0 are controls. If the regression functions of potential outcomes are continuous

at zero, then T (f) measures the average effect of the treatment for units with xi = 0 (Hahn,

Todd, and van der Klaauw, 2001).

For brevity, we focus on the most empirically relevant case in which the regression function

f is assumed to lie in the class FHöl,2(M) on either side of the cutoff:

f ∈ FRD(M) = {f+(x)1(x ≥ 0)− f−(x)1(x < 0) : f+, f− ∈ FHöl,2(M)}.

We consider estimating T (f) based on running a local linear regression on either side of the

boundary. Given a bandwidth h and a second-order kernel k, the resulting estimator can be

written as

T̂ (h; k) =
n∑
i=1

wn+(xi;h, k)yi −
n∑
i=1

wn−(xi;h, k)yi,

with the weight wn+ given by

w+(x;h, k) = e′1Q
−1
n,+m1(x)k+(x/h)

=
k+(x/h)

∑n
i=1 k+(xi/h)(x2i − xi · x)∑n

i=1 k+(xi/h)
∑n

i=1 k+(xi/h)x2i − (
∑n

i=1 k+(xi/h)xi)2
, k+(u) = k(u)1(u ≥ 0),

and Qn,+ =
∑n

i=1 k+(xi/h)mq(xi)m1(xi)
′. The weights wn−, Gram matrix Q̂n,− and kernel

k− are defined similarly. That is, T̂ (h; k) is given by a difference between estimates from

two local linear regressions at a boundary point, one for units with non-negative values

running variable xi, and one for units with negative values of the running variable. Let

σ2+(x) = σ2(x)1(x ≥ 0), and let σ2−(x) = σ2(x)1(x < 0).

In principle, one could allow the bandwidths for the two local linear regressions to be

different. We show in Appendix C, however, that the loss in efficiency resulting from con-

straining the bandwidths to be the same is quite small unless the ratio of variances of Yi on

either side of the cutoff, σ2+(0)/σ2−(0), is quite large.

It follows from the results in Section 3 that if Assumption 3.1 holds and the functions

σ2+(x) and σ2−(x) are right- and left-continuous, respectively, the variance of the estimator

doesn’t depend on f and satisfies

sd(T̂ (h; k))2 =
n∑
i=1

(wn+(xi)
2 + wn−(xi)

2)σ2(xi) =

∫∞
0 k∗1(u)2 du

dnh

(
σ2+(0) + σ2−(0)

)
(1 + o(1)),
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with d defined in Assumption 3.1.

Because T̂ (h; k) is given by the difference between two local linear regression estimators,

it follows from Theorem 3.1 and arguments in Appendix B.2 that the bias of T̂ (h; k) is

maximized at the function f(x) = −Mx2/2 · (1(x ≥ 0) − 1(x < 0)). The worst-case bias

therefore satisfies

bias(T̂ (h; k)) = −M
2

(
n∑
i=1

wn+(xi)x
2
i +

n∑
i=1

wn−(xi)x
2
i

)
= −Mh2 ·

∫ ∞
0

u2k∗1(u) du · (1 + o(1)).

The RMSE-optimal bandwidth is given by

h∗RMSE =

( ∫∞
0 k∗1(u)2 du

(
∫∞
0 u2k∗1(u) du)2

·
σ2+(0) + σ2−(0)

dn4M2

)1/5

. (19)

This definition is similar to the optimal bandwidth definition derived under pointwise asymp-

totics in Imbens and Kalyanaraman (2012), except that they replace 4M2 with (f
′′
+(0) −

f
′′
−(0))2, which gives infinite bandwidth if the second derivatives at zero are equal in magni-

tude and of opposite sign. Consequently, any feasible implementation of pointwise asymp-

totically optimal bandwidth will require an ad-hoc regularization term to avoid selecting an

overly large bandwidth in practice4.

The bias-standard deviation ratio at h∗RMSE equals 1/2 in large samples; a two-sided CI

around T̂ (h∗RMSE ; k) for a given kernel k can therefore be constructed as

T̂ (h∗RMSE ; k)± cv1−α(1/2) · sd(T̂ (h∗RMSE ; k)). (20)

Alternatively, one could use the critical value cv1−α(bias(L̂(h∗RMSE ; k))/ sd(L̂(h∗RMSE ; k)))

based on the finite-sample bias-sd ratio.

In practice, this CI cannot be implemented directly because the variance function σ2(x)

and the density d of x at 0 that are required to calculate h∗RMSE and the standard error

sd(T̂ (h∗RMSE ; k)) are unknown. One therefore needs to replace h∗RMSE and sd(T̂ (h∗RMSE ; k))

in the previous display by their feasible versions.

Because sd(T̂ (h∗RMSE ; k)) corresponds to the conditional variance of a weighted least

squares estimator in a regression with potentially non-linear conditional expectation function

f , it can be consistently estimated using the nearest neighbor variance estimator considered

in Abadie and Imbens (2006) and Abadie, Imbens, and Zheng (2014); using the usual Eicker-

Huber-White estimator will overestimate the conditional variance. To describe the estimator,

given a bandwidth h, let ûi denote the estimated residuals, that is, for xi ≥ 0, ûi = yi −
m1(xi)Q

−1
n,+

∑n
j=1m1(xj/h)k+(xi/h)yi, and ûi = yi −m1(xi)Q

−1
n,−
∑n

j=1m1(xj/h)k−(xi/h)yi

4Furthermore, as pointed out in Section 3.3, it is not possible to estimate the second derivative without
assuming the existence of more than 2 derivatives.
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if xi < 0. Then sd(T̂ (h; k)) can be estimated as ŝe(T̂ (h; k)) =
∑n

i=1w
n
+(xi)

2σ̂2(xi) +∑n
i=1w

n
−(xi)

2σ̂2(xi), where

σ̂2(xi) =
J

J + 1

(
Yi −

1

J

J∑
m=1

Yj(i)

)2

,

for some fixed (small) J ≥ 1, where j(i) denotes the j-th closes observation to i among

units with the same sign of the running variable. In contrast, the usual Eicker-Huber-White

estimator sets σ̂2(xi) = û2i .

For h∗RMSE, there are two feasible choices. One can either use a plug-in estimator that

replaces the unknown quantities d, σ2−(0), and σ2+(0) by some consistent estimates d̂, σ̂2−(0),

and σ2+(0). Alternatively, one can try to directly minimize the finite-sample MSE over the

bandwidth h,

MSE(h) =
M2

4

(
n∑
i=1

(wn+(xi;h) + wn−(xi;h))x2i

)2

+
n∑
i=1

(wn+(xi)
2 + wn−(xi)

2)σ2(xi), (21)

by replacing σ2(x) with the estimate σ̂2(xi) = σ̂2+(0)1(x ≥ 0) + σ̂2−(0)1(x < 0). This method

was considered previously in Armstrong and Kolesár (2016), who show that the resulting

confidence intervals will be asymptotically valid and equivalent to the infeasible CI given in

Equation (20). This method has the advantage that it avoids having to estimate d, and it

can also be shown to work when the covariates are discrete.

4.1 Empirical illustration

To illustrate the implementation of feasible versions of the CIs (20), we use a subset of the

dataset from Ludwig and Miller (2007).

In 1965, when the Head Start federal program launched, the Office of Economic Opportu-

nity provided technical assistance to the 300 poorest counties in the United States to develop

Head Start funding proposals. Ludwig and Miller (2007) use this cutoff in technical assis-

tance to look at intent-to-treat effects of the Head Start program on a variety of outcomes

using as a running variable the county’s poverty rate relative to the poverty rate of the 300th

poorest county (which had poverty rate equal to approximately 59.2%). We focus here on

their main finding, the effect on child mortality due to causes addressed as part of Head

Start’s health services. The main health services provided by Head Start comprise vaccina-

tions, screening, and medical referrals; this variable therefore measures deaths due to causes

such as tuberculosis, meningitis, or respiratory causes, but excludes injuries and neoplasms.

See the Appendix in Ludwig and Miller (2007) for a detailed description of this variable.

Relative to the dataset used in Ludwig and Miller (2007), we remove two observations,
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one corresponding to a duplicate entry for Yellowstone County, MT, and an outlier that

corresponds to Yellowstone National Park, MT. Mortality data is missing for counties in

Alaska. We are therefore left with 3,103 observations that correspond to US counties, with

294 of them above the poverty cutoff.

Figure 6 plots the data. To estimate the discontinuity in mortality rates, Ludwig and

Miller (2007) use a uniform kernel5 and consider bandwidths equal to 9, 18, and 36. This

yields point estimates equal to −1.895, −1.198 and −1.114 respectively, which are large

effects given that the average mortality rate for counties not receiving technical assistance

was 2.15 per 100,000. The p-values reported in the paper, based on bootstrapping the t-

statistic (which ignores any potential bias in the estimates), are 0.036, 0.081, and 0.027. The

standard errors for these estimates, obtained using the nearest neighbor method described

above (with J = 3) are 1.038, 0.696, and 0.522.

These bandwidth choices are optimal in the sense that they minimize the RMSE ex-

pression (21) if M = 0.038, 0.0076, and 0.0014, respectively. Thus, for bandwidths 18

or 36 to be optimal, one has to be very optimistic about the smoothness of the regres-

sion function. For these smoothness parameters, the finite-sample critical values based on

cv0.95(bias(L̂(h∗RMSE ; k))/ sd(L̂(h∗RMSE ; k))) are given by 2.152, 2.201 and 2.115 respectively,

which is very close to the asymptotic value cv.95(1/2) = 2.182. The resulting 95% confidence

intervals are given by

(−4.154, 0.297), (−2.729, 0.333), and (−2.219,−0.010),

respectively. The p-values based on these estimates are given by 0.091, 0.123, and 0.047.

These values are higher than those reported in the paper, as they take into account the

potential bias of the estimates. Thus, unless one is confident that the smoothness parameter

M is very small, the results are not significant at 5% level.

Using a triangular kernel helps to tighten the confidence intervals by about 2% in length,

as predicted by the relative asymptotic efficiency results from Table 5, yielding

(−4.196, 0.172), (−2.977, 0.055), and (−2.286,−0.091).

The underlying optimal bandwidths are given by 11.8, 22.8, and 45.7, respectively. The p-

values associated with these estimates are 0.072, 0.059, and 0.033, tightening the p-values

based on the uniform kernel. Thus, in contrast to the findings in the paper, these results

indicate that, unless one is very optimistic about the smoothness of the regression function,

the effect of Head Start assistance on child mortality is not significant at the 5% level.

5The paper states that the estimates were obtained using a triangular kernel. However, due to a bug in
the code, the results reported in the paper were actually obtained using a uniform kernel.
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Appendix A Proofs of theorems in Section 2

A.1 Proof of Theorem 2.1

Parts (ii) and (iii) follow from part (i) and simple calculations. To prove part (i), note that,

if it did not hold, there would be a bandwidth sequence hn such that

lim inf
n→∞

nr/2R(T̂ (hn; k)) < S(k)rB(k)1−r inf
t
tr−1R̃(t, 1).

By Equation (10), this sequence must satisfy lim infn→∞ hn/n
1/[2(γb−γs)] > 0 as well as

lim supn→∞ hn/n
1/[2(γb−γs)] < ∞, which means that nr/2R(T̂ (hn; k)) = S(k)rB(k)1−rtr−1n ·

R̃(tn, 1) + o(1) where tn = hγb−γsn B(k)/(n−1/2S(k)). This contradicts the display above.

A.2 Proof of Theorem 2.2

The second statement (relative efficiency) is immediate from (9). For the first statement

(coverage), fix ε > 0 and let sdn = n−1/2(h∗RMSE)γsS(k) so that, uniformly over f ∈ F ,

sdn / sdf (T̂ (h∗RMSE; k))→ 1 and sdn /ŝe(h∗RMSE; k)
p→ 1. Note that, by Theorem 2.1 and the

calculations above,

R̃FLCI,α+ε(T̂ (ĥ∗RMSE; k)) = sdn · cv1−α−ε(
√

1/r − 1)(1 + o(1))

and similarly for R̃FLCI,α−ε(T̂ (ĥ∗RMSE; k)). Since cv1−α(
√

1/r − 1) is strictly decreasing in α,

it follows that there exists η > 0 such that, with probability approaching 1 uniformly over

f ∈ F ,

RFLCI,α+ε(T̂ (ĥ∗RMSE; k)) < ŝe(T̂ (ĥ∗RMSE; k)) · cv1−α(
√

1/r − 1)

< (1− η)RFLCI,α−ε(T̂ (ĥ∗RMSE; k)).

Thus,

lim inf
n

inf
f∈F

P
(
Tf ∈

{
T̂ (ĥ∗RMSE; k)± ŝe(T̂ (ĥ∗RMSE; k)) · cv1−α(

√
1/r − 1)

})
≥ lim inf

n
inf
f∈F

P
(
Tf ∈

{
T̂ (ĥ∗RMSE; k)±RFLCI,α+ε(T̂ (ĥ∗RMSE; k))

})
≥ 1− α− ε

and

lim sup
n

inf
f∈F

P
(
Tf ∈

{
T̂ (ĥ∗RMSE; k)± ŝe(T̂ (ĥ∗RMSE; k)) · cv1−α(

√
1/r − 1)

})
≤ lim sup

n
inf
f∈F

P
(
Tf ∈

{
T̂ (ĥ∗RMSE; k)±RFLCI,α−ε(T̂ (ĥ∗RMSE; k))(1− η)

})
≤ 1− α+ ε,
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where the last inequality follows by definition of RFLCI,α−ε(T̂ (ĥ∗RMSE; k)). Taking ε→ 0 gives

the result.

Appendix B Verification of regularity conditions in examples

We verify the conditions (1), (8) and (10) in some applications.

B.1 Gaussian white noise model

The approximation (8) holds as an exact equality (i.e. with the o(1) term equal to zero) in

the Gaussian white noise model whenever the problem renormalizes in the sense of Donoho

and Low (1992). We show this below, using notation taken mostly from that paper. Consider

a Gaussian white noise model

Y (dt) = (Kf)(t) dt+ (σ/
√
n)W (dt), t ∈ Rd.

We are interested in estimating the linear functional T (f) where f is known to be in the

class F = {f : J2(f) ≤ C} where J2(f) : F → R and C ∈ R are given. Let Ua,b denote

the renormalization operator Ua,bf(t) = af(bt). Suppose that T , J2, and the inner product

are homogeneous: T (Ua,bf) = abs0T (f), J2(Ua,bf) = abs2J2(f) and 〈KUa1,bf,KUa2,bg〉 =

a1a2b
2s1〈Kf,Kg〉. These are the same conditions as in Donoho and Low (1992) except for

the last one, which is slightly stronger since it must hold for the inner product rather than

just the norm.

Consider the class of linear estimators based on a given kernel k:

T̂ (h; k) = hsh
∫

(Kk(·/h))(t) dY (t) = hsh
∫

[KU1,h−1k](t) dY (t)

for some exponent sh to be determined below. The worst-case bias of this estimator is

bias(T̂ (h; k)) = sup
J2(f)≤C

|T (f)− hsh〈Kk(·/h),Kf〉| .

Note that J2(f) ≤ C iff. f = Uhs2 ,h−1 f̃ for some f̃ with J2(f̃) = J2(Uh−s2 ,hf) = J2(f) ≤ C.

This gives

bias(T̂ (h; k)) = sup
J2(f)≤C

∣∣T (Uhs2 ,h−1f)− hsh〈Kk(·/h),KUhs2 ,h−1f〉
∣∣

= sup
J2(f)≤C

∣∣hs2−s0T (f)− hsh+s2−2s1〈Kk(·),Kf〉
∣∣ .
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If we set sh = −s0 + 2s1 so that s2− s0 = sh + s2− 2s1, the problem will renormalize, giving

bias(T̂ (h; k)) = hs2−s0 bias(T̂ (1; k)).

The variance does not depend on f and is given by

varf (T̂ (h; k)) = h2sh(σ2/n)〈KU1,h−1k,KU1,h−1k〉 = h2sh−2s1(σ2/n)〈Kk,Kk〉

= h−2s0+2s1(σ2/n)〈Kk,Kk〉.

Thus, (1) holds with γb = s2 − s0, γs = s1 − s0, S(k) = σ‖Kk‖, and B(k) = bias(T̂ (1; k)) =

supJ2(f)≤C |T (f)− 〈Kk,Kf〉| and with both o(1) terms equal to zero. This implies that (8)

holds with the o(1) term equal to zero, since the estimator is normally distributed.

B.2 Local polynomial estimators in fixed design regression

This section proves Theorem 3.1 and Equation (13) in Section 3.

We begin by deriving the worst-case bias of a general linear estimator

T̂ =

n∑
i=1

w(xi)yi

under Hölder and Taylor classes. For both FT,p(M) and FHöl,p(M) the worst-case bias is

infinite unless
∑n

i=1w(xi) = 1 and
∑n

i=1w(xi)x
j = 0 for j = 1, . . . , p−1, so let us assume that

w(·) satisfies these conditions. For f ∈ FT,p(M), we can write f(x) =
∑p−1

j=0 x
jf (j)(0)/j!+r(x)

with |r(x)| ≤M |x|p/p!. As noted by Sacks and Ylvisaker (1978), this gives the bias under f

as
∑n

i=1w(xi)r(xi), which is maximized at r(x) = M sign(w(x))|x|p/p!, giving biasFT,p
(T̂ ) =∑n

i=1M |w(xi)x|p/p!.
For f ∈ FHöl,p(M), the (p− 1)th derivative is Lipschitz and hence absolutely continuous.

Furthermore, since
∑n

i=1w(xi) = 1 and
∑n

i=1w(xi)x
j = 0, the bias at f is the same as

the bias at x 7→ f(x) −
∑p−1

j=0 x
jf (j)(0)/j!, so we can assume without loss of generality that

f(0) = f ′(0) = · · · = f (p−1)(0). This allows us to apply the following lemma.

Lemma B.1. Let ν be a finite measure on R (with the Lebesgue σ-algebra) with finite support

and and let w : R → R be a bounded measurable function with finite support. Let f be p − 1

times differentiable with bounded pth derivative on a set of Lebesgue measure 1 and with

f(0) = f ′(0) = f ′′(0) = · · · = f (p−1)(0) = 0. Then∫ ∞
0

w(x)f(x) dν(x) =

∫ ∞
s=0

w̄p,ν(s)f (p)(s) ds
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and ∫ 0

−∞
w(x)f(x) dν(x) =

∫ 0

s=−∞
w̄p,ν(s)f (p)(s) ds

where

w̄p,ν(s) =


∫∞
x=s

w(x)(x−s)p−1

(p−1)! dν(x) s ≥ 0∫ s
x=−∞

w(x)(x−s)p−1(−1)p
(p−1)! dν(x) s < 0.

Proof. By the Fundamental Theorem of Calculus and the fact that the first p− 1 derivatives

at 0 are 0, we have, for x > 0,

f(x) =

∫ x

t1=0

∫ t1

t2=0
· · ·
∫ tp−1

tp=0
f (p)(tp) dtp · · · dt2dt1 =

∫ x

s=0

f (p)(s)(x− s)p−1

(p− 1)!
ds.

Thus, by Fubini’s Theorem,∫ ∞
x=0

w(x)f(x) dν(x) =

∫ ∞
x=0

w(x)

∫ x

s=0

f (p)(s)(x− s)p−1

(p− 1)!
dsdν(x)

=

∫ ∞
s=0

f (p)(s)

∫ ∞
x=s

w(x)(x− s)p−1

(p− 1)!
dν(x)ds

which gives the first display in the lemma. The second display in the lemma follows from

applying the first display with f(−x), w(−x) and ν(−x) playing the roles of f(x), w(x) and

ν(x).

Applying Lemma B.1 with ν given by the counting measure that places mass 1 on

each of the xi’s (ν(A) = #{i : xi ∈ A}), it follows that the bias under f is given by∫
w(x)f(x) dν =

∫
w̄p,ν(s)f (p)(s) ds. This is maximized over f ∈ FHöl,p(M) by taking

f (p)(s) = M sign(w̄p,ν(s)), which gives biasFHöl,p(M)(T̂ ) =
∫
|w̄p,ν(s)| ds.

We collect these results in the following theorem.

Theorem B.1. For a linear estimator T̂ =
∑n

i=1w(xi)yi such that
∑n

i=1w(xi) = 1 and∑n
i=1w(xi)x

j = 0 for j = 1, . . . , p− 1,

biasFT,p(M)(T̂ ) =
n∑
i=1

M |w(xi)x|p/p! and biasFHöl,p(M)(T̂ ) =

∫
|w̄p,ν(s)| ds

where w̄p,ν(s) is as defined in Lemma B.1 with ν given by the counting measure that places

mass 1 on each of the xi’s.
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Note that, for t > 0 and any q,

∫ ∞
s=t

wq,ν(s) ds =

∫ ∞
s=t

∫ ∞
x=s

w(x)(x− s)q−1

(q − 1)!
dν(x)ds =

∫ ∞
x=t

∫ x

s=t

w(x)(x− s)q−1

(q − 1)!
dsdν(x)

=

∫ ∞
x=t

w(x)

[
−(x− s)q

q!

]x
s=t

dν(x) =

∫ ∞
x=t

w(x)(x− t)q

q!
dν(x) = w̄q+1,ν(t). (22)

Let us define w̄0,ν(x) = w(x), so that this holds for q = 0 as well.

For the boundary case with p = 2, the bias is given by (using the fact that the support

of ν is contained in [0,∞))∫ ∞
0

w(x)f(x) dν(x) =

∫ ∞
0

w̄2,ν(x)f (2)(x) dx where w̄2,ν(s) =

∫ ∞
x=s

w(x)(x− s) dν(x).

For a local linear estimator based on a kernel with nonnegative weights and support [−A,A],

the equivalent kernel w(x) is positive at x = 0 and negative at x = A and changes signs

once. From (22), it follows that, for some 0 ≤ b ≤ A, w̄1,ν(x) is negative for x > b and

nonnegative for x < b. Applying (22) again, this also holds for w̄2,ν(x). Thus, if w̄2,ν(s̃) were

strictly positive for any s̃ > 0, we would have to have w̄2,ν(s) nonnegative for s ∈ [0, s̃]. Since

w̄2,ν(0) =
∑n

i=1w(xi)xi = 0, we have

0 < w̄2,ν(0)− w̄2,ν(s̃) = −
∫ s̃

x=0
w(x)(x− s̃) dν(x)

which implies that
∫ s
x=s w(x)dν(x) < 0 for some 0 ≤ s < s < s̃. Since w(x) is positive

for small enough x and changes signs only once, this means that, for some s∗ ≤ s̃, we have

w(x) ≥ 0 for 0 ≤ x ≤ s∗ and
∫ s∗
x=0 w(x)dν(x) > 0. But this is a contradiction, since it means

that w̄2,ν(s∗) = −
∫ s∗
0 w(x)(x − s∗) dν(x) < 0. Thus, w̄2,ν(s) is weakly negative for all s,

which implies that the bias is maximized at f(x) = −(M/2)x2.

We now provide a proof for Theorem 3.1 by proving the result for a more general sequence

of estimators of the form

T̂ =
1

nh

n∑
i=1

k̃n(xi/h)yi,

where k̃n satisfies 1
nh

∑n
i=1 k̃n(xi/h) = 1 and 1

nh

∑n
i=1 k̃n(xi/h)xji = 0 for j = 1, . . . , p−1. We

further assume

Assumption B.1. The support and magnitude of k̃n are bounded uniformly over n, and, for

some k̃, supu∈R |k̃n(u)− k̃(u)| → 0.

Theorem B.2. Suppose Assumptions 3.1 and B.1 hold. Then for any bandwidth sequence
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hn such that lim infn hnn
1/(2p+1) > 0, and lim supn hnn

1/(2p+1) <∞.

biasFT,p(M)(T̂ ) =
Mhpn
p!
B̃Tp (k̃)(1 + o(1)), B̃Tp (k̃) = d

∫
X
|upk̃(u)| du

and

biasFHöl,p(M)(T̂ ) =
Mhpn
p!
B̃Höl
p (k̃)(1 + o(1)),

B̃Höl
p (k̃) = dp

∫ ∞
t=0

∣∣∣∣∣
∫
u∈X ,|u|≥t

k̃(u)(|u| − t)p−1 du

∣∣∣∣∣ dt.
If Assumption 3.2 holds as well, then

sd(T̂ ) = h−1/2n n−1/2S(k̃)(1 + o(1)),

where S(k̃) = d1/2σ(0)
√∫
X k̃(u)2 du, and (8) holds for the RMSE, FLCI and OCI perfor-

mance criteria with γb = p and γs = −1/2.

Proof. Let Ks denote the bound on the support of k̃n, and Km denote the bound on the

magnitude of k̃n.

The first result for Taylor classes follows immediately since

biasFT,p(M)(T̂ ) =
M

p!
hp

1

nh

n∑
i=1

|k̃n(xi/h)||xi/h|p =

(
M

p!
hpd

∫
X
|k̃(u)||u|p du

)
(1 + o(1))

where the first equality follows from Theorem B.1 and the second equality follows from the

fact that for any function g(u) that is bounded over u in compact sets,∣∣∣∣∣ 1

nh

n∑
i=1

k̃n(xi/h)g(xi/h)− d
∫
X
k(u)g(u) du

∣∣∣∣∣
≤

∣∣∣∣∣ 1

nh

n∑
i=1

k̃(xi/h)g(xi/h)− d
∫
X
k(u)g(u) du

∣∣∣∣∣+
1

nh

n∑
i=1

∣∣∣k̃n(xi/h)g(xi/h)− k̃(xi/h)g(xi/h)
∣∣∣

≤ o(1) +
1

nh

n∑
i=1

I(|xi/h| ≤ Ks) sup
u∈[−Ks,Ks]

|g(u)| · sup
u∈[−Ks,Ks]

|k̃n(u)− k̃(u)| = o(1), (23)

where the second line follows by triangle inequality, the third line by Assumption 3.1 applied

to the first summand, and the last equality follows by Assumption 3.1 applied to the first

term, and Assumption B.1 applied to the last term.
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For Hölder classes,

biasFHöl,p(M)(T̂ (h; k̃n)) = M

∫
|w̄p,ν(s)| ds

by Theorem B.1 where w̄p,ν is as defined in that theorem with w(x) = 1
nh k̃n(x/h). We have,

for s > 0,

w̄p,ν(s) =

∫
x≥s

1
nh k̃n(x/h)(x− s)p−1

(p− 1)!
dν(x) =

1

nh

n∑
i=1

k̃n(xi/h)(xi − s)p−1

(p− 1)!
I(xi ≥ s)

= hp−1
1

nh

n∑
i=1

k̃n(xi/h)(xi/h− s/h)p−1

(p− 1)!
I(xi/h ≥ s/h).

Thus, by Equation (23), for t ≥ 0, h−(p−1)w̄p,ν(t · h)→ d · w̄p(t), where

w̄p(t) =

∫
u≥t

k̃(u)(u− t)p−1

(p− 1)!
du

(i.e. w̄p(t) denotes w̄p,ν(t) when w = k̃ and ν is the Lebesgue measure). Furthermore,

|h−(p−1)w̄p,ν(t · h)| ≤

[
Km

nh

n∑
i=1

I(0 ≤ xi/h ≤ Ks)(xi/h)p−1

(p− 1)!

]
· I(t ≤ Ks) ≤ K1 · I(t ≤ Ks),

where the last inequality holds for some K1 by Assumption 3.1. Thus,

M

∫
s≥0
|w̄p,ν(s)| ds = hpM

∫
t≥0
|h−(p−1)w̄p,ν(t · h)| dt = hpM

[
d

∫
t≥0
|w̄p(t)| dt

]
(1 + o(1))

by the Dominated Convergence Theorem. Combining this with a symmetric argument for

t ≤ 0 gives the result.

For the second part of the theorem, the variance of T̂ doesn’t depend on f , and equals

var(T̂ ) =
1

n2h2

n∑
i=1

k̃n(xi/h)2σ2(xi) =
1

nh
S̃2
n, where S̃2

n =
1

nh

n∑
i=1

k̃n(xi/h)2σ2(xi).

By the triangle inequality,

∣∣∣∣S̃2
n − dσ2(0)

∫
X
k̃(u)2 du

∣∣∣∣ ≤ sup
|x|≤hKs

∣∣∣k̃n(x/h)2σ2(x)− k̃(x/h)2σ2(0)
∣∣∣ 1

nh

n∑
i=1

I(|xi/h| ≤ Ks)

+ σ2(0)

∣∣∣∣∣ 1

nh

n∑
i=1

k̃(xi/h)2 − d
∫
X
k̃(u)2 du

∣∣∣∣∣ = o(1),
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where the equality follows by Assumption 3.1 applied to the second summand and the second

term of the first summand, and Assumptions 3.2 and B.1 applied to the first term of the first

summand. This gives the second display in the theorem.

The last statement (verification of Equation (8)) follows immediately from continuity of

R̃ for these performance criteria, since T̂ is distributed normal with constant variance.

The local polynomial estimator takes the form given above with

k̃n(u) = e′1

(
1

nh

n∑
i=1

k(xi/h)mq(xi/h)mq(xi/h)′

)−1
mq(u)k(u).

If k is bounded with bounded support, then, under Assumption 3.1 this sequence satisfies

Assumption B.1 with

k̃(u) = e′1

(
d

∫
X
k(u)mq(u)mq(u)′ du

)−1
mq(u)k(u) = d−1k∗q (u),

where k∗q is the equivalent kernel defined in Equation (12). Theorem 3.1 and Equation (13)

then follow immediately by applying Theorem B.2 with this choice of k̃n and k̃.

Appendix C Regression discontinuity with different bandwidths

on either side of the cutoff

This appendix calculates the efficiency gain from using different bandwidths on either side of

the cutoff. We state a result in a more general setup than that considered in Section 4.

Consider estimating a parameter T (f), f ∈ F , using a class of estimators T̂ (h+, h−; k)

indexed by two bandwidths h− and h+. Suppose that the worst-case (over F) performance

of T̂ (h+, h−; k) according to a given criterion satisfies

R(T̂ (h+, h−; k)) = R̃(B(k)(hγb− + hγb+ ), n−1/2(S+(k)2h2γs+ + S−(k)2h2γs− )1/2)(1 + o(1)), (24)

where R̃(b, s) denotes the value of the criterion when T̂ (h+, h−; k) − T (f) ∼ N(b, s2), and

S(k) > 0 and B(k) > 0. Assume that R̃ scales linearly with its arguments.

In the RD application considered in Section C, if Assumptions 3.1 holds, ui is normally dis-

tributed, and σ2+(x) and σ2−(0) are right- and left-continuous at 0, then Condition (24) holds

with γs = −1/2, γb = 2, S+(k) = σ2+(0)
∫∞
0 k∗1(u)2 du/d, S−(k) = σ2−(0)

∫∞
0 k∗1(u)2 du/d, and

B(k) = −M
∫∞
0 u2k∗1(u)du/2.

Let ρ = h+/h− denote the ratio of the bandwidths, and let t denote the ratio of the
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leading worst-case bias and standard deviation terms,

t =
B(k)(hγb− + hγb+ )

n−1/2(S+(k)2h2γs+ + S−(k)2h2γs− )1/2
= hγb−γs−

B(k)(1 + ργb)

n−1/2(S+(k)2ρ2γs + S−(k)2)1/2
.

Substituting h+ = ρh− and h− = (tn−1/2(S+(k)2ρ2γs +S−(k)2)1/2B(k)−1(1+ργb)−1)1/(γb−γs)

into (24) and using linearity of R̃ gives

R(T̂ (h+, h−; k)) = R̃(B(k)hγb− (1 + ργb), hγs− n
−1/2(S+(k)2ρ2γs + S−(k)2)1/2)(1 + o(1))

= n−r/2(1 + ς(k)2ρ2γs)r/2 (1 + ργb)1−r S−(k)rB(k)1−rR̃(t, 1)(1 + o(1)),

where r = γb/(γb − γs) is the rate exponent, and ς(k) = S+(k)/S−(k) is the ratio of the

variance constants. Therefore, the optimal bias-sd ratio is given by t∗R = argmint>0 R̃(t, 1),

and depends only on the performance criterion. The optimal bandwidth ratio ρ is given by

ρ∗ = argmin
ρ

(1 + ς(k)2ρ2γs)r/2 (1 + ργb)1−r = ς(k)
2

γb−2γs ,

and doesn’t depend on the performance criterion.

Consequently, inference that restricts the two bandwidths to be the same (i.e. restricting

ρ = 1) has asymptotic efficiency given by

lim
n→∞

minh+,h− R(T̂ (h+, h−; k))

minhR(T̂ (h; k))
=

(
(1 + ς(k)2ρ2γs∗ )γb/2 (1 + ργb∗ )

−γs

(1 + ς(k)2)γb/22−γs

) 1
γb−γs

= 2r−1

(
1 + ς(k)

2r
2−r
)1−r/2

(1 + ς(k)2)r/2
.

In the RD application in Section 4, ς(k) = σ+(0)/σ−(0), and r = 4/5. The display above

implies that the efficiency of restricting the bandwidths to be the same on either side of the

cutoff is at least 99.0% if 2/3 ≤ σ+/σ− ≤ 3/2, and the efficiency is still 94.5% when the ratio

of standard deviations equals 3. There is therefore little gain from allowing the bandwidths

to be different.
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1− α

r b 0.01 0.05 0.1

0.0 2.576 1.960 1.645

0.1 2.589 1.970 1.653

0.2 2.626 1.999 1.677

0.3 2.683 2.045 1.717

0.4 2.757 2.107 1.772

6/7 0.408 2.764 2.113 1.777

4/5 0.5 2.842 2.181 1.839

0.6 2.934 2.265 1.916

0.7 3.030 2.356 2.001

2/3 0.707 3.037 2.362 2.008

0.8 3.128 2.450 2.093

0.9 3.227 2.548 2.187

1/2 1.0 3.327 2.646 2.284

1.5 3.826 3.145 2.782

2.0 4.326 3.645 3.282

Table 1: Critical values cv1−α(b) and cv1−α(
√

1/r − 1) for selected confidence levels, values
of maximum absolute bias b, and values of r. For b ≥ 2, cv1−α(b) ≈ b+z1−α/2 up to 3 decimal
places for these values of 1− α.

BTp,q(k) =
∫ 1
0 |u

pk∗q (u)| du BHöl
p,q (k)

Kernel (k(u)) q
∫ 1
0 k
∗
q (u)2 du p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

1(|u| ≤ 1)

0 1 1
2

1
2

1 4 16
27

59
162

8
27

1
6

2 9 0.7055 0.4374 0.3294 0.2352 216
3125

1
20

Triangular

(1− |u|)+

0 4
3

1
3

1
3

1 24
5

3
8

3
16

27
128

1
10

2 72
7 0.4293 0.2147 0.1400 0.1699 32

729
1
35

Epanechnikov
3
4(1− u2)+

0 6
5

3
8

3
8

1 4.498 0.4382 0.2290 0.2369 11
95

2 9.816 0.5079 0.2662 0.1777 0.1913 0.0508 15
448

Table 2: Kernel constants for standard deviation and maximum bias of local polynomial
regression estimators of order q for selected kernels. Functional of interest is value of f at a
boundary point.
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BTp,q(k) =
∫ 1
−1|u

pk∗q (u)|du BHöl
p,q (k)

Kernel q
∫ 1
−1 k

∗
q (u)2 du p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

1(|u| ≤ 1)

0 1
2

1
2

1
2

1 1
2

1
2

1
3

1
2

1
3

2 9
8 0.4875 0.2789 0.1975 0.2898 0.0859 1

16

Triangular

(1− |u|)+

0 2
3

1
3

1
3

1 2
3

1
3

1
6

1
3

1
6

2 456
343 0.3116 0.1399 0.0844 0.2103 0.0517 8

245

Epanechnikov
3
4(1− u2)+

0 3
5

3
8

3
8

1 3
5

3
8

1
5

3
8

1
5

2 5
4 0.3603 0.1718 0.1067 0.2347 0.0604 5

128

Table 3: Kernel constants for standard deviation and maximum bias of local polynomial
regression estimators of order q for selected kernels. Functional of interest is value of f at an
interior point.

Boundary Point Interior point

Kernel Order p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

1(|u| ≤ 1)

0 0.9615 0.9615

1 0.5724 0.9163 0.9615 0.9712

2 0.4121 0.6387 0.8671 0.7400 0.7277 0.9267

Triangular

(1− |u|)+

0 1 1

1 0.6274 0.9728 1 0.9943

2 0.4652 0.6981 0.9254 0.8126 0.7814 0.9741

Epanechnikov
3
4(1− u2)+

0 0.9959 0.9959

1 0.6087 0.9593 0.9959 1

2 0.4467 0.6813 0.9124 0.7902 0.7686 0.9672

Table 4: Relative efficiency of local polynomial estimators of different orders for the function
class FT,p(M), relative to the optimal equivalent kernel k∗SY . Functional of interest is value
of f at a point.
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Boundary Point Interior point

Kernel Order p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

1(|u| ≤ 1)

0 0.9615 0.9615

1 0.7211 0.9711 0.9615 0.9662

2 0.5944 0.8372 0.9775 0.8800 0.9162 0.9790

Triangular

(1− |u|)+

0 1 1

1 0.7600 0.9999 1 0.9892

2 0.6336 0.8691 1 0.9263 0.9487 1

Epanechnikov
3
4(1− u2)+

0 0.9959 0.9959

1 0.7471 0.9966 0.9959 0.9949

2 0.6186 0.8602 0.9974 0.9116 0.9425 1

Table 5: Relative efficiency of local polynomial estimators of different orders for the function
class FHöl,p(M). Functional of interest is value of f at a point. For p = 1, 2, efficiency is
relative to optimal kernel, for p = 3, efficiency is relative to local quadratic estimator with
triangular kernel.

Boundary Point Interior point

Kernel p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform 1 0.855 0.764 1 1 0.848

Triangular 1 0.882 0.797 1 1 0.873

Epanechnikov 1 0.872 0.788 1 1 0.866

Optimal 1 0.906 1 0.995

Table 6: Gains from imposing global smoothness: asymptotic risk of local polynomial esti-
mators of order p − 1 and a given kernel under the class FHöl,p(M) relative to risk under
FT,p(M). “Optimal” refers to using optimal kernel under given smoothness class.
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Kernel Length Coverage tCCT

Boundary

Uniform 1.35 0.931 0.400

Triangular 1.32 0.932 0.391

Epanechnikov 1.33 0.932 0.393

Interior

Uniform 1.35 0.941 0.279

Triangular 1.27 0.940 0.297

Epanechnikov 1.30 0.940 0.298

Table 7: Performance of CCT CIs that use minimax MSE bandwidth for local linear regression
under FT,2. Coverage (Coverage), bias-sd ratio (tCCT), and length (Length) relative to 95%
fixed-length CIs around local linear estimator that uses the same kernel and minimax MSE
bandwidth.

Kernel Length Coverage tCCT

Boundary

Uniform 1.35 0.948 0.138

Triangular 1.32 0.947 0.150

Epanechnikov 1.33 0.947 0.148

Interior

Uniform 1.35 0.949 0.086

Triangular 1.27 0.949 0.110

Epanechnikov 1.30 0.949 0.105

Table 8: Performance of CCT CIs that use minimax MSE bandwidth for local linear regression
under FHöl,2. Coverage (Coverage), bias-sd ratio (tCCT), and length (Length) relative to 95%
fixed-length CIs around local linear estimator that uses the same kernel and minimax MSE
bandwidth.
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Figure 1: Efficiency of fixed-length CIs based on minimax MSE bandwidth relative to fixed-
length CIs based on optimal bandwidth.
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Figure 2: Optimal ratio of maximum bias to standard deviation for fixed length CIs (FLCI),
and maximum MSE (MSE) performance criteria.
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Figure 3: Optimal ratio of maximum bias to standard deviation for one-sided CIs (OCI), and
maximum MSE (MSE) performance criteria.
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Figure 4: Optimal equivalent kernels for Taylor class FT,p(M) on the boundary (left), and
in the interior (right), rescaled to be supported on [0, 1] on the boundary and [−1, 1] in the
interior.
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Figure 5: Optimal equivalent kernels for Hölder class FHöl,2(M) on the boundary (left), and
in the interior (right), rescaled to be supported on [0, 1] on the boundary and [−1, 1] in the
interior.
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Figure 6: Average county mortality rate per 100,000 for children aged 5–9 over 1973–83 due
to causes addressed as part of Head Start’s health services (labeled “Mortality rate”) plotted
against poverty rate in 1960 relative to 300th poorest county. Each point corresponds to an
average for 25 counties. Data are from Ludwig and Miller (2007).
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