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Expected Worth for 2× 2 Matrix Games with Variable Grid Sizes

Michael R. Powers,∗ Martin Shubik,† and Wen Wang‡

October 16, 2016

Abstract

We offer a detailed examination of a broad class of 2 × 2 matrix games as a first step toward
considering measures of resource distribution and efficiency of outcomes. In the present essay,
only noncooperative equilibria and entropic outcomes are considered, and a crude measure of
efficiency employed. Other solution concepts and the formal construction of an efficiency index
will be addressed in a companion paper.

JEL Classifications: C63, C72, D61
Keywords: 2× 2 matrix games, efficiency, coordination, worth of coordination.

1 2× 2 Matrix Games with Cardinal Payoffs

In the folklore and elementary pedagogy of game theory, the 2×2 matrix game plays a special role.

Several of these games bear well-known names, such as the Prisoner’s Dilemma, Stag Hunt, and

Battle of the Sexes. Although there are only 144 strategically different 2 × 2 games with strictly

ordinal preferences, one often is interested in considering related games with cardinal preferences,

whose number is unbounded. The present paper is devoted to addressing applications in which it

is desirable to examine a large but finite set of 2× 2 games with cardinal preferences.

∗Zurich Group Professor of Risk Mathematics, School of Business and Management, and Professor, Schwarzman
Scholars Program, Tsinghua University.
†Seymour Knox Professor of Mathematical Institutional Economics (Emeritus), Yale University, and External

Faculty, Santa Fe Institute.
‡International Business School, Nankai University.
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1.1 Outcome Sets

A generic 2×2 game is described by the matrix shown in Table 1. Here, the row player has the two

strategies, “Up” and “Down” (corresponding to rows i = 1, 2, respectively), whereas the column

player has “Left” and “Right” (corresponding to columns j = 1, 2, respectively). This yields four

possible payoff pairs (outcomes), (ai,j , bi,j), for i = 1, 2 and j = 1, 2.

Table 1: A Generic 2× 2 Matrix Game

Left (j = 1) Right (j = 2)
Up (i = 1) a1,1, b1,1 a1,2, b1,2

Down (i = 2) a2,1, b2,1 a2,2, b2,2

The universe of all strictly ordinal games is easily denumerated by noting that each of the

payoff vectors [a11, a12, a21, a22] and [b11, b12, b21, b22] must be permutations of the ordinal vector

[1, 2, 3, 4], yielding a total of 4!× 4! = 576 different outcomes. This number can be divided by 2 to

remove duplications arising from interchanging rows, and by another 2 to account for interchanging

columns, leaving the canonical 144 strategically distinct games shown in Appendix 1. Topologically,

the outcome sets of these games may be characterized by a smaller set of 24 distinct shapes, 22

of which are two-dimensional (i.e., games of opposition) and the remaining 2 one-dimensional (i.e.,

games of coordination). These shapes are shown in detail in Appendix 1, where they are associated

with the 144 games.

In considering cardinal games, we assume that the payoff pairs, (ai,j , bi,j), may be expressed in

well-defined units of money or gold, with a fixed minimal level of fineness that can be perceived

and/or traded.1 Is there an upper bound on how large an individual payoff can be? Philosophically,

one could argue in either direction; but for all practical purposes, one can impose a large enough

upper bound that encompasses all possible observations for a given society. We therefore investigate

a closed set of 2×2 matrix games with payoffs given by elements in the set
{

1/2k−1, 2/2k−1, . . . , 4
}

,

for k ∈ {1, 2, ...}, with a grid size of ∆ = 1/2k−1. Equivalently, one might choose the payoff set{
1, 2, . . . , 2k−1 × 4

}
, with a grid size of ∆ = 1. Although the latter approach offers the simplicity

1We do not concern ourselves with individual preferences directly, but allow for the possibility that each amount
of money/gold is mapped onto individual preferences in some risk-averse manner.
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of an easily comprehensible fixed grid size, the former provides both a bounded maximum payoff

size and an intuitively straightforward limiting process to assess the impact of grid size on player

behavior.

In the remainder of the paper, we study various properties of cardinal games arranged into

144 categories associated with their corresponding strictly ordinal games. Our investigation relies

on both analytical and simulation methods. In the latter case, we employ a computer program

that carries out the following steps for each of games G = 1, 2, . . . , 100, 000, for a given value

k ∈ {1, 2, ...}:

1. For each of the four cells, (i, j) = (1, 1) , (1, 2) , (2, 1) , (2, 2), generate two independent random

variables, ai,j ∼ Uniform
{

1/2k−1, 2/2k−1, . . . , 4
}

and bi,j ∼ Uniform
{

1/2k−1, 2/2k−1, . . . , 4
}

,

where the four pairs (ai,j , bi,j) are mutually independent.

2. If either ai,j = ai′,j′ or bi,j = bi′,j′ for any (i, j) = (i′, j′) , then reject the game and return to

step (1).

3. Define the cardinal 2× 2 game G by the four payoff pairs (ai,j , bi,j).

4. Separately order the four ai,j and four bi,j from lowest to highest, and let ãi,j = rank (ai,j) ∈

{1, 2, 3, 4} and b̃i,j = rank (bi,j) ∈ {1, 2, 3, 4} for all (i, j).

5. Define the ordinal 2× 2 game G by the four payoff pairs
(
ãi,j , b̃i,j

)
, and match this game to

one of the 144 canonical strictly ordinal games.

By symmetry, we know that the number of ordinal games generated for each of the 144 canonical

forms will be approximately the same.

1.2 Mass Properties

The generation of a large number of distinct cardinal games, each associated with one of the 144

canonical ordinal games, provides the means to consider the mass properties of several approaches

to game play. A solution is the outcome (or set of outcomes) derived by the selection of a strategy by

each of the game’s players, and may be based upon a wide array of individual player characteristics.
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For the present, however, we will limit consideration to (1) noncooperative, individually optimizing

players, and (2) entropy players selecting each row or column randomly, with probability 1/2.

2 Joint Maximum Payoffs

Given a set of cardinal games generated randomly, as above, it is natural to consider the distribution

of the joint maximum payoff, JMk = max
i∈{1,2},j∈{1,2}

{ai,j + bi,j}, for a given k ∈ {1, 2, ...}, and easy

to see that the sample space of JMk is given by the set of values
{

5/2k−1, 6/2k−1, . . . , 8
}

.

2.1 Distribution for k = 1

For the case of k = 1,2 this sample space is simply the set of integers {5, 6, 7, 8}, and it is useful

to associate these joint maxima with each of three game categories: (1) games of coordination, for

which JM1 = 8; (2) mixed-motive games, for which JM1 ∈ {7, 6}; and (3) games of opposition, for

which JM1 = 5. For this baseline case, one can work out the distribution of the joint maximum as

in Table 2, from which it is clear that JM1 is negatively skewed, with mean, median, and mode of

6.875, 7, and 7, respectively.

Table 2: Distribution of JM1

Value # of Games
8 36
7 60
6 42
5 6

Total 144

2.2 Distribution for k > 1

For k > 1, the distribution of JMk is more complex, but much can be learned simply by considering

the limiting case as k →∞. Letting ai,j and bi,j be independent and identically distributed (contin-

uous) Uniform (0, 4] random variables for all (i, j), one can define JM∞ = max
i∈{1,2},j∈{1,2}

{ai,j + bi,j},

2We note that for k = 1, the sample space of the random cardinal games is identical to the set of 144 canonical
ordinal games.
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and observe that JM∞ = max {X1, X2, X3, X4}, where X` ∼ i.i.d. Triangular [0, 8]; i.e.,

FX (x) =


x2/32 for x ∈ [0, 4]

−x2/32 + x/2− 1 for x ∈ (4, 8]

.

It then follows that

FJM∞ (y) =


(
y2/32

)4
for y ∈ [0, 4](

y2/32− y/2 + 1
)4

for y ∈ (4, 8]

and

fJM∞ (y) =


(
y2/32

)3
(y/4) for y ∈ [0, 4](

y2/32− y/2 + 1
)3

(y/4− 2) for y ∈ (4, 8]

.

This probability density function, plotted in Figure 1, shows that the distribution of JM∞ is

negatively skewed, with mean, median, and mode given approximately by 5.6968, 5.7436, and

5.8619, respectively.3

Figure 1: Probability Density Function of JM∞

3 These parameter values are calculated as follows: Mean =
� 8

0
[1− FJM∞ (y)] dy =

� 4

0

[
1−

(
y2/32

)4]
dy +

� 8

4

[
1−

(
y2/32− y/2 + 1

)4]
dy = 3, 589/630 ≈ 5.6968; Median = F−1

JM∞
(1/2) ={

m :
(
m2/32−m/2 + 1

)4
= 1/2

}
= 8 − 4

√
2− 4
√

8 ≈ 5.7436; and Mode = arg max
y∈[0,8]

{fJM∞ (y)} =

root
y∈(4,8]

{(
y2/32− y/2 + 1

)2 (
7y2/32− 7y/2 + 13

)}
= 8− 8/

√
14 ≈ 5.8619.
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The above analysis reveals that the shape of the distribution of the joint maximum remains

negatively skewed for large values of k, just as it is for k = 1. One noteworthy difference, however,

is that games of coordination and games of opposition become less and less probable, approaching

sets of measure zero as k →∞.

3 Noncooperative Equilibrium

The concept of noncooperative equilibrium has existed in the economic literature since the work of

Augustin Cournot (1836), but was mathematically fully formalized and generalized by John Nash

(1952). We define the outcome of a 2 × 2 matrix game as an ordered pair of strategies, (sR, sC),

in which the first element denotes the row player’s method of selecting a row (i ∈ {1, 2}), and

the second element denotes the column player’s method of selecting a column (j ∈ {1, 2}).4 We

further define a noncooperative equilibrium as an outcome in which each player has no motivation

to change his or her strategy, given the indicated strategy of the other player. Restricting attention

to pure strategies, in which each player’s decision consists of a fixed (as opposed to random) choice

of row or column, one can see that (s∗R, s
∗
C) = (i∗, j∗) constitutes a pure-strategy noncooperative

equilibrium (PSNE) if and only if

i∗ = arg max
i∈{1,2}

{ai,j∗}

and

j∗ = arg max
j∈{1,2}

{bi∗,j} .

A simple illustration of PSNE is given by the ordinal Prisoner’s Dilemma of Table 3. If both

prisoners remain silent, then each will be given only a minor penalty (of 3); however, if one confesses

and the other does not, then the former receives a very light penalty (of 4), whereas the latter

receives a more severe penalty (of 1) than the penalty if both had confessed (of 2). For this game,

it is easy to confirm that the strategy pair (Down,Right) forms a PSNE with payoffs (2, 2).

4In a matrix or normal-form game, any move is equivalent to a strategy because the players face no contingencies.

6



Table 3: Prisoner’s Dilemma

Left (“Remain Silent”) Right (“Confess”)
Up (“Remain Silent”) 3,3 1,4

Down (“Confess”) 4,1 2,2

One of the most important contributions of Nash (1952) was the extension of noncooperative

equilibrium from games with only pure strategies to games allowing each player to select a prob-

ability distribution over his or her possible choices. Thus, instead of just the pure-strategy pairs,

(sR, sC) = (i, j), we can consider random-strategy pairs, (sR, sC) = (x, y), in which x ∈ (0, 1)

denotes the row player’s (non-trivial) probability of selecting Up (i = 1), and y ∈ (0, 1) denotes

the column player’s (likewise non-trivial) probability of selecting Left (j = 1). A noncoopera-

tive equilibrium that involves random strategies is referred to as a mixed-strategy noncooperative

equilibrium (MSNE). One can solve for a game’s MSNEs from the two conditions:

x∗ = arg max
x∈(0,1)

{a1,1xy∗ + a1,2x (1− y∗) + a2,1 (1− x) y∗ + a2,2 (1− x) (1− y∗)} (4.1)

y∗ = arg max
y∈(0,1)

{b1,1x∗y + b1,2x
∗ (1− y) + b2,1 (1− x∗) y + b2,2 (1− x∗) (1− y)} . (4.2)

The simple game of Matching Pennies, shown in Table 4, provides an intuitively reasonable

use of mixed strategies. For the mixed-strategy pair (x, y) = (1/2, 1/2), each player receives an

expected payoff of 0. However, if either player selected a pure strategy, then the other player’s

best response would cause the first player to lose 1 unit with certainty.5 Although coin tosses are

commonly used by individuals in certain decision-making settings, the use of more complicated

mixed strategies appears to depend heavily on player sophistication and problem context.

Table 4: Matching Pennies

Heads Tails
Heads 1,-1 -1,1
Tails -1,1 1,-1

5Alternatively, one could consider an ordinal version of this game in which the payoffs −1 and 1 are replaced by
the payoff ranks 1 and 2, respectively. In the ordinal game, using the mixed strategy (x, y) = (1/2, 1/2) gives each
player the same opportunity to receive 1 or 2.
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3.1 Population of PSNEs

In the study of matrix games, it is useful to separate PSNEs and MSNEs because the former depend

only on payoff ordinalities, whereas the latter are sensitive to cardinal differences. For the set of

144 strictly ordinal 2× 2 games, the distribution of the number of PSNEs is given in Table 5.

Table 5: Distribution of PSNEs

Value # of Games
0 18
1 108
2 18

Total 144

3.2 Population of MSNEs

From the list in Appendix 2, one can see that the set of 144 canonical games contains 36 games

with exactly one MSNE, and no games with more than one MSNE. These 36 games match exactly

with the set of games having either zero or two PSNEs, from which it follows that all 144 ordinal

games contain at least one noncooperative equilibrium.

3.3 Some Easy Calculations

Most features and solutions of 2× 2 matrix games – whether strictly ordinal or cardinal – are easy

to calculate. In developing procedures for such calculations, dominant rows and/or columns play

an important role.

A row [column] in a matrix game is said to dominate (strictly) another row [column] if and only

if each payoff in the first row [column] is greater than the corresponding payoff in the second row

[column]. In a 2× 2 game, it is well known that:

• If a game possesses exactly one dominant row or column, then it must possess exactly one

PSNE.

• If a game possesses zero dominant rows or columns, then it must possess zero PSNEs (and

therefore exactly one MSNE).
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• If a game possesses one dominant row and one dominating column, then it may possess either

(a) exactly one PSNE or (b) two PSNEs and exactly one MSNE.

The above facts enable us to construct the following algorithm for computing all PSNEs and

MSNEs:

1. Check each row and column for the dominance property, and let d ∈ {0, 1, 2} denote the total

number of dominant rows/columns.

2. If d = 1, then solve for the unique PSNE by identifying the cell in the dominant row [column]

that has the greater payoff for the column [row] player.

3. If d = 0, then solve for the MSNE explicitly as

(x∗, y∗) =

(
a2,2 − a1,2

a1,1 − a1,2 − a2,1 + a2,2
,

b2,2 − b1,2
b1,1 − b1,2 − b2,1 + b2,2

)
.

4. If d = 2, then solve for each of the two PSNEs using the method described in step (1)

immediately above, and solve for the MSNE as in step (2) immediately above. (The two

PSNEs also can be found as corner solutions of the system of equations in (4.1) and (4.2).)

4 Populations of Three Special Games

In Appendix 3, we provide the C++ program used to generate cardinal (and strictly ordinal) games

as described in steps (1) through (5) of Subsection 1.1. Appendix 4 contains various sample means

and variances associated with 100,000 cardinal games generated with a grid size of ∆ = 1/256 (i.e.,

for k = 9).

In the present section, we consider the populations of three special games discussed widely in

the behavioral science literature:

• Prisoner’s Dilemma (game 1 of Appendix 2);

• Stag Hunt (game 41 of Appendix 2); and

9



• Battle of the Sexes (game 10 of Appendix 2).

The common names of these games attach considerable context to the abstract payoff structure,

which may or may not be justified. In particular, there is little indication that anyone who does

not know these common names would associate them with the specific games involved (see, e.g., I.

Powers and Shubik, 1991). Nevertheless, the structural features of these three settings allow us to

illustrate several important aspects of 2× 2 games.

4.1 Prisoner’s Dilemma

Possibly the most studied of all games is the Prisoner’s Dilemma, whose popularity arises at least

in part because its ordinal form is the only game within the canonical 144 for which: (a) there is

a unique PSNE, (Down,Right), that is strictly dominated by another feasible outcome, (Up,Left);

and (b) all other outcomes are Pareto optimal. Figure 22 of Appendix 1 presents the payoff set for

this well-known game.

In exploring the population of cardinal Prisoner’s Dilemma games for a given choice of grid size,

∆ = 1/2k−1, it is helpful to think of the entire domain of possible payoffs, from the game with the

smallest payoff values, in Table 6, to that with the largest payoff values, in Table 7. Naturally, an

ordinal treatment of preferences recognizes no difference between these two games.

Table 6: Prisoner’s Dilemma, Smallest Payoffs

Left Right
Up 3

2k−1 ,
3

2k−1
1

2k−1 ,
4

2k−1

Down 4
2k−1 ,

1
2k−1

2
2k−1 ,

2
2k−1

Table 7: Prisoner’s Dilemma, Largest Payoffs

Left Right
Up 4− 1

2k−1 , 4− 1
2k−1 4− 3

2k−1 , 4

Down 4, 4− 3
2k−1 4− 2

2k−1 , 4− 2
2k−1

As k increases and the grid becomes finer, the population of cardinal Prisoner’s Dilemma games

covers more and more of the entire square interval (0, 4]2. In all cases, the game has only the single
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PSNE (Down,Right), whose payoff pair depends on the particular values of ai,j and bi,j generated

in step (1) of Subsection 1.1.

As a baseline, we note that for k = 1, the PSNE payoff pair is always (2, 2), whereas entropy

players do better on average, obtaining an expected payoff of (2.5, 2.5). Figures 2 and 3 provide

scatter diagrams of payoff pairs from 100,000 games for k = 9 and ∆ = 1/256. Figure 2 shows the

PSNEs, and Figure 3 shows the corresponding entropic outcomes. In each case, the sample-mean

payoff pair is indicated by a red diamond near the center of the point cluster.

Figure 2: Prisoner’s Dilemma, Noncooperative Equilibrium

Figure 3: Prisoner’s Dilemma, Entropy Players

4.2 Stag Hunt

The Stag Hunt (Table 8) possesses two PSNEs, one of which, (Up,Left), strictly dominates the

other, (Down,Right). However, depending on underlying assumptions, it can be argued that the

smaller payoff pair sometimes will be chosen by rational players. In particular, if the row [column]
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player believes that the column [row] player will choose Right [Down] with probability greater than

1/2, then he or she will be motivated to choose Down [Right].

Table 8: Stag Hunt

Left Right
Up 4,4 1,3

Down 3,1 2,2

For k = 1, the two PSNEs have payoff pairs (4, 4) and (2, 2), respectively, and the MSNE,

(x∗, y∗) = (1/2, 1/2), yields expected payoffs of (2.5, 2.5). Given the value of (x∗, y∗), one can see

that the MSNE yields identical strategies and payoffs as the game with entropy players.

Figures 4 and 5 provide scatter diagrams of payoff pairs from 100,000 games for k = 9 and

∆ = 1/256. Figure 4 includes the PSNEs and MSNE, each with equal frequency, and Figure 5

shows the corresponding entropic outcomes. As before, the sample-mean payoff pairs are indicated

by red diamonds near the centers of the point clusters.

Figure 4: Stag Hunt, Noncooperative Equilibrium
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Figure 5: Stag Hunt, Entropy Players

4.3 Battle of the Sexes

Unlike the Prisoner’s Dilemma and Stag Hunt, the Battle of the Sexes (Table 9) is not a symmetric

game (i.e., ai,j 6= bj,i for some (i, j)). Like the Stag Hunt, however, it possesses two PSNEs,

(Up,Left) and (Down,Right), and 1 MSNE, (x∗, y∗) = (1/2, 1/2).

Table 9: Battle of the Sexes

Left Right
Up 4, 3 2, 2

Down 1, 1 3, 4

For k = 1, the two PSNEs have payoff pairs (4, 3) and (3, 4), respectively, and the MSNE gives

expected payoffs of (2.5, 2.5). Thus, as in the case of the Stag Hunt, the game with entropy players

yields identical strategies and payoffs as noncooperative players using the MSNE.

Figures 5 and 6 provide scatter diagrams of payoff pairs from 100,000 games for k = 9 and

∆ = 1/256. Figure 5 includes the PSNEs and MSNE, each with equal frequency, and Figure 6

shows the corresponding entropic outcomes. Once again, the sample-mean payoff pairs are indicated

by red diamonds.
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Figure 6: Battle of the Sexes, Noncooperative Equilibrium

Figure 7: Battle of the Sexes, Entropy Players

4.4 Correlated Strategies and Efficiency

In examining the results of the Stag Hunt and Battle of the Sexes, we observe that the expected

payoffs of the MSNE are strictly lower than at least one pair of PSNE payoffs in both games. This

suggests a potential problem of ineffective coordination. In other words, the players may arrive at a

noncooperative equilibrium for which the individual and/or joint payoffs (i.e., ai∗,j∗ , bi∗,j∗ , and/or

ai∗,j∗+ bi∗,j∗) are less than optimal. Therefore, the value of being able to coordinate strategies may

be substantial.

Table 10 offers some quantification of the deficiencies attributable to ineffective coordination for

the three games discussed above. For each game, the second column presents the average of the joint

payoffs over all noncooperative equilibria, giving equal weight to each PSNE and MSNE. For the

Prisoner’s Dilemma, this is 2 + 2 = 4; for the Stag Hunt, it is [(4 + 4) + (2 + 2) + (2.5 + 2.5)] /3 ≈

14



5.6667; and for the Battle of the Sexes, it is [(4 + 3) + (3 + 4) + (2.5 + 2.5)] /3 ≈ 6.3333. In the

third column, we construct a simple efficiency measure by dividing the average joint payoff by

the maximum possible joint payoff that can be achieved by either a pure- or mixed-strategy pair

imposed by an exogenous agency (custom, law, private intermediation, etc.). Since the agent

is exogenous, it can expand the domain of mixed strategies to correlated strategies, for which the

players’ random selections of Up and Down are statistically dependent. For the Prisoner’s Dilemma,

this yields 3 + 3 = 6; for the Stag Hunt, it yields 4 + 4 = 8; and for the Battle of the Sexes, it

yields either 4 + 3 = 3 + 4 = 7 or [(4 + 3) p + (3 + 4) (1− p)] = 7, where the latter value comes

from any correlated mixed strategy that chooses (Up,Left) and (Down,Right) with probabilities p

and 1−p, respectively.6 The fourth and fifth columns present corresponding calculations for games

with entropy players.

Table 10: Joint Payoffs for k = 1

Game Avg. of NE Payoffs NE Efficiency Entropy Payoffs Entropy Efficiency

Prisoner’s Dilemma 4.0000 0.6667 5.0000 0.8333
Stag Hunt 5.6667 0.7083 5.0000 0.6250

Battle of the Sexes 6.3333 0.9048 5.0000 0.7143

5 Discussion

5.1 Efficiency Analysis of All 2× 2 Games

Table 11 provides efficiency measures – as defined in the previous subsection – for the entire

population of cardinal games generated in steps (1) through (5) of Subsection 1.1 for k = 1 and

k = 9. This table addresses the nature of the optimality of individual behavior within all possible

2× 2-game structures, subdivided by the values of JM1 in the associated canonical ordinal game.

Thus, for clarity, we would note that: (a) Prisoner’s Dilemma games are included in the category

of JM1 = 6; (b) Stag Hunt games are included in JM1 = 7; and (c) Battle of the Sexes games are

included in JM1 = 8.

6Within the conventional Battle of the Sexes storyline, the man and woman who are trying to decide which movie
to see could choose between “his” movie and “her” movie by tossing a coin (for which p = 1/2).
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Table 11: Efficiencies of All Games

k = 1 k = 1 k = 9 k = 9
NE Entropy NE Entropy

JM1 = 8 0.9410 0.6250 0.7532 0.5000
JM1 = 7 0.9127 0.7143 0.7305 0.5716
JM1 = 6 0.9352 0.8333 0.7491 0.6669
JM1 = 5 NA NA NA NA
Average 0.9300 0.7386 0.7445 0.5910

As is often true in game theory, behavioral paradoxes abound. We purposely indicate that

efficiency measures are “not applicable” for the case of JM1 = 5, because these games of opposition

are qualitatively different from all others. Formally, the efficiency measures could be defined as 1.0,

but such calculations would be misleading because these games do not reflect the characteristics of

a society. Specifically, there is no room for cooperation, coordination, or any form of discourse, and

whatever one individual gains the other loses. As noted before, such structural dystopias become

increasingly rare in the “Flatland” (see Abbott, 1952 [1884]) of matrix games that arises for large

values of k.

By definition, the category of JM1 = 8 comprises games of coordination. These games always

include an outcome with payoff pair (4, 4), and such outcomes must be PSNEs. In this case, the

reason why efficiency is not exactly 1.0 is that some games have two PSNEs and 1 MSNE, and

these lower the average.

Somewhat surprisingly, the fall-off in the efficiency of noncooperative equilibria as k increases

from 1 to 9 is rather large for all game categories. For k = 1, the efficiency loss in games of

coordination (JM1 = 8) and mixed-motive games (JM1 = 7, 6) is between 6 and 9 percent. For

k = 9, this grows to between 25 and 27 percent, and results for k = 10 indicate that k = 9 is very

close to the limit, with differences in efficiency of less than 0.01 percent. (See Table 12.) Part of

the decrease in efficiency is attributable to the fact that E [JMk]→ E [JM∞] ≈ 5.6968 for large k

, which is substantially less than E [JM1] = 6.875.
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Table 12: Efficiencies for k = 9 and k = 10

k = 9 k = 9 k = 10 k = 10
NE Entropy NE Entropy

JM1 = 8 0.7532 0.5000 0.7528 0.5004
JM1 = 7 0.7305 0.5716 0.7310 0.5717
JM1 = 6 0.7491 0.6669 0.7489 0.6672
JM1 = 5 NA NA NA NA
Average 0.7445 0.5910 0.7447 0.5914

We also consider the completely different behavior of entropy players, who may be viewed as

“know-nothing” or “zero-intelligence” decision makers. Although it is easy to construct games (e.g.,

the Prisoner’s Dilemma) in which the entropy players’ expected payoffs of (2.5, 2.5) are greater

than those of noncooperative players, Table 11 shows that for both k = 1 and k = 9, entropy

players perform worse on average than noncooperative players. This is because they are unable

to take advantage of certain game structures, such as row and/or column dominance, that assist

coordination. Even in this highly constrained environment, differences in the cardinal measures of

payoffs yield far greater variability and inequality when k is large than when k = 1. The meaning

of this change is that as the variety of outcomes grows, the worth of coordination or collaboration

grows as well.

5.2 Why the 2× 2 Case Is So Important

There are many reasons why 2× 2 games are crucial both to the study of game theory specifically,

and behavioral science more generally. These include:

1. They offer a highly useful starting point for illustrating and contrasting many problems and

paradoxes in strategic analysis.

2. They are widely used by introductory instructors of game theory in the behavioral sciences.

(Is this pedagogical use justified? We would argue that it is, with appropriate qualifications.)

3. They greatly facilitate analogy generation and storytelling in connecting specific real-world

problems to abstract models. Hence, they provide valuable exercises in tying the physical

world to mathematics.
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4. They offer minimal repeated-game models for the dynamics of learning, signaling, and other

complex human behaviors.

5. Through a handful of special cases (e.g., the Prisoner’s Dilemma, Stag Hunt, and Battle of

the Sexes), they successfully illustrate fundamental problems in strategy and society.

Items (1), (2), and (4) are highly related for both teaching and research, especially if we believe that

dyadic relations are of considerable importance in describing human and other animal behavior. It

is thus for good reason that elementary textbooks in the behavioral sciences abound with 2×2-game

examples.

6 For n > 3, a Basic Change in the Paradigm

On the whole, we would argue that the study of 2 × 2 games is important because so much of

human activity is well modeled by interactions between two individuals or between one individual

and an institution, with relatively few choices for each party in the short term. This perspective,

however, can blind us against the enormous complexities that arise when increasing matrix size. For

example, in the case of a 3× 3 matrix, the number of distinct strategic cases rises to (9!)2 / (3!)2 ≈

3.6578 × 109; and in the case of 3 players with 2 strategies each, we have a 2 × 2 × 2 matrix with

(8!)3 / (2!)3 ≈ 8.1935× 1012 strategically different possibilities.

In the case of 3 × 3 games, the simple example of Table 13 is sufficient to destroy the hopes

of those interested in developing plausible dynamic strategic solutions. One natural candidate for

simple dynamics is optimal response; that is, players consider where they have been in a previous

play of the game, and use that as the basis for their current optimization. However, a brief glance

at Table 13 shows that if the row and column players begin with strategies (sC, sR) = (1, 1), then

the column player will move to sC = 3, and a 4-cycle will emerge that never converges to the

joint maximum PSNE at (sC, sR) = (2, 2). (Note that if the payoff at (sC, sR) = (2, 2) were (1, 1)

instead of (9, 9), that particular outcome would still be a PSNE.) Quint, Shubik, and Yan (1995)

demonstrated the extensive potential for cycling in a large class of n × n games involving both

sequential and simultaneous moves.
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Table 13: A Simple 3× 3 Matrix Game

sC = 1 sC = 2 sC = 3
sR = 1 4, 1 0, 0 1, 4
sR = 2 0, 0 9, 9 0, 0
sR = 3 1, 4 0, 0 4, 1

6.1 Smooth and Rough Games

In any 2 × 2 game, it is possible to compute 4 first differences between cell payoffs. In the 3 × 3

case, one can compute 12 first differences and 4 second differences, and the payoff sets still have

only few hills and valleys. However, for matrices of 4 × 4 and above, the potential roughness of

the payoff structure increases rapidly. Although the mathematical structure is clearly defined, the

analysis of applied decision problems becomes extremely difficult unless some appropriate smoothing

mechanism is imposed on the payoff surfaces. In corporate, military, and political planning, the

adjustment, evaluation, refinement, and discarding of many features of a strategic process tend to

narrow the final choices to a set that includes certainly less than ten, and often not more than two

or three, alternatives.

These somewhat terse remarks will be enlarged in further work.

6.2 Coordination, Opposition, and Noncooperative Equilibria

As we increase the number of strategies, or players, or both, the relative numbers of games of

coordination and opposition become vanishingly small.

If we consider m × n matrix games with m,n ≥ 3, the relative number of PSNEs drops, and

MSNEs proliferate. There is a literature illustrating this, which includes limiting formulas for the

probability of encountering a PSNE in a large, random matrix game. (See Goldberg, Goldman,

and Newman, 1968, Dresher, 1970, and I. Powers, 1990.)

6.3 Life Is a Set of Measure Zero

A guiding principle for exploring the enormous universe of matrix games is to select appropriate

limiting processes to obtain robust sets of games addressing important questions of interest. We
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do that here in taking the limit of all cardinal 2× 2 games with a minimal grid size.

In general, many problems of interest require such specification that they can be regarded as sets

of measure zero with respect to far larger abstract categories to which they belong. An important

example (to which we will return in a subsequent paper) is the presence of ties. In many contexts

of human activity, ties in perceived valuation are present. Furthermore, when one individual has

finer perceptions than another, the increased precision almost always works to his or her advantage.

In the present essay, we have ruled out ties for simplicity and manageability. If we had permitted

them, the number of canonical ordinal games would have increased from 144 to 726 (see Kilgour

and Frazer, 1988).

7 Concluding Remarks

The principal purpose of this paper was to find a reasonably natural way to consider all cardinal 2×2

games within a given finite grid. The essentially combinatoric aspects of the investigation called

for simulation to evaluate structural aspects that are difficult to see using only analytic methods.

Our study of this structure provided a sufficiently rich background for examining in detail both

noncooperative equilibria and entropy-player solutions. In a subsequent paper, we will consider

other solution concepts that enable one to investigate the influence of structure on behavior with

various intents.

The amount of “fat left in the system” depends on the solution used. In many cases, a referee,

government, or other outside agency could be used to guide the system to a superior outcome,

while consuming fewer resources than it adds. The gap between the current solution and the joint

maximum is the maximum worth of the coordinator. Given the basic analysis of the present paper,

we now are in a position to consider developing improved measures of efficiency and symmetry for

any outcome in a matrix game. We plan to discuss this topic as well in a future paper.

In short, this first essay was aimed at providing a simple idea of the worth of government, with

a quick and crude estimate. A second essay will be devoted to the many problems of structure and

behavior arising from noncooperative equilibria in 2× 2 games. Finally, a third essay will address
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the development of more sophisticated efficiency measures based upon the analyses of the prior

work.
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Appendix 2

What is a Solution to a Matrix Game? Appendix 2 Martin Shubik
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Row Col.
Game # Symmetric TransposeShape Dom.
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Optima
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Row Col.
Game # Symmetric TransposeShape Dom.
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Row Col.
Game # Symmetric TransposeShape Dom.
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(3,1) (4,4)
(1,2) (2,4)
(3,3) (4,1)
(1,3) (2,1)
(3,2) (4,4)
(1,3) (2,1)
(3,4) (4,2)
(1,3) (2,2)
(3,4) (4,1)
(1,3) (2,4)
(3,2) (4,1)

Sym

Sym

58

70

17

23

38

129

96

NA

85

119

142

80

NA

103

139

93

124

51

73

33

48

28

16

7 2

0 178 8 2

87 7 1 3

1 3 4 2 2

18

0 267 7 2

71 7

8

11

7

9

0 169 8 2

2.5 2.5 0 372 6 0

0 2

80 7 1 3 4 1

4 1 279 7 1 3

1 3 4 1 2

2

1

10

12

5

2

6

4

3

1

2

4

5

7

9

12

13

1486 7

4 2 2

8 4

3

85 8

68 7 1 4 3 1 2

77 8 1 4 4 1

4 1 170

3 2 281 7 1 4

1 4 3 1 273 7

1

83 8 1 4

1 4 4 1 182 8

76

0 274 7 2

388 6 1 3 2 1

1 4 4 1 1

84 6 1 3 3 1

4 2 1

375 6 1 4 2 1

29
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Appendix 2

Row Col.
Game # Symmetric TransposeShape Dom.

Pareto
Optima

Joint
Max

PSNEs
Nash PayoffPayoff

Matrix

(1,4) (2,1)
(3,3) (4,2)
(1,4) (2,2)
(3,1) (4,3)
(1,4) (2,3)
(3,1) (4,2)
(1,1) (2,2)
(4,4) (3,3)
(1,1) (2,3)
(4,4) (3,2)
(1,2) (2,1)
(4,3) (3,4)
(1,2) (2,4)
(4,3) (3,1)
(1,3) (2,1)
(4,2) (3,4)
(1,3) (2,4)
(4,2) (3,1)
(1,4) (2,1)
(4,3) (3,2)
(1,4) (2,2)
(4,1) (3,3)
(1,4) (2,3)
(4,1) (3,2)
(1,1) (3,2)
(2,4) (4,3)
(1,1) (3,3)
(2,2) (4,4)
(1,1) (3,3)
(2,4) (4,2)
(1,1) (3,4)
(2,2) (4,3)
(1,1) (3,4)
(2,3) (4,2)
(1,2) (3,1)
(2,3) (4,4)
(1,2) (3,3)
(2,1) (4,4)
(1,2) (3,3)
(2,4) (4,1)
(1,2) (3,4)
(2,1) (4,3)
(1,2) (3,4)
(2,3) (4,1)

52

20

75

34

9

42

32

4

18

56

31

66

45

54

77

47

63

68

43

30

60

40

7

23

1

3

6

11

14

17

19

22

24

5

1

6

2

4

9

4 1 2101 7 1 2

1 3 4 1 2

1 2

1 2 3 1 2

3

105 7

103 6 1

104 7

12

96 7

94 7 1 3 4 1

2 4 1

4 3 1 290 7

1 2

2

97 6

95 7 1 4 3 1

2 1 3

2

1 4

20

21

4

3 2 2109 7 1 4

99 6 1 3

110 7 1 2 3 1

4 1108 6

3

91 6 1 4

1

4 1

100 5 1 3 2 1

3 2 298

92 8 1 4 4 1

3 2 389 6 1

1

1

93 8

1 4 2

106 8

102 8 1 4 4 2

3 1 3

1 4 3 2 2

4

1 4 4 1 1

1

7 1

1

3

2

8

10

107 24418

30

33



Appendix 2

Row Col.
Game # Symmetric TransposeShape Dom.

Pareto
Optima

Joint
Max

PSNEs
Nash PayoffPayoff

Matrix

(1,3) (3,1)
(2,2) (4,4)
(1,3) (3,1)
(2,4) (4,2)
(1,3) (3,2)
(2,1) (4,4)
(1,3) (3,2)
(2,4) (4,1)
(1,3) (3,4)
(2,1) (4,2)
(1,3) (3,4)
(2,2) (4,1)
(1,4) (3,1)
(2,2) (4,3)
(1,4) (3,1)
(2,3) (4,2)
(1,4) (3,2)
(2,1) (4,3)
(1,4) (3,2)
(2,3) (4,1)
(1,4) (3,3)
(2,1) (4,2)
(1,1) (3,2) 4 4
(4,4) (2,3) 3 2
(1,1) (3,3)
(4,2) (2,4)
(1,1) (3,3) 4 4
(4,4) (2,2) 3 3
(1,1) (3,4)
(4,2) (2,3)
(1,2) (3,1)
(4,3) (2,4)
(1,2) (3,3)
(4,1) (2,4)
(1,2) (3,4)
(4,1) (2,3)
(1,2) (3,4) 4 3
(4,3) (2,1) 3 4
(1,3) (3,1)
(4,2) (2,4)
(1,3) (3,1)
(4,4) (2,2)
(1,3) (3,2)
(4,4) (2,1)

25

71

11

49

55

21

78

36

44

24

13

67

64

15

29

62

14

8

22

2

37

5

8

17

15

13

13

18

14

16

21

23

19

24

20

3

6

1

4

11

12

10

124 8

0 2129 7 2

0 1122 8 2

0 2126 7 0 2.5 2.5

2.5 2.5 0 2130 6 0

2

4 2 3

4 1 2125 7 1 3

1 2 3 2 4120 5

0 1

121 6 1 4 2 1

3

114 6 1 2

2

2128 7

117 7

115 7 1 4 2 2

112 6

3

2

8 1

116 7 1 2 2

4 1 1113 8 1 4

4 4 1 1111

1 2 4 2 2

15

17

3

131 8 1 4

3 3 1 3127 6 1

1 4 3 1 2

1 2119 7 1 4

1 3 4 1

118 6 1 2 3

1 1132 8 1 4 4

4 1 1

3123 6 1 3 3 1

1 2

31

34



Appendix 2

Row Col.
Game # Symmetric TransposeShape Dom.

Pareto
Optima

Joint
Max

PSNEs
Nash PayoffPayoff

Matrix

(1,3) (3,4) 3 4
(4,2) (2,1) 4 2
(1,4) (3,1)
(4,2) (2,3)
(1,4) (3,1)
(4,3) (2,2)
(1,4) (3,2)
(4,1) (2,3)
(1,4) (3,2)
(4,3) (2,1)
(1,4) (3,3)
(4,1) (2,2)
(1,1) (4,3) 4 3
(2,4) (3,2) 2 4
(1,2) (4,4) 4 4
(2,3) (3,1) 2 3
(1,3) (4,1)
(2,2) (3,4)
(1,4) (4,2)
(2,1) (3,3)
(1,4) (4,3)
(2,1) (3,2)
(1,4) (4,2)
(3,1) (2,3)

Game # corresponds to the numbering system established in the companion paper
Payoff Matrix gives the normal form of each game with payoffs listed as (row payoff, column payoff)
Shape corresponds to the shape of the payoff set's convex hull as shown in Appendix 1
Joint Max gives the highest possible combined payoff for the two players
Symmetric is marked "Sym" if the game is symmetric, otherwise it is left blank
Nash Payoff lists the payoffs of the noncooperative equilibrium

if there are two equilibria with different payoff sums, the one with the highest sum is listed first
Dom. specifies the number of row and column strategies that are strictly dominated
Pareto Optima gives the number of payoff pairs that are Pareto optimal
Transpose lists the game number corresponding to the transpose of the game shown

27

59

16

39

76

61

57

72

50

65

46

6

14

23

21

24

19

22

5

9

16

20

19

23

0 1140 8 2

133 7 2

0 2139 7 2

7

0 3144 6 0 2.5 2.5

2.5 2.5 0 2143 7 0

0 3

0 3134 6 0 2.5 2.5

0 3138 6 0 2.5 2.5

2.5 2.5

142 6 0 2.5 2.5

2.5 2.5 0 2141 7 0

0 2

0 4136 5 0

135

3 1 2137 7 1 4

1 4 3 1 2

32
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Appendix 3

#include <iostream>
#include <fstream>
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <iomanip>
using namespace std;

const int maxnum=1<<11;
const double di=1<<9;
const int loop=300000;
class cmatr
{

public: int aul,bul,aur,bur,adl,bdl,adr,bdr;
public: int d1,d2,d3,d4,d5,d6,d7,d8;
public: int nash;
public: double na1,na2,na3,na4;
public: void setnum(int a1,int a2,int a3,int a4,int a5,int a6,int a7,int a8)
{

aul=a1;bul=a2;aur=a3;bur=a4;
adl=a5;bdl=a6;adr=a7;bdr=a8;
d1=a1;d2=a2;d3=a3;d4=a4;
d5=a5;d6=a6;d7=a7;d8=a8;

}
public: void print()
{

cout<<"cm"<<endl<<"aul "<<aul<<" bul "<<bul<<" aur "<<aur<<" bur "<<bur<<endl;
cout<<"adl "<<adl<<" bdl "<<bdl<<" adr "<<adr<<" bdr "<<bdr<<endl;
cout<<d1<<' '<<d2<<' '<<d3<<' '<<d4<<endl<<d5<<' '<<d6<<' '<<d7<<' '<<d8<<endl;

}
public: bool eql(cmatr a)
{

for (int i=1;i<=4;i++)
{

if ((aul==a.aul)&&(bul==a.bul)&&(aur==a.aur)&&(bur==a.bur)
&&(adl==a.adl)&&(bdl==a.bdl)&&(adr==a.adr)&&(bdr==a.bdr)) return true;

a.setnum(a.adr,a.bdr,a.aul,a.bul,a.aur,a.bur,a.adl,a.bdl);
}
return false;

}
public: void rep()
{

aul=1;aur=1;bul=1;bur=1;adl=1;adr=1;bdl=1;bdr=1;
if (d1>d3) aul++; if (d1>d5) aul++; if (d1>d7) aul++;
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if (d3>d1) aur++; if (d3>d5) aur++; if (d3>d7) aur++;
if (d5>d1) adl++; if (d5>d3) adl++; if (d5>d7) adl++;
if (d7>d1) adr++; if (d7>d3) adr++; if (d7>d5) adr++;
if (d2>d4) bul++; if (d2>d6) bul++; if (d2>d8) bul++;
if (d4>d2) bur++; if (d4>d6) bur++; if (d4>d8) bur++;
if (d6>d2) bdl++; if (d6>d4) bdl++; if (d6>d8) bdl++;
if (d8>d2) bdr++; if (d8>d4) bdr++; if (d8>d6) bdr++;

}
};
class matr
{

public: int ul,ur,dl,dr;
public: int d1,d2,d3,d4;
public: void randnum()
{

ul=rand()%maxnum+1;d1=ul;
ur=rand()%maxnum+1;d2=ur;
dl=rand()%maxnum+1;d3=dl;
dr=rand()%maxnum+1;d4=dr;

}
public: bool eql()
{

if ((ul==ur)||(ul==dl)||(ul==dr)) return true;
if ((ur==dl)||(ur==dr)) return true;
if (dl==dr) return true;
return false;

}
public: void rep()
{

int a1=1,a2=1,a3=1,a4=1;
if (ul>ur) a1++; if (ul>dl) a1++; if (ul>dr) a1++;
if (ur>ul) a2++; if (ur>dl) a2++; if (ur>dr) a2++;
if (dl>ul) a3++; if (dl>ur) a3++; if (dl>dr) a3++;
if (dr>ul) a4++; if (dr>ur) a4++; if (dr>dl) a4++;
ul=a1;ur=a2;dl=a3;dr=a4;

}
public: cmatr combine(matr b)
{

cmatr c;
c.setnum(ul,b.ul,ur,b.ur,dl,b.dl,dr,b.dr);
return c;

}
public: void print()
{
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cout<<ul<<' '<<ur<<' '<<dl<<' '<<dr<<endl;
}

};
double a[500000],b[500000],a1[500000],b1[500000];
double oa[150][4000],ob[150][4000],oa1[150][4000],ob1[150][4000];
int soa[150],sob[150],soa1[150],sob1[150];
int ty[500000];
char nu[4]="";
string s="out";
string s2="solution";
string s1;
int m=0;

int main()
{

srand((int)time(0));
int aul,bul,aur,bur,adl,bdl,adr,bdr;
int i,j,k,t,tp;
int res[150];
double mr[150],mc[150],vr[150],vc[150],sr[150],sc[150],ms[150],vs[150],ss[150];
double mr1[150],mc1[150],vr1[150],vc1[150],sr1[150],sc1[150],ms1[150],vs1[150],ss1[150];
double mmr,mmc,vvr,vvc,ssr,ssc,mms,vvs,sss;
double mmr1,mmc1,vvr1,vvc1,ssr1,ssc1,mms1,vvs1,sss1;
int rc[150],rc1[150];
cmatr samp[150];
cmatr c,d;
cmatr *p;
matr pa,pb;

FILE * fp=NULL;
fp=fopen("www.txt","r");
for (i=1;i<=144;i++)
{

fscanf(fp,"%d%d%d%d%d%d%d%d",&aul,&bul,&aur,&bur,&adl,&bdl,&adr,&bdr);
samp[i].setnum(aul,bul,aur,bur,adl,bdl,adr,bdr);
res[i]=0;

}
for (i=1;i<=144;i++)
{

fscanf(fp,"%d",&samp[i].nash);
if ((samp[i].nash==1)||(samp[i].nash==0))

fscanf(fp,"%lf%lf",&samp[i].na1,&samp[i].na2);
if (samp[i].nash==2)

fscanf(fp,"%lf%lf%lf%lf",&samp[i].na1,&samp[i].na2,&samp[i].na3,&samp[i].na4);
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}
fclose(fp);
fp=NULL;
for (i=1;i<=loop;i++)
{

pa.randnum();
while (pa.eql()) pa.randnum();
pb.randnum();
while (pb.eql()) pb.randnum();
c=pa.combine(pb);
c.rep();
a1[i]=(double) (c.d1+c.d3+c.d5+c.d7)/4;
b1[i]=(double) (c.d2+c.d4+c.d6+c.d8)/4;
for (k=1;k<=144;k++)
{

if (samp[k].eql(c))
{

res[k]++;
ty[i]=k;
a[i]=0;
b[i]=0;
if (samp[k].nash==0)
{

a[i]=c.d1+c.d3+c.d5+c.d7;
a[i]=a[i]/4;
b[i]=c.d2+c.d4+c.d6+c.d8;
b[i]=b[i]/4;

}else if (samp[k].nash==1)
{

if ((c.aul==samp[k].na1)&&(c.bul==samp[k].na2))
{

a[i]=c.d1;b[i]=c.d2;
};
if ((c.aur==samp[k].na1)&&(c.bur==samp[k].na2))
{

a[i]=c.d3;b[i]=c.d4;
};
if ((c.adl==samp[k].na1)&&(c.bdl==samp[k].na2))
{

a[i]=c.d5;b[i]=c.d6;
};
if ((c.adr==samp[k].na1)&&(c.bdr==samp[k].na2))
{

a[i]=c.d7;b[i]=c.d8;
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};
}else if (samp[k].nash==2)
{

if ((c.aul==samp[k].na1)&&(c.bul==samp[k].na2))
{

a[i]=c.d1;b[i]=c.d2;
};
if ((c.aur==samp[k].na1)&&(c.bur==samp[k].na2))
{

a[i]=c.d3;b[i]=c.d4;
};
if ((c.adl==samp[k].na1)&&(c.bdl==samp[k].na2))
{

a[i]=c.d5;b[i]=c.d6;
};
if ((c.adr==samp[k].na1)&&(c.bdr==samp[k].na2))
{

a[i]=c.d7;b[i]=c.d8;
};
if ((c.aul==samp[k].na3)&&(c.bul==samp[k].na4))
{

a[i]+=c.d1;b[i]+=c.d2;
};
if ((c.aur==samp[k].na3)&&(c.bur==samp[k].na4))
{

a[i]+=c.d3;b[i]+=c.d4;
};
if ((c.adl==samp[k].na3)&&(c.bdl==samp[k].na4))
{

a[i]+=c.d5;b[i]+=c.d6;
};
if ((c.adr==samp[k].na3)&&(c.bdr==samp[k].na4))
{

a[i]+=c.d7;b[i]+=c.d8;
};
a[i]+=(double) (c.d1+c.d3+c.d5+c.d7)/4;
b[i]+=(double) (c.d2+c.d4+c.d6+c.d8)/4;
a[i]=(double)a[i]/3;
b[i]=(double)b[i]/3;

};
break;

}
}

}

40



for (i=1;i<=144;i++)
{

mr[i]=0;mc[i]=0;vr[i]=0;vc[i]=0;sr[i]=0;sc[i]=0;
rc[i]=0;
mr1[i]=0;mc1[i]=0;vr1[i]=0;vc1[i]=0;sr1[i]=0;sc1[i]=0;
rc1[i]=0;
soa[i]=0;sob[i]=0;
soa1[i]=0;sob1[i]=0;

}
mmr=0;mmc=0;vvr=0;vvc=0;ssr=0;ssc=0;mms=0;vvs=0;sss=0;
mmr1=0;mmc1=0;vvr1=0;vvc1=0;ssr1=0;ssc1=0;mms1=0;vvs1=0;sss1=0;

for (i=1;i<=loop;i++)
{

a[i]=a[i]/di;
b[i]=b[i]/di;
a1[i]=a1[i]/di;
b1[i]=b1[i]/di;

}
for (i=1;i<=loop;i++)
{

tp=ty[i];
rc[tp]++;
rc1[tp]++;
sr[tp]+=a[i];sr1[tp]+=a1[i];
sc[tp]+=b[i];sc1[tp]+=b1[i];
ss[tp]+=a[i]+b[i];ss1[tp]+=a1[i]+b1[i];
ssr+=a[i];ssc+=b[i];sss+=a[i]+b[i];
ssr1+=a1[i];ssc1+=b1[i];sss1+=a1[i]+b1[i];
soa[tp]++;
oa[tp][soa[tp]]=a[i];
sob[tp]++;
ob[tp][sob[tp]]=b[i];
soa1[tp]++;
oa1[tp][soa1[tp]]=a1[i];
sob1[tp]++;
ob1[tp][sob1[tp]]=b1[i];

}
for (i=1;i<=144;i++)
{

mr[i]=sr[i]/rc[i];mr1[i]=sr1[i]/rc1[i];
mc[i]=sc[i]/rc[i];mc1[i]=sc1[i]/rc1[i];
ms[i]=ss[i]/rc[i];ms1[i]=ss1[i]/rc1[i];
sr[i]=0;sc[i]=0;ss[i]=0;sr1[i]=0;sc1[i]=0;ss1[i]=0;
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}
mmr=ssr/loop;mmc=ssc/loop;mms=sss/loop;
mmr1=ssr1/loop;mmc1=ssc1/loop;mms1=sss1/loop;
ssr=0;ssc=0;sss=0;
ssr1=0;ssc1=0;sss1=0;
for (i=1;i<=loop;i++)
{

tp=ty[i];
sr[tp]+=(a[i]-mr[tp])*(a[i]-mr[tp]);sr1[tp]+=(a1[i]-mr1[tp])*(a1[i]-mr1[tp]);
sc[tp]+=(b[i]-mc[tp])*(b[i]-mc[tp]);sc1[tp]+=(b1[i]-mc1[tp])*(b1[i]-mc1[tp]);

ss[tp]+=(a[i]+b[i]-ms[tp])*(a[i]+b[i]-ms[tp]);ss1[tp]+=(a1[i]+b1[i]-ms1[tp])*(a1[i]+b1[i]-ms1[tp]);
ssr+=(a[i]-mmr)*(a[i]-mmr);ssr1+=(a1[i]-mmr1)*(a1[i]-mmr1);
ssc+=(b[i]-mmc)*(b[i]-mmc);ssc1+=(b1[i]-mmc1)*(b1[i]-mmc1);
sss+=(a[i]+b[i]-mms)*(a[i]+b[i]-mms);sss1+=(a1[i]+b1[i]-mms1)*(a1[i]+b1[i]-mms1);

}
vvr=ssr/loop;vvc=ssc/loop;vvs=sss/loop;
vvr1=ssr1/loop;vvc1=ssc1/loop;vvs1=sss1/loop;
for (i=1;i<=144;i++)
{

vr[i]=sr[i]/rc[i];vr1[i]=sr1[i]/rc1[i];
vc[i]=sc[i]/rc[i];vc1[i]=sc1[i]/rc1[i];
vs[i]=ss[i]/rc[i];vs1[i]=ss1[i]/rc1[i];

}
cout.setf(ios::fixed);
fp=fopen("out.txt","w");
fprintf(fp,"r mean %.3lf c mean %.3lf sum mean %.3lf r var %.3lf c var %.3lf sum

var %.3lf\n",mmr,mmc,mms,vvr,vvc,vvs);
fprintf(fp,"r mean %.3lf c mean %.3lf sum mean %.3lf r var %.3lf c var %.3lf sum

var %.3lf\n",mmr1,mmc1,mms1,vvr1,vvc1,vvs1);
for (i=1;i<=144;i++)
{

//cout<<setprecision(3)<<"BOX "<<i<<":"<<"r mean:"<<mr[i]<<" c mean"<<mc[i]<<"
sum mean:"<<ms[i]<<" r var"<<vr[i]<<" c var"<<vc[i]<<" sum var:"<<vs[i]<<endl;

fprintf(fp,"BOX %d:r mean %.3lf c mean %.3lf sum mean %.3lf r var %.3lf c var %.3lf
sum var %.3lf\n",i,mr[i],mc[i],ms[i],vr[i],vc[i],vs[i]);

fprintf(fp,"BOX %d:r mean %.3lf c mean %.3lf sum mean %.3lf r var %.3lf c var %.3lf
sum var %.3lf\n",i,mr1[i],mc1[i],ms1[i],vr1[i],vc1[i],vs1[i]);

}
fclose(fp);
for (i=1;i<=144;i++)
{

m++;
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itoa(m,nu,10);
s1=s+nu+".txt";
fp=fopen(s1.c_str(),"w");
fprintf(fp,"BOX %d\n",i);
for (k=1;k<=soa[i];k++)

fprintf(fp,"%.3lf %.3lf\n",oa[i][k],ob[i][k]);
fclose(fp);

}
m=0;
for (i=1;i<=144;i++)
{

m++;
itoa(m,nu,10);
s1=s2+nu+".txt";
fp=fopen(s1.c_str(),"w");
fprintf(fp,"BOX %d\n",i);
for (k=1;k<=soa1[i];k++)

fprintf(fp,"%.3lf %.3lf\n",oa1[i][k],ob1[i][k]);
fclose(fp);

}
return 0;

}
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Appendix 4

Table 14: The output for k=9 for the 144 games
Game# Type Row mean Column mean Sum mean Row var Column var Sum var

1
NE 1.579 1.577 3.156 0.658 0.618 1.297

Entropy 1.989 1.995 3.984 0.350 0.315 0.684

2
NE 1.609 3.202 4.811 0.623 0.428 1.062

Entropy 1.996 1.994 3.990 0.324 0.324 0.662

3
NE 3.197 3.228 6.425 0.429 0.403 0.820

Entropy 1.994 2.011 4.005 0.330 0.325 0.667

4
NE 3.198 1.585 4.784 0.415 0.629 1.044

Entropy 1.992 1.996 3.987 0.319 0.329 0.647

5
NE 2.377 3.184 5.561 0.639 0.437 1.039

Entropy 1.986 2.002 3.987 0.321 0.341 0.654

6
NE 1.995 2.001 3.996 0.336 0.347 0.669

Entropy 1.994 1.999 3.993 0.336 0.347 0.669

7
NE 2.518 2.536 5.053 0.370 0.373 0.741

Entropy 1.983 1.993 3.976 0.327 0.318 0.645

8
NE 3.217 3.224 6.441 0.422 0.405 0.848

Entropy 2.023 2.011 4.034 0.333 0.332 0.678

9
NE 2.391 1.603 3.994 0.658 0.613 1.244

Entropy 1.998 2.011 4.009 0.347 0.314 0.641

10
NE 2.543 2.538 5.081 0.377 0.366 0.732

Entropy 1.999 2.001 4.001 0.327 0.320 0.630

11
NE 2.398 1.605 4.003 0.631 0.644 1.260

Entropy 2.004 2.000 4.004 0.335 0.328 0.666

12
NE 2.409 2.399 4.808 0.647 0.639 1.293

Entropy 2.004 1.994 3.999 0.340 0.338 0.673

13
NE 3.192 2.410 5.601 0.415 0.634 1.051

Entropy 2.007 2.012 4.019 0.324 0.336 0.669

14
NE 3.200 1.606 4.807 0.426 0.648 1.058

Entropy 1.998 1.995 3.993 0.329 0.328 0.668

15
NE 3.192 3.201 6.393 0.430 0.420 0.866

Entropy 2.010 1.986 3.996 0.342 0.319 0.666

16
NE 2.390 3.234 5.624 0.655 0.414 1.034

Entropy 1.989 2.014 4.003 0.335 0.331 0.664

17
NE 3.206 2.420 5.625 0.435 0.607 1.048

Entropy 2.014 2.015 4.029 0.341 0.320 0.660

18
NE 2.378 3.217 5.595 0.641 0.424 1.036

Entropy 1.986 2.013 3.998 0.341 0.334 0.663

19
NE 3.170 3.199 6.369 0.440 0.432 0.868

Entropy 1.970 1.999 3.969 0.325 0.327 0.643

20
NE 3.209 3.196 6.405 0.435 0.416 0.841

Entropy 2.005 2.008 4.013 0.332 0.312 0.638

21
NE 2.404 2.392 4.796 0.620 0.641 1.303

Entropy 2.004 2.004 4.008 0.337 0.341 0.695

22
NE 3.199 1.599 4.798 0.419 0.645 1.050

Entropy 1.990 1.995 3.985 0.326 0.342 0.652

23
NE 3.236 2.389 5.625 0.434 0.649 1.090

Entropy 2.025 1.985 4.010 0.329 0.328 0.653

24
NE 2.403 2.432 4.835 0.649 0.666 1.296

Entropy 2.001 2.012 4.014 0.336 0.349 0.678

25
NE 2.417 1.584 4.001 0.619 0.629 1.248

Entropy 2.012 1.998 4.011 0.314 0.319 0.632
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Game# Type Row mean Column mean Sum mean Row var Column var Sum var

26
NE 3.192 3.184 6.375 0.443 0.430 0.848

Entropy 1.995 1.989 3.984 0.335 0.340 0.675

27
NE 2.395 3.204 5.599 0.648 0.443 1.101

Entropy 1.988 2.000 3.988 0.329 0.356 0.673

28
NE 3.208 3.223 6.431 0.425 0.424 0.840

Entropy 1.999 2.017 4.016 0.324 0.343 0.692

29
NE 3.215 3.203 6.417 0.418 0.420 0.836

Entropy 2.010 2.002 4.012 0.331 0.328 0.634

30
NE 2.379 3.207 5.586 0.644 0.407 1.055

Entropy 1.987 2.006 3.993 0.337 0.333 0.666

31
NE 2.412 2.376 4.788 0.643 0.630 1.302

Entropy 2.010 1.988 3.997 0.331 0.326 0.674

32
NE 3.192 3.198 6.390 0.420 0.417 0.822

Entropy 1.984 1.991 3.975 0.319 0.332 0.637

33
NE 2.386 3.206 5.592 0.629 0.420 1.112

Entropy 1.991 1.995 3.987 0.326 0.303 0.636

34
NE 2.413 3.209 5.621 0.628 0.405 1.042

Entropy 2.015 2.010 4.024 0.333 0.321 0.630

35
NE 2.402 2.430 4.832 0.618 0.648 1.283

Entropy 1.989 2.011 4.000 0.320 0.324 0.642

36
NE 3.193 2.418 5.611 0.439 0.644 1.085

Entropy 1.993 2.003 3.996 0.351 0.331 0.701

37
NE 1.593 1.616 3.209 0.620 0.646 1.262

Entropy 1.997 2.017 4.015 0.326 0.323 0.661

38
NE 1.580 2.406 3.986 0.623 0.639 1.218

Entropy 1.988 2.004 3.992 0.318 0.325 0.619

39
NE 1.999 2.020 4.019 0.326 0.334 0.663

Entropy 1.997 2.019 4.016 0.326 0.334 0.663

40
NE 1.604 2.412 4.016 0.663 0.647 1.309

Entropy 2.000 2.006 4.005 0.347 0.336 0.672

41
NE 2.278 2.268 4.546 0.363 0.332 0.695

Entropy 2.008 1.998 4.005 0.346 0.315 0.655

42
NE 3.215 3.213 6.428 0.413 0.414 0.853

Entropy 2.011 1.988 4.000 0.326 0.319 0.668

43
NE 1.620 3.204 4.824 0.612 0.429 1.063

Entropy 2.005 1.994 3.999 0.334 0.333 0.670

44
NE 2.029 2.017 4.046 0.327 0.331 0.645

Entropy 2.028 2.016 4.044 0.327 0.331 0.645

45
NE 1.587 3.218 4.805 0.634 0.406 1.045

Entropy 1.995 2.013 4.008 0.328 0.314 0.645

46
NE 2.269 2.556 4.825 0.349 0.372 0.715

Entropy 2.003 2.023 4.025 0.331 0.339 0.669

47
NE 3.202 2.416 5.618 0.445 0.605 1.040

Entropy 1.998 1.991 3.989 0.339 0.313 0.624

48
NE 3.196 3.193 6.389 0.417 0.418 0.809

Entropy 1.983 2.007 3.989 0.327 0.325 0.618

49
NE 1.592 3.193 4.785 0.638 0.440 1.070

Entropy 1.992 1.979 3.971 0.338 0.331 0.663

50
NE 1.989 2.004 3.992 0.332 0.335 0.672

Entropy 1.987 2.002 3.990 0.332 0.335 0.672
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Game# Type Row mean Column mean Sum mean Row var Column var Sum var

51
NE 3.207 2.373 5.579 0.406 0.626 1.082

Entropy 2.000 1.991 3.991 0.317 0.328 0.657

52
NE 3.201 1.580 4.781 0.419 0.638 1.090

Entropy 2.011 1.995 4.005 0.333 0.332 0.674

53
NE 2.278 2.250 4.528 0.340 0.344 0.663

Entropy 2.009 1.982 3.991 0.325 0.323 0.635

54
NE 3.202 3.177 6.380 0.437 0.439 0.889

Entropy 2.007 2.006 4.013 0.331 0.339 0.664

55
NE 2.253 2.521 4.774 0.365 0.397 0.739

Entropy 1.985 1.994 3.980 0.345 0.347 0.670

56
NE 2.433 1.600 4.034 0.623 0.633 1.308

Entropy 2.024 2.002 4.026 0.342 0.325 0.696

57
NE 1.989 2.009 3.999 0.363 0.330 0.681

Entropy 1.988 2.008 3.996 0.363 0.330 0.681

58
NE 2.411 2.431 4.841 0.620 0.655 1.315

Entropy 2.002 2.024 4.026 0.310 0.346 0.668

59
NE 2.008 2.015 4.023 0.313 0.329 0.656

Entropy 2.006 2.014 4.020 0.313 0.329 0.656

60
NE 2.378 2.410 4.788 0.639 0.661 1.277

Entropy 1.992 1.995 3.988 0.328 0.344 0.677

61
NE 2.527 2.279 4.806 0.369 0.363 0.724

Entropy 1.991 2.010 4.001 0.330 0.341 0.659

62
NE 3.187 3.210 6.397 0.432 0.414 0.832

Entropy 1.981 1.992 3.973 0.324 0.323 0.646

63
NE 2.359 3.210 5.569 0.633 0.405 1.028

Entropy 1.972 2.006 3.978 0.328 0.330 0.660

64
NE 2.022 2.007 4.028 0.340 0.344 0.669

Entropy 2.020 2.005 4.025 0.340 0.344 0.669

65
NE 1.994 1.986 3.980 0.315 0.354 0.643

Entropy 1.992 1.985 3.977 0.315 0.354 0.643

66
NE 2.415 3.178 5.594 0.644 0.435 1.073

Entropy 2.016 1.982 3.998 0.340 0.338 0.692

67
NE 2.557 2.529 5.086 0.371 0.379 0.763

Entropy 2.015 1.999 4.014 0.331 0.340 0.685

68
NE 3.193 2.420 5.614 0.434 0.604 1.057

Entropy 1.994 2.008 4.001 0.335 0.316 0.655

69
NE 2.522 2.562 5.084 0.379 0.356 0.734

Entropy 1.984 2.021 4.005 0.329 0.317 0.657

70
NE 3.195 3.214 6.409 0.435 0.425 0.885

Entropy 1.989 2.000 3.989 0.331 0.324 0.658

71
NE 2.427 3.204 5.631 0.633 0.400 1.079

Entropy 2.018 2.000 4.018 0.336 0.313 0.656

72
NE 2.007 1.997 4.004 0.340 0.323 0.638

Entropy 2.006 1.996 4.002 0.340 0.323 0.639

73
NE 3.196 2.382 5.578 0.424 0.659 1.057

Entropy 1.996 1.989 3.984 0.330 0.342 0.670

74
NE 2.536 2.550 5.086 0.373 0.361 0.731

Entropy 2.003 2.015 4.017 0.329 0.328 0.666

75
NE 3.189 1.618 4.807 0.439 0.625 1.036

Entropy 1.983 2.007 3.990 0.337 0.316 0.640
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Game# Type Row mean Column mean Sum mean Row var Column var Sum var

76
NE 2.532 2.277 4.809 0.380 0.340 0.723

Entropy 2.001 2.005 4.006 0.340 0.321 0.658

77
NE 3.212 3.197 6.409 0.429 0.426 0.869

Entropy 2.002 1.995 3.996 0.332 0.332 0.657

78
NE 2.504 2.537 5.041 0.379 0.378 0.756

Entropy 1.968 2.001 3.969 0.334 0.332 0.669

79
NE 2.427 3.198 5.625 0.637 0.413 1.054

Entropy 2.011 2.003 4.014 0.325 0.319 0.649

80
NE 2.412 3.201 5.613 0.633 0.422 1.050

Entropy 2.025 1.999 4.024 0.328 0.333 0.651

81
NE 3.196 2.408 5.605 0.433 0.637 1.074

Entropy 1.986 2.006 3.992 0.332 0.337 0.676

82
NE 3.190 3.178 6.368 0.433 0.454 0.877

Entropy 2.009 1.990 3.999 0.345 0.344 0.684

83
NE 3.213 3.205 6.419 0.449 0.426 0.867

Entropy 2.021 1.992 4.013 0.349 0.326 0.678

84
NE 2.398 2.383 4.780 0.633 0.642 1.307

Entropy 2.001 1.988 3.988 0.329 0.339 0.686

85
NE 3.188 3.198 6.386 0.430 0.433 0.885

Entropy 1.994 2.000 3.994 0.326 0.327 0.653

86
NE 2.437 3.180 5.617 0.649 0.450 1.057

Entropy 2.022 1.974 3.997 0.336 0.337 0.664

87
NE 2.399 3.202 5.602 0.610 0.424 1.015

Entropy 2.003 2.002 4.005 0.327 0.333 0.646

88
NE 2.387 1.621 4.008 0.632 0.636 1.257

Entropy 1.994 2.012 4.006 0.324 0.333 0.661

89
NE 2.417 2.420 4.837 0.630 0.649 1.335

Entropy 2.011 2.007 4.019 0.325 0.340 0.688

90
NE 3.194 2.388 5.582 0.443 0.633 1.120

Entropy 1.988 2.000 3.988 0.335 0.338 0.696

91
NE 3.211 1.624 4.835 0.424 0.644 1.092

Entropy 2.003 2.020 4.023 0.321 0.333 0.666

92
NE 3.178 3.194 6.372 0.460 0.419 0.905

Entropy 1.979 1.990 3.969 0.339 0.322 0.664

93
NE 3.211 3.217 6.428 0.400 0.427 0.832

Entropy 2.000 2.028 4.028 0.318 0.335 0.660

94
NE 2.400 3.198 5.598 0.647 0.425 1.077

Entropy 1.993 2.004 3.997 0.335 0.341 0.683

95
NE 3.186 2.417 5.602 0.422 0.651 1.058

Entropy 1.980 2.010 3.991 0.329 0.342 0.654

96
NE 2.393 3.168 5.561 0.624 0.443 1.067

Entropy 1.985 1.970 3.956 0.330 0.341 0.646

97
NE 3.209 1.581 4.790 0.416 0.622 1.052

Entropy 2.007 1.980 3.988 0.328 0.322 0.656

98
NE 3.193 2.404 5.597 0.422 0.612 1.024

Entropy 2.002 2.007 4.009 0.336 0.324 0.643

99
NE 2.391 2.423 4.814 0.651 0.623 1.260

Entropy 1.994 2.018 4.012 0.337 0.328 0.660

100
NE 2.372 1.602 3.974 0.663 0.651 1.308

Entropy 1.984 1.993 3.977 0.344 0.337 0.677
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Game# Type Row mean Column mean Sum mean Row var Column var Sum var

101
NE 1.594 3.206 4.800 0.633 0.422 1.038

Entropy 1.997 1.995 3.992 0.331 0.330 0.676

102
NE 3.209 3.201 6.411 0.451 0.437 0.896

Entropy 2.025 2.011 4.036 0.350 0.344 0.685

103
NE 1.603 3.176 4.779 0.658 0.419 1.084

Entropy 2.002 1.998 4.000 0.346 0.323 0.661

104
NE 3.206 2.372 5.578 0.425 0.660 1.116

Entropy 2.010 1.989 3.999 0.327 0.345 0.677

105
NE 1.568 2.401 3.969 0.617 0.628 1.285

Entropy 1.974 2.022 3.997 0.320 0.329 0.660

106
NE 3.214 3.215 6.430 0.422 0.431 0.853

Entropy 2.015 2.009 4.024 0.338 0.337 0.681

107
NE 3.186 3.228 6.414 0.431 0.426 0.860

Entropy 1.990 2.019 4.009 0.329 0.335 0.696

108
NE 1.618 3.206 4.824 0.636 0.411 1.031

Entropy 2.013 1.993 4.006 0.338 0.316 0.665

109
NE 3.205 2.405 5.610 0.427 0.651 1.053

Entropy 2.003 2.012 4.016 0.332 0.339 0.649

110
NE 1.571 2.403 3.974 0.671 0.645 1.268

Entropy 1.989 1.991 3.980 0.351 0.327 0.652

111
NE 3.226 3.205 6.431 0.410 0.430 0.834

Entropy 2.019 1.987 4.006 0.325 0.333 0.656

112
NE 1.612 3.215 4.827 0.633 0.420 0.995

Entropy 2.005 2.021 4.026 0.333 0.333 0.637

113
NE 3.192 3.206 6.398 0.436 0.423 0.827

Entropy 1.990 1.994 3.984 0.335 0.335 0.664

114
NE 1.611 3.209 4.820 0.641 0.411 1.040

Entropy 1.996 2.006 4.002 0.349 0.334 0.677

115
NE 3.209 1.630 4.839 0.420 0.623 1.041

Entropy 2.001 2.027 4.028 0.325 0.332 0.654

116
NE 1.600 1.597 3.197 0.651 0.637 1.252

Entropy 1.998 1.991 3.989 0.336 0.340 0.664

117
NE 3.212 2.388 5.600 0.400 0.652 1.089

Entropy 1.999 2.000 3.998 0.316 0.342 0.676

118
NE 1.628 2.409 4.037 0.639 0.640 1.278

Entropy 2.017 2.002 4.018 0.344 0.338 0.700

119
NE 3.181 2.389 5.570 0.452 0.649 1.115

Entropy 1.975 1.996 3.971 0.344 0.345 0.688

120
NE 1.617 2.405 4.022 0.673 0.622 1.301

Entropy 2.004 2.007 4.012 0.341 0.325 0.664

121
NE 3.195 1.553 4.748 0.434 0.599 1.078

Entropy 1.993 1.968 3.961 0.323 0.327 0.662

122
NE 2.552 2.254 4.806 0.382 0.350 0.719

Entropy 2.014 1.990 4.004 0.344 0.331 0.658

123
NE 2.359 2.395 4.754 0.631 0.649 1.291

Entropy 1.969 1.996 3.965 0.325 0.336 0.645

124
NE 2.532 2.539 5.071 0.369 0.378 0.754

Entropy 2.002 2.009 4.011 0.332 0.335 0.680

125
NE 2.384 3.195 5.579 0.624 0.422 1.032

Entropy 1.987 2.007 3.994 0.320 0.335 0.634
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Game# Type Row mean Column mean Sum mean Row var Column var Sum var

126
NE 2.003 2.000 4.003 0.339 0.335 0.688

Entropy 2.002 1.999 4.000 0.339 0.335 0.688

127
NE 2.408 2.426 4.834 0.654 0.641 1.284

Entropy 2.011 2.016 4.027 0.342 0.332 0.666

128
NE 2.383 3.202 5.585 0.672 0.410 1.032

Entropy 1.970 2.008 3.978 0.342 0.330 0.656

129
NE 2.537 2.551 5.088 0.382 0.375 0.774

Entropy 2.001 2.022 4.023 0.345 0.335 0.695

130
NE 2.002 2.020 4.022 0.333 0.337 0.672

Entropy 2.000 2.019 4.019 0.333 0.337 0.672

131
NE 3.218 3.205 6.423 0.414 0.426 0.817

Entropy 2.017 1.991 4.008 0.335 0.325 0.671

132
NE 3.189 3.200 6.389 0.435 0.428 0.870

Entropy 1.999 1.997 3.996 0.338 0.332 0.679

133
NE 2.545 2.287 4.832 0.354 0.348 0.713

Entropy 2.007 2.020 4.027 0.322 0.327 0.658

134
NE 2.021 1.996 4.018 0.333 0.328 0.648

Entropy 2.020 1.995 4.015 0.333 0.328 0.649

135
NE 3.225 2.396 5.621 0.419 0.642 1.034

Entropy 2.014 1.997 4.011 0.327 0.337 0.634

136
NE 1.999 1.981 3.980 0.346 0.321 0.679

Entropy 1.998 1.979 3.977 0.346 0.321 0.679

137
NE 3.212 2.384 5.596 0.416 0.645 1.070

Entropy 2.002 1.994 3.995 0.320 0.343 0.657

138
NE 2.004 1.999 4.002 0.340 0.334 0.703

Entropy 2.002 1.997 3.999 0.340 0.334 0.703

139
NE 2.271 2.543 4.814 0.350 0.376 0.737

Entropy 2.003 1.998 4.001 0.327 0.333 0.667

140
NE 2.285 2.521 4.805 0.345 0.372 0.710

Entropy 2.017 1.998 4.015 0.331 0.330 0.651

141
NE 1.977 1.991 3.968 0.320 0.344 0.674

Entropy 1.975 1.990 3.965 0.320 0.344 0.674

142
NE 2.007 2.002 4.009 0.348 0.323 0.679

Entropy 2.005 2.001 4.006 0.348 0.323 0.679

143
NE 2.011 2.009 4.020 0.328 0.327 0.645

Entropy 2.009 2.008 4.017 0.328 0.327 0.645

144
NE 2.014 2.017 4.031 0.319 0.329 0.641

Entropy 2.013 2.016 4.028 0.319 0.329 0.642
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