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Reputation Building under Uncertain Monitoring

Joyee Deb Yuhta Ishii

May 20, 2016

Abstract

We study a canonical model of reputation between a long-run player and a sequence of short-run op-
ponents, in which the long-run player is privately informed about an uncertain state, which determines
the monitoring structure in the reputation game. The long-run player plays a stage-game repeatedly
against a sequence of short-run opponents. We present necessary and sufficient conditions (on the moni-
toring structure and the type space) to obtain reputation building in this setting. Specifically, in contrast
to the previous literature, with only stationary commitment types, reputation building is generally not
possible and highly sensitive to the inclusion of other commitment types. However, with the inclusion of
appropriate dynamic commitment types, reputation building can again be sustained while maintaining
robustness to the inclusion of other arbitrary types.

1 Introduction

Consider a long-run firm that wants to build a reputation as a high-quality producer. Consumers make
purchase decisions based on the product reviews of a particular review site but do not know exactly how
to interpret these reviews. For instance, consumers may face uncertainty about the degree of correlation
between the tastes of the review site and the consumer: so, a positive review may signal either good or bad
quality. Faced with such uncertainty, the firm, even through honest effort, finds it difficult to establish a
positive reputation among the consumers. As another example, consider a citizen who must decide whether
to contribute to a local political campaign. She wishes to contribute only if she is convinced that the
local representative will exert effort to introduce access to universal child-care. She must decide whether
to contribute based on information provided by the public media about the candidate’s work. Again she
faces uncertainty about the degree of bias of the media source and thus cannot tell if positive news is truly
indicative of high effort by the representative. As a third concrete example, consider the growing market for
carbon offsets. Consumers want to buy carbon offsets, if they believe that the offset provider is genuinely
investing the money into green initiatives. However, consumers are limited in theory ability to monitor the
quality of the investments of the offset provider, and rely on company reports. How can a carbon offset
provider build a reputation for credibility? In all of these examples, the audience (consumer or citizen) faces
persistent uncertainty (correlation in tastes between reviewer and consumer/bias of the media/ accuracy of
company reports) regarding the monitoring of actions of the reputation builder: She cannot link what she
observes directly to the actions of the reputation builder. The central question of this paper is whether
reputations can be built in such environments with uncertain monitoring.

To start, let us consider reputation building in environments without any such uncertainty. Canonical
models of reputation (e.g., Fudenberg and Levine (1992)) study the behavior of a long-run agent (say, a
firm) who repeatedly interacts with short-run opponents (consumers). There is incomplete information
about the long-run’s player’s type: consumers entertain the possibility that the firm is of a “commitment”
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type that is committed to playing a particular action at every stage of the game. Even when the actions of
the firm are noisily observed, the classical reputation building result states that if a sufficiently rich set of
commitment types occurs with positive probability,1 then, a patient firm can achieve payoffs arbitrarily close
to his Stackelberg payoff of the stage game in every equilibrium.2 To see the intuition behind the result,
first note that incomplete information introduces a connection between the firm’s past behavior and the
expectations of its future behavior: When consumers observe something, they update their belief about the
type of the firm, and accordingly know what behavior to expect in the future. In particular, by mimicking
a commitment type that always plays the Stackelberg action, a long-run firm can signal to the consumer
its intention to play the Stackelberg action in the future and thus obtain high payoffs in any equilibrium.
Importantly, this result is robust to the introduction of other arbitrary commitment types.

Of course this intuition critically relies on the consumer’s ability to accurately interpret the noisy signals.
On the other hand, as in the examples above, if there is uncertain monitoring, the reputation builder finds it
far more difficult to establish a link between past outcomes and expectations of future behavior. Even if the
reputation builder takes the Stackelberg action, under uncertain monitoring, the consumer may not believe
this to the case.

In this paper, we study such a setting with uncertain monitoring. We consider a canonical model of
reputation building, with one key difference. At the start, a state of the world, (θ, ω) ∈ Θ × Ω is realized,
which determines both the type of the firm, ω, and the monitoring structure, πθ : A1 → ∆(Y ): a mapping
from actions taken by the firm to distribution of signals, ∆(Y ), observed by the consumer. We assume for
simplicity that the firm knows the state of the world, but the consumer does not.3

We first show in a simple example that uncertain monitoring can cause reputation building to break down:
even if consumers entertain the possibility that the firm may be a “commitment” type that is committed to
playing the Stackelberg action every period, there exist equilibria in which the firm obtains payoffs far below
its Stackelberg payoff. In the context of our firm example, this negative example arises since even if the firm
deviates to a strategy that mimics the commitment type in a particular state θ, these realized signals will
be interpreted by the consumer as low effort in a different state θ′. As a result, uncertain monitoring makes
it difficult for the firm to signal his intention to play like the commitment type. This simple example leads
us then to ask what might restore reputation building under such uncertain monitoring.

In the main result of the paper, we construct a set of commitment types such that when these types
occur with positive probability, reputation can be built for a sufficiently patient long-run player even when
her opponents are uncertain about the monitoring environment. Importantly, this result is robust to the
inclusion of other arbitrary commitment types, and thus is independent of the fine details of the type space.
In contrast to the commitment types considered in the simple example, the commitment types that we
construct are committed to a dynamic strategy (time-dependent but not history dependent) that switches
infinitely often between “signaling actions” that help the consumer learn the unknown monitoring state and
“collection actions” that are desirable for payoffs (the Stackelberg action). A key contribution of our paper
is the construction of these dynamic commitment types that play periodic strategies, alternating between
signaling phases and collection phases infinitely often. The necessity of dynamic commitment types is due
to the fact that signaling the unknown monitoring state and Stackelberg payoff collection may require the

1This probability can be arbitrarily small.
2The Stackelberg payoff is the payoff that the long-run player would get if he could commit to an action in the stage game.
3This is in a sense, the easiest such environment in which the firm could hope to establish a reputation. Instead, if the firm

was also uncertain about the state, then the firm would also have to conduct learning.
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use of different actions in the stage game.
Going back to our example, what we show is that, if consumer purchase decisions can only be influenced

though product reviews and the consumer does not know enough to be able to interpret reviews, a firm cannot
build reputation for high quality by simply investing effort into producing high quality products. Effective
reputation building requires both repeated investment in credibly conveying to the consumer the meaning of
the product reviews (possibly by providing credible information about the reviewers / review sites) together
with the production of high quality products. In the example of the offsets market, an offset provider cannot
build a reputation for by simply investing in green initiatives, but needs to also repeatedly providing credible
information (in this context, possibly with costly certification) about the progress of off-setting initiatives.

How does the presence of these commitment types that both signal and collect enable reputation build-
ing? The underlying argument proceeds in two steps. The first step involves showing that if there were an
appropriate commitment type that could alternate between signaling and collection forever, then by mim-
icking this type, the long-run player can teach her opponent the true (monitoring) state of the world in all
equilibria. This is not obvious: We need to establish that the long-run agent can convince her opponent
about the true state via the signaling phases. To do this, we need assumptions on the monitoring structure.
Further, it may still not suffice to ensure that the opponent’s belief on the true monitoring state is high
during the signaling phase. Since the commitment type alternates between signaling and collection, we want
to make sure that that opponent’s learning about the state is not confounded between signaling phases and
that the belief on the true state does not drop low again during an intervening collection phase. We use
Doob’s up-crossing inequality for martingales to bound the number of times the belief on the true state can
be high and then drop below later.

The second step involves obtaining a lower bound of payoffs. Notice that if the short-run players place
high probability on the true state most of the time, then we are done. The long-run player can then play
the Stackelberg action for the true state often and earn payoffs arbitrarily close to the Stackelberg payoff.
We use the merging arguments à la Gossner (2011) to obtain a lower bound on equilibrium payoffs.

It is worth highlighting an important but subtle issue. Our dynamic commitment type returns to the
signaling phase infinitely often. We illustrate in our simple negative example that the presence of a com-
mitment type that engages in a signaling phase is necessary for reputation building. However, one might
conjecture that the inclusion of a commitment type that begins with a sufficiently long phase of signaling
followed by a switch to playing the Stackelberg action for the true state would also suffice for reputation
building. Importantly this is not sufficient, and the recurrent nature of signaling is essential to reputation
building. If we restrict commitment types to be able to teach only at the start (for any arbitrarily long period
of time), we construct an example to show that reputation building fails: there exist equilibria in which the
long-run player obtains a payoff that is substantially lower than the Stackelberg payoff. In particular, with
commitment types whose signaling phases are front-loaded, the lower bound on the long-run player’s payoffs
is sensitive to the fine details of the distribution of commitment types. As a result, reputation building is no
longer robust to the inclusion of other arbitrary commitment types.

While this paper is motivated by environments with uncertain monitoring, our results apply more broadly
to other types of uncertainty. First, our model allows for both uncertainty regarding monitoring and uncer-
tainty about the payoffs of the reputation builder. Our results also extend to environments with symmetric
uncertainty about monitoring. For example, consider a firm that is entering a completely new market and is
deciding between two different product offerings. Neither the consumer nor the firm knows which product
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is better for the consumer. Is it possible for the firm to build a reputation for making the better product?
Note that our results apply here. Mimicking the type that both signals and collects is useful to the firm
here in two ways: It does not only help the consumer learn about the unknown state of the world, but
simultaneously enables the firm to learn the true state of the world. Then, we can interpret the commitment
type as one that alternates between learning the state and payoff collection.

Finally, so far we have restricted our discussion to a lower bound on the long-run agent’s equilibrium
payoff. Of course the immediate question that arises is whether the long-run player can indeed do much better
than the Stackelberg payoff: How tight is this lower bound on payoffs? With uncertain monitoring, there
may be situations in which a patient long-run player can indeed guarantee himself payoffs that are strictly
higher than the Stackelberg payoff of the true state. We present several examples in which this occurs: It
turns out that the long-run player does not find it optimal to signal the true state to his opponent, but would
rather block learning and attain payoffs that are higher than the Stackelberg payoff in the true state. In
general, an upper bound on a patient long-run player’s equilibrium payoffs depends on the set of commitment
types and the prior distribution over types. Such dependence on the specific details of the game makes a
general characterization of an upper bound difficult.4 A detailed discussion of an upper bound is outside
the scope of this paper. Neverthelss, we provide a joint sufficient condition on the monitoring structure and
stage game payoffs that ensure that the lower bound and the upper bound coincide for any specification of
the type space: Loosely speaking, these are games in which state revelation is desirable.

1.1 Related Literature

There is a vast literature on reputation effects which includes the early contributions of Kreps and Wilson
(1982) and Milgrom and Roberts (1982) followed by the canonical models of reputation developed by Fu-
denberg and Levine (1989), Fudenberg and Levine (1992) and more recent methodological contributions by
Gossner (2011). To the best of our knowledge, our paper is the first to consider reputation building in the
presence of uncertain monitoring.

Aumann, Maschler, and Stearns (1995) and Mertens, Sorin, and Zamir (2014) study repeated games with
uncertainty in both payoffs and monitoring but focus primarily on zero-sum games. In contrast, reputation
building matters most in non-zero sum environments where there are large benefits that accrue to the
reputation builder from signaling his long-run intentions to the other player. There is also some recent work
on uncertainty in payoffs in non-zero sum repeated games by Wiseman (2005), Hörner and Lovo (2009),
Hörner, Lovo, and Tomala (2011). In all of these papers, however, the monitoring structure is known to
all parties with certainty. Our paper’s modeling framework corresponds most closely to Fudenberg and
Yamamoto (2010) who study a repeated game model in which there is uncertainty about both monitoring
and payoffs. However, Fudenberg and Yamamoto (2010) focus their analysis on an equilibrium concept called
perfect public ex-post equilibrium in which players play strategies whose best-responses are independent of
any belief that they may have about the unknown state. As a result, in equilibrium, no player has an
incentive to affect the beliefs of the opponents about the monitoring structure. In contrast, our paper will
generally study equilibria where the reputation builder potentially gains drastically from changing the beliefs
of the opponent about the monitoring structure. In fact, the possibility of such manipulation will be crucial
for our results.

4This is in sharp contrast to the previous papers in the literature, where the payoff upper bound is generally independent of
the type-space.
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To the best of our knowledge, the construction of the dynamic types necessary to establish a reputation
result is novel. The necessity of such dynamic commitment types arises for very different reasons in the
literature on reputation building against long-run, patient opponents.5 In particular, dynamic commitment
types arise in Aoyagi (1996), Celentani, Fudenberg, Levine, and Pesendorfer (1996), and Evans and Thomas
(1997), since establishing a reputation for carrying through punishments after certain histories potentially
leads to high payoffs.6 In contrast, our non-reputation players are purely myopic and so the threat of
punishments has no influence on these players. Rather in our paper, dynamic commitment types are necessary
to resolve a potential conflict between signaling the correct state and Stackelberg payoff collection which
are both desirable to the reputation builder: “signaling actions” and “collection actions” discussed in the
introduction are generally not the same. As a result, by mimicking such commitment types that switch
between signaling and collection actions, the reputation builder, if he wishes, can signal the correct monitoring
structure to the non-reputation builders.

The rest of the paper is structured as follows. We describe the model formally in Section 2. In Section 3,
we present a simple example to show that reputation building fails due to non-identification issues that
arise when there is uncertainty about the monitoring structure. Section 4 contains the main result of the
paper, in which we provide sufficient conditions for a positive reputation result to obtain. In this section,
we also discuss to what extent our conditions may be necessary. In particular, we explain what features are
important for reputation building. The proof of the main result is in Section 5. In Section 6, we discuss
potential upper bounds on long-run payoffs. Section 7 concludes.

2 Model

A long-run (LR) player, player 1, faces a sequence of short-run (SR) player 2’s.7 Before the interaction
begins, a pair (θ, ω) ∈ Θ × Ω of a state of nature and type of player 1 is drawn independently according to
the product measure γ := µ × ν with ν ∈ ∆(Θ), and µ ∈ ∆(Ω). We assume for simplicity that Θ is finite
and enumerate Θ := {θ0, . . . , θm−1}, but that Ω may possibly be countably infinite. The realized pair of
state and type (θ, ω) is then fixed for the entirety of the game.

In each period t = 0, 1, 2, . . ., players simultaneously choose actions at1 ∈ A1 and at2 ∈ A2 in their
respective action spaces. We assume for simplicity that A1 and A2 are both finite. Let A denote A1 × A2.
Each period t ≥ 0, after players have chosen the action profile at, a public signal yt is drawn from a finite
signal space Y according to the probability π(yt | at1, θ).8 Note importantly that both the action chosen at
time t and the state of the world θ potentially affect the signal distribution. Denote by Ht := Y t the set of
all t-period public histories and assume by convention that H0 := ∅. Let H :=

⋃∞
t=0H

t denote the set of all
public histories of the repeated game.

We assume that the LR player 1 (whichever type he is) observes the realized state of nature θ ∈ Θ fully
so that his private history at time t is formally a vector Ht

1 := Θ × At1 × Y t.9 Meanwhile the SR player at
time t observes only the public signals up to time t and so his information coincides exactly with the public

5In this literature, some papers do not require the use of dynamic commitment types by restricting attention to conflicting
interest games. See, for example, Schmidt (1993) and Cripps, Dekel, and Pesendorfer (2004).

6For other papers in this literature that use similar ideas, see e.g., Atakan and Ekmekci (2011), Atakan and Ekmekci (2015),
Ghosh (2014).

7In the exposition, we refer to the LR player as male and SR player as female.
8Note that the public signal distribution is only affected by the action of player 1.
9We believe that it is a straightforward extension to consider a LR player who must learn the state over time.
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history Ht
2 := Ht.10 Then a strategy for player i is a map σi : ∪∞t=0H

t
i → ∆(Ai). Let us denote the set

of strategies of player i by Σi. Finally, let us denote by A := ∆(A1) the set of mixed actions of player 1

with typical element α1 and let B be the set of static state contingent mixed actions, B := Am with typical
element β1.

2.1 Type Space

We now place more structure on the type space. We assume that Ω = Ωc ∪ {ωo}, where Ωc is the set of
commitment types and ωo is a opportunistic type. For every type ω ∈ Ωc, there exists some strategy σω ∈ Σ1

such that type ω always plays σω. In this sense, every type ω ∈ Ωc is a commitment type that is committed
to playing σω in all scenarios. In contrast, type ωo ∈ Ω is an opportunistic type who is free to choose any
strategy σ ∈ Σ1.

2.2 Payoffs

The payoffs for the SR player 2 at time t is given by:

E
[
u2(at1, a

t
2, θ) | ht, σ1, σ2

]
.

On the other hand, the payoffs of the LR opportunistic player 1 in state θ is given by:

U1(σ1, σ2, θ) := E

[
(1− δ)

∞∑
t=0

δtu1(at1, a
t
2, θ) | σ1, σ2, θ

]
.

Then his ex-ante expected payoff of the LR opportunistic player 1 is given by:

U1(σ1, σ2) :=
∑
θ∈Θ

ν(θ)U1(σ1, σ2, θ).

Finally, given the stage game payoff u1, we can define the statewise-Stackelberg payoff of the stage game.
First for any α1 ∈ A, let us define B2(α1, θ) as the set of best-responses of player 2 when player 2 knows
the state to be θ and player 1 plays action α1. The Stackelberg payoff and actions of player 1 in state θ are
given respectively by:

u∗1(θ) := max
α1∈A1

inf
α2∈B2(α1,θ)

u1(α1, α2, θ),

α∗1(θ) := arg max
α1∈A1

inf
α2∈B2(α1,θ)

u1(α1, α2, θ).

Finally, we define Sε to be the set of state-contingent mixed actions in which the worst best-response of
player 2 approximates the Stackelberg payoff up to ε > 0 in every state:

Sε :=

{
β1 ∈ B : inf

α2∈B2(β1(θ),θ)
u1(β1(θ), α2, θ) ∈ (u∗1(θ)− ε, u∗1(θ) + ε) ∀θ ∈ Θ

}
.

10Observability or lack thereof of previous SR player’s actions do not affect our results.
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Πθ Πθ′

Figure 1: Assumption 2.3 is satisifed.

Πθ Πθ′

Figure 2: Assumption 2.3 is violated.

2.3 Key Definitions Regarding the Signal Structure

Definition 2.1. A signal structure π holds action identification for (α1, θ) ∈ A×Θ if

π(· | α1, θ) = π(· | α′1, θ) =⇒ α1 = α′1.

Using the above definition, we impose the following assumptions on the information structure for the
remainder of the paper.

Assumption 2.2. Information structure π has action independence for (α1, θ) for all θ ∈ Θ and some
α1 ∈ α∗1(θ).

Assumption 2.3. For every θ, θ′ ∈ Θ and θ′ 6= θ, there exists some α1(θ, θ′) ∈ A such that

π (· | α1(θ, θ′), θ) 6= π (· | α1, θ
′)

for all α1 ∈ A.

The Assumption 2.2 is a straightforward extension of conditions required of reputation building without
uncertainty about the state. Assumption 2.3 is new. First note that Assumption 2.3 does not assume that
α1(θ, θ′) must be the Stackelberg action in state θ. Graphically, we can visualize the assumption above as
follows. For each θ, denote by Πθ the set of all probability distributions in ∆(Y ) that are spanned by possibly
mixed actions in A at the state θ:

Πθ = {π(· | α, θ) ∈ ∆(Y ) : α ∈ A} .

Note that each point in Πθ is a probability distribution over Y and not an element of Y . If for each pair
of states θ 6= θ′, neither Πθ ⊆ Πθ′ nor Πθ′ ⊆ Πθ holds, then the assumption holds as in Figure 1. On the
other hand, Assumption 2.3 is violated if there exists a pair of states in which Πθ ⊆ Πθ′ as in Figure 2.
We only impose the condition above pairwise. In fact, even if for some θ, θ′, θ′′, Πθ ⊆ Πθ′ ∪ Πθ′′ , the above
assumption may still hold. Our analysis will focus on perfect Bayesian equilibria and to shorten exposition,
subsequently we will refer to perfect Bayesian equilibrium as simply equilibrium.

Finally, before we proceed let us establish the following conventions and notations for the remainder of
the paper. We will use N to represent the set of all natural numbers including zero and define N+ := N\{0}.
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Whenever the state space Θ is binary with θ ∈ Θ, we will let −θ denote the state that is complementary to
θ in Θ. Finally, we establish the convention that inf ∅ =∞.

3 Illustrative Example

We start with a simple example to illustrate that uncertainty in monitoring can have damaging consequences
for reputation building. Consider the stage game depicted in Figure 3 between a LR player (row player)
and a sequence of SR opponents (the column player). First note that the Stackelberg payoff is 2 and the
Stackelberg action is T . Secondly note that in the stage game, L is a best-response to the LR player’s stage
game mixed action if and only if α1(T ) ≥ α1(M). Suppose now that there are two states Θ = {`, r}, which

L R
T 2, 1 −1, 0
M −1,−1 0, 0
B −100, 0 −100, 0

Figure 3: Stage Game

do not affect payoffs but affect the distribution of signals observed by player 2. There are four public signals:
Y = {c̄, ȳ, y, c}. The information structure is given in Figures 4 and 5. First note that conditional on any

θ = ` c̄ ȳ y c

T 0 1/4 3/4 0
M 0 3/4 1/4 0
B 1 0 0 0

Figure 4: Info. Structure under θ = `

θ = r c̄ ȳ y c

T 0 3/4 1/4 0
M 0 1/4 3/4 0
B 0 0 0 1

Figure 5: Info. Structure under θ = r

state θ ∈ {r, `}, actions are always statistically identified. This means that if there was no uncertainty about
states, classical reputation results would hold: If the true state were common knowledge and there was a
positive probability that the LR player could be a commitment type that always plays T , then a patient LR
player would achieve a payoff arbitrarily close to 2 in every equilibrium.

We will demonstrate below that this observation is no longer true when there is uncertainty about the
monitoring states. We will construct an equilibrium in which the LR player gets a payoff close to 0. Suppose
that there is uncertainty about the type of the LR player: either he is an opportunistic type, ωo, who is free
to choose any strategy or he is a commitment type, ωc that always plays T . Consider the following strategy
in which types play according to the following chart at all histories:

ωc ωo

θ = r T M
θ = ` T M

Table 1: Strategy of Player 1

We show that when µ(ωc) > 0 is sufficiently small, there is a perfect Bayesian equilibrium for all δ ∈ (0, 1)

in which the LR player plays according to the strategy above while the SR player always plays R. To simplify
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notation, we let µ(ωc) = ξ and ν(r) = p. To this end, first consider the updating rule of the SR players. We
compute the probability that the SR players assign to the commitment type, which will then be a sufficient
statistic for his best-response given the candidate equilibrium strategy played by the opportunistic LR player.
At any time t, conditional on a history ht, let µta1θ

(ht) denote the the probability conditional on the history
ht that the SR player assigns to the event in which the state is θ and the LR player plays a1.

To analyze these conditional beliefs, consider the following likelihood ratios at any history:

µt+1
Tr (ht+1)

µt+1
M` (ht+1)

=
µtTr(h

t)

µtM`(h
t)

π(yt | T, r)
π(yt |M, `)

=
µtTr(h

t)

µtM`(h
t)

;

µt+1
Mr (ht+1)

µt+1
T` (ht+1)

=
µtMr(h

t)

µtT`(h
t)

π(yt |M, r)

π(yt | T, `)
=
µtMr(h

t)

µtT`(h
t)
.

Thus the above observation shows that regardless of the time t and history ht,

α :=
pξ

(1− p)(1− ξ)
=
µ0
Tr(h

0)

µ0
M`(h

0)
=
µtTr(h

t)

µtM`(h
t)

;

β :=
(1− p)ξ
p(1− ξ)

=
µ0
T`(h

0)

µ0
Mr(h

0)
=

µtT`(h
t)

µtMr(h
t)
.

If we define µts(ht) := µtTr(h
t) + µtM`(h

t) and µtd(h
t) := µtMr(h

t) + µtT`(h
t), then note that the SR player’s

t-period belief about the commitment type is:

µt(ωc | ht) =
α

1 + α
µts(h

t) +
β

1 + β
µtd(h

t).

Now note that given any p ∈ (0, 1), there exists some ν∗ > 0 such that for all ν < ν∗, α, β < 1
2 . Then

note that for all ν < ν∗,

µt(ωc | ht) < 1

2
(µts(h

t) + µtd(h
t)) =

1

2
=⇒ µt(ωc | ht) < µt(ωo | ht).

Given the candidate strategy of the LR player, we have shown that for all ν < ν∗, the SR player’s best-
response is to play R at all histories at which no c̄ or c have been observed. Furthermore, at any history
in which either c̄ or c arise, we can specify that the SR player places a belief of probability one on the
opportunistic type. Thus at any such history, it is also a best-response for the SR player to play R. Therefore,
it is incentive compatible for the SR player to always play R. Given the SR player’s strategy, there are no
inter-temporal incentives of the LR player, and therefore it is also incentive compatible for the opportunistic
LR player to always play M (regardless of the discount factor).

Thus this example runs contrary to the reputation results of the previous literature because of the
additional problems that non-identification of the Stackelberg action across states poses: π(· | T, r) = π(· |
M, `) and π(· |M, r) = π(· | T, `). The opportunistic type cannot gain by deviating and playing T in state r,
because by doing so, he will instead, convince the SR player that she is actually facing type ωo who always
plays M in state θ = `. As a result, the equilibrium renders such deviations unprofitable.

9



3.1 Discussion

Note first that the existence of such an example does not depend on the value of p. In fact, even if p becomes
arbitrarily close to certainty on state r, such examples exist, which seems to suggest a discontinuity at p = 1.
However, this seeming discontinuity arises because ν∗ > 0 necessarily becomes vanishingly small as p → 1.
This highlights the observation that when the type space contains only simple commitment types that play
the same action every period, whether or not the LR player can guarantee Stackelberg payoffs depends
crucially on the fine details of the type space such as the relative probability of the commitment type to the
degree of uncertainty about the state θ. This is in contrast to the previous literature on reputation building
where such relative probabilities did not matter.

Additionally observe that in the example above, there were no types that played B. However, suppose
that the type space included a type that played B for a single period in both states and then subsequently
switched to play T forever. The inclusion of such a type then would rule out the “bad equilibrium” constructed
above. In equilibrium, the LR opportunistic type will no longer find it optimal to play M always, since by
mimicking this described commitment type, he could obtain a relatively high payoff (if he is sufficiently
patient) by convincing the SR players of the correct state with certainty and then subsequently building a
reputation to play T . Essentially by signaling the state in the initial period, he eliminates all identification
problems from future periods.

The remainder of the paper will generalize the construction of such a type to general information struc-
tures that satisfy Assumptions 2.2 and 2.3. However, the generalization will have to deal with some additional
difficulties, since Assumptions 2.2 and 2.3 do not rule out information structures in which all signals are
possible (full support information structures) in all state, action pairs. Indeed when the signal structure
satisfies full support, learning about the state is never immediate. Moreover, in such circumstances, it is
usually impossible to convince the SR players with certainty about a state. Therefore there is an additional
difficulty that even after having convinced the SR players to a high level of certainty about the correct
state, the LR player cannot necessarily be sure that the belief about the correct state will dip to a low level
thereafter. We deal with these issues by introducing dynamic commitment types who signal the state in a
periodic and recurrent fashion. We present a more detailed discussion of these issues after the statement of
Theorem 4.1 in Section 4.

3.1.1 Robustness

Finally, one of the main assumptions behind our negative example was that π(· | T, r) = π(· | M, `) and
π(· |M, r) = π(· | T, `). This may lead one to be suspicious about whether such negative examples are robust,
since the example required the exact equality of the distribution of the opportunistic LR player equilibrium
action (B) in state θ and the action of the commitment type (T ) in state −θ.

However, such examples generalize if we allow for the inclusion of arbitrary “bad” commitment types
as long as the information structure has two states θ 6= θ′ at which Πθ and Πθ′ overlap. In the following
section, we will construct appropriate commitment types to resolve these problems: the mere presence of
these appropriately constructed types is sufficient to establish effective reputation even if we allow for the
inclusion of arbitrary “bad” commitment types.
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4 Main Reputation Theorem

Let C be a collection of commitment types ω that always play strategy σω and let GC be the set of type
spaces (Ω, µ) such that C ⊆ Ω and µ(C) > 0. Virtually all reputation theorems in the existing literature have
the following structure. For every (Ω, µ) ∈ GC and every ε > 0, there exists δ∗ such that whenever δ > δ∗,
the LR player receives payoffs within ε of the Stackelberg payoff in all Nash equilibria. In short, the fine
details of the type space beyond the mere fact that ω∗ exists with positive probability in the belief space of
the SR players do not matter for reputation building.

Here we ask the following question in this spirit: Is it possible to find a set of commitment types C such
that regardless of the type space in question, as long as all ω ∈ C have positive probability, then reputation
can be sustained for sufficiently patient players? We have already seen an example in Section 3 that shows
that such a result will generally not hold if C contains only “simple” commitment types that play the same
action every period. By introducing dynamic (time-dependent but not history dependent) commitment
types, reputation building is salvaged.11

4.1 Construction of Commitment Types

We first construct the appropriate commitment types. A commitment type of type (k, β1) ∈ N+ × B will
have a signaling phase of length km and a collection phase of length k2.12 The length of a block of this
commitment type is then given by κ(k) := km+ k2.

In Assumption 2.3, we have already defined the mixed action α1(θ, θ′) for any θ 6= θ′. To simplify
notation, choose any arbitrary α1(θ, θ) ∈ A for all θ ∈ Θ. Then for every k ∈ N+ and β1 ∈ B, we now define
the following commitment type, ωk,β1 , who plays the (possibly dynamic) strategy σk,β1 ∈ Σ1 in every play
of the game. We define this strategy σk,β1 as follows, which depends only on calendar time:

σk,β1
τ (θ) =

β1(θ) if τ mod κ(k) > km,

α1(θ, θj) if τ mod κ(k) ≤ km− 1, j := bτ mod κ(k)/kc.

This commitment type plays a dynamic strategy that depends only on calendar time and is periodic with
period k. At the beginning of each one of these blocks, the commitment type plays a sequence of mixed
actions, {α1(θ, θ0)} k-times, followed by {α1(θ, θ1)} k-times, and so forth. We call this phase of the commit-
ment type’s strategy, the signaling phase, which will be used to signal the state θ to the SR players. After
the signaling phase, the commitment type plays a mixed action β1(θ) until the end of the block, which we
call the collection phase of the commitment type strategy. The type then returns to the signaling phase and
repeats. We defer discussion about the important features of this commitment type until after the statement
of our main reputation theorem.

4.2 Reputation Theorem

We are now equipped to state the main result of the paper: In Theorem 4.1 below, we show that our
assumptions on the monitoring structure along with the existence of the commitment types constructed

11As pointed out by Johannes Hörner, there is a way to modify all of our constructions using stationary types that use a
public randomization device. The distinction under this interpretation is that the public randomization device must be used in
order to effectively build reputation using stationary types.

12Recall that m = |Θ|.
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above is sufficient for reputation building in the following sense. A sufficiently patient opportunistic LR
player will obtain payoffs arbitrarily close to the Stackelberg payoff of the complete information stage game
in every equilibrium of the repeated incomplete information game.

Theorem 4.1. Suppose that Assumptions 2.2 and 2.3 hold. Furthermore, assume that for every k ∈ N and
every ε > 0, there exists β1 ∈ Sε such that µ(ωk,β1) > 0. Then for every ρ > 0 there exists some δ∗ ∈ (0, 1)

such that for all δ > δ∗ and all θ ∈ Θ, the payoff to player 1 in state θ is at least u∗1(θ)− ρ in all equilibria.

Our example in Section 3 already suggested that reputation building is generally impossible with only
simple commitment types that are committed to playing the same (possibly mixed) action in every period.
The broad intuition is that, since the uncertainty in monitoring confounds the consumer’s ability to interpret
the outcomes she observes, reputation building is possible only if the firm can both teach the consumer about
the monitoring state and also play the desirable Stackelberg action. Returning to the motivating examples,
our result implies that if consumer purchase decisions can only be influenced though product reviews and
the consumer does not know enough to be able to interpret reviews, a firm cannot build reputation for
high quality by simply investing effort into producing high quality products. Rather, it needs to repeatedly
invest effort to credibly convey to the consumer the meaning of the product reviews, and then invest effort
in producing high quality, so that a subsequent good review convinces the consumer about the type of the
firm.

The commitment types that we constructed above are able to do exactly this: They are committed to
playing both “signaling actions” that help the consumer learn the unknown monitoring state and “collection
actions” that are desirable for payoffs of the LR player. It is worth highlighting that our commitment types
are non-stationary, playing a periodic strategy that alternates between signaling phases and collection phases.
A similar reputation theorem can be proved also with stationary commitment types that have access to a
public randomization device.

Furthermore, as we have emphasized previously, our reputation result is robust to the inclusion of other
possibly “bad” commitment types. This is seen in our result, since Theorem 4.1 only requires the existence
of types ωk,β1 while placing no restrictions on the existence or absence of other commitment types.

4.3 Examples: Necessary Characteristics of Commitment Types

Note that our commitment types ωk,β1 share an important feature: the commitment type switches his play
between signalling and collection phases infinitely often. In this subsection, we show the importance of both

1. the existence of switches between signalling and collection phases in at least some commitment types

2. and the recurrent nature of the signalling phases.

To highlight 1), we construct an equilibrium in an example in which the opportunistic LR player regardless
of his discount factor obtains low payoffs if all commitment types play stationary strategies. To highlight the
importance of 2), we consider type spaces in which all commitment types play strategies that front-load the
signaling phases. In such cases, we construct equilibria (for all discount factors) in which the opportunistic
LR player gets payoff substantially below the statewise Stackelberg payoff in all states.

12



L R
T 3, 1 0, 0
B 0, 0 1, 3

Figure 6: Stage Game

θ = ` ȳ y

T 1/3 2/3
B 5/6 1/6

Figure 7: Info. Structure under θ = `

θ = r ȳ y

T 2/3 1/3
B 1/6 5/6

Figure 8: Info. Structure under θ = r

4.3.1 Stationary Commitment Types

We show here in the example to follow that regardless of a given countable (and possibly infinite) set of com-
mitment types that contains only stationary commitment types, Ω∗, we can construct a set of commitment
types Ωc ⊇ Ω∗ and a probability measure µ over Ωc ∪ {ωo} such that there exists an equilibrium in which
the opportunistic LR player obtains payoffs significantly below the statewise Stackelberg payoff.13

Consider the stage game described in Figure 6 whose payoffs are state independent. The Stackelberg
payoff is 3 and the Stackelberg action is A. Note that L is a best-response in the stage game if and only if
α1(T ) ≥ 3

4 . The set of states, Θ = {`, r}, is binary with equal likelihood of both states. The signal space,
Y = {y, y} is also binary. The information structure is described in Figures 7 and 8.

Suppose we are given a set Ω∗ of commitment types, each of which is associated with the play of a
state-contingent action β ∈ B at all periods. For each ω ∈ Ω∗, let βω be the associated state contingent
mixed action plan. For any pair of mixed action α ∈ A such that α(T ) ≥ 3

4 and state θ ∈ Θ, let ᾱ−θ ∈ A be
the unique mixed action such that π(· | ᾱ−θ,−θ) = π(· | α, θ).14 Note that because of the symmetry of the
information structure, ᾱ−θ does not depend on the state θ ∈ Θ and so we subsequently omit the subscript.

For each ω we construct another type ω̄ who also plays a stationary strategy consisting of the following
state contingent mixed action at all times:

βω̄(θ) :=

βω(−θ) if βω(−θ)(T ) ≥ 3/4,

B otherwise.

Finally, let Ω̄ := {ω̄ : ω ∈ Ω∗} and let the set of commitment types be Ωc = Ω̄ ∪ Ω∗. We now show the
following claim.

Claim 4.2. Consider any µ ∈ ∆(Ω) such that for all ω ∈ Ω∗, µ(ω) ≤ µ(ω̄). Then for any δ ∈ (0, 1), there
exists an equilibrium in which the opportunistic type plays B at all histories and states.

Proof. We verify that the candidate strategy profile is indeed an equilibrium. Let us define the following set
of type-state pairs:

D :=

{
(ω, θ) ∈ Ωc ×Θ : βω(θ)(T ) ≥ 3

4

}
.

Let DΩ be the projection of D onto Ω. Note that DΩ ⊆ Ω∗ by construction.
13In the public randomization interpretation, these types correspond to types that do not use the public randomization device.
14Note that for any α ∈ A with α(T ) ≥ 3/4, such an action always exists.
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L R
T 3, 1 0, 0
M 0, 0 1, 3
B −10, 0 −10, 3

Figure 9: Stage Game

θ = ` ȳ y

T 3/5 2/5
M 2/5 3/5
B 1/5 4/5

Figure 10: Info. Structure under θ = `

θ = r ȳ y

T 2/5 3/5
M 3/5 2/5
B 4/5 1/5

Figure 11: Info. Structure under θ = r

Furthermore, for any (ω, θ) ∈ D, note that

γ(ω, θ | ht)
γ(ω̄,−θ | ht)

=
γ(ω, θ)

γ(ω̄,−θ)
=
µ(ω)

µ(ω̄)
≤ 1.

Note that by construction, if α(T ) ≥ 3/4, then

1

2
α(T ) +

1

2
ᾱ(T ) =

2

3
< 3/4.

Thus given the candidate strategy profile, we have for all ht:

P(T | ht) =
∑

(ω,θ)∈Ωc×Θ

βω(θ)(T )γ(ω, θ | ht)

=
∑

(ω,θ)∈D

(
γ(ω, θ | ht)βω(θ)(T ) + γ(ω̄,−θ | ht)βω̄(−θ)(T )

)
+

∑
(ω,θ)∈(Ω∗×Θ)\D

γ(ω, θ | ht)βω(θ)(T )

<
∑

(ω,θ)∈D

3

4

(
γ(ω, θ | ht) + γ(ω̄,−θ | ht)

)
+

∑
(ω,θ)∈(Ω∗×Θ)\D

3

4
γ(ω, θ | ht) < 3

4
.

As a result, the SR player always plays R and thus it is a best-response for the LR opportunistic type to
always play B.

The example above shows that if we only allow for the presence of commitment types that always plays
the same strategy, then the fine details of the type space matter for a reputation result. More precisely, the
example shows that the mere existence of such commitment types is not sufficient for a reputation result,
since many other “bad” commitment types may exist in the type space. In contrast, Theorem 4.1 does not
hinge on the existence or absence of such bad commitment types.

4.3.2 Finite Type Space with Front-Loaded Signaling

Consider the stage game described in Figure 9 that augments the one in Figure 6 by adding a third action
B to the LR player’s action set. In this modified game, the Stackelberg action is again T giving a payoff of
3 to the LR player. Moreover, L still remains a best-response for the SR player if and only if α1(T ) ≥ 3

4 .
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The public signal space is binary Y = {y, y} and the state space is Θ = {`, r} with each state occurring with
equal likelihood. The information structure are described by Figures 10 and 11.

Note that all of our assumptions for the main theorem are satisfied in the information structure presented
above and so the main theorem holds as long as types with recurrent signaling phases exist. In contrast,
we now consider a type space in which such commitment types with recurrent signaling phases do not exist
and instead, consider a type space in which all of the commitment types have signaling phases that are
front-loaded. In such environments, we will show that a reputation theorem does not hold.

For notational simplicity let κ := 4.15 Consider the following type space. Let ωt denote a commitment
type that plays B until period t−1 and thereafter switches to the action T forever. Let N ∈ N+ and consider
the following set of types: Ω := {ω1, . . . , ωN} ∪ {ωo}.

To define the measure µ over the types, first fix some µ∗ > 0 such that

µ∗

1− µ∗
κN+1 − κ
κ− 1

<
3

4
.

Consider any type space such that µ({ω1, . . . , ωN}) < µ∗. We will now show that for any such type space
and any discount factor δ ∈ (0, 1), there exists an equilibrium in which the LR opportunistic type plays M
at all histories and SR players always play R.

To show this, we compute at any history the probability that the SR player assigns to the LR player
playing T (given the proposed candidate strategy profile above):

P(T | ht) = µ({ωs : s ≤ t} | ht) = γ
(
{ωs : s ≤ t}, ` | ht

)
+ γ

(
{ωs : s ≤ t}, r | ht

)
.

Now given state θ ∈ {`, r}, we want to bound the following likelihood ratio from above:

γ ({ωs : s ≤ t}, θ | ht)
γ ({ωo},−θ | ht)

=

t∑
s=1

γ ({ωs}, θ | ht)
γ ({ωo},−θ | ht)

.

But note that given s < t, the strategy of ωs in state θ generates exactly the same distribution of public
signals as ωo in state −θ at all times τ between s and t. Therefore learning between these two types ceases
after time s. This allows us to simplify the above expression at any time t and history ht:

γ({ωs : s ≤ t}, θ | ht)
γ ({ωo},−θ | ht)

=

min{t,N}∑
s=1

γ (ωs, θ | ht)
γ (ωo,−θ | ht)

=

min{t,N}∑
s=1

γ (ωs, θ | hs)
γ ({ωo},−θ | hs)

.

15This corresponds to the maximum likelihood ratio according to the signal structure described above. As the construction
proceeds, the reader will see exactly why this is important.
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But then note that the above implies:

γ({ωs : s ≤ t}, θ | ht)
γ ({ωo},−θ | ht)

=

min{t,N}∑
s=1

γ
(
ωs, θ | h0

)
γ (ωo,−θ | h0)

s−1∏
τ=0

π(yτ | B, θ)
π(yτ |M,−θ)

<

min{t,N}∑
s=1

γ
(
ωs, θ | h0

)
γ (ωo,−θ | h0)

κs

≤
N∑
s=1

γ
(
ωs, θ | h0

)
γ (ωo,−θ | h0)

κs

≤ γ({ωs : s ≤ N}, θ | h0)

γ ({ωo},−θ | h0)

N∑
s=1

κs

=
γ({ωs : s ≤ N}, θ | h0)

γ ({ωo},−θ | h0)

κN+1 − κ
κ− 1

<
µ∗

1− µ∗
κN+1 − κ
κ− 1

<
3

4
.

Using the inequalities derived above, we have for any t and ht:

P(T | ht) = µ({ωs : s ≤ t} | ht) = γ
(
{ωs : s ≤ t}, ` | ht

)
+ γ

(
{ωs : s ≤ t}, r | ht

)
<

3

4
γ
(
ωo, r | ht

)
+

3

4
γ
(
ωo, ` | ht

)
=

3

4
γ
(
ωo | ht

)
≤ 3

4
.

Then the above shows that the probability that the SR player assigns at any history ht to the LR player
playing T is at most 3/4. This then implies that the SR player’s best-response is to play R at all histories,
which in turn means that it is incentive compatible for the opportunistic LR player to playM at all histories.

Remark. Note that when a type can teach only for up to N periods, then whether the SR players’ beliefs
about the correct state are high in the future before the switch to the Stackelberg action occurs depends on
the probability of that commitment type. If this probability is too small (relative to N), then mimicking that
type may not lead to sufficiently large beliefs about the correct state in the future. Thus the relative ratio
between K and the probability of the commitment type crucially matters. As a consequence, the existence of
such a type is not sufficient for effective reputation building and the fine details of the type space matter.16

4.3.3 Infinite Type Space with Front-Loaded Signaling

Note that the finite nature of the type spaces considered above places restrictions automatically on the
amount of learning about the state that can be achieved by mimicking the commitment type. We now argue
through an example that problems in reputation building are not caused by such limitations in learning
the state correctly. In particular, we show more strongly in the following example that even when there is
an infinite type space, and learning about the state can be achieved to any degree of desired precision (by
playing C for enough periods), difficulties still persist regarding reputation building if all commitment types
have signaling phases that are front-loaded.

Consider exactly the same game with the same information structure described in the Subsection 4.3.2
16Of course, if we place more restrictions on the measure µ, one might conjecture that a reputation theorem might be salvaged.

But again such restrictions imply that the fine details of the pair (Ω, µ) matter beyond just positive probability of commitment
types.
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with the following modification of the type space. First choose t∗ > 0 such that

κ−t
∗

1− κ−2t∗

1−κ−2

1

1− κ−1
<

3

4
.

Furthermore, we can choose ε > 0 such that

κ−t
∗

1− κ−2t∗

1−κ−2 − ε
1

1− κ−1
<

3

4
.

The set of types is infinite and is given by the following set:

Ω = {ωt
∗
, ωt

∗+1, . . .} ∪ {ω∞, ωo},

where ω∞ is a type that plays B at all histories. Again each state is equally likely and the probability
measure over the types is given by µ ∈ ∆(Ω):

µ(ωs) = κ−2s, µ(ω∞) = ε, µ(ωo) = 1−
∞∑
s=t∗

κ−2s = 1− κ−2t∗

1− κ−2
− ε.

We will now show that in the above type space, as long as ε > 0 is sufficiently small, regardless of the
discount factor, there always exists an equilibrium in which the opportunistic LR player plays M at all
histories and the SR player always plays R. Let us now check incentive compatibility at all histories of this
proposed candidate equilibrium strategy profile.

Again as in Subsection 4.3.2, we calculate the probability that the SR player assigns to T being played
at history ht (given the proposed strategy profile). Note that for any t < t∗, the above is 0 regardless of the
history. So consider t ≥ t∗. Then we calculate the following likelihood ratio given any state θ ∈ {`, r} in the
same manner as in the example in Subsection 4.3.2 by first bounding the following likelihood ratio:

γ ({ωs : s ≤ t}, θ | ht)
γ ({ωo},−θ | ht)

=

t∑
s=t∗

γ ({ωs}, θ | ht)
γ ({ωo},−θ | ht)

=

t∑
s=t∗

γ (ωs, θ | hs)
γ (ωo,−θ | hs)

=
t∑

s=t∗

γ
(
ωs, θ | h0

)
γ (ωo,−θ | h0)

s−1∏
τ=0

π(yτ | B, θ)
π(yτ |M,−θ)

<

t∑
s=t∗

γ
(
ωs, θ | h0

)
γ (ωo,−θ | h0)

κs

=

t∑
s=t∗

1
2κ
−2s

1
2

(
1− κ−2t∗

1−κ−2 − ε
)κs

≤
∞∑
s=t∗

κ−2s

1− κ−2t∗

1−κ−2 − ε
κs

=
1

1− κ−1

κ−t
∗

1− κ−2t∗

1−κ−2 − ε

<
3

4
,
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where the last inequality was due to our particular choice of t∗ and ε.
As in the example of Subsection 4.3.2, this again implies that at any history at any time t, the SR player

never assigns more than 3
4 probability to the LR player playing T , which means that the SR player’s best-

response is to play R at all histories. As a result, there are no inter-temporal incentives for the opportunistic
LR player and so it is also indeed his best-response to play M always.

To ensure that learning about the correct state is not the source of the problems with reputation building
in the above example, we present the following claim.

Claim 4.3. Let ρ ∈ (0, 1). Then for every θ = `, r, there exists some t > t∗ such that in any equilibrium,

P(µ
(
θ | ht

)
> 1− ρ | ωt, θ) > 1− ρ.

Proof. The proof is a direct consequence of merging arguments that will be illustrated in the next section.

Remark. One may wonder why we only allow for types ωs with s ≥ t∗. In fact, the construction can be
extended to a setting in which ω0, . . . , ωt

∗−1 are all included but with very small probability. We omitted
these types to simplify the exposition. Moreover, one may also wonder why we include the type ω∞. The
inclusion of this type makes Claim 4.3 very easy to prove. The arguments for the impossibility of reputation
building proceed without modification even when ε = 0, but it becomes much more difficult to prove a claim
of the form above. Nevertheless, the inclusion of such a type does not present issues with the interpretation
of the above exercise, since we are mainly interested in a reputation result that does not depend on what
other types are (or are not) included in the type space.

Remark. One perhaps surprising feature of the above example is that because of the inclusion of infinitely
many of these switching types {ωs}∞s=t∗ , the state can be taught to the SR players to any degree of pre-
cision that the LR player wishes. Nevertheless, reputation building cannot be guaranteed in this example
because it may be impossible for the LR player to convince the SR player of both the correct state and
the intention to play the Stackelberg action simultaneously. We see this in the example. As the
opportunistic LR player mimics any of these commitment types, the SR players’ beliefs are converging (with
arbitrarily high probability) to the correct state. At the same time however, the SR players are placing more
and more probability on the types that teach the state for longer amounts of time instead of those types
that have switched play to the Stackelberg action.

5 Proof of Theorem 4.1

Before we proceed to the details of our proof, we provide a brief roadmap for how our arguments will proceed.
We first show that by mimicking the strategy of the appropriate commitment type, the LR player can ensure
that player 2 learns the state at a rate that is uniform across all equilibria.17 In order to prove this, we
first use merging arguments à la Gossner (2011) to show that at times within the signaling phases, player
2’s beliefs converge to high beliefs on the correct state at a uniform rate across all equilibria. However, note
that this does not preclude the possibility that beliefs may drop to low levels outside the signaling phase. To
take care of this problem, with the help of the well-known Doob’s up-crossing inequalities for martingales,
we provide a uniform (across equilibria) bound on the number of times that the belief can rise from a low

17In the proof, we will formalize this notion of uniform rate of convergence.
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level outside the signaling phase to a high level in the subsequent signaling phase (see Proposition 5.4 below).
This then shows that the belief, at most times, will be high on the correct state with high probability, in
which case action identification problems are no longer problematic. We then use the merging arguments of
Gossner (2011) again to construct our lower bound on payoffs.

5.1 Distributions over Public Histories

Let us first define some notation which will be useful for our proof. First note that any σ ∈ Σ1 and a prior
ν ∈ ∆(Θ) determine an ex-ante probability measure over the set of infinite public histories, which we denote
Pν,σ ∈ ∆(H∞). With a slight abuse of notation, we let Pθ,σ := P1θ,σ, where 1θ is the Dirac measure that
places probability one on state θ.

Furthermore, given that type ωo chooses a strategy σ ∈ Σ1, we define σ̄ ∈ ∆(Σ1) to be a mixed strategy
that randomizes over the strategies played by the types in Ω according to the respective probabilities:

σ̄(σ) = µ(ωo), σ̄(σ′) =
∑

{ω∈Ωc:σω=σ′}

µ(ω) ∀σ′ 6= σ.

σ̄ is essentially the aggregate strategy of the LR player that the SR players face when the opportunistic type
chooses to play σ. Of course, σ̄ is outcome equivalent to a unique behavioral strategy in Σ1 and so, with the
abuse of notation, henceforth, σ̄ will refer to this unique behavioral strategy.

Given any behavioral strategy σ ∈ Σ1 and any prior over the states ν ∈ ∆(Θ), we define at any public
history ht ∈ H the following probability measure in ∆(Y `):

φ`ν,σ((yt, yt+1, . . . , yt+`−1) | ht) =
∑
θ∈Θ

ν(θ)
Pθ,σ(ht)

∏t+`−1
τ=t π(yτ | σ(ht, yt, . . . , yτ−1), θ)

Pν,σ(ht)
.

φ` represents the probability distribution over the next `-periods’ public signals given that the LR player is
known to play according to σ conditional on the public history ht. As before, we abuse notation slightly to
write φ`θ,σ for φ`1θ,σ.

Finally, given any prior ν ∈ ∆(Θ) and σ ∈ Σ1, we can define at any history the conditional probability
of a state θ ∈ Θ, νσ(· | ht) ∈ ∆(Θ) in the following manner:

νσ(θ | ht) := ν(θ)
Pθ,σ(ht)

Pν,σ(ht)
.

In particular, if σe ∈ Σ1 is an equilibrium behavioral strategy of type ωo then in equilibrium, the SR player’s
belief about the true state θ ∈ Θ at history ht is given by νσ̄

e

(· | ht).

5.2 Uniform Learning of the State

We first begin by showing that playing the strategy σk,β1 associated with type ωk,β1 at state θ leads to
uniform learning of the true state θ in all equilibria. Recall the following definition of the relative entropy
of probability measures (also often called the Kullback-Leibler divergence): Given two probability measures
P,Q ∈ ∆(Y ),

H(P | Q) :=
∑
y∈Y

P (y) log

(
P (y)

Q(y)

)
.
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Then recall the basic properties of relative entropy that H(P | Q) ≥ 0 for all P,Q ∈ ∆(Y ) and H(P | Q) = 0

if and only if P = Q.
The following lemma is key to guaranteeing learning of the true state by the SR players.

Lemma 5.1. For every ε > 0, there exists some k∗ ∈ N+ such that for all k ≥ k∗ there exists λ > 0 such
that for all β1 ∈ B, all σ ∈ Σ1, all θ ∈ Θ, all ν ∈ ∆(Θ), and all t,

H
(
φkmθ,σk,β1

(
· | hκ(k)t

)
| φkmν,σ

(
· | hκ(k)t

))
≤ λ =⇒ νσ(θ | hκ(k)t) > 1− ε.

Proof. Note that it is sufficient to prove the above claim for the history h0. By Lemma A.1 in the Appendix,
there exist a collection of compact sets {Dθ′,θ}θ′ 6=θ and ρ∗ > 0 such that Πθ′ ⊆ Dθ′,θ for every θ′ 6= θ,

αθ,θ
′

1 /∈ Dθ′,θ and for every T and every σ ∈ Σ1,

Pθ′,σ

(
1

T + 1

T∑
t=0

1Yt ∈ Dθ′,θ

)
> ρ∗.

By the weak law of large numbers for iid random variables, we can choose k∗ ∈ N+ such that for all k ≥ k∗,

max
θ∈Θ

{
max
θ′ 6=θ

{
P
θ,αθ,θ

′
1

(
1

k + 1

k∑
t=0

1Yt ∈ Dθ′,θ

)}}
<

ρ∗ε

2(m− 1)
.

If for some θ ∈ Θ, ν ∈ ∆(Θ), σ ∈ Σ1, and k ≥ k∗, H(φkm
θ,σk,β1

| φkmν,σ) = 0, we must have φkm
θ,σk,β1

= φkmν,σ
in which case,

0 = H
(
φk
θ,α

θ,θ0
1

(
· | h0

)
| φkν,σ

(
· | h0

))
,

0 = H
(
φk
θ,α

θ,θ1
1

(
· | hk

)
| φkν,σ

(
· | hk

))
∀hk,

...
...

0 = H

(
φk
θ,α

θ,θm−1
1

(
· | h(m−1)k

)
| φkν,σ

(
· | h(m−1)k

))
∀h(m−1)k.

By construction this means that for every τ such that θτ 6= θ, and every hτk, νσ(θτ | hτk) < ε/2(m − 1).
Moreover, due to the martingale property of beliefs, we must have νσ(θ′ | h0) < ε/2(m − 1) for all θ′ 6= θ
which then implies that ν(θ) > 1− ε/2.

Thus because the relative entropy function is continuous, for every k ≥ k∗,

min
θ∈Θ

{
inf
{
H(φkmθ,σk,β1 (· | h0) | φkmν,σ(· | h0)) : ν(θ) ≤ 1− ε, σ ∈ Σ1

}}
> 0.

Therefore we can choose λ > 0 such that

min
θ∈Θ

{
inf
{
H(φkmθ,σk,β1 (· | h0) | φkmν,σ(· | h0)) : ν(θ) ≤ 1− ε, σ ∈ Σ1

}}
> λ > 0.

Now given any k ≥ k∗ we have found λ > 0 to prove the claim. For any θ ∈ Θ, ν ∈ ∆(Θ), and σ ∈ Σ1,

H
(
φkmθ,σk,β1 (· | h0) | φkmν,σ(· | h0)

)
≤ λ =⇒ ν(θ) > 1− ε.
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Define the following sets for an equilibrium strategy σe ∈ Σe1:

Ck,β1
σe (θ, J, λ) :=

{
h ∈ H∞ : H

(
φkmθ,σk,β1

(
· | hκ(k)t

)
| φkmν,σ̄

(
· | hκ(k)t

))
> λ for at least J values of t

}
Cβ1
σe (θ, J, λ) :=

{
h ∈ H∞ : H

(
φkmθ,σk,β1

(
· | ht

)
| φkmν,σ̄

(
· | ht

))
> ν for at least J values of t

}
,

Dk,β1
σe (θ, J, ε) :=

{
h ∈ H∞ : νσ̄

e
(
θ | hκ(k)t

)
≤ 1− ε for at least J values of t

}
,

Dβ1
σe(θ, J, ε) :=

{
h ∈ H∞ : νσ̄

e (
θ | ht

)
≤ 1− ε for at least J values of t

}
.

Note that Ck,β1
σe (θ, J, λ) and Dk,β1

σe (θ, J, ε) concern only times that are multiples of κ(k). The following lemma
follows from a standard merging argument.

Lemma 5.2. Let λ, J > 0. Then for all σe ∈ Σe1 and all β1 ∈ B,

Pθ,σk,β1

(
Cβ1
σe (θ, J, λ)

)
≤
−km log

(
γ(θ, ωk,β1)

)
Jλ

.

Proof. This is an immediate consequence of Lemma 5.8.

The next corollary then follows almost immediately from the above two lemmata.

Corollary 5.3. Let ε > 0. Then there exists some k∗ ∈ N+ such that for every k ≥ k∗, there exists λ > 0

such that for every equilibrium strategy σe ∈ Σe1, all β1 ∈ B, and every J > 0,

Pθ,σk,β1

(
Dk,β1
σe (θ, J, ε/2)

)
≤
−km log

(
γ(θ, ωk,β1)

)
Jλ

.

Proof. Note that by Lemma 5.1, there exists some k∗ ∈ N+ such that for every k ≥ k∗, there exists λ > 0

such that for all σe ∈ Σe1, and all β1 ∈ B, Dk,β1
σe (θ, J, ε/2) ⊆ Ck,β1

σe (θ, J, λ). Therefore given k ≥ k∗ and such
a λ > 0, for all σe ∈ Σe1, all β1 ∈ B, and all J > 0,

Pθ,σk,β1

(
Dk,β1
σe (θ, J, ε/2)

)
≤ Pθ,σk,β1

(
Ck,β1
σe (θ, J, λ)

)
≤
−km log

(
γ(θ, ωk,β1)

)
Jλ

.

Note however, that Dk,β1
σ (θ, J, ε/2) focuses only on beliefs at the beginning of the signaling phases. For

our reputation theorem, we need the beliefs to be correct outside of the signaling phases, since those are
exactly the times of the dynamic game in which the reputation builder actually collects valuable payoffs.
To show that with high probability, the beliefs will be correct even outside the signaling phase (for most
times), we use Doob’s up-crossing inequality. To use Doob’s up-crossing inequality, however, note that the
stochastic process in question must be either a supermartingale or submartingale. The SR players’ beliefs
about the state indeed do form a martingale with respect to the measure Pν,σ̄. However, these same beliefs
are generally no longer a supermartingale nor a submartingale with respect to the measure Pθ,σk,β1 . Our
proof will necessarily take care of these additional issues.

First let us introduce some notation. Given a deterministic real-valued sequence x := {xt}∞t=0 and real
numbers a < b, we can define the up-crossing sequence U (a,b)

t (x) in the following manner. Define the following
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sequence of times:

τx0 := inf {t : xt < a} ,

τx1 := inf {t ≥ τx0 : xt > b} .

Now we define τx2k and τx2k+1 recursively:

τx2k := inf
{
t ≥ τx2k−1 : xt < a

}
,

τx2k+1 := inf {t ≥ τx2k : xt > b} .

Then we can define the number of up-crossings on the interval (a, b) that occur up to time t:

U
(a,b)
t (x) := inf{k ∈ N+ : τx2k−1 ≤ t}.

Finally, since the up-crossing sequence is a non-decreasing sequence, we can define the number of up-crossings
in the whole sequence:

U (a,b)
∞ (x) := lim

t→∞
U

(a,b)
t (x) ∈ N ∪ {∞}.

Proposition 5.4. Let ε > 0 and let σe ∈ Σe. Given any h ∈ H∞ and θ ∈ Θ, define the sequence

νσ̄
e

(θ | h) := {νσ̄
e

(θ | ht)}∞t=0

and the corresponding up-crossing sequence U (1−ε,1−ε/2)
t (νσ̄

e

(θ | h)). Then for all t and all J > 0,

Pθ,σk,β1

(
U

(1−ε,1−ε/2)
t (νσ̄

e

(θ | h)) ≥ J
)
≤

Eθ,σk,β1

[
U

(1−ε,1−ε/2)
t (νσ̄

e

(θ | h))
]

J
≤ 2

γ(θ, ωk,β1)J
.

As a consequence,

Pθ,σk,β1

(
U (1−ε,1−ε/2)
∞ (νσ̄

e

(θ | h)) ≥ J
)
≤ 2

γ(θ, ωk,β1)J
.

Proof. Note that Doob’s up-crossing inequality (see Appendix C for details) implies that

Eν,σ̄e
[
U

(1−ε,1−ε/2)
t (νσ̄

e

(θ | h))
]
≤ ε

ε
2

= 2.

But note that

γ(θ, ωk,β1)Eθ,σk,β1

[
U

(1−ε,1−ε/2)
t (νσ̄

e

(θ | h))
]
≤ Eν,σ̄e

[
U

(1−ε,1−ε/2)
t (νσ̄

e

(θ | h))
]
≤ 2.

Then for every t, an application of Markov’s inequality implies:

Pθ,σk,β1

(
U

(1−ε,1−ε/2)
t (νσ̄

e

(θ | h)) ≥ J
)
≤ 1

γ(θ, ωk,β1)J
Eθ,σk,β1

[
U

(1−ε,1−ε/2)
t (νσ̄

e

(θ | h))
]
≤ 2

γ(θ, ωk,β1)J
.

Finally,

Pθ,σk,β1

(
U (1−ε,1−ε/2)
∞ (νσ̄

e

(θ | h)) ≥ J
)

= lim
t→∞

Pθ,σk,β1

(
U

(1−ε,1−ε/2)
t (νσ̄

e

(θ | h)) ≥ J
)
≤ 2

γ(θ, ωk,β1)J
.
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We can now use the inequalities proved above together with the previously established observations to
bound Pθ,σk,β1

(
Dβ1
σe(θ, J, ε)

)
uniformly across all equilibrium strategies σe ∈ Σe1.

Proposition 5.5 (Uniform Learning of True State). Let ε > 0. Then there exists k∗ ∈ N+ such that for all
k ≥ k∗, there exists λ > 0 such that for all σe ∈ Σe1, all β1 ∈ B, and every n ≥ 1,

Pθ,σk,β1

(
Dβ1
σe(θ, 2nκ(k), ε)

)
≤ 1

n

(
2

γ(θ, ωk,β1)
−
km log

(
γ(θ, ωk,β1)

)
λ

)
.

Proof. Choose h ∈ Dβ1
σe(θ, 2nκ(k), ε). Then by definition,

νσ̄
e (
θ | ht

)
≤ 1− ε for at least 2nκ(k) values of t.

Suppose that h /∈ Dk,β1
σe (θ, n, ε/2). Then by the pigeon-hole principle, there must be at least n up-crossings

of the belief νσ̄
e

(θ | ht) from 1− ε to 1− ε/2. Therefore,

Dβ1
σe(θ, 2nκ(k), ε) ⊆

{
h : U (1−ε,1−ε/2)(νσ̄

e

(θ | h)) ≥ n
}
∪ Dk,β1

σe (θ, n, ε/2).

By Corollary 5.3, there exist k∗ ∈ N+ such that for all k ≥ k∗, there exists λ > 0 such that for all β1 ∈ B
and all n,

Pθ,σk,β1

(
Dk,β1
σe (θ, n, ε/2)

)
≤ −

km log
(
γ(θ, ωk,β1)

)
nλ

.

This together with Proposition 5.4 implies:

Pθ,σk,β1

(
Dβ1
σe(θ, 2nκ(k), ε)

)
≤ Pθ,σk,β1

(
U (1−ε,1−ε/2)(νσ̄

e

(θ | h)) ≥ n
)

+ Pθ,σk,β1

(
Dk,β1
σe (θ, n, ε/2)

)
≤ 1

n

(
2

γ(θ, ωk,β1)
−
km log

(
γ(θ, ωk,β1)

)
λ

)
.

Note importantly that the above bound is independent of the equilibrium, which is useful in establishing
a lower bound on payoffs that is uniform across all equililbria.

5.3 Applying Merging

Having established a bound on the number of times that the belief on the correct state is low, we can then
show that at the histories where belief is high on the true state and predictions are correct, the best-response
to the Stackelberg action must be chosen. As a result we obtain our main reputation theorem. To this end,
we extend the notion of ε-confirmed equilibrium of Gossner (2011) to our framework.18

Definition 5.6. Let (λ, ε) ∈ [0, 1]2. Then (α1, α2) ∈ A1×A2 is a (λ, ε)-confirmed best-response at θ if there
exists some (β1, ν) ∈ B ×∆(Θ) such that

18Fudenberg and Levine (1992) provide a similar definition that uses the notion of total variational distance between proba-
bility measures instead of relative entropy.
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• α2 is a best-response for player 2 to β1 given belief ν about the state,

• ν(θ) > 1− ε,

• and H(π(· | α1, θ) | π(· | β1, ν)) < λ.

Lemma 5.7. Let ρ > 0. Then there exists some λ∗ > 0 and ε∗ > 0 such that for all (α1, α2) that is a
(λ∗, ε∗)-confirmed best-response at θ ∈ Θ, u1(α1, α2, θ) > infα′2∈B2(α1,θ) u1(α1, α

′
2, θ)− ρ.

Proof. This lemma is a standard continuity result.

We first define the following set of histories given any two strategies σ, σ′ ∈ Σ1:

M`
σ′,σ(θ, J, λ) :=

{
h ∈ H∞ : H

(
φ`θ,σ′(· | ht) | φ`ν,σ̄(· | ht)

)
> λ for at least J values of t

}
.

Lemma 5.8. Let k > 0, β1 ∈ B. Then

Pθ,σk,β1

(
M`

σk,β1 ,σ(θ, J, λ)
)
≤
−` log

(
γ(θ, ωk,β1)

)
Jλ

.

Proof. See Appendix B for the proof.

Together with Lemma 5.8 and Proposition 5.5, we can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. To simplify notation, let us first define the following:

u := max
a∈A

max
θ∈Θ

u1(a, θ),

u := min
a∈A

min
θ∈Θ

u1(a, θ).

Choose any θ ∈ Θ. We will show that there exists some δ∗ < 1 such that whenever δ > δ∗, the LR
opportunistic type obtains a payoff of at least u∗1(θ)− ρ in every equilibrium. This then proves the theorem,
since there are finitely many states θ ∈ Θ.

Given ρ > 0, choose k∗ such that for all k ≥ k∗, km
κ(k) (u− u) < ρ

4 . Given these chosen parameters, note
that the following inequalities hold for every k ≥ k∗:

km

κ(k)
u+

k2

κ(k)

(
u∗1(θ)− ρ

4

)
> u∗1(θ)− ρ

2
, (1)

ρ

4(u− u)
u+

(
1− ρ

4(u− u)

)(
u∗1(θ)− ρ

2

)
> u∗1(θ)− 3

4
ρ. (2)

By Proposition 5.5, there exists some k > k∗ for which there exists some λ > 0 such that for all σe ∈ Σe1,
all β1 ∈ B, and every n ≥ 1,

Pθ,σk,β1

(
Dk,β1
σe (θ, 2nκ(k), ε)

)
≤ 1

n

(
2

γ(θ, ωk,β1)
−
km log

(
γ(θ, ωk,β1)

)
λ

)
.

24



Fix such a k > k∗ and λ > 0 and choose β1 ∈ Sρ/8 such that γ(θ, ωk,β1) > 0 which exists by assumption.
By Lemma 5.7, there exists some ε > 0 such that

u1(β1(θ), α2, θ) > inf
α′2∈B2(β1(θ),θ)

u1(β1(θ), α′2, θ)−
ρ

8
≥ u∗1(θ)− ρ

4

for all (β1(θ), α2) that is a (ε, ε)-confirmed best-response at θ, where the last inequality follows from the
assumption that β1 ∈ Sρ/8.

Given the already fixed k, λ > 0, and β1, we can choose n ∈ N sufficiently large such that the following
two inequalities hold:

ρ

8(u− u)
>

1

n

(
2

γ(θ, ωk,β1)
−
km log

(
γ(θ, ωk,β1)

)
λ

)
,

ρ

8(u− u)
>
− log

(
γ(θ, ωk,β1)

)
2nκ(k)ε

.

Then by Proposition 5.5 and Lemma 5.8, for every σe ∈ Σe1,

Pθ,σk,β1

(
Dk,β1
σe (θ, 2nκ(k), ε) ∪M1

σk,β1 ,σe(θ, 2nκ(k), ε)
)
≤ ρ

4(u− u)
.

Thus in any equilibrium, by playing the strategy σk,β1 , the LR opportunistic type with discount factor
δ obtains at the very least the following payoff in state θ:

ρ

4(u− u)
u+

(
1− ρ

4(u− u)

)
gδ(θ),

where

gδ(θ) = (1− δ4nκ(k))u+ (1− δ4nκ(k))

(
(1− δkm)u+ (δkm − δκ(k))

(
u∗1(θ)− ρ

4

)
1− δκ(k)

)

It remains to show that we can find δ∗ such that for all δ > δ∗, this lower bound is at least u∗1(θ) − ρ. To
this end, note that as δ → 1, we have:

ρ

4(u− u)
u+

(
1− ρ

4(u− u)

)
gδ(θ) −→

ρ

4(u− u)
u+

(
1− ρ

4(u− u)

)(
km

κ(k)
u+

k2

κ(k)

(
u∗1(θ)− ρ

4

))
>

ρ

4(u− u)
u+

(
1− ρ

4(u− u)

)(
u∗1(θ)− ρ

2

)
> u∗1(θ)− 3

4
ρ,

where the last two inequalities follow respectively from Inequalities (1) and (2).
Thus we can find δ∗ ∈ (0, 1) such that for all δ > δ∗,

ρ

4(u− u)
u+

(
1− ρ

4(u− u)

)
gδ(θ) > u∗1(θ)− ρ.

This concludes our proof.
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6 Upper Bound on Payoffs

Thus far, we have focused our analysis completely on a lower bound reputation theorem. In particular, the
sharpness of the lower bound remains to be investigated. This section studies whether and when the lower
bound previously established is indeed tight. To this end, we study when an upper bound on payoffs of the
opportunistic LR player does indeed equal the lower bound of Theorem 4.1.

With possible non-identification of actions, there may be scenarios in which the LR player obtains payoffs
strictly above the Stackelberg payoff. In fact, the upper bound (even for very patient players) typically
depends on the initial conditions of the game such as the probability distribution over the states Θ or over
the set of types, Ω. In contrast, in reputation games without any uncertainty about the monitoring structure
(and with suitable action identification assumptions), the upper bound on payoffs is independent of these
initial conditions as long as the LR player is sufficiently patient. This dependence on the initial conditions
makes it difficult to provide a general sharp upper bound.

6.1 Example

The following example shows that the probability of commitment types matters for the upper bound regard-
less of the discount factor. Consider the quality choice game with the following stage game payoffs: In the

L R
T 1, 1 −1, 0
B 2,−1 0, 0

Figure 12: Quality Choice

repeated game this stage game is repeatedly played and all payoffs are common knowledge. Note that the
Stackelberg payoff of the above game is 3/2. Furthermore, note that L is a best-response for the SR player
in the stage game if and only if α1(T ) ≥ 1/2.

There are two states Θ = {`, r} which only affect the signal distribution of the public signal. There are
two types in the game, Ω = {ωc, ωo}. The commitment type, ωc, in this game is a type that always plays
the mixed action 2

3A ⊕
1
3B regardless of the state.19 In particular, we assume that the probability of each

state is identical and the probability of the commitment type is given by µ.
The signal space is binary, Y = {ȳ, y}, and the information structure is given by the following figures:

θ = ` ȳ y

T 1/6 5/6
B 4/6 2/6

Figure 13: Info. Structure under θ = `

θ = r ȳ y

T 5/6 1/6
B 2/6 4/6

Figure 14: Info. Structure under θ = r

Note that according to this information structure, the mixed action
(

2
3T ⊕

1
3B, θ

)
is indistinguishable from

19Note that this is in reality not the mixed Stackelberg action. However, the example goes through without modification as
long as the commitment type plays A with any probability between 1/3 and 1/2.
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(B,−θ):

π

(
ȳ | 2

3
T ⊕ 1

3
B, θ

)
= π(ȳ | B,−θ).

In this example, we have the following observation.

Claim 6.1. Let ε > 0. Then there exists some µ∗ such that for all µ > µ∗ and any δ ∈ (0, 1), there exists
an equilibrium in which the opportunistic player obtains a payoff of 2 in both states.

Proof. Consider the candidate equilibrium strategy profile in which the opportunistic LR player always plays
B. Choose µ∗ = 3

4 . Then we will show that when µ > µ∗, this strategy profile is indeed an equilibrium for
any δ ∈ (0, 1).

Consider the incentives of the SR player. To study this, we want to compute the probability that the SR
player assigns to action T given the candidate equilibrium strategy of the LR player:

P(T | ht) =
2

3
µ(ωc | ht) =

2

3

(
γ(ωc, ` | ht) + γ({ωc, r | ht)

)
Now let us compute the probability µ(ωc | ht) from below. To produce this bound, consider the following
likelihood ratio:

γ(ωc, θ | ht)
γ(ωo,−θ | ht)

=
γ(ωc, θ | h0)

γ(ωo,−θ | h0)
=

µ

1− µ
.

This then implies that for all ht, µ(ωc | ht) = µ, µ(ωo | ht) = 1− µ. Thus, for all ht and all µ > µ∗,

P(T | ht) =
2

3
µ >

1

2
.

This then implies that for all ht, the SR player’s best-response is to play L. Furthermore, because the SR
player is playing the same action at all histories, the opportunistic LR player’s best-response is to play B
at all histories. Thus the proposed strategy profile is indeed an equilibrium. Furthermore, according to this
strategy profile, the opportunistic LR player’s payoff is 2 in both states, concluding the proof.

The above shows that even an arbitrarily patient opportunistic LR player obtains a payoff strictly greater
than the Stackelberg payoff in equilibrium. The problem with the above example is that the commitment
type probability is rather large. Therefore, it is instructive to examine an upper bound for the case in which
the commitment type probability is indeed small.

Claim 6.2. Let ε > 0. Then there exists some µ∗ > 0 such that for all µ < µ∗, there exists some δ∗ such that
for all δ > δ∗, in all equilibria, the (opportunistic) LR player obtains an ex-ante payoff of at most 3/2 + ε.

Proof. This will be a consequence of Theorem 6.4 to be presented in the next subsection.

6.2 Upper Bound Theorem

Here we provide sufficient conditions for when the lower bound and upper bound coincide. In the process,
we will provide a general upper bound theorem, with the caveat that generally this upper bound may not
be tight (even for patient players).20 However, we will show that this derived upper bound is indeed tight

20The previous examples should suggest that a general tight upper bound is very difficult to obtain.
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in a class of games, where state revelation is desirable.21

We first provide some definitions that will be useful for constructing our upper bound. The methods
presented here follow very closely the analysis conducted by Aumann, Maschler, and Stearns (1995) as well
as Mertens, Sorin, and Zamir (2014) Chapter V.3 [MSZ].

Definition 6.3. Let p ∈ ∆(Θ). A state-contingent strategy β ∈ B is called non-revealing at p if for all
θ, θ′ ∈ supp(p), π(· | β(θ), θ) = π(· | β(θ′), θ′).

In words, this means that if player 1 plays according to a non-revealing strategy at p, then with probability
1, player 2’s prior will not change regardless of the message she sees. For any p ∈ ∆(Θ), define:

NR(p) := {β ∈ B : β is non-revealing at p}.

We can define the value function as follows if NR(p) 6= ∅:

V (p) := max
β∈NR(p)

max
α2∈B2(β,p)

∑
θ∈Θ

p(θ)u1(β(θ), α2, θ).

If NR(p) = ∅, let us define V (p) = u. Define cavV to be the smallest concave function that is weakly greater
than V pointwise.

Theorem 6.4 (Upper Bound Theorem). Let ε > 0 and suppose that the initial prior on the states is given
by ν ∈ ∆(Θ). Then there exists some ρ∗ > 0 such that whenever µ(Ωc) < ρ∗, there exists some δ∗ such
that for all δ > δ∗, the ex-ante expected payoff of the opportunistic LR player in all equilibria is at most
cavV (ν) + ε.

Proof. Here we sketch the proof, relegating the details to the Appendix. Using arguments borrowed from
MSZ, we show that the play of σ̄, which is not necessarily the equilibrium strategy of the opportunistic
type, leads to the play of “almost” non-revealing strategies at most time periods. Furthermore, at any
history ht, the SR player is indeed playing a best-response to the state-contingent mixed action σ̄(ht). Given
these two observations, there exists some δ∗ such that for all δ > δ∗, any type space, and any equilibrium
strategy σ of the opportunistic type, by playing instead σ̄, the opportunistic type obtains a payoff of at most
cavV (ν) + ε/2.22 Now note that for the opportunistic type, the strategy of playing σ̄ gives a payoff of at
least:

µ(Ωc)u+ µ(ωo)U,

where U is the opportunistic type’s equilibrium payoff. Thus we must have:

U ≤ 1

µ(ωo)
(cavV (ν) + ε/2− µ(Ωc)u) .

Then by taking ρ∗ > 0 sufficiently small, we must have U < cavV (ν) + ε.

Remark. One should note that the above theorem crucially places a requirement on the probability of the
commitment types. In the example of Subsection 6.1, we saw that when commitment types are large in
probability, the bound provided here does not apply. The reason for the discrepancy when commitment type

21We will formalize this informal statement in the following discussion.
22Note that δ∗ does not depend on the type space.

28



probabilities are large is that, beliefs in an equilibrium conditional on the opportunistic type’s strategy is no
longer a martingale. In contrast, when the commitment type probabilities are small, the beliefs conditional
on the opportunistic type’s strategy follow a stochastic process that “almost” resembles a martingale, in
which case cavV provides an approximate upper bound.

6.2.1 Returning to the Example in Subsection 6.1

Let us return to our first example in Section 6.1. To simplify notation, let us denote by (x, y) ∈ [0, 1]2 the
state-contingent strategy β ∈ B in which T is played with probability x in state ` and T is played with
probability y in state r.

Given the information structure in that example, for any ν ∈ (0, 1) representing the probability distri-
bution over states in which ` occurs with probability ν, the set of non-revealing strategies NR(ν) is given
by:

NR(ν) =

{(
x,

2

3
− x
)

: x ∈ [0, 2/3]

}
.

We want to bound V (ν). To do this, we consider four cases.
Case 1: ν ≥ 3/4

Given a non-revealing strategy (x, 2/3− x) ∈ NR(ν), the SR player believes that T will be played with
probability:

νx+ (1− ν)(2/3− x) = (2ν − 1)x+
2

3
(1− ν).

Thus L is a SR player best-response against (x, 2/3− x) given belief ν if and only if

(2ν − 1)x+
2

3
(1− ν) ≥ 1/2⇔ x ≥ 1

3

2ν − 1/2

2ν − 1
.

Therefore,

V (ν) ≤ max

{
max

x≥ 1
3

2ν−1/2
2ν−1

(
νx+ (1− ν)

(
2

3
− x
))

+ 2

(
1− νx− (1− ν)

(
2

3
− x
))

, 0

}

= max

{
max

x∈[ 1
3

2ν−1/2
2ν−1 , 23 ]

2 + (1− 2ν)x− (1− ν)
2

3
, 0

}
=

3

2
.

Case 2: x ∈ (1/4, 3/4)

If ν ∈ [1/2, 3/4), L is a SR player best-response against (x, 2/3− x) given prior ν if and only if

(2ν − 1)x+
2

3
(1− ν) ≥ 1/2⇔ x ≥ 1

3

2ν − 1/2

2ν − 1
.

But the latter is strictly greater than 2/3 for all ν ∈ [1/2, 3/4). Thus for all (x, 2/3 − x) ∈ NR(ν), the SR
player’s best response at belief ν ∈ [1/2, 3/4) is R.

On the other hand, if ν ∈ (1/4, 1/2), L is a SR player best-response against (x, 2/3− x) given prior ν if
and only if

(2ν − 1)x+
2

3
(1− ν) ≥ 1/2⇔ x ≤ 1

3

2ν − 1/2

2ν − 1
.

Again the last term is strictly negative for all ν ∈ (1/4, 1/2) and hence, for all (x, 2/3 − x) ∈ NR(ν), the
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SR player’s best-response at belief ν ∈ (1/2, 3/4) is again R. This then shows that for all ν ∈ (1/4, 3/4),
V (ν) ≤ 0.

Case 3: ν ≤ 1/4

This case is symmetric to Case 1. Note that L is a SR player best-response against (x, 2/3 − x) given
belief ν if and only if

(2ν − 1)x+
2

3
(1− ν) ≥ 1

2
⇔ x ≤ 1

3

2ν − 1/2

2ν − 1
.

Therefore

V (ν) ≤ max

{
max

0≤x≤ 1
3

2ν−1/2
2ν−1

(
νx+ (1− ν)

(
2

3
− x
))

+ 2

(
1− νx− (1− ν)

(
2

3
− x
))

, 0

}

= max

{
max

x∈[0, 13
2ν−1/2
2ν−1 ]

2 + (1− 2ν)x− (1− ν)
2

3
, 0

}
=

3

2
.

Given the above bounds for V , we arrive at the conclusion of Claim 6.2 by applying Theorem 6.4: for
every ε > 0, there exists ρ∗ > 0 such that for all µ < ρ∗, there exists some δ∗ such that for all δ > δ∗, in all
equilibria, the (opportunistic) LR player obtains an ex-ante payoff of at most 3/2 + ε.

6.2.2 Statewise Payoff Bounds and Payoff Uniqueness

Finally, we apply Theorem 6.4 to a setting in which the type space includes those commitment types con-
structed in the previous section. It is easy to see in this scenario that when V is indeed convex, the lower
bound and upper bound coincide for patient players and the payoffs of the opportunistic LR player converge
uniquely to the statewise Stackelberg payoffs in every state as he becomes arbitrarily patient.

Corollary 6.5. Suppose that
V (ν) ≤

∑
θ∈Θ

ν(θ)u∗1(θ)

for all ν ∈ ∆(Θ). Furthermore, assume that for every k > m− 1 and every ε > 0, there exists β1 ∈ Sε such
that µ(ωk,β1) > 0. Let ε > 0. Then there exists some ρ∗ > 0 such that whenever µ(Ωc) < ρ∗, there exists
δ∗ < 1 such that for all δ > δ∗ and any state θ ∈ Θ, the opportunistic LR player obtains a payoff in the
interval (u∗1(θ)− ε, u∗1(θ) + ε) in all equilibria.

Before proceeding to the proof, it is worth highlighting a slightly subtle aspect of the corollary. Note that
a key distinction between the statement of Theorem 6.4 and the above corollary is that the upper bound on
payoffs is given in each state. A key step in the proof of this state-wise upper bound in the corollary relies
on the assumption that the constructed commitment types exist with positive probability. This assumption
is important for the argument as it first allows us to provide a lower bound on payoffs in each state using
Theorem 4.1, which then together with the ex-ante payoff upper bound of Theorem 6.4 allows us to establish
the upper bound in each state. Thus without the existence of such commitment types, our proof would not
go through.23

23We however, do not know if there exist equilibria in which the state-wise upper bounds fail when such commitment types
occur with zero probability.

30



Proof. The lower bound is a consequence of Theorem 4.1. Let us now show the upper bound. Note that by
assumption,

cavV (ν) =
∑
θ∈Θ

ν(θ)u∗1(θ).

Let ν = minθ∈Θ ν(θ).

By Theorem 6.4, there exists some ρ∗ > 0 such that whenever µ(Ωc) < ρ∗, there exists some δ∗ < 1 such
that for all δ > δ∗ and all equilibrium strategy profiles (σ1, σ2),∑

θ∈Θ

ν(θ)U1(σ1, σ2, θ, δ) < cavV (ν) +
ν

2
ε.

Suppose by way of contradiction that there exists some state θ∗ ∈ Θ and some sequence δn → 1 such that
there exists some (σn1 , σ

n
2 ) ∈ Σe1 ×Σe2 such that for all n, U1(σn1 , σ

n
2 , θ
∗, δn) ≥ u∗1(θ∗) + ε. Then note that for

all n,
ν(θ∗)(u∗1(θ∗) + ε) +

∑
θ 6=θ∗

ν(θ)U1(σn1 , σ
n
2 , θ, δn) <

∑
θ∈Θ

ν(θ)u∗1(θ) +
ν

2
ε.

This then implies that for all n,

∑
θ 6=θ∗

ν(θ)U1(σn1 , σ
n
2 , θ, δn) <

∑
θ 6=θ∗

ν(θ)u∗1(θ)−
(
ν(θ∗)− ν

2

)
ε <

∑
θ 6=θ∗

ν(θ)

(
u∗1(θ)− ν

2ν(θ)(m− 1)
ε

)
.

Then for each n, we can find some θn such that

U1(σn1 , σ
n
2 , θn, δn) < u∗1(θn)− ν

2ν(θn)(m− 1)
ε.

Because there are only finitely many states θ ∈ Θ, there exists some θ 6= θ∗ and a subsequence nk such that
for all k,

U1(σnk1 , σnk2 , θ, δnk) < u∗1(θ)− ν

2ν(θ)(m− 1)
ε.

This contradicts the lower bound theorem, concluding the proof.

7 Conclusion

In this paper we study reputation building by a long-run agent in environments in which there is uncertainty
about how the agent’s actions relate to observed outcomes. A leading example is that of a long-run firm that
wants to build a reputation for quality. Its consumers make purchase decisions based on product reviews
but do not understand how exactly to interpret these reviews. The central question we ask is whether
reputations can be built effectively in such settings: Can the firm build a reputation for quality even when
a good outcome (review) is not necessarily interpreted as a signal of high quality?

Formally, we study a canonical model of reputation between a long-run player and a sequence of short-run
opponents, in which the long-run player is privately informed about an uncertain state, which determines
the monitoring structure in the reputation game, and ask if the classical reputation building result holds: If
there is a small positive probability that there is a firm type that is committed to playing the Stackelberg
action, then, can a patient firm achieve payoffs arbitrarily close to the Stackelberg payoff of the stage game
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in every equilibrium?
We first show through a simple example that uncertainty in monitoring can cause reputation building to

break down. Specifically, even when consumers entertain the possibility of a commitment type that plays
the Stackelberg action, there are equilibria in which the long-run agent gets payoffs that are much below the
Stackelberg payoff. Due to the uncertainty in monitoring, the long-run agent cannot convince her opponents
about her intention to play the Stackelberg action in the future.

We then present necessary and sufficient conditions on the monitoring structure and type space to restore
reputation building in this setting. In contrast to the previous literature, reputation building requires the
inclusion of appropriate dynamic commitment types: commitment types that switch infinitely often between
“signaling actions” that help the consumer learn the unknown monitoring state and “collection actions” that
are desirable for payoffs (the Stackelberg action). A key novelty of our paper is the construction of these
dynamic commitment types, and to establish the somewhat surprising fact that not only do we need types
that signal the true state, but we need them to signal the state recurrently forever.

While we were motivated by an application of one-sided uncertainty about monitoring, our results gen-
eralize to both settings in which neither the long-run nor the short-run players know the state, and settings
in which the uncertainty is about payoffs rather than the monitoring structure. An interesting question is
whether reputation building is possible when the monitoring structure is not just uncertain but also changing
over time. Going back to the applications, can a firm build reputation effectively when consumers do not
understand the relationship between the reviews and product quality and further the reviewer bias changes
over time? This is the subject to future research.
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A Proof of Missing Step in Lemma 5.1
For a random variable X taking values in a finite set Y , define a random empirical vector

1X := (1y(X))y∈Y .

To begin, we prove the following. Let us fix a compact, convex set C ⊆ ∆(Y ). We are interested in a
set of stochastic processes with conditional probability vectors lying in C at all times almost-surely. Fix a
probability space (X,π,F). Then let the space of Y -valued random variables be denote by L(X,Y ).

Define

ST (C) := {(X0, X1, . . . , XT ) ∈ L(X,Y )T+1 : ∀t, ∀y0, . . . , yt−1, (π (Xt = y | X0 = y0, . . . , Xt−1 = yt−1))y∈Y ∈ C}.

We now prove the following lemma. Note that the law of large numbers does not immediately apply, since
the sequence of random variables under consideration may be dependent.

Lemma A.1. Suppose that C ⊆ ∆(Y ) is a compact, convex set and let a ∈ ∆(Y ) be such that a /∈ C. Then
there exists some ρ∗ > 0 and some compact set D ⊆ ∆(Y ) such that D ⊇ C, a /∈ D, and such that for every
T and for every (X0, X1, . . . , XT ) ∈ ST (C),

π

(
1

T + 1

T∑
t=0

1Xt ∈ D

)
≥ ρ∗.

Proof. Because a /∈ C, by the (strong) separating hyperplane theorem, there exists some λ′ 6= 0 such that

sup
c∈C

λ′ · c < λ′ · a.

Furthermore, because C ⊆ ∆(Y ) and a ∈ ∆(Y ), for any ξ > 0 and the vector 1 = (1, 1, . . . , 1), we also have:

sup
c∈C

(λ′ + ξ1) · c = ξ + sup
c∈C

λ′ · c < ξ + λ′ · a = (λ′ + ξ1) · a.

Choose ξ > 0 sufficiently large such that λ′ + ξ1 ≥ 0 and let λ = λ′ + ξ1 ≥ 0. Then we have:

g := sup
c∈C

λ · c < λ · a.

Now choose ε > 0 and ρ∗ such that ρ∗ := 1 − g
λ·a−ε > 0. Define D to be the following set: D =

{x ∈ ∆(Y ) : λ · x ≤ λ · a − ε}. Clearly, D is compact, C ⊆ D and a /∈ D. Moreover, for any T and any
(X0, X1, . . . , XT ) ∈ ST (C), since E

[
1

T+1

∑T
t=0 1Xt

]
∈ C, λ ·E

[
1

T+1

∑T
t=0 1Xt

]
≤ g. Therefore, by Markov’s

inequality,

π

(
λ ·

(
1

T + 1

T∑
t=0

1Xt

)
> λ · a− ε

)
≤ g

λ · a− ε
.

This then implies that for every T ,

π

(
1

T + 1

T∑
t=0

1Xt ∈ D

)
≥ π

(
λ ·

(
1

T + 1

T∑
t=0

1Xt

)
≤ λ · a− ε

)
≥ 1− g

λ · a− ε
= ρ∗.
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B Merging and best-responses
The arguments in this section are analogues of those results proved by Gossner (2011). We modify the
arguments and notation slightly.

Lemma B.1. Let ε ∈ (0, 1) and suppose that Q = εP + (1− ε)P ′. Then

H(P | Q) ≤ − log ε.

Proof. See Lemma 3 of Gossner (2011) for the proof.

With this, we can prove Lemma 5.8.

Proof of Lemma 5.8. Note that by the chain rule for relative entropy,

Eθ,σk,β1

[ ∞∑
t=0

H(φ`θ,σk,β1 (· | ht) | φ`ν,σ̄(· | ht))

]

= Eθ,σk,β1

[ ∞∑
t=0

`−1∑
τ=0

Eθ,σk,β1

[
H(φ1

θ,σk,β1 (· | ht+τ ) | φ1
ν,σ̄(· | ht+τ )) | ht

]]
.

For every T ,

Eθ,σk,β1

[
T∑
t=0

`−1∑
τ=0

Eθ,σk,β1

[
H(φ1

θ,σk,β1 (· | ht+τ ) | φ1
ν,σ̄(· | ht+τ )) | ht

]]

=

T∑
t=0

`−1∑
τ=0

Eθ,σk,β1

[
H(φ1

θ,σk,β1 (· | ht+τ ) | φ1
ν,σ̄(· | ht+τ ))

]
≤ `

T∑
t=0

Eθ,σk,β1

[
H(φ1

θ,σk,β1 (· | ht) | φ1
ν,σ̄(· | ht))

]
= `H(φTθ,σk,β1 (· | h0) | φTν,σ̄(· | h0)) ≤ −` log

(
γ(θ, ωk,β1)

)
,

where the last inequality comes from the previous lemma. Therefore by monotone convergence,

Eθ,σk,β1

[ ∞∑
t=0

H(φ`(· | ht) | φ`(· | ht))

]
≤ −` log

(
γ(θ, ωk,β1)

)
.

Then by Markov’s inequality,

Pθ,σk,β1

(
M`

σk,β1 ,σ(θ, J, λ)
)
≤ −

` log
(
γ(θ, ωk,β1)

)
λJ

.

C Doob’s Up-Crossing Inequality
Here we present the formal statement of the martingale up-crossing inequality.

Theorem C.1 (Doob’s Up-Crossing Inequality). Let X := {Xt}∞t=0 be a submartingale defined on a proba-
bility space (Ξ,P,F) and let a < b. Then

E
[
U

(a,b)
t (X(ξ))

]
≤ E [(Xt(ξ)− a)+]− E [(X0 − a)+]

(b− a)
.
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See, for example, Shiryaev (1996) or Stroock (2010) for a more detailed treatment of the Doob’s up-
crossing inequality and its proof.

D Proof of Theorem 6.4
Let us denote the vector of beliefs over all states θ ∈ Θ at time t and history ht by the following:

νσ̄(ht) :=
(
νσ̄(θ1 | ht), νσ̄(θ2 | ht), . . . , νσ̄(θm | ht)

)
.

Given any vector x ∈ Rm, let ‖x‖ denote the Euclidean norm:

‖x‖2 =

m∑
k=1

x2
k.

We begin with a couple lemmata.

Lemma D.1. Let ρ > 0. Then there exists some ε > 0 such that for all t and ht ∈ Ht,

Eν,σ̄
[
‖νσ̄(ht+1)− νσ̄(ht)‖ | ht

]
≤ ε =⇒ inf

β∈NR(νσ̄(ht))
‖σ̄(ht)− β‖ ≤ ρ.

Proof. Given β ∈ B and ν ∈ ∆(Θ), the updated belief after observing y ∈ Y is given by:

νβ,ν(· | y) =

(
ν(θ)π(y | θ, β(θ))∑

θ′∈Θ ν(θ′)π(y | θ′, β(θ′))

)
θ∈Θ

.

Then define the function
F (β, ν) := Eν,β [‖νβ,ν(· | y)− ν‖] .

First note that if F (β, ν) = 0 then β ∈ NR(ν). Now given any ε ≥ 0, the set F (β, ν) ≤ ε is compact. Then
note that if we define

Gε := max
{(β,ν):F (β,ν)≤ε}

‖β −NR(ν)‖,

Gε is continuous in ε and this proves the claim.

Lemma D.2. For every ε > 0 there exists ρ > 0 such that for all ν ∈ ∆(Θ) and β ∈ B,

inf
β′∈NR(ν)

‖β − β′‖ ≤ ρ =⇒ max
α2∈B2(β,ν)

∑
θ∈Θ

ν(θ)u1(β(θ), α2, θ) < V (ν) + ε.

Proof. Consider the following function:

Gρ := max
{(β,ν):‖β−NR(ν)‖≤ρ}

max
α2∈B2(β,ν)

∑
θ∈Θ

ν(θ)u1(β(θ), α2, θ).

Then Gρ is continuous in ρ and thus proves the claim.

Lemma D.3. Let ε > 0. Then given any equilibrium strategy σ of the opportunistic type, there exists at
most m/ε times t at which

Eν,σ̄
[
‖νσ̄(ht+1)− νσ̄(ht)‖2

]
≥ ε.
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Proof. First consider any joint random variable (X,Z) such that E [X | Z] = Z. Then

E
[
‖X − Z‖2

]
= E

[
‖X‖2 + ‖Z‖2

]
− 2E [〈X,Z〉]

= E
[
‖X‖2 + ‖Z‖2

]
− 2

∑
z

P (Z = z)E [〈X,Z〉 | Z = z]

= E
[
‖X‖2 + ‖Z‖2

]
− 2

∑
z

P (Z = z) ‖z‖2

= E
[
‖X‖2 − ‖Z‖2

]
.

The using the above, consider the beliefs at any time t+ 1:

m ≥ Eν,σ̄
[
‖νσ̄(ht+1)− ν‖2

]
= Eν,σ̄

[
‖νσ̄(ht+1)‖2 − ‖ν‖2

]
=

t∑
τ=0

Eν,σ̄
[
‖νσ̄(hτ+1)‖2 − ‖νσ̄(hτ )‖2

]
=

t∑
τ=0

Eν,σ̄
[
‖νσ̄(hτ+1)− νσ̄(hτ )‖2

]
.

This then implies the desired conclusion.

All that remains is to show that for every ε > 0, there exists some δ∗ < 1 such that for all δ > δ∗

and any equilibrium (σ, σ2), the payoff to playing σ̄ for the opportunistic type is at most cavV (ν) + ε. We
demonstrate in the following proof.

Proof of Theorem 6.4. By Lemma D.2, there exists some ρ > 0 such that

inf
β∈NR(νσ̄(ht))

‖σ̄(ht)− β‖ ≤ ρ =⇒ max
α2∈B2(σ̄(ht),νσ̄(ht))

∑
θ∈Θ

νσ̄(θ)u1(σ̄(ht), α2, θ) < V (νσ̄(ht)) +
ε

4
.

Choose n ∈ N such that 1
n (u− u) < ε/4. By Lemma D.3, there are at most nm/ρ times at which

Eν,σ̄
[
‖νσ̄(ht+1)− νσ̄(ht)‖2

]
≥ ρ

n
.

Note that for all times t such that Eν,σ̄
[
‖νσ̄(ht+1)− νσ̄(ht)‖2

]
< ρ

n , then

Pν,σ̄
[
‖νσ̄(ht+1)− νσ̄(ht)‖2

]
<

1

n
.

Thus at all such times, the expected payoff is at most

1

n
(u− u) + Eν,σ̄

[
V (νσ̄(ht)) +

ε

4

]
≤ cavV (ν) +

ε

2
.

Thus the most that a player could obtain from playing σ̄ is:(
1− δ

nm
ρ

)
u+ δ

nm
ρ

(
cavV (ν) +

ε

2

)
.

Then we can choose δ∗ < 1 such that for all δ > δ∗,(
1− δ

nm
ρ

)
u+ δ

nm
ρ

(
cavV (ν) +

ε

2

)
< cavV (ν) + ε.

This concludes the proof.
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