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Abstract

This paper reviews recent advances in estimation and inference for nonparametric and semi-

parametric models with endogeneity. It first describes methods of sieves and penalization for

estimating unknown functions identified via conditional moment restrictions. Examples include

nonparametric instrumental variables regression (NPIV), nonparametric quantile IV regression

and many more semi-nonparametric structural models. Asymptotic properties of the sieve es-

timators and the sieve Wald, quasi-likelihood ratio (QLR) hypothesis tests of functionals with

nonparametric endogeneity are presented. For sieve NPIV estimation, the rate-adaptive data-

driven choices of sieve regularization parameters and the sieve score bootstrap uniform confi-

dence bands are described. Finally, simple sieve variance estimation and over-identification test

for semiparametric two-step GMM are reviewed. Monte Carlo examples are included.
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1 Introduction

Models with endogeneity are arguably the most important feature that differentiates econometrics

from statistics. There is a rapidly growing literature on semiparametric and nonparametric models

with endogeneity. All existing results could be classified into either the ones via the instrumental

variables (IV) approach (e.g., Newey and Powell 2003) or the ones via the control function (CF)

approach (e.g., Blundell and Powell 2003). In linear models with endogeneous regressors and additive

disturbances both approaches generate consistent and often analytically identical estimators (e.g.,

Hausman 1987). Both approaches are also closely related in some other parametric models with

endogeneity (e.g., Wooldridge 2002). In nonparametric models with endogeneity, the IV and CF

approaches have slightly different identification and estimation strategies with different advantages

and weaknesses. See, e.g., Blundell, Kristensen and Matzkin (2013) and Horowitz (2013) for recent

discussions. General identification results for various nonparametric models with endogeneity are

available using either approaches. See, e.g., Newey, Powell and Vella (1999), Blundell and Powell

(2003), Chesher (2003), Matzkin (2007, 2013), Florens, Heckman, Meghir and Vytlacil (2008),

Imbens and Newey (2009), Chernozhukov and Hansen (2013), Blundell and Matzkin (2014), Berry

and Haile (2014), Chen, Chernozhukov, Lee and Newey (2014) and references therein. This short

review will thus focus on recent advances in estimation of and inference on semiparametric and

nonparametric models with endogeneity.

Earlier nonparametric and semiparametric IV models are typically cast into the framework of

conditional moment restrictions containing unknown functions of endogenous variables (e.g., Newey

and Powell (2003), Ai and Chen (2003)). More complicated nonparametric and semiparametric IV

models could be cast into the framework of several conditional moment restrictions with different

conditioning information sets, some of the moment restrictions contain unknown functions of en-

dogenous variables (e.g., Ai and Chen 2007). In comparison, nonparametric and semiparametric

models using the CF approach are typically set into the framework of semiparametric two-step or

multi-step GMM, where the first-step unknown functions are typically reduced form functions of

exogenous variables such as conditional mean (or quantile) regressions or conditional choice proba-
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bilities without endogeneity (e.g., Olley and Pakes (1996), Newey, Powell and Vella (1999), Blundell

and Powell (2003)). Within both approaches most of the existing estimation and inference results

could be divided further into those using kernel or local polynomial smoothing methods (e.g., Fan

and Gijbels 1996), and those using sieves or penalization methods (e.g., Grenander 1981). The folk

knowledge is that the estimation and inferences for functionals of structural parameters in non-

parametric and semiparametric models with endogeneity are much more difficult than those for the

corresponding parametric models with endogeneity, regardless whether they are identified via the

IV or the CF approach and whether they are estimated via kernel, sieve or penalization method.

In particular, a nonparametric IV regression is typically an ill-posed inverse problem and hence the

nonparametric convergence rate is slower than that for the corresponding nonparametric regres-

sion without endogeneity; see, e.g., Hall and Horowitz (2005), Darolles, Fan, Florens and Renault

(2011), Chen and Reiss (2011), Chen and Christensen (2015). While a typical nonparametric CF

approach does not suffer the ill-posed inverse problem, it involves multi-stage nonparametric and/or

semiparametric estimation with the previously estimated functions as generated regressors in the

next stage estimation, which makes it difficult to correctly characterize the asymptotic variance of

the final-stage estimator of the functional of interest and hence difficult to conduct asymptotically

valid inference; see, e.g., Pakes and Olley (1995), Hahn and Ridder (2013), Mammen et al. (2012,

2015).

In this review, we shall present (penalized) sieve based estimation and inference theories for func-

tionals in nonparametric and semiparametric models with endogeneity, where the model parameters

are assumed to be identified via either the IV or the CF approach. We shall mainly describe com-

putationally attractive procedures via finite-dimensional linear sieve approximations to unknown

functions. Linear sieves are also called series, which are typically linear combinations of known ba-

sis functions such as Bernstein polynomials, Chebychev polynomials, Hermite polynomials, Fourier

series, polynomial splines, B-splines, wavelets. Among different linear sieves, splines and wavelets

have nice theoretical properties in terms of achieving the nonparametric optimal convergence rates

even for models with endogeneity (e.g., Chen and Christensen, 2015); B-splines, Bernstein poly-
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nomial and some other sieves have nice shape-preserving properties; see, e.g., DeVore and Lorentz

(1993), Chen (2007) and references therein. However, linear sieves are not as flexible as nonlinear

sieves (such as neural networks) in approximating a unknown function of a multivariate covariate.

In empirical studies when lots of covariates are present, a flexible and computationally attractive

approach is to combine linear sieve approximations with various dimension-reduction modeling tools

(such as partially linear, single index, additive models, varying coefficients). See Chen and Pouzo

(2012) and Chen (2007, 2013) for more general penalized, possibly infinite-dimensional linear or non-

linear sieve methods and various trade-offs. Although slightly less general, estimation and inference

for nonparametric models with (or without) endogeneity via finite-dimensional linear sieves can be

easily implemented using existing softwares for parametric models with (or without) endogeneity.

For example, once after a nonparametric IV regression is approximated by a finite-dimensional linear

sieve, its estimation and inference can be easily conducted via Hansen’s (1982) GMM or minimum

distance as if the sieve approximated model were a correctly-specified parametric model (e.g., Chen

and Pouzo 2015). As another example, once after the unknown reduce form functions in a non-

parametric CF problem are approximated by finite-dimensional linear sieves, the problem becomes

a parametric CF two-step or multi-step, and the unknown asymptotic variance of the final-stage

estimator in the original nonparametric CF problem is now consistently estimated by a variance

estimator for the final-stage estimator in the sieved parametric CF model (e.g., Newey, Powell and

Vella (1999), Ackerberg, Chen and Hahn (2012)). Moreover, for inference on a root-n estimable

functional in a nonparametric model with (or without) endogeneity, the sieve dimension could be

chosen optimally to balance the bias (sieve approximation error) and the standard deviation in the

nonparametric part.1 Although for inference on a slower than root-n estimable functional, the sieve

dimension has to be slightly larger so that the sieve bias goes to zero faster.2 In practice if an

empirical researcher is unsure whether the functional of interest is root-n estimable or not, it is

safer to choose sieve dimension slightly larger than the “optimal” one balancing the sieve bias and

1see, e.g., Newey (1994) and Chen and Shen (1998) for nonparametric models without endogeneity, Chen and
Pouzo (2009) for nonparametric models with endogeneity.

2see, e.g., Newey (1997) and Chen, Liao and Sun (2014) for nonparametric models without endogeneity, Chen and
Pouzo (2015), and Chen and Christensen (2015) for nonparametric models with endogeneity.
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the standard deviation in the nonparametric part.3

This short review mainly describes implementation aspects of the (penalized) sieve estimators

and tests for nonparametric models with endogeneity, and refers to the original papers for regu-

larity conditions and technical details. The rest of the paper is organized as follows. Section 2

first presents a general class of conditional moment restrictions containing unknown functions of

possibly endogenous variables. Examples include nonparametric instrumental variables regression

(NPIV), nonparametric quantile IV regression, partially additive IV regression, single-index IV

regression, quantile transformation IV model and numerous other semi-nonparametric structural

models. Various (penalized) sieve extremum estimators, such as sieve minimum distance (MD),

sieve GMM, sieve conditional empirical likelihood (EL), sieve unconditional EL and generalized EL

are described. Some commonly used sieves, including shape-preserving sieves and simple ways to

impose shape restrictions, are mentioned. The convergence rates of the penalized sieve estimators of

the nonparametric part of general conditional moment restrictions are briefly summarized. Section

3 first reviews the asymptotic normality of sieve t statistics for functionals that are either root-

n estimable (i.e., regular) or slower than root-n estimable (i.e., irregular). It then presents sieve

Wald and quasi-likelihood ratio (QLR) inferences for regular or irregular functionals, and their

bootstrap versions. Section 4 presents additional results for sieve NPIV estimation. It describes

rate-adaptive data-driven choices of sieve regularization parameters, and score bootstrap uniform

confidence bands based on sieve t statistics for irregular (nonlinear) functional processes of a NPIV.

Section 5 describes simple sieve variance estimation and over-identification test for semiparametric

two-step GMM with a sieve estimated nonparametric first step. It also mentions sieve multi-step

estimation for semiparametric models via the CF approach. Section 6 contains Monte Carlo illus-

trations programmed in R. Section 7 concludes by briefly mentioning additional related results and

open questions.

3In practice one could just use AIC to choose the linear sieve dimension if one mainly cares about asymptotic
validity and is not too concerned with asymptotic optimality. See simulation Section 6 for examples.
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2 Conditional Moment Restrictions Containing Unknown Func-

tions

2.1 Models

Economic models often imply a set of semi-nonparametric conditional moment restrictions of the

following form:

E[ρ(Y,X; θ0, h0)|X] = 0 a.s.−X, (2.1)

where ρ(·; θ0, h0) is a dρ × 1−vector of generalized residual functions whose functional forms are

known up to the true but unknown parameters value (θ′0, h0), Y is a vector of endogenous variables

and X is a vector of conditioning (or instrumental) variables. The conditional distribution of Y

given X, FY |X , is not specified beyond that it satisfies (2.1). Let α ≡ (θ′, h) ∈ A ≡ Θ ×H denote

the parameters of interest, with θ ∈ Θ being a dθ × 1−vector of finite dimensional parameters and

h ≡ (h1(·), ..., hq(·)) ∈ H being a 1 × dq−vector valued function. The arguments of each unknown

function h`(·) may differ across ` = 1, ..., q, may depend on θ, h`′(·), `′ 6= `, X and Y . The residual

function ρ(·;α) could be nonlinear and pointwise non-smooth in parameters α ≡ (θ′, h). This paper

calls a model with at least one unknown function hl(·) depending on the endogenous variable Y as

a model with nonparametric endogeneity.

Model (2.1) nests many widely used semi/nonparametric generalized regression models. Exam-

ples include, but are not limited to nonparametric mean instrumental variables regression (NPIV):

E[Y1 − h0(Y2)|X] = 0 a.s.−X, (2.2)

(Hall and Horowitz (2005), Carrasco et al. (2007), Blundell et al. (2007), Darolles et al. (2011));

nonparametric quantile IV regression (NPQIV):

E[1{Y1 ≤ h0(Y2)} − γ|X] = 0 a.s.−X, (2.3)
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(Chernozhukov and Hansen (2005, 2013), Chernozhukov et al. (2007), Horowitz and Lee (2007),

Chen and Pouzo (2012), Gagliardini and Scaillet (2012), Chen et al. (2014)); partially linear IV:

E[Y1 − Y ′2θ0 − h0(Y3)|X] = 0 (Florens et al. 2012) and partially linear quantile IV: E[1{Y1 ≤

Y ′2θ0 + h0(Y3)} − γ|X] = 0 (Chen and Pouzo, 2009); partially additive IV: E[Y1 − Y ′0θ0 − h01(Y2)−

h02(Y3)|X] = 0 and nonparametric additive quantile IV: E[1{Y1 ≤ h01(Y2) + h02(Y3)} − γ|X] = 0

(Chen and Pouzo, 2012); varying coefficient IV: E[Y1 − h01(Y2)X1 − h02(Y3)X2|X] = 0 with X =

(X1, X2, X3) and its quantile version E[1{Y1 ≤ h01(Y2)X1 +h02(Y3)X2}−γ|X] = 0; single-index IV:

E[Y1−h0(Y ′2θ0)|X] = 0 (Chen et al. 2014) and its quantile version E[1{Y1 ≤ h0(Y ′2θ0)}− γ|X] = 0;

transformation IV model: E[h0(Y1) − Y ′2θ0|X] = 0 and its quantile version E[1{h0(Y1) ≤ Y ′2θ0} −

γ|X] = 0 for h0(·) being monotone. While the above examples are natural extensions of popular

existing regression models in econometrics and statistics that allow for nonparametric endogeneity,

model (2.1) also includes numerous complex economic structural models with endogeneity. Some real

data economic applications include semi/nonparametric spatial models with endogeneity (Pinkse et

al. (2002), Merlo and de Paula (2015)); systems of shape-invariant Engle curves with endogeneity

(Blundell et al. 2007) and its quantile version (Chen and Pouzo, 2009); semi/nonparametric asset

pricing models (e.g., Gallant and Tauchen (1989), Chen and Ludvigson (2009), Hansen (2014));

semi/nonparametric static and dynamic game models (e.g., Bajari et al., 2011); nonparametric

optimal endogenous contract models (e.g., Bontemps and Martimort (2013)). Additional examples

of the general model (2.1) can be found in Chamberlain (1992a), Newey and Powell (2003), Ai and

Chen (2003), Chen and Pouzo (2012), Chen et al. (2014), Berry and Haile (2014) and the references

therein.

Ai and Chen (2012) considers an extension of model (2.1) to a general semiparametric conditional

moment restrictions with nested information set:

E[ρt(Y,X; θ0, h0(·))|X(t)] = 0 a.s.−X(t) for t = 1, ..., T <∞, (2.4)

{1} ⊆ σ
(
X(1)

)
⊂ σ

(
X(2)

)
⊂ · · · ⊂ σ

(
X(T )

)
with X(T ) = X, (2.5)
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where σ
(
X(t)

)
denotes the sigma-field generated by X(t). When X(1) is the constant 1 (i.e., a

degenerate random variable), the conditional expectation E[ρ1(·)|X(1)] is simply the unconditional

expectation E[ρ1(·)]. Model (2.4-2.5) is a direct extension of Chamberlain’s (1992b) sequential

moment restrictions model E[ρt(Y,X; θ0)|X(t)] = 0 by inclusion of unknown functions h0(·). It

obviously includes model (2.1) and semi-nonparametric panel data models where the information

set expands over time. With T = 2, θ = (θ′1, θ
′
2)′, X(1) = 1 and X = X(2), model (2.4-2.5) nests the

following widely used semiparametric two-step GMM problem:

E[ρ1(Y,X; θ01, θ02, h0(·))] = 0 with dim(ρ1) ≥ dim(θ1), (2.6)

E[ρ2(Y,X; θ02, h0(·))|X] = 0, (2.7)

where the unknown parameter θ02 and the unknown function h0(·) can be identified and estimated

using the conditional moment restriction (2.7) in the first step, and can then be plugged into the

unconditional moment restriction (2.6) to identify and estimate the unknown parameter θ01 in the

second step. An example of the model (2.6-2.7) is the estimation of a weighted average derivative of

a NPIV regression: θ01 = E[a(Y2)∇h0(Y2)], where a() is a known positive weight function and ∇h0()

is the first derivative of h0 in the NPIV (2.2). See Section 5 for a review on the semiparametric two-

step GMM problems. Many semiparametric program evaluation models, semiparametric missing

data models, choice-based sampling problems, some nonclassical measurement error models and

semiparametric control function models could also fit into framework (2.4-2.5).

There are further applications where different equations may require different sets of instruments.

Ai and Chen (2007) studies a generalization of (2.4-2.5) (and hence (2.1)) to the semiparametric

conditional moment restriction with a different information set:

E[ρt(Y,X, θ0, h0())|X(t)] = 0 a.s.−X(t) for t = 1, 2, ..., T <∞, (2.8)

where X(t) is either equal to a subset of X or a degenerate random variable; but the sigma-field

σ
(
X(t)

)
no longer needs to be nested as t increases. Examples of model (2.8) include, but are
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not restricted to, the triangular simultaneous equations system studied in Newey, Powell and Vella

(1999); a semiparametric hedonic price system where some explanatory variables in some equations

are correlated with the errors in other equations; the simultaneous equations with measurement error

in some exogenous variables; a semi-nonparametric panel data model where some variables that are

uncorrelated with the error in a given time period are correlated with the errors in previous periods;

semi-nonparametric dynamic panel sample selection model; and semiparametric game models with

incomplete information.

Of course one could consider further generalizations of model (2.8), say, to models with increasing

T , or to models with parameter index sets in the conditioning set. However, it suffices to say that

even model (2.1) already covers many economics applications. We shall review estimation and

inference results for model (2.1) in the rest of the paper, and refer readers to Ai and Chen (2007,

2012) for results for models (2.4-2.5) and (2.8).

2.2 Penalized Sieve Extremum Estimation

Let {Zi ≡ (Y ′i , X
′
i)
′}ni=1 be a random sample from the probability distribution P0 of Z ≡ (Y ′, X ′)′

that satisfies the conditional moment restrictions (2.1). Let the infinite-dimensional parameter space

A ≡ Θ×H be endowed with a metric ||.||s = ||.||e + ||.||H , where ||.||e is the Euclidean norm on Θ

(a compact subset in Rdθ), and ||.||H denotes a norm on the infinite-dimensional function space H

(typical choices of ||.||H include ||.||∞ and ||.||L2). We call

AI(P0) ≡
{
α ≡ (θ′, h) ∈ (A, ||.||s) : E[ρ(Y,X;α)|X] = 0 a.s.−X

}
the set of parameters that are identified by the model (2.1) (or simply the identified set). When

AI(P0) = {α0 ≡ (θ′0, h0)} is a singleton in (A, ||.||s), the parameter α0 is (point) identified by

the model (2.1). One can consider estimation of the identified set AI(P0) by recasting it as a

set of minimizers to a non-random criterion function Q() : (A, ||.||s) → R such that Q(α) = 0

whenever α ∈ AI(P0), and Q(α) > 0 for all α ∈ A\AI(P0). There are many choices of Q() that

captures exactly the same identified set AI(P0) of the model (2.1) (see subsections 2.2.1 and 2.2.2

9



for examples). Let Q̂n be a random criterion function that converges to Q in probability uniformly

over totally bounded subsets of (A, ||.||s). Then one may want to estimate AI(P0) by an extremum

estimator: arg infα∈A Q̂n(α). Since the parameter space A is infinite dimensional and possibly non-

compact in ||.||s, arg infα∈A Q̂n(α) may be difficult to compute and not well-defined; or even if it

exists, it may be inconsistent for AI(P0) under ||.||s when A is not compact in ||.||s. See Chen (2007,

p 5560-61) for discussions of well-posed vs ill-posed optimization problems over infinite-dimensional

parameter spaces.4

Method of sieves and method of penalization are two general approaches to solve possibly ill-

posed, infinite-dimensional optimization problems. The method of sieves replaces infα∈A Q̂n(α) by

infα∈Ak(n) Q̂n(α), where the sieves Ak(n) is a sequence of approximating parameter spaces that are

less complex but dense in (A, ||.||s) (see Grenander (1981)). Popular sieves are typically compact,

non-decreasing (Ak ⊆ Ak+1 ⊆ · · ·) and are such that A ⊆ cl (∪kAk) (i.e., for any α ∈ A there

exists an element πk(n)α in Ak(n) satisfying ||α − πk(n)α||s → 0 as n → ∞). The method of

penalization (or regularization) replaces infα∈A Q̂n(α) by infα∈A

{
Q̂n(α) + λnPen(α)

}
, where λn >

0 is a penalization parameter such that λn → 0 as n → ∞ and the penalty Pen() > 0 is typically

chosen such that {α ∈ A : Pen(α) ≤M} is compact in ||.||s for all M ∈ (0,∞).

Chen and Pouzo (2012) and Chen (2013) introduced a class of penalized sieve extremum (PSE)

estimators, α̂n = (θ̂n, ĥn) ∈ Ak(n) = Θ×Hk(n), defined by:

{
Q̂n(α̂n) + λnP̂n(ĥn)

}
≤ inf

α∈Θ×Hk(n)

{
Q̂n(α) + λnP̂n(h)

}
, (2.9)

where Hk(n) is a sieve parameter space whose complexity, denoted as k(n) ≡ dim(Hk(n)), grows with

sample size n and becomes dense in the original function space H under the metric ||.||H ; λn ≥ 0

is a penalization parameter such that λn → 0 as n → ∞; and the penalty P̂n() ≥ 0, which is an

empirical analog of a non-random penalty function Pen : H → [0,+∞), is jointly measurable in h

and the data {Zt}nt=1.

4Also see Carrasco et al (2007) and Horowitz (2013) for reviews on linear ill-posed inverse problems that include
the NPIV model as a leading case.
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The definition of PSE (2.9) includes both the method of sieves and the method of penalization

as special cases. In particular, when λnP̂n() = 0, PSE (2.9) becomes the sieve extremum estimator,

i.e., the solution to infα∈Θ×Hk(n) Q̂n(α). When λnP̂n() > 0, P̂n() = Pen() and Hk(n) = H (i.e.,

k(n) = ∞), PSE (2.9) becomes the function space penalized extremum estimator, i.e., the solution

to infα∈Θ×H

{
Q̂n(α) + λnPen(h)

}
.

The sieve space Hk(n) in the definition of PSE (2.9) could be finite dimensional (k(n) < ∞),

infinite dimensional (k(n) = ∞), compact or non-compact (in ||.||H). Commonly used finite-

dimensional linear sieves (also called series) take the form:

Hk(n) =

h ∈ H : h(·) =

k(n)∑
k=1

πkqk(·)

 , k(n) <∞, k(n)→∞ slowly as n→∞, (2.10)

where {qk}∞k=1 is a sequence of known basis functions of a Banach space (H, ||.||H) such as polynomial

splines, B-splines, wavelets, Fourier series, Hermite polynomial series, Power series, Chebychev

series, etc. Linear sieves with constraints, which are commonly used, can be expressed as:

Hk(n) =

h ∈ H : h(·) =

k(n)∑
k=1

πkqk(·), Rn(h) ≤ Bn

 , k(n) ≤ ∞, Bn →∞ slowly as n→∞,

(2.11)

where the constraint Rn(h) ≤ Bn reflects prior information about h0 ∈ H such as smoothness

properties. The sieve space Hk(n) in (2.11) is finite dimensional and compact (in ||.||H) if and

only if k(n) < ∞ and Hk(n) is closed and bounded; it is infinite dimensional and compact (in

||.||H) if and only if k(n) = ∞ and Hk(n) is closed and totally bounded. For example, Hk(n) ={
h ∈ H : h(·) =

∑k(n)
k=1 πkqk(·), ‖h‖H ≤ log(n)

}
is compact if k(n) < ∞, but is not compact (in

||.||H) if k(n) = ∞. Linear sieves (or series) are widely used in empirical economics due to the

computationally simplicity. See DeVore and Lorentz (1993), Chen (2007) and references therein for

examples of nonlinear sieves and shape-preserving sieves.

The penalty function Pen() is typically convex and/or lower semicompact (i.e., the set {h ∈

H : Pen(h) ≤M} is compact in (H, ||.||H) for all M ∈ (0,∞)) and reflects prior information about
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h0 ∈ H. For instance, when H ⊆ Lp(dµ), 1 ≤ p < ∞, a commonly used penalty function is for a

known measure dµ, or P̂n(h) = ||h||pLp(dµ̂) for an empirical measure dµ̂ when dµ is unknown. When

H is a mixed weighted Sobolev space {h : ||h||2L2(dµ) + ||∇rh||pLp(leb) < ∞}, 1 ≤ p < ∞, r ≥ 1, we

can let ||.||H be the L2(dµ)−norm, and P̂n(h) = ||h||2L2(dµ̂) + ||∇kh||pLp(leb) or P̂n(h) = ||∇kh||pLp(leb)

for some k ∈ [1, r], where ∇kh denotes the k−th derivative of h(). When the sieve dimension k(n)

grows very fast in the sense of k(n) ≥ n, the penalty P̂n(h) = ||h||L1(dµ) is a LASSO type penalty

on the sieve coefficients.

Model (2.1) is a natural extension of the unconditional moment restrictions E[g(Y,X; θ0)] = 0

studied in Hansen’s (1982) seminal work on the generalized method of moment (GMM). Therefore,

all different criterion functions and estimation procedures designed for estimating θ0 of the origi-

nal model E[g(Y,X; θ0)] = 0, such as GMM, minimum distance (MD), empirical likelihood (EL),

generalized empirical likelihood (GEL) and others,5 could be extended to estimate α0 ≡ (θ′0, h0) of

model (2.1) via our PSE (2.9) with different choices of criterion functions Q̂n. See the next two

subsections for examples.

2.2.1 Criteria based on nonparametrically estimated conditional moments

Let m(X,α) ≡ E[ρ(Y,X;α)|X] be the dρ × 1- conditional mean function of the residual function

ρ(Y,X;α), and Σ(X) be any dρ × dρ -positive definite weighting matrix. Then the conditional

moment restrictions model (2.1) is equivalent to

∥∥∥[Σ(·)]−1/2m(·, α)
∥∥∥
Lp(X)

= 0 when α = α0

for some p ∈ [1,∞]. Newey and Powell (2003) and Ai and Chen (2003) independently pro-

posed the quadratic minimum distance (MD) criterion Q(α) = E
[
m(X,α)′{Σ(X)}−1m(X,α)

]
(i.e.,

5See, e.g., Imbens (2002), Kitamura (2007), Hansen (2014), Parente and Smith (2014) for recent reviews on various
estimation and testing methods for E[g(Y,X; θ0)] = 0.
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L2(X)−norm), and the sieve MD estimation:

min
α∈Θ×Hk(n)

Q̂n(α), Q̂n(α) =
1

n

n∑
t=1

m̂(Xt, α)′{Σ̂(Xt)}−1m̂(Xt, α), (2.12)

where m̂(x, α) and Σ̂(x) are any consistent estimators of m(x, α) and Σ(x), respectively. When

Σ̂(x) = Σ̂0(x) is a consistent estimator of the optimal weighting Σ0(x) = V ar(ρ(Y,X;α0)|X = x),

Q̂0
n(α) = 1

n

∑n
t=1 m̂(Xt, α)′{Σ̂0(Xt)}−1m̂(Xt, α) is called the optimally weighted MD criterion, which

leads to semiparametric efficient estimation of θ0 for the model (2.1) (see Ai and Chen (2003), Chen

and Pouzo (2009)). For a general sieve MD criterion, Chen and Pouzo (2015) considered any

consistent nonparametric estimator m̂(x, α) that is linear in ρ(Z,α):

m̂(x, α) ≡
n∑
i=1

ρ(Zi, α)An(Xi, x) (2.13)

where An(Xi, x) is a known measurable function of {Xj}nj=1 for all x, whose expression varies

according to different nonparametric procedures such as series, kernel, local linear regression, and

nearest neighbors. Series and kernel LS estimators are the most widely used in economics:

• If An(Xi, x) = ALS(Xi, x) = pJn(Xi)
′(P ′P )−pJn(x) then m̂(x, α) is the series least squares

(LS) estimator (2.14):

m̂LS(x, α) =

(
n∑
i=1

ρ(Zi, α)pJn(Xi)
′

)
(P ′P )−pJn(x), (2.14)

where {pj}∞j=1 is a sequence of known basis functions that can approximate any square inte-

grable functions of X well, pJn(X) = (p1(X), ..., pJn(X))′, P ′ = (pJn(X1), ..., pJn(Xn)), and

(P ′P )− is the generalized inverse of the Jn × Jn−matrix P ′P . See Newey and Powell (2003),

Ai and Chen (2003), Chen and Pouzo (2009).

• If An(Xi, x) = AK(Xi, x) = 1{x ∈ Xn}K
(
Xi−x
an

)
/
∑n

j=1K
(
Xj−x
an

)
then m̂(x, α) is the kernel
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conditional mean estimator (2.15):

m̂K(x, α) = 1{x ∈ Xn}

∑n
i=1 ρ(Zi, α)K

(
Xi−x
an

)
∑n

j=1K
(
Xj−x
an

) , (2.15)

where K : Rdx → R is a known symmetric function, an a bandwidth satisfying an → 0 as

n → ∞, and the indicator function 1{x ∈ Xn} is to trim the boundaries of the support of

{Xj}nj=1. See Ai and Chen (1999) for details.

For better finite sample performance of the SMD (2.12), it is better to use delete-t observation

version in computing m̂(Xt, α) in (2.13) (likewise in (2.14) and (2.15)):

m̂(Xt, α) =

n∑
i=1,i 6=t

ρ(Zi, α)An(Xi, Xt). (2.16)

Another criterion for model (2.1) is the following sieve conditional EL:

min
α∈Θ×Hk(n)

Q̂n(α), Q̂n(α) =
1

n

n∑
t=1

sup
λ∈Λ̂n(Xt,α)

n∑
j=1

AK(Xj , Xt) log
(
1 + λ′ρ(Zj , α)

)

where Λ̂n(Xt, α) =
{
λ ∈ Rdρ : 1 + λ′ρ(Zj , α) > 0, j = 1, ..., n

}
. See Zhang and Gijbels (2003) and

Otsu (2011) for details. Of course one could also study sieve conditional GEL and other related

criteria for model (2.1).

Some examples, such as Robinson’s (1988) partly linear regression and Ichimura’s (1993) single

index regression, of the model (2.1) satisfy m(X,α) −m(X,α0) = ρ(Y,X, α) − ρ(Y,X, α0) for any

α. Then, instead of applying the SMD estimation or the sieve conditional EL, one could simply

perform the following sieve generalized least squares (GLS) regression:

min
α∈Θ×Hk(n)

1

n

n∑
i=1

ρ(Zi, α)′[Σ̂(Xi)]
−1ρ(Zi, α). (2.17)
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See Ai and Chen (2007) for combination of SMD and sieve GLS for estimation of the more

general model (2.8) with different information sets.

2.2.2 Criteria based on unconditional moments of increasing dimension

Note that E[ρ(Z,α0)|X] = 0 if and only if the following increasing number of unconditional moment

restrictions hold:

E[ρ(Z,α0)pj(X)] = 0, j = 1, 2, ..., Jn, (2.18)

where {pj(X), j = 1, 2, ..., Jn} is a sequence of known basis functions that can approximate any

real-valued square integrable function of X well as Jn → ∞. It is now obvious that the semi-

nonparametric conditional moment restrictions (2.1) can be estimated using any criteria Q() (and

Q̂n()) for the set of unconditional moment restrictions of increasing dimension (2.18).

A typical quadratic MD criterion for model (2.18) is the following sieve GMM:

min
α∈Θ×Hk(n)

Q̂n(α), Q̂n(α) = ĝn(α)′Ŵ ĝn(α) (2.19)

with ĝn(α) = 1
n

∑n
t=1 ρ(Zt, α)⊗pJn(Xt), and Ŵ is a possibly random dρJn×dρJn−weighting matrix

of increasing dimension (that is introduced for potential efficiency gains). Sieve GMM (2.19) was

suggested in Ai and Chen (2003) and Chen (2007), and studied in Sueishi (2014), Tao (2015) and

Chernozhukov, Newey and Santos (2015) subsequently.

Another criterion for model (2.18) is the following sieve (unconditional) EL:

min
α∈Θ×Hk(n)

Q̂n(α), Q̂n(α) = sup
λ∈Λ̂n(α)

1

n

n∑
t=1

log
(
1 + λ′[ρ(Zt, α)⊗ pJn(Xt)]

)

where Λ̂n(α) =
{
λ ∈ RdρJn : 1 + λ′[ρ(Zt, α)⊗ pJn(Xt)] > 0, t = 1, ..., n

}
; see, e.g., Chang, Chen and

Chen (2014). Of course one could also study sieve (unconditional) GEL:

min
α∈Θ×Hk(n)

Q̂n(α), Q̂n(α) = sup
λ∈Λ̂n(α)

1

n

n∑
t=1

ψ
(
λ′[ρ(Zt, α)⊗ pJn(Xt)]

)
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where ψ() : Ψ→ [0,∞] is a concave function and

Λ̂n(α) =
{
λ ∈ RdρJn : λ′[ρ(Zt, α)⊗ pJn(Xt)] ∈ Ψ, t = 1, ..., n

}
. See Smith (1997), Donald, Imbens

and Newey (2003) and Parente and Smith (2014) for various choices of ψ() and other related criteria

for unconditional moment restrictions (2.18) with increasing dimension.

2.2.3 Computation and Heuristic choices of regularization parameters

Although many different criteria could be used in PSE (2.9) to estimate α0 = (θ′0, h0) for the

model (2.1), some criterion functions are much easier to compute than others in the presence of

unknown functions (h) with endogeneity. Without unkown h, theoretical statistics and econometrics

papers recommend EL and GEL over MD and GMM for better asymptotic second-order properties

in efficient estimation of θ, although MD and GMM are easier to compute with commonly used

sample size in empirical work in economics. For model (2.1) with nonparametric endogeneity,

(penalized) sieve MD and sieve GMM are much easier to compute. In particular, for nonparametric

quantile IV, quantile partially additive IV, quantile varying coefficient IV, quantile single-index

IV, quantile transformation IV regression examples of model (2.1), the optimal weighting in SMD

criterion is known, and hence we could always use the optimally weighted MD criterion Q̂0
n(α) with

Σ̂0(x) = Σ0(x) = γ(1 − γ) × Idρ , which leads to computationally simple yet semiparametrically

efficient estimator for θ0 (see Chen and Pouzo, 2009).

There is no formal theoretical result on data-driven choices of smoothing parameters for the

various PSE estimators for the general model (2.1) yet. Based on the sieve GMM interpretation

(2.19) of the original sieve MD estimator with series LS estimator (2.14) of m(X,α), Ai and Chen

(2003) suggested dρ×Jn ≥ dθ+k(n), Jn/n→ 0 and k(n)→∞ slowly. Blundell, Chen and Kristensen

(2007) and Chen and Pouzo (2009, 2012, 2015) present detailed Monte Carlo studies and Engel

curve real data applications in terms of choices of smoothing parameters that are consistent with

their theoretical conditions for the optimal rates of convergence of the penalized SMD estimators.

They recommend using the penalized SMD estimators with finite dimensional linear sieves (typically

splines) with small penalty: λn → 0 fast (i.e., very close to zero), k(n)→∞ slowly, dρ×Jn = c×k(n)
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for c slightly bigger than 1 and Jn/n→ 0; see these papers for details. There are a few very recent

papers on data-driven choices of smoothing parameters for various estimators of the NPIV model

(2.2) E[Y1 − h0(Y2)|X] = 0; see Section 4 for details.

Many members of the general model (2.1) have a scalar-valued regression or quantile regression

residual function ρ(Z,α). A computationally attractive and stable procedure is the (penalized)

SMD estimation (2.12) using the identity weighting Σ̂(X) = 1, the series LS estimator (2.14) as

m̂(X,α) for the conditional mean function m(X,α) = E[ρ(Z,α)|X], and a linear sieve π′qk(n) for

h ∈ H. The procedure could be expressed as

min
θ∈Θ,π

{
[R(θ, π)]′P (P ′P )−P ′[R(θ, π)] + λnP̂n(π′qk(n))

}
(2.20)

where R(θ, π) = (ρ(Z1, θ, π
′qk(n)), ..., ρ(Zn, θ, π

′qk(n)))′ and P ′ = (pJn(X1), ..., pJn(Xn)). Obviously

Jn ≥ dθ + k(n), Jn/n → 0, k(n) → ∞ slowly and λn → 0 fast (i.e., very close to zero or could be

set to zero). As already mentioned, this simple criterion (2.20) (even with λn = 0) automatically

leads to semiparametric efficient estimation of θ0 for various quantile IV examples of (2.1).

Example 1: Partially additive IV regression The model is

Y1 = Y ′2θ0 + h01(Y3) + h02(Y0) + u, E[u|X] = 0, (2.21)

where Y1 ∈ R, Y2 ∈ Rdθ , Y0, Y3 ∈ [0, 1] are endogenous, and X = (X1, X2, X3) ∈ X ⊂ Rdθ+2

are conditioning variables. The parameters of interest are α = (θ′, h1, h2) ∈ Θ × H1 × H2 ≡ A.

For simplicity we assume that V ar(Y2) > 0, H1 = {h1 ∈ C2([0, 1]) :
∫

[∇2h1(y3)]2dy3 < ∞}

and H2 = {h2 ∈ C2([0, 1]) :
∫

[∇2h2(y0)]2dy0 < ∞, h2(0.5) = c} for a known finite constant c.

Under mild regularity conditions the true parameters α0 ∈ A are identified, and can be consistently

estimated via a (penalized) SMD procedure. We can take An = Θ × H1n × H2n as a sieve space

with H1n = {h1(y3) = qk1n(y3)′π1 :
∫

[∇2h1(y3)]2dy3 ≤ c1 log n} and H2n = {h2(y0) = qk2n(y0)′π2 :∫
[∇2h2(y0)]2dy0 ≤ c2 log n, h2(0.5) = c}, where qk1n(), qk2n() are either a polynomial spline basis
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with equally spaced (according to empirical quantile the support) knots or a 3rd order cardinal

B-spline basis.

Example (2.21) reduces to the Monte Carlo example in Chen (2007, p. 5580) when Y2 = X1, Y0 =

X2 become exogenous. It also becomes the Monte Carlo experiment 1 in Section 6 when Y0 = X2

becomes exogenous. Nevertheless, all these examples could be estimated using the same (penalized)

sieve MD procedure (2.20) with the residual function ρ(Z,α) = Y1− (Y ′2θ + h1(Y3) + h2(Y0)), which

becomes a penalized 2SLS (without constraints):

min
θ,π

(Y1 −Y2θ −Qπ)′ P (P ′P )−P ′ (Y1 −Y2θ −Qπ) +
2∑
`=1

λ`π
′
`C`π` (2.22)

where R(θ, π) = Y1−Y2θ−Qπ, with Y1 = (Y1,1, ..., Y1,n)′, Y2 = (Y2,1, ..., Y2,n)′, π = (π′1, π
′
2)′, Q1 =

(qk1,n(Y3,1), ..., qk1,n(Y3,n))′, Q2 = (qk2,n(Y0,1), ..., qk2,n(Y0,n))′ and Q = (Q′1,Q
′
2)′. And the penalty

λnP̂n(π′qk(n)) =
∑2

`=1 λ`π
′
`C`π`, with C` =

∫
[∇2qk`,n(y)][∇2qk`,n(y)]′dy, π′`C`π` =

∫
[∇2h`(y)]2dy

for ` = 1, 2. with small penalty terms λ1, λ2 ≥ 0. The problem (2.22) has a simple closed form

solution as presented in Chen (2007, p. 5580-83).

Example 2: Single-index IV regression The model is:

Y1 = h0(Y3 + Y ′2θ0) + u, E[u|X] = 0. (2.23)

with dim(X) ≥ 2 and α0 = (θ′0, h0) ∈ Θ × H. See Chen et al (2014) for sufficient conditions

for identification of α0. We can estimate α0 using the sieve MD procedure (2.20) with a residual

function ρ(Z,α) = Y1−h(Y3 +Y ′2θ), and a sieve space An ≡ Θ×Hn, Hn =
{
h ∈ H : h(.) = π′qk(n)

}
,

that is, α̂ = (θ̂′, ĥ) ∈ An solves

min
θ,π

[Y1 −Q(θ)π]′P (P ′P )−P ′[Y1 −Q(θ)π]
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where R(θ, π) = Y1 − Q(θ)π, with Q(θ) = (qk(n)(Y3,1 + Y ′2,1θ), ..., q
k(n)(Y3,n + Y ′2,nθ))

′. For a

computationally simpler estimation procedure, we can follow the profile SMD procedure suggested

by Blundell et al (2007). First, for each fixed θ ∈ Θ we estimate h̃(y3, y2; θ) = qk(n)(y3 + y′2θ)
′π̃(θ)

via 2SLS

π̃(θ) = arg min
π

[Y1 −Q(θ)π]′P (P ′P )−P ′[Y1 −Q(θ)π]

=
(
Q(θ)′P (P ′P )−P ′Q(θ)

)−
Q(θ)′P (P ′P )−P ′Y1.

Second, obtain θ̂n as the solution to

θ̂n = arg min
θ∈Θ

[Y1 −Q(θ)π̃(θ)]′P (P ′P )−P ′[Y1 −Q(θ)π̃(θ)].

Lastly, estimate h0(y3 + y′2θ0) by ĥn(y3 + y′2θ̂n) = qk(n)(y3 + y′2θ̂n)′π̃(θ̂n).

2.2.4 Consistency and Convergence rates of nonparametric part with endogeneity

Suppose that α0 ∈ (A, ||.||s) is (point) identified by the model (2.1) (see Newey and Powell (2003),

Chen et al. (2014) and references therein for sufficient conditions for identification). Newey and

Powell (2003) derived the consistency of SMD estimators assuming compact parameter space and

smooth residuals ρ(Z,α) (in α0). Chen and Pouzo (2012) present a general consistency theorem

for approximate PSE estimators, allowing for ill-posed inverse problems, non-compact parameter

spaces, flexible penalty functions and non-smooth residuals ρ() (in α0). In particular, they allow for

fast growing sieve space (for h) with L1 penalty on function h or its derivatives, which is similar to

LASSO.

For NPIV model (2.2) E[Y1−h0(Y2)|X] = 0, Hall and Horowitz (2005) and Chen and Reiss (2011)

establish the minimax lower bound in ||.||L2(Y2)−loss for estimation of h0(), Chen and Christensen

(2015) derived the minimax lower bound in ||.||L2(Y2)−loss for estimation of derivatives of h0(), and

in ||.||∞−loss for estimation of h0() and its derivatives. The sieve NPIV estimator of Blundell, Chen

and Kristensen (2007) and the modified series NPIV estimator of Horowitz (2011) are shown to

19



achieve the optimal convergence rate in ||.||L2(Y2)−norm. Recently Chen and Christensen (2015)

obtained the optimal sup-norm rate of the sieve NPIV estimator for estimating h0 and its derivatives.

Interestingly, the optimal sup-norm rate coincides with the optimal L2-norm rate for severely ill-

posed case, and is up to a factor of (log(n))ε with 0 < ε < 1/2 for mildly ill-posed case. The

sup-norm rate result is very useful for inference on nonlinear welfare functionals of h0().

For general model (2.1) that include NPIV and nonparametric quantile IV as special cases, Chen

and Pouzo (2012) first establish the Hilbert-norm rate of convergence for the PSMD estimators under

high level regularity conditions that allow for any nonparametric consistent estimators m̂(X,α) of

the conditional mean functions m(X,α) = E[ρ(Z,α)|X]. They then provide low level sufficient

conditions in terms of the series LS estimator (2.14). In particular, they show that the PSMD

estimators for general model (2.1) can achieve the same optimal rate in ||.||L2(Y2) as that for the

NPIV. Unfortunately, besides the NPIV model, there is no sup-norm rate results for estimating h0

of a general model (2.1) with nonparametric endogeneity.

2.2.5 Shape Restrictions and Shape-preserving Sieves

Economic theory often provides shape restrictions, such as additivity, non-negativity, monotonicity,

convexity, concavity, homogeneity of the unknown function h(.) (e.g., Matzkin, 1994). Imposing

shape restrictions often help with nonparametric identification. See, for example, Chen and Pouzo

(2012, theorem A.1) for using strictly convex penalty to regain identification for a class of partially

identified nonparametric IV models, and Freyberger and Horowitz (2013) for imposing monotonic-

ity to obtain tighter identified set in a partially identified NPIV model with discrete endogenous

regressor. Functions that are known to satisfy shape restrictions can be well approximated by var-

ious kinds of shape-preserving sieves, including shape-preserving B-splines, Bernstein polynomials,

and certain wavelet sieves. See, e.g., DeVore (1977a, 1977b), Anastassiou and Yu (1992a, 1992b),

Dechevsky and Penev (1997), Chui (1992 Chapter 4, 6), Chen (2007), and Wang and Ghosh (2012).

Nonparametric estimation and testing with shape restrictions have been studied in both statistics

and econometrics literature. See Groeneboom and Jongbloed (2014), and Han and Wellner (2016)
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for detailed treatments and up-to-date references about nonparametric estimation and inference

under shape constraints for models without endogeneity. For a smooth nonparametric function in

models with or without endogeneity, it is known that imposing shape restriction improves finite

sample performance but does not affect the optimal nonparametric convergence rate, while testing

against some shape restricted alternative could be more powerful than that against alternatives

without shape restrictions. See, e.g., Meyer (2008) for inference using shape-restricted regression

splines without endogeneity, Blundell, Horowitz and Parey (2012, 2015) for improving finite sam-

ple behavior of their demand curve estimation by imposing Slutsky inequality on demand function,

Grasmair, Scherzer and Vanhems (2013) for the asymptotic properties of a NPIV model (2.2) with a

general set of constraints, Chetverikov and Wilhelm (2015) for estimation and testing in a nonpara-

metric regression with endogeneity under a monotone IV assumption and a monotonicity restriction

of h(.).

3 Sieve Inferences on Functionals of Nonparametric Endogeneity

In many applications of the semi-nonparametric conditional moment restrictions model (2.1), we

are interested in inference on a vector-valued linear and/or nonlinear functional φ : A → Rdφ . For

example, consider a model E[ρ(Y1, θ0, h0(Y2))|X] = 0, linear functionals of α = (θ′, h) ∈ A could be

an Euclidean functional φ(α) = θ, a point evaluation functional φ(α) = h(y2) (for y2 ∈ supp(Y2)), a

weighted derivative functional φ(h) =
∫
w(y2)∇h(y2)dy2 and others; nonlinear functionals include

a quadratic functional
∫
w(y2) |h(y2)|2 dy2, a quadratic derivative functional

∫
w(y2) |∇h(y2)|2 dy2,

exact consumer surplus and deadweight loss functionals of an endogenous demand function h (see

Vanhems (2010), Blundell, Horowitz and Parey (2012), Chen and Christensen (2015)).

Let α̂n = (θ̂′n, ĥn) be a consistent estimator of α0 = (θ′0, h0) that is identified by the semi-

nonparametric model (2.1). Then φ(α̂n) is a simple plug-in estimator of the functional of interest

φ(α0). And φ(α̂n)−φ(α0) typically converges to zero at either a root-n rate or a slower than root-n

rate. In the literature, φ : A → Rdφ is sometimes called a regular (or smooth or bounded) functional

if φ(α0) can be estimated at a
√
n−rate. And φ() is called a irregular (or non-smooth or unbounded)
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functional if φ(α0) can be best estimated at a slower than
√
n−rate.

3.1 The simpler case when φ(α) = θ is regular

For the conditional moment restrictions (2.1) with i.i.d. data, Chamberlain (1992) and Ai and

Chen (1999, 2003) derive the semiparametric efficiency bound for θ0 in (2.1). Let α̂n = (θ̂′, ĥ)

be the sieve MD estimator (2.12). Under a set of regularity conditions, Ai and Chen (1999, 2003)

establish
√
n(θ̂−θ0)

d→ N (0, Vθ) for a finite positive definite matrix Vθ, and provide simple consistent

variance estimators for Vθ. They also show that the optimally weighted sieve MD estimator achieves

the semiparametric efficiency bound of θ0 in (2.1). Their results are subsequently extended by Otsu

(2011) and Sueishi (2014) to sieve EL and sieve GMM estimation of (2.1) respectively. All these

papers assume that the entire parameter space A ≡ Θ × H is compact under a strong metric

||.||s = ||.||e+ ||.||H and that the residual function ρ(Z,α) is pointwise differentiable in α0 = (θ′0, h0).

Chen and Pouzo (2009) relax these assumptions. They show that, for the general model (2.1) with

nonparametric endogeneity, the penalized SMD estimator α̂n = (θ̂′, ĥ) can simultaneously achieve

root-n asymptotic normality of θ̂ and the optimal nonparametric convergence rate of ĥ (in a strong

norm || · ||H), allowing for possibly nonsmooth residuals and/or a noncompact (in || · ||H) function

space (H) or noncompact sieve spaces (Hk(n)). This result is very useful to applied researchers

since the same regularization parameters chosen to achieve the optimal rate for estimating h0 are

valid for
√
n(θ̂− θ0)

d→ N (0, Vθ). In addition, Chen and Pouzo (2009) show that a simple weighted

bootstrap procedure can consistently estimate the limiting distribution of the (penalized) SMD θ̂,

which is very useful when the residual function ρ(Z; θ, h(·)) is non-smooth in α0 = (θ′0, h0), such as

in a partially linear quantile IV regression example E[1{Y3 ≤ Y ′1θ0 + h0(Y2)}|X] = γ ∈ (0, 1) (see

proposition 5.1 in Chen and Pouzo 2009).

All these papers could only conduct inference on φ(α0) = θ0 of the model (2.1) when θ0 is

assumed to be regular (i.e., root-n estimable), however.
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3.2 Possibly irregular functional φ(α) of model (2.1)

For the semi-nonparametric conditional moment restrictions (2.1) with nonparametric endogeneity,

it is in general difficult to check whether a functional φ(α) is regular or irregular. Let φ̂n ≡ φ(α̂n)

be the plug-in (penalized) SMD estimator of φ(α0). Recently, Chen and Pouzo (2015) established

the asymptotic normality of φ̂n of φ(α0) that could be slower than root-n estimable. They also

establish asymptotic distributions of sieve Wald, sieve quasi-likelihood ratio (QLR), and sieve score

statistics for the hypothesis of φ(α0) = φ0, regardless of whether φ(α0) is root-n estimable or not.

Some of their inference results are summarized in this subsection.

3.2.1 Sieve t (or Wald) statistic

Under some regularity conditions and regardless of whether φ(α0) is
√
n estimable, Chen and Pouzo

(2015) show that

√
nV
−1/2
φ,n (φ(α̂n)− φ(α0)) = −

√
nZn + op(1)

d→ N (0, Idφ)

where Zn ≡ 1
n

∑n
i=1 V

−1/2
φ,n S∗n,i and

S∗n,i ≡
(
dm(Xi, α0)

dα
[v∗n]

)′
Σ(Xi)

−1ρ(Zi, α0) (3.1)

is the sieve score, Vφ,n = V ar
(
S∗n,i

)
is the sieve variance.

For notational simplicity we focus on a real-valued functional φ : A → R and sieve t statistic

in this subsection. See Appendix A in Chen and Pouzo (2015) for vector-valued and increasing

dimensional functionals and the corresponding sieve Wald statistic. Then intuitively, the functional

φ(α0) is
√
n-estimable if lim supn Vφ,n <∞, and is slower-than-

√
n-estimable if lim supn Vφ,n =∞.

The sieve variance Vφ,n has a closed form expression resembling the “delta-method” variance for

a parametric MD problem:

Vφ,n = V ar
(
S∗n,i

)
= F ′nD

−
nfnD−n Fn, (3.2)
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where qk(n)(·) ≡
(
1′dθ , q

k(n)(·)′
)′

is a (dθ + k(n))× 1 vector with 1dθ a dθ × 1 vector of 1’s,

Fn ≡
dφ(α0)

dα
[qk(n)(·)] ≡ ∂φ(θ0 + θ, h0 + β′qk(n)(·))

∂γ′
|γ=0

and γ ≡ (θ′, β′)′ are (dθ + k(n))× 1 vectors, dφ(α0)
dh [qk(n)(·)′] ≡ ∂φ(θ0,h0+β′qk(n)(·))

∂β |β=0, and

Dn = E

[(
dm(X,α0)

dα
[qk(n)(·)′]

)′
Σ(X)−1

(
dm(X,α0)

dα
[qk(n)(·)′]

)]
,

fn = E

[(
dm(X,α0)

dα
[qk(n)(·)′]

)′
Σ(X)−1Σ0(X)Σ(X)−1

(
dm(X,α0)

dα
[qk(n)(·)′]

)]
,

where dm(X,α0)
dα [qk(n)(·)′] ≡ ∂E[ρ(Z,θ0+θ,h0+β′qk(n)(·))|X]

∂γ |γ=0 is a dρ × (dθ + k(n)) matrix.

The closed form expression of Vφ,n immediately leads to simple consistent plug-in sieve variance

estimators; one of which is

V̂φ,n = F̂ ′nD̂
−
n f̂nD̂−n F̂n, (3.3)

where F̂n ≡ dφ(α̂n)
dα [qk(n)(·)] ≡ ∂φ(θ̂+θ,(β̂+β)′qk(n)(·))

∂γ′ |γ=0, Σ̂i = Σ̂(Xi) and ρ̂i = ρ(Zi, α̂n),

D̂n =
1

n

n∑
i=1

[(
dm̂(Xi, α̂)

dα
[qk(n)(·)′]

)′
Σ̂−1
i

(
dm̂(Xi, α̂)

dα
[qk(n)(·)′]

)]
,

f̂n =
1

n

n∑
i=1

[(
dm̂(Xi, α̂)

dα
[qk(n)(·)′]

)′
Σ̂−1
i ρ̂iρ̂

′
iΣ̂
−1
i

(
dm̂(Xi, α̂)

dα
[qk(n)(·)′]

)]
.

Theorem 4.2 in Chen and Pouzo (2015) then presents the asymptotic normality of the sieve (Stu-

dent’s) t statistic:
√
nV̂
−1/2
φ,n (φ(α̂n)− φ(α0))

d→ N (0, 1). (3.4)

Example 1: Partially Additive IV Regression (2.21) (Continued) For this example, α =

(θ, h1, h2) ∈ Θ × H1 × H2, ρ(Z,α) = Y1 − (Y ′2θ + h1(Y3) + h2(Y0)), u = ρ(Z,α0), m(X,α) =

E[Y1 − (Y ′2θ + h1(Y3) + h2(Y0)) |X] and Σ̂(X) = Σ(X) = 1. To apply sieve t statistic (3.4) for

inference on a functional φ(α0), we just need to compute a plug-in estimator V̂φ,n for the sieve
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variance Vφ,n = F ′nD
−
nfnD−n Fn. Note that

Fn =

(
∂φ(α0)

∂θ′
,
dφ(α0)

dh1
[qk1n(.)′],

dφ(α0)

dh2
[qk2n(.)′]

)′
,

γ = (θ′, β′1, β
′
2)′, dφ(α0)

dh1
[qk1n(.)′] =

∂φ(θ0,h01+β′1q
k1n (.),h02)

∂β1

∣∣∣
β1=0

, and

Dn = E

[(
E[
(
Y ′2 , q

k1n(Y3)′, qk2n(Y0)′
)
|X]
)′ (

E[
(
Y ′2 , q

k1n(Y3)′, qk2n(Y0)′
)
|X]
)]
,

fn = E

[(
E[
(
Y ′2 , q

k1n(Y3)′, qk2n(Y0)′
)
|X]
)′
u2
(
E[
(
Y ′2 , q

k1n(Y3)′, qk2n(Y0)′
)
|X]
)]
.

Then a consistent sieve variance estimator is V̂φ,n = F̂ ′nD̂
−
n f̂nD̂−n F̂n with

D̂n = Ŝ′Ĝ−1Ŝ, f̂n = Ŝ′Ĝ−1Ω̂Ĝ−1Ŝ (3.5)

where Ŝ = P ′(Y2,Q1,Q2)/n, Ĝ = P ′P/n and Ω̂ = n−1
∑n

i=1 û
2
i p
Jn(Xi)p

Jn(Xi)
′ with ûi = Y1,i −

Y ′2,iθ̂n − ĥ1,n(Y3,i) − ĥ2,n(Y0,i). We note that this is a standard 2SLS variance estimator with(
Y ′2 , q

k1n(Y3)′, qk2n(Y0)′
)

endogenous variables and pJn(X)′ instruments.

3.2.2 Sieve QLR statistic

When the generalized residual function ρ(Y,X, α) is not pointwise smooth at α0, instead of sieve t

(or sieve Wald) statistic, we could use sieve quasi likelihood ratio for constructing confidence set of

φ(α0) and for hypothesis testing of H0 : φ(α0) = φ0 ∈ Rdφ against H1 : φ(α0) 6= φ0. Denote

Q̂LRn(φ0) ≡ n

(
inf

α∈Ak(n):φ(α)=φ0
Q̂n(α)− Q̂n(α̂n)

)
(3.6)

as the sieve quasi likelihood ratio (SQLR) statistic. It becomes an optimally weighted SQLR statistic,

Q̂LR
0

n(φ0), when Q̂n(α) is the optimally weighted MD criterion Q̂0
n(α). Regardless of whether φ(α0)

is
√
n estimable or not, Chen and Pouzo (2015) show that Q̂LR

0

n(φ0) is asymptotically chi-square

distributed χ2
dφ

under the null H0, and diverges to infinity under the fixed alternatives H1, and
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is asymptotically noncentral chi-square distributed under local alternatives. One could compute

100(1− τ)% confidence set for φ(α0) as

{
r ∈ Rdφ : Q̂LR

0

n(r) ≤ cχ2
dφ

(1− τ)

}
,

where cχ2
dφ

(1 − τ) is the (1 − τ)-th quantile of the χ2
dφ

distribution. For nonparametric quantile

IV, quantile partially additive IV, quantile varying coefficient IV, quantile single-index IV, quantile

transformation IV regression examples of model (2.1), the residual function ρ(Y,X, α) is not point-

wise smooth at α0, but we could always use the optimally weighted SQLR statistic Q̂LR
0

n(φ0) to

construct confidence set for φ(α0); see Chen and Pouzo (2009, 2015).

Bootstrap sieve QLR statistic. Chen and Pouzo (2015) propose a bootstrap version of the

SQLR statistic. Let Q̂LR
B

n denote a bootstrap SQLR statistic:

Q̂LR
B

n (φ̂n) ≡ n

(
inf

α∈Ak(n):φ(α)=φ̂n

Q̂Bn (α)− inf
α∈Ak(n)

Q̂Bn (α)

)
, (3.7)

where φ̂n ≡ φ(α̂n), and Q̂Bn (α) is a bootstrap version of Q̂n(α):

Q̂Bn (α) ≡ 1

n

n∑
i=1

m̂B(Xi, α)′Σ̂(Xi)
−1m̂B(Xi, α), (3.8)

where m̂B(x, α) is a bootstrap version of m̂(x, α), which is computed in the same way as that of

m̂(x, α) except that we use ωi,nρ(Zi, α) instead of ρ(Zi, α). Here {ωi,n ≥ 0}ni=1 is a sequence of

bootstrap weights that has mean 1 and is independent of the original data {Zi}ni=1. Typical weights

include an i.i.d. weight {ωi ≥ 0}ni=1 with E[ωi] = 1, E[|ωi−1|2] = 1 and E[|ωi−1|2+ε] <∞ for some

ε > 0, or a multinomial weight (i.e., (ω1,n, ..., ωn,n) ∼Multinomial(n;n−1, ..., n−1)). For example, if

m̂(x, α) is a series LS estimator (2.14) of m(x, α), then m̂B(x, α) is a bootstrap series LS estimator

of m(x, α), defined as:

m̂B(x, α) ≡

(
n∑
i=1

ωi,nρ(Zi, α)pJn(Xi)
′

)
(P ′P )−pJn(x). (3.9)
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They establish that under the null H0, the fixed alternatives H1 or the local alternatives, the

conditional distribution of Q̂LR
B

n (φ̂n) (given the data) always converges to the asymptotic null

distribution of Q̂LRn(φ0). Let ĉn(a) be the a − th quantile of the distribution of Q̂LR
B

n (φ̂n)

(conditional on the data {Zi}ni=1). Then for any τ ∈ (0, 1), we have limn→∞ Pr{Q̂LRn(φ0) >

ĉn(1−τ)} = τ under the nullH0, limn→∞ Pr{Q̂LRn(φ0) > ĉn(1−τ)} = 1 under the fixed alternatives

H1, and limn→∞ Pr{Q̂LRn(φ0) > ĉn(1 − τ)} > τ under the local alternatives. We could thus

construct a 100(1− τ)% confidence set using the bootstrap critical values:

{
r ∈ Rdφ : Q̂LRn(r) ≤ ĉn(1− τ)

}
. (3.10)

The bootstrap consistency holds for possibly non-optimally weighted SQLR statistic and possibly

irregular functionals, without the need to compute standard errors.

For model (2.1) with smooth residuals, Chen and Pouzo (2015) established the validity of boot-

strap sieve Wald and bootstrap sieve score statistics in their appendices.

3.2.3 Closely related inference results

Since sieve MD, sieve GMM, sieve EL and sieve GEL criteria are all asymptotically first-order

equivalent, it is easy to see that all the inference results of Chen and Pouzo (2015) for sieve MD

based criterion carry through to those based on sieve GMM, sieve EL and sieve GEL. Indeed,

under conditions similar to Ai and Chen (2003) and Chen and Pouzo (2009, 2015), Tao (2015)

establishes the same results for sieve Wald, sieve GMM and sieve score test statistics using sieve

GMM criterion for model (2.1) when the residual function ρ(Z,α) is smooth in α0. Pouzo (2015)

establishes the validity of bootstrap QLR statistic based on unconditional GEL for functionals of

increasing dimension. Also see Ai and Chen (2007, 2012) for sieve MD estimation and inference

results for more general models (2.4-2.5) and (2.8).
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4 Sieve NPIV: rate-adaptivity and uniform inference

4.1 Sup-norm rate-adaptive sieve NPIV estimation

There is no formal theoretical result on data-driven choices of regularization parameters for any

PSE for the general models (2.1) yet. For the NPIV model (2.2) E[Y1 − h0(Y2)|X] = 0, there is

some very recent work on choice of regularization parameters.

The sieve NPIV (or series 2SLS) estimator of h0(.) in (2.2) can be written as

ĥK(y2) ≡ qK(y2)π̂K = qK(y2)′
(
Q′KPJ(P ′JPJ)−P ′JQK

)−
Q′KPJ(P ′JPJ)−P ′JY1 (4.1)

where the subscript K of ĥ indicates the sieve dimension approximating the unknown h0, and

QK =
(
qK(Y2,1), . . . , qK(Y2,n)

)′
with qK(y2) = (q1(y2), . . . , qK(y2))′ ,

PJ =
(
pJ(X1), . . . , pJ(Xn)

)′
with pJ(x) = (p1(x), . . . , pJ(x))′ ,

Y1 = (Y1,1, . . . , Y1,n)′, J ≥ K.

Here K is the key regularization parameter, whereas J is a smoothing parameter.6

When K = J , qK(.) = pJ(.) are orthonormal bases in L2([0, 1]) such as the Legendre Polynomial,

the estimator (4.1) becomes identical to Horowitz’s (2011) modified series NPIV estimator. Horowitz

(2014) proposed an adaptive procedure to choose the regularization parameter K = J for his

estimator by choosing K to minimize the sample analog of an approximate asymptotic integrated

mean-square error. He also showed that his adaptive procedure leads to near L2-norm rate adaptivity

for estimation of h0 by a factor of
√

log(n). Breunig and Johannes (2015) applied Lepski’s (1990)

method to choose K and derived a near L2-norm rate adaptivity for estimation of linear functionals

of h0.

Recently Chen and Christensen (2015, CC) obtained the optimal sup-norm rate of the sieve

6We use the notation in Chen and Pouzo (2009, 2012 and 2015) in this review. Chen and Christensen (2015) used
J as the regularization parameter and K as the smoothing paramter.
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NPIV estimator (4.1) for estimating h0 and its derivatives. Both the sup-norm and the L2-norm

convergence rates of the sieve NPIV estimator depend on the sieve measure of ill-posendess intro-

duced by Blundell et al (2007), which is defined as:

τK = sup
h∈HK :h6=0

||h||L2(Y2)

||Th||L2(X)
(4.2)

Here, T : L2(Y2)→ L2(X) is a conditional expectation operator given by Th(x) = E[h(Y2)|X = x],

and HK is the sieve space for h. Precisely, while the bias part of the sieve NPIV estimator ĥK

depends only on the smoothness of h0 (which in general decreases as K increases), the variance part

of ĥK , as measured in sup-norm or L2-norm, increases with τK (which increases with K). Based on

this bias-variance trade-off in K, CC adopted Lepski’s balance principle to propose a data-driven

choice of K that could achieve the optimal sup-norm convergence rate for the NPIV model.

To illustrate, fixing the smoothing parameter J as a known function called J(.) : N→ N, of the

regularization parameter K such that J(K) ≥ K. CC show that τK can be estimated by

τ̂K =
1

smin
(
(P ′JPJ/n)−1/2(P ′JQK/n)(Q′KQK/n)−1/2

) (4.3)

where smin(A) is the minimum singular value of the matrix A, and A−1/2 denotes the inverse of the

square root of a positive definite matrix A.

Let Kmin = blog(log(n))c and

K̂max = min
{
K > Kmin : τ̂K |ζ(K)|2

√
log(log(K))(log(n))/n ≥ 1

}

where |ζ(K)|2 = K if QK and PJ are spanned by a spline, wavelet, or cosine basis, and |ζ(K)|2 = K2

if QK and PJ are spanned by orthogonal polynomial basis. Define ÎK =
{
k ∈ K : Kmin ≤ k ≤ K̂max

}
,

where K denotes the sequence of regularizing sieve dimensions. The data-driven index set is defined

as

K̂ =
{
k ∈ ÎK :

∣∣∣∣∣∣ĥk − ĥl∣∣∣∣∣∣
∞
≤
√

2σ
(
V̂sup(k) + V̂sup(l)

)
for all l ∈ ÎK with l ≥ k

}
,
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with

V̂sup(k) = τ̂kξk
√

(log(n))/(nêk)

where ξk = supy2 ||q
k(y2)||`1 , êk = λmin (Q′kQk/n), and a finite constant σ2 ≥ supxE[(Y1 −

h0(Y2))2|X = x].

The data-driven choice of optimal K is

K̂ = arg min
k∈K̂

k.

CC show that such a choice is sup-norm rate adaptive for sieve NPIV estimation of h0 and its

derivatives.

4.2 Bootstrap uniform confidence band for nonlinear functional processes

Previously Horowitz and Lee (2012) provided a uniform confidence band for {h0(y2) : y2 ∈ [0, 1]}

based on Horowitz’s (2011) modified series NPIV estimator. Recently CC present a bootstrap

uniform confidence band for a possibly nonlinear functional process of h0, which could be used for

inference on consumer surplus functional process of an endogenous demand function.

Let Zn = {(Y1i, Y2i, Xi)}ni=1 denote the original data, and {wi}ni=1 be a bootstrap sample of

iid random variables drawn independently of the data satisfying E[wi|Zn] = 0, E[w2
i |Zn] = 1 and

E[|wi|2+ε|Zn] <∞ for some ε ≥ 1. For example, wi can be N (0, 1) or Mammen’s (1993) two-point

distribution. CC proposed a sieve score bootstrap procedure to obtain the uniform confidence bands

for general nonlinear functional processes {φt(h0) : t ∈ T } of h0 in a NPIV model, where T is an

index set and h0 is estimated using the sieve NPIV estimator (4.1) with K ∈ (K̂ + 1, K̂max], a

possibly measurable function of data Zn that ensures that sup-norm bias is of a smaller order of

the sup-norm standard derivation.
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Define the sieve score bootstrap process {Z∗n(t) : t ∈ T }

Z∗n(t) =
∂φt(ĥ)
∂h [qK ]′D̂−Ŝ′Ĝ−1√

V̂φ,t

(
1√
n

n∑
i=1

pJ(Xi)ûiwi

)
(4.4)

where D̂ = Ŝ′Ĝ−1Ŝ with Ŝ = P ′Q/n, Ĝ = P ′P/n, and V̂φ,t = ∂φt(ĥ)
∂h [qK ]′D̂−f̂D̂− ∂φt(ĥ)

∂h [qK ] is a

consistent sieve variance estimator, with f̂ = Ŝ′Ĝ−1Ω̂Ĝ−1Ŝ and Ω̂ = n−1
∑n

i=1 û
2
i p
J(Xi)p

J(Xi)
′

and ûi = Y1,i − ĥ(Y2,i). Note that for fixed t, this sieve variance estimator V̂φ,t is the same as that

in (3.5).

Let P∗ {} denote the probability measure of the bootstrap innovations {wi}ni=1 conditional on the

original data Zn. Under some regularity conditions allowing for both mildly- or severely- illposed

NPIV model, CC showed that

sup
s∈R

∣∣∣∣∣∣P
sup
t∈T

∣∣∣∣∣∣
√
n
(
φt(ĥ)− φt(h0)

)
√
V̂φ,t

∣∣∣∣∣∣ ≤ s
− P∗

{
sup
t∈T
|Z∗n(t)| ≤ s

}∣∣∣∣∣∣ = op(1).

This could be used to construct uniform confidence bands for nonlinear functional process of a NPIV

model.

5 Semiparametric Two-step GMM

The methods of sieves and penalizations are versatile, and can be used in multi-step estimation

of complicated models that are ubiquitous in diverse empirical economics. See, e.g., Engle and

Gonzalez-Rivera (1991), Gallant, Hansen and Tauchen (1990), Conley and Dupor (2003), Engle

and Rangel (2008), Kawai (2011), Chen, Favilukis and Ludvigson (2013), Arcidiacono and Miller

(2011), Nevo (2011) to name only a few. See Chen (2007, 2013), Ackerberg, et al (2012, 2014)

for additional references. This section reviews results for sieve semiparametric two-step GMM

estimation and inference with iid data.7

7See Chen and Liao (2015) for sieve semiparametric two-step GMM with weakly dependent data
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The Model. Let {Zi}ni=1 = {(Y ′i , X ′i)′}ni=1 be a random sample from the probability distribution

of Z = (Y ′, X ′)′. Let g(·) : RdZ ×B×A → Rdg be a vector of measurable functions with ∞ > dg ≥

dβ ≥ 1, B is a compact subset in Rdβ with a non-empty interior, and A is an infinite dimensional

(nuisance) function space. Let Q(·) : A → R be a non-random criterion function. A semiparametric

structural model specifies that

E[g(Z, β, α0(·, β))] = 0 at β = β0 ∈ int(B), (5.1)

and for any fixed β ∈ B, α0(·, β) ∈ A solves

Q(α0) = inf
α∈A

Q(α). (5.2)

If the nuisance parameter α0(.) were known, the finite dimensional parameter of interest β0 is over-

identified by dg moment conditions in (5.1). But α0(.) is unknown, except that it is identified

by (5.2). As in Newey (1994) and Chen Linton and van Keilegom (CLvK 2003), we allow for

α0(·, β) ∈ A to depend on β and data. We use a simplified notation, (β0, α0) ≡ (β0, α0(, β0)),

throughout this section. The GMM moment function g(Zi, β, α(·)) is allowed to depend on the entire

nuisance functions α(·) and not just their values at observed data points. Finally, the parameter

α(·) could consist of both finite dimensional parameter θ and infinite dimensional functions h(·);

that is, α(·, β) = (θ′, h(·, β)) ∈ Θ×H = A as in Section 2, except that dim(Θ) could be zero in many

semiparametric two-step GMM applications which corresponds to A = H and α(·, β) = h(·, β).

Sieve semiparametric two-step GMM estimation. In the first-step the unknown nuisance

functions α0(·) is estimated via an approximate sieve extremum estimation, i.e.,

Q̂n(α̂n) ≤ inf
α∈Ak(n)

Q̂n(α) + op(n
−1), (5.3)

where Q̂n(.) is a random criterion function such that supα∈Ak(n)

∣∣∣Q̂n(α)−Q(α)
∣∣∣ = op(1), and

Ak(n) = Θ×Hk(n) is a sieve space for A = Θ×H as reviewed in Section 2. In the second-step, the
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first-step sieve extremum estimator α̂n is plugged into some unconditional moment conditions and

the unknown β0 is estimated by GMM

β̂n = arg min
β∈B

[
1

n

n∑
i=1

g(Zi, β, α̂n)

]′
Wn

[
1

n

n∑
i=1

g(Zi, β, α̂n)

]
(5.4)

where Wn is a dg × dg positive definite (possibly random) matrix, with plimnWn = W .

The definition of sieve semiparametric two-step GMM estimation consists of equations (5.3)

and (5.4). As demonstrated in Chen (2007, 2013), sieve extremum estimation in the first-step

(5.3) is very flexible and can estimate unknown functions in most semi-nonparametric models by

different choices of criterion Q̂n() and sieves Ak(n). For example, if α0(.) is identified as a so-

lution to infα∈A−E[ϕ(Z,α)] for a measurable function ϕ(Z,α) : Rdz × A → R, then one can

use sieve M-estimation (e.g., Least Square, Quantile, quasi MLE) with Q(α) = −E[ϕ(Z,α)] and

Q̂n(α) = − 1
n

∑n
i=1 ϕ(Zi, α). If α0(.) is identified through conditional moment restrictions model

(2.1) E[ρ(Z,α0)|X] = 0, then one can use the SMD estimation with Q(α) = E[m(X,α)′m(X,α)]/2

and Q̂n(α) = 1
2n

∑n
i=1 m̂(Xi, α)′m̂(Xi, α), where m̂(X,α) is any consistent estimator (say 2.13) of

the conditional moment function m(X,α) = E[ρ(Z,α)|X] in Section 2. Of course sieve GMM or

sieve EL as described in Section 2 for model (2.1) could also be used in the first-step (5.3). Like-

wise, instead of the second-step GMM (5.4), one could apply EL or GEL to estimate β0 identified

by model (5.1). All these different variations give the same asymptotic variance for estimating β0

in terms of first-order asymptotic theory. Therefore, we only review the simplest GMM estimator

(5.4) in the second step.

Root-n asymptotic normality of the second-step GMM estimator

Let G(β, α) ≡ E[g(Z, β, α)]. For any (β, α) ∈ B ×A, we denote the ordinary derivative of G(β, α)

with respect to β as Γ1(β, α). Let Γ1 = Γ1(β0, α0) and Γ′1WΓ1 be non-singular. Under some

regularity conditions (see e.g., Newey (1994), CLvK, Chen (2007), Chen and Liao (2015)), the
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second-step GMM estimator β̂n is
√
n-estimable and satisfies

√
n(β̂n − β0) = −(Γ′1WΓ1)−1Γ′1W

1√
n

n∑
i=1

g (Zi, β0, α̂n) + op(1)
d→ N (0, Vβ)

where 1√
n

∑n
i=1 g (Zi, β0, α̂n)

d→ N (0, V1) for a finite positive definite V1, and

Vβ =
(
Γ′1WΓ1

)−1 (
Γ′1WV1WΓ1

) (
Γ′1WΓ1

)−1
. (5.5)

We call the estimator β̂n with Wn = V −1
1 + op(1) “semiparametric two-step optimally weighted

GMM” since its asymptotic variance becomes Vβ = (Γ′1V1Γ1)−1, the smallest among the class of

semiparametric two-step GMM estimators. See Ai and Chen (2012), Ackerberg, et al (2014) and

Chen and Santos (2015) for conditions under which it achieves the full semiparametric efficiency

bound for β0 of the models (5.1)-(5.2).

Note that V1 captures the effect (or influence) of the first-step nonparametric estimation of α0 on

the second-step GMM estimation of β0. For any (β, α) ∈ B×A, let Γ2(β, α)[v] =
(
Γ2,1(β, α)[v], . . . ,Γ2,dg(β, α)[v]

)′ ≡
∂G(β,α+τv)

dτ

∣∣∣
τ=0

denote the pathwise derivative of G(β, α) with respect to α ∈ A in the direction v

with {α+ τv : τ ∈ [0, 1]} ⊂ A. Under mild regularity conditions

V1 = lim
n→∞

V ar

(
1√
n

n∑
i=1

g(Zi, β0, α0) +
√
nΓ2(β0, α0)[α̂n − α0]

)
.

When
√
nΓ2(β0, α0)[α̂n − α0] = op(1), which is essentially the asymptotic orthogonality condition

√
nG(β0, α̂n) = op(1) of Andrews (1994, equation (2.12)), we have V1 = V ar (g (Z, β0, α0)), and

hence the first-step nonparametric estimation of α0 does not affect the second-step GMM estimation

of β0. For typical semiparametric two step estimation we have
√
nΓ2(β0, α0)[α̂n − α0] = Op(1) and

the first-step nonparametric estimation of α0 will affect the second-step estimation of β0.

Sieve approximations to V1 and Vβ. When
√
nΓ2(β0, α0)[α̂n − α0] = Op(1) it is generally

difficult to calculate V1 (and hence Vβ) in closed forms when the first-step semi-nonparametric model

(5.2) is complicated, say when the first-step model contains several unknown functions.
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Built upon insight from Newey (1994), Ai and Chen (2007), Ackerberg et al (2012) and under

some regularity conditions, Chen and Liao (2015) established that the unknown asymptotic variance

V1 could be approximated by a sieve variance V ∗1,n = V ar
(
S∗n,i

)
, where

S∗n,i = g(Zi, β0, α0) +
(

∆(Zi, α0)[v∗1,n], . . . ,∆(Zi, α0)[v∗dg ,n]
)′
, (5.6)

and for each j = 1, ..., dg, the sieve adjustment term ∆(Zi, α0)[v∗j,n] satisfies

E
(
∆(Zi, α0)[v∗j,n]

)
= −

[
∂

∂τ
Q(α0 + τv∗j,n)

]∣∣∣∣
τ=0

and v∗j,n(.) = qk(n)(.)′D−n Fj,n

where qk(n)(.) is a vector of linear basis used to approximate Ak(n), Fj,n = Γ2,j(β0, α0)[qk(n)], and

Dn is a k(n)× k(n) positive definite matrix such that

γ′Dnγ ≡
[
∂2

∂τ2
Q
(
α0(.) + τqk(n)(.)′γ

)]∣∣∣∣
τ=0

for all γ ∈ Rk(n).

Note that S∗n,i given in (5.6) could be viewed as a sieve score term for estimating β0 via the sieve

semiparametric two-step GMM procedure. Let

V ∗1,n = V ar
(
S∗n,i

)
and Vβ,n =

(
Γ′1WΓ1

)−1 (
Γ′1WV ∗1,nWΓ1

) (
Γ′1WΓ1

)−1
, (5.7)

both could be computed in closed forms once the linear sieve for Ak(n) is chosen. Chen and Liao

(2015) establishes that V1 = limn→∞ V
∗

1,n, Vβ = limn→∞ Vβ,n and

√
n (Vβ,n)−1/2 (β̂n − β0)

d→ N (0, Idβ ).

Sieve Wald and Overidentification Hansen’s J tests

The closed form sieve variance expression (5.7) immediately implies that one can estimate Vβ,n by

component-wise empirical analog just as in Subsection 3.2.1. Given a consistent estimator of the
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semiparametric two-step GMM variance V̂β,n, we have

√
nV̂
−1/2
β,n

(
β̂n − β0

)
d→ N (0, Idβ ).

Furthermore, we can conduct inference about β0 through the standard Wald test of β = β0 from

Wn = n(β̂n − β0)′V̂ −1
β,n(β̂n − β0)

d→ χ2
dβ
.

Here χ2
d stands for Chi-squared distribution with d degrees of freedom.

Similarly, we can construct Hansen style overidentification J test of E[g(Z, β0, α0)] = 0. Let Ŵn

be a positive definite weighting matrix such that Ŵn = (V ∗1,n)−1 + op(1). The overidentification test

statistic is

Jn =

[
n−1/2

n∑
i=1

g(Zi, β̂n, α̂n)

]′
Ŵn

[
n−1/2

n∑
i=1

g(Zi, β̂n, α̂n)

]
,

and Jn
d→ χ2

dg−dβ under the null. See Chen and Liao (2015) for details.

For weakly dependent time series data, Chen and Liao (2015) first propose a consistent sieve

estimator of the Avar(β̂n) for a sieve semiparametric two-step GMM estimator when the first step

unknown function is estimated via sieve M or MD estimation. They then show that this consistent

estimate of the semiparametric Avar(β̂n) is numerically identical to the estimate of the parametric

asymptotic variance using the standard parametric two-step framework for time series data. These

results greatly simplify the computation of semiparametric standard errors of semiparametric two-

step GMM estimators for time series models.

Control Function (CF) Approach

As mentioned in the introduction, estimation and inference for semiparametric models with endo-

geneity via CF approach are typically conducted in semiparametric two-step or multi-step, where a

nonparametric conditional mean or quantile regression without endogeneity, or a conditional choice
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probability or other reduced form unknown functions of exogenous variables are estimated in the

first step. Semiparametric CF approach is widely used in empirical studies in labor economics and

industrial organization. See, e.g., Heckman (1979), Heckman and Robb (1985), Olley and Pakes

(1996), Wooldridge (2009), Arcidiacono and Miller (2011), Ackerberg, Caves and Frazer (2015),

De Loecker, Goldberg, Khandelwal and Pavcnik (2015), Gandhi, Navarro and Rivers (2015). Ex-

isting theoretical work on sieve semiparametric and nonparametric CF approach include, but are

not limited to, Newey, Powell and Vella (1999), Ai and Chen (2007, 2012), Imbens and Newey

(2009), Blundell, Kristensen and Matzkin (2013), Ackerberg, Chen and Hahn (2012), Ackerberg,

Chen, Hahn and Liao (2014). The theory for the sieve semiparametric two-step GMM remains valid

for sieve semiparametric CF problems. In particular, when the reduced form unknown functions

in a semiparametric or a nonparametric CF problem are approximated and estimated via finite

dimensional linear sieves, the asymptotic variance of the β̂n in the final stage could be consistent-

ly estimated by the variance estimator for the corresponding parametric CF problem (as that in

Wooldridge 2002).

6 Simulation

This section evaluates the performance of the SMD estimation procedures for the NPIV model using

Monte Carlo simulation.8 See Blundell, Chen and Kristensen (2007), Chen and Pouzo (2009, 2012,

2015), Chen and Christensen (2015), Horowitz (2011, 2014) for additional Monte Carlo studies and

empirical applications of sieve NPIV and NPQIV estimators.

6.1 Experiment 1: Partially Linear Additive IV Regression

We first consider a partially linear additive IV regression similar to Example 1 and the Monte Carlo

example in Chen (2007, p. 5580). The true model is Y1 = Y2θ0 +h01(Y3) +h02(X2) + ε with θ0 = 1,

h01(Y3) = 1/(1+exp(−Y3)) and h02(X2) = log(1+X2) with location constraint h02(0.5) = log(3/2).

Y2 and Y3 are endogenous, having Y2 = X1 + 0.5ε2 + e and Y3 = Φ(U3 + 0.5ε3); X2 ∼ uniform[0, 1],

8We conducted the Monte Carlo experiments using R. Sample codes using STATA and R are available upon request.
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X1 = Φ(U2), X3 = Φ(U3), ε = (ε1+ε2+ε3)/3, ε1, ε2, ε3, U2, U3 are independent normally distributed

with mean 0 and variance 1 and e is normally distributed with mean 1 and variance 0.1. Φ(.) is the

standard normal CDF. We use the SMD estimation procedure described in Example 1 to obtain

the estimates of α0 = (θ0, h01, h02). Table 1 reports the performance of the SMD estimator of θ̂

and functions ĥ1, ĥ2 evaluated at a point as well as their sieve variance estimators with respect to

the Monte Carlo standard variance. It is apparent that the simple sieve variance formulation of θ̂

performs well even when the regressor is endogenous.

Table 1: Model in Experiment 1

θ ŜE(θ) |bias(h1(y3))| ŜE(h1(y3)) |bias(h2(x2))| ŜE(h2(x2))

Model 1 1.0146 0.0658 0.0547 0.0648 0.0010 0.0031
(0.0670) (0.0668) (0.0036)

Model 2 1.0139 0.0693 0.0363 0.0987 0.0010 0.0033
(0.0682) (0.0941) (0.0041)

We generate a 1000 observation i.i.d. sample with 1000 Monte Carlo replications. The column θ refers to the Monte
Carlo average of estimator θ̂; the column |bias(h1(y3))| refers to the Monte Carlo average of the bias in absolute

value of the estimated function h1 evaluated at a point y3 (median of y3); the column ŜE(h1(y3)) refers to the
Monte Carlo median of the estimated standard error (square-root of the sieve variance) of h1(y3) with Monte Carlo

standard error displayed beneath it in parenthesis. Similarly for |bias(h2(x2)| and ŜE(h2(x2)). Model 1 uses both
Legendre Polynomial to approximate hi and Model 2 uses cubic spline to approximate h1 and Legendre Polynomial to
approximate h2. The sieve dimensions are chosen using simple AIC procedure. Other choices of sieve are considered
and they yield similar results. Due to lack of space, they are not reported here.

6.2 Experiment 2: NPIV Adaptive Procedure

Next, we use the Monte Carlo design in Chen and Christensen (2015, CC) to illustrate performance

of adaptive procedures. The true model is Y1 = h0(Y2)+ε, where h0(Y2) = log(|6Y2−3|+1)sign(Y2−

0.5). We generate (ε, V ∗, X∗) from


ε

V ∗

X∗

 = N




0

0

0

 ,


1 0.5 0

0.5 1 0

0 0 1


 ,
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and set Y2 = Φ((X∗ + V ∗)/
√

2), X = Φ(X∗/
√

2). We first implement Horowitz’s (2014) data-

driven procedure using a Legendre Polynomial basis orthonormalized with respect to the L2([0, 1])

inner product. Then we use CC’s adaptive procedure using both a Cubic B-spline with inte-

rior knots placed evenly and a Legendre Polynomial. Table 2 presents the MC average sup-

norm, L2-norm loss, the sup-norm relative error ratio ||ĥ
K̂
− h0||∞/||ĥK∞ − h0||∞ where K∞ =

arg mink∈IK ||ĥK − h0||∞ and the L2-norm relative error ratio ||ĥ
K̂
− h0||L2(Y2)/||ĥKL2 − h0||L2(Y2)

where KL2 = arg mink∈Ik ||ĥK − h0||L2(Y2). Ik represents the set of the possible tuning parameter

pairs for each adaptive procedure.9 The table can be understood as the follow, the sup-norm loss

of CC’s data-driven estimator ĥ using cubic Basis-Spline to approximate the unknown function h(.)

is at most 6.04% larger than that of the infeasible estimator.

Table 2: Model in Experiment 2

qK pJ sup ratio L2 ratio sup L2

H Leg Leg 1.8622 1.3386 0.4283 0.1614

CC 4 5 1.0554 1.0179 0.3879 0.1488

CC 4 Leg 1.0604 1.0195 0.3641 0.1430

CC Leg Leg 1.1378 1.1910 0.2476 0.1310
H and CC stand for Horowitz and Chen and Christensen (2015) procedure, respectively. qK and pJ stand for the
bases used to approximate the unknown function h0(.) and the conditional mean function m(X,α). Leg, 4 and 5
stand for the Legendre Polynomial, 4th order (Cubic) Basis-Spline, and 5th order (Quartic) Basis-Spline, respectively.
J is chosen to be 2K for the CC procedure.

Next, we consider conducting inference over regular functional φ(h) =
∫
w(y2)∇h(y2)dy2, and

irregular functionals φ(h) =
∫
h(y2)dy2, and φ(h) =

∫
w(y2)(h(y2))2dy2 where w(y) = 6(y − y2) is

a known weighting function over [0, 1]. In addition, we estimate the weighted average derivative

E[w(Y2)∇h(Y2)] using the plug-in estimator 1
n

∑n
i=1w(Y2i)∇ĥ(Y2i). For each functional, we calculate

the sieve variance as in Chen and Pouzo (2015) and Chen and Liao (2015) then we compute the

sieve student-t statistic. Table 3 reports the MC rejection frequencies for t test
√
nφ(ĥ)−φ(h0)√

V̂φ,n
; table

4 reports the MC standard deviation and bias of φ(ĥ).10 From the Monte Carlo experiments we

9We use the notation in Chen and Pouzo (2009, 2012 and 2015) consistently throughout this section. CC used J
as the regularization parameter and K as the smoothing parameter.

10Tables 2, 3 and 4 are generated with 3000 Monte Carlo replications and sample size n = 1000.
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observe that the choice of both basis and sieve dimension K̂ do not matter for regular functionals.

In contrast, it is recommended to choose K̂max to inflate variance and reduce bias for irregular

functionals. This case is well-illustrated under the Legendre Polynomial basis example where K̂max

corresponds to a higher order polynomial. We refer readers to Blundell, et al. (2007) and Chen and

Pouzo (2012) for more Monte Carlo results.

Table 3: Model in Experiment 2

regular functional
∫
w(y2)∇h(y2)dy2 E[w(Y2)∇h(Y2)]

qK pJ 5% 10% 5% 10%

K̂ 4 5 0.0560 0.1030 0.0477 0.0943

K̂max 4 5 0.0517 0.0983 0.0423 0.0877

K̂ 4 Leg 0.0600 0.1020 0.0473 0.0967

K̂max 4 Leg 0.0527 0.1000 0.0459 0.0887

K̂ Leg Leg 0.0613 0.1203 0.0667 0.1200

K̂max Leg Leg 0.0507 0.0950 0.0430 0.0883

irregular functional
∫
w(y2) (h(y2))2 dy2

∫
[0.05,0.95]∇h(y2)dy2

qK pJ 5% 10% 5% 10%

K̂ 4 5 0.0633 0.1123 0.0463 0.0960

K̂max 4 5 0.0330 0.0630 0.0433 0.0897

K̂ 4 Leg 0.0647 0.1150 0.0503 0.1000

K̂max 4 Leg 0.0313 0.0637 0.0437 0.0937

K̂ Leg Leg 0.5807 0.6953 0.6913 0.7833

K̂max Leg Leg 0.0350 0.0623 0.0417 0.0823

Using CC procedure with B-Spline, Figure 1 displays the estimated function, the pointwise

confidence bands and the 95% uniform confidence bands for a representative sample. Further, we

construct the uniform confidence bands for h0(.) over the support [0.05, 0.95] using the Horowitz

and Lee (2012) and CC procedures with 1000 bootstrap replications. The sieve dimensions for their

procedures are chosen adaptively using Horowitz (2014) and CC respectively. Table 5 reports the

MC coverage probabilities. Both uniform bands perform well.
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Table 4: Model in Experiment 2

regular functional
∫
w(y2)∇h(y2)dy2 E[w(Y2)∇h(Y2)]

qK pJ sd |bias| sd |bias|
K̂ 4 5 0.1751 0.0025 0.1728 0.0118

K̂max 4 5 0.1797 0.0025 0.1906 0.0116

K̂ 4 Leg 0.1741 0.0003 0.1718 0.0086

K̂max 4 Leg 0.1787 0.0005 0.1902 0.0132

K̂ Leg Leg 0.1599 0.0443 0.1547 0.0472

K̂max Leg Leg 0.1798 0.0036 0.1912 0.0175

irregular functional
∫
w(y2) (h(y2))2 dy2

∫
[0.05,0.95]∇h(y2)dy2

qK pJ sd |bias| sd |bias|
K̂ 4 5 0.1484 0.0041 0.3144 0.0113

K̂max 4 5 0.1988 0.0502 0.3177 0.0076

K̂ 4 Leg 0.1420 0.0015 0.3016 0.0245

K̂max 4 Leg 0.1680 0.0430 0.3056 0.0234

K̂ Leg Leg 0.0503 0.1060 0.1440 0.2208

K̂max Leg Leg 0.2124 0.0354 0.3219 0.0046

Table 5: Model in Experiment 2

Coverage Probabilities 90% CI 95% CI 99% CI

Horowitz and Lee 0.892 0.946 0.982
Chen and Christensen 0.898 0.946 0.984

This table is constructed with 500 Monte Carlo replications with sample size of 1000. We use the orthonormalized
Legendre Polynomial for Horowitz’s procedure, and we use a Cubic B-Spline for qK and Quartic B-Spline for pJ with
J = 2K for CC’s procedure with K chosen adaptively. Horowitz and Lee’s bootstrap procedure requires estimation
of the unknown function for each bootstrap sample, and hence is computationally more expensive than CC’s.

6.3 Experiment 3: Bootstrap Uniform Confidence Bands for Functional of N-

PIV

The score bootstrap uniform confidence bands established in CC apply to general functionals of

NPIV. To illustrate, we generate data from Y1 = h0(Y2, Y3) + ε, h0(Y2, Y3) = sin(πY2) exp(Y3)

and E[ε|X1, X2] = 0. Y2 and Y3 are endogenous, having Y2 = Φ(X1 − X2 + 0.5ε + e1), Y3 =

Φ(X1X2 + 0.3ε + e2), X1 and X2 are standard uniformly distributed, e1, e2 are standard normally

distributed and ε is normally distributed with mean 0 and variance 0.1. h0 is estimated using PSMD

with a Cubic Spline tensor product basis, and a penalty function taken as the squared L2 norm of
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the second partial derivative of h with respect to y2. The sieve dimension is chosen using a simple

AIC procedure. Figure 2 displays the uniform confidence bands of functional ∂h0(y2,0.5)
∂y2

, the partial

derivative of h0 with respect to y2 evaluated at y3 = 0.5.

7 Concluding Remarks

In this brief review, we have described (penalized) sieve estimation and inference for general semi-

parametric and nonparametric models with endogeneity. Currently available large sample theories

are mostly developed for sieve MD and sieve two-step or multi-step GMM procedures for models

with endogeneity under i.i.d. data and using (penalized) finite-dimensional linear sieves. The easy

implementation of linear sieve MD procedures is illustrated via examples and Monte Carlo studies.

We conclude by briefly mentioning additional existing works and unsolved problems in the lit-

erature on inference for models with nonparametric endogeneity.

Additional estimation and inference results: (1) There are many papers on Kernel-based

estimation of NPIV and NPQIV under i.i.d. data. See Hall and Horowitz (2005), Horowitz and Lee

(2007), Carrasco, Florens and Renault (2007), Darolles, Fan, Florens and Renault (2011), Gagliar-
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dini and Scaillet (2012) and the references therein. There are also a few papers on Bayesian method

for NPIV with independent data. See Liao and Jiang (2011), Florens and Simoni (2012), Kato

(2013) and the references therein. (2) There are some published papers on kernel- or sieve- based

specification tests for NPIV and NPQIV under i.i.d. data. See Horowitz (2006, 2011, 2012, 2014),

Breunig (2015a, 2015b) and the references therein. (3) There are also some very recent works on

sieve inference on partially identified nonparametric conditional moment restrictions with endogene-

ity under i.i.d. data. See, for example, Santos (2012) for NPIV and Hong (2012) for NPQIV via

sieved version of Bieren’s type test, Tao (2015) and Chernozhukov, Newey and Santos (2015) for

partially identified conditional moment restrictions via sieve GMM.

Some open questions: (1) Besides a few papers on NPIV with i.i.d. data, there is nothing about

data-driven choices of smoothing parameters for linear sieve estimation and inference on general

nonparametric conditional moment restrictions with endogeneity. (2) There is no published work

on any second-order asymptotic theories for linear sieve estimation and inference on nonparametric

conditional moment restrictions with endogeneity. It is easy to conjecture that, given the same finite
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dimensional linear sieve approximation, the sieve GEL would have second-order refinement over the

optimally weighted sieve MD and sieve GMM. However there is no formal theoretical proofs yet.

(3) Sieve MD and sieve GMM methods have been used to estimate conditional moment restrictions

containing unknown functions of endogeneous variables in empirical studies with temporal or/and

spatial dependent data sets. However, the general inferential theory allowing for dependent data

has not been fully developed yet.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that

might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

Chen is grateful to Steve Berry and Richard Blundell for their encouragements to write such a

review. We thank Richard Blundell and the referees for useful comments, and Cowles Foundation

for research support. The usual disclaimer applies.

References

[1] Ackerberg, D., K. Caves and G. Frazer (2015) “Identification Properties of Recent Production Function
Estimators ”, Econometrica, 83, 2411-2451.

[2] Ackerberg, D., X. Chen, and J. Hahn (2012) “A Practical Asymptotic Variance Estimator for Two-Step
Semiparametric Estimators”, Review of Economics and Statistics, 94, 482-498.

[3] Ackerberg, D., X. Chen, J. Hahn and Z. Liao (2014) “Asymptotic Efficiency of Semiparametric Two-step
GMM”, Review of Economic Studies, 81, 919-943.

[4] Ai, C. and X. Chen (1999): “A Kernel Estimation of Semiparametric Conditional Moment Restriction
Models with Different Conditioning Variables for Different Equations,” Working Paper.

[5] Ai, C. and X. Chen (2003): “Efficient Estimation of Conditional Moment Restrictions Models Containing
Unknown Functions,” Econometrica, 71, 1795-1843.

[6] Ai, C. and X. Chen (2007): “Estimation of Possibly Misspecified Semiparametric Conditional Moment
Restriction Models with Different Conditioning Variables,” Journal of Econometrics 141, 5-43.

44



[7] Ai, C. and X. Chen (2012): “The Semiparametric Efficiency Bound for Models of Sequential Moment
Restrictions Containing Unknown Functions,” Journal of Econometrics 170, 442-457.

[8] Anastassiou, G., Yu, X. (1992a): “Monotone and Probabilistic Wavelet Approximation,” Stochastic
Analysis and Applications 10, 251-264.

[9] Anastassiou, G., Yu, X. (1992b): “Convex and Convex-Probabilistic Wavelet Approximation,” Stochastic
Analysis and Applications 10, 507-521.

[10] Andrews, D. (1994): “Asymptotics for Semi-parametric Econometric Models via Stochastic Equiconti-
nuity,” Econometrica 62, 43-72.

[11] Arcidiacono, P. and R. Miller (2011): “Conditional Choice Probability Estimation of Dynamic Discrete
Choice Models with Unobserved Heterogeneity,” Econometrica 79, 1823-1868.

[12] Bajari, P., H. Hong, and D. Nekipelov (2011) “Game Theory and Econometrics. A Survey of Some
Recent Research,”Working Paper, Stanford and UC Berkeley.

[13] Berry, S., and P. Haile (2014) “Identification in Differentiated Products Markets Using Market Level
Data”, Econometrica, 82, 1749-1797.

[14] Blundell, R., X. Chen and D. Kristensen (2007) “Semi-nonparametric IV estimation of shape invariant
Engel curves”, Econometrica, 75, 1613-1669.

[15] Blundell, R., J. Horowitz, and M. Parey (2012) “Measuring the price responsiveness of Gasoline Demand:
Economic Shape Restrictions and Nonparametric Demand Estimation ”, Quantitative Economics, 3(1),
29-51.

[16] Blundell, R., J. Horowitz, and M. Parey (2015) “Nonparametric Estimation of a Heterogeneous Demand
Function under Slutsky Inequality Restriction ”, Working Paper CWP54/13, commap.

[17] Blundell, R., D. Kristensen, and R. Matzkin (2013) “Control Functions and Simultaneous Equation
Methods”, American Economic Review, 103, 563-69.

[18] Blundell, R. and R. Matzkin (2014) “Conditions for the Existence of Control Functions in Nonseparable
Simultaneous Equations Models ”, Quantitative Economics, 5, 271-295.

[19] Blundell, R. and J.L. Powell (2003) “Endogeneity in Nonparametric and Semiparametric Regression
Models”, in M. Dewatripont, L.P. Hansen and S.J. Turnovsky (eds.), Advances in Economics and E-
conometrics: Theory and Applications, Eighth World Congress, Vol. 2. Cambridge, UK: Cambridge
University Press.

[20] Bontemps, C., and D. Martimort (2013) “Identification and Estimation of Incentive Contracts Under
Asymmetric Information: An Application to the French Water Sector,”Working Paper, Toulouse School
of Economics.

[21] Breunig, C. (2015a) “Goodness-of-Fit Tests Based on Series Estimators in Nonparametric Instrumental
Regression ”Journal of Econometrics, 184(2) 328-346.

[22] Breunig, C. (2015b) “Specification Testing in Nonparametric Instrumental Quantile Regression ”Working
Paper.

[23] Breunig, C. and J. Johannes (2015) “Adaptive Estimation of Functionals in Nonparametric Instrumental
Regression, ”Econometric Theory 1-43.

[24] Carrasco, M., J.-P. Florens and E. Renault (2007) “Linear Inverse Problems in Structural Econometrics
Estimation Based on Spectral Decomposition and Regularization”, in J.J. Heckman and E.E. Leamer
(eds.), The Handbook of Econometrics, vol. 6. Amsterdam: North-Holland.

45



[25] Chamberlain, G. (1992a) “Efficiency Bounds for Semiparametric Regression”, Econometrica, 60, 567-596.

[26] Chamberlain, G. (1992b) “Comment: sequential moment restrictions in panel data,” Journal of Business
and Economic Statistics 10, 20-26.

[27] Chang, J., X.S. Chen, and X. Chen (2015) “High Dimensional Generalized Empirical Likelihood or
Moment Restrictions with Dependent Data, ”Journal of Econometrics, 185, 283-304.

[28] Chen, X. (2007) “Large Sample Sieve Estimation of Semi-Nonparametric Models”, in J.J. Heckman and
E.E. Leamer (eds.), The Handbook of Econometrics, vol. 6B. Amsterdam: North-Holland.

[29] Chen, X. (2013) “Penalized Sieve Estimation and Inference of Semi-Nonparametric Dynamic Models: A
Selective Review ”2010 World Congress of the Econometric Society Book Volumes, Cambridge University
Press.

[30] Chen, X. and T. Christensen (2015) “Optimal Sup-norm Rates, Adaptivity And Inference In Nonpara-
metric Instrumental Variable Estimation ”Cowles Foundation Discussion Paper No. 1923R

[31] Chen, X., V. Chernozhukov, S. Lee and W. Newey (2014) “Local Identification of Nonparametric and
Semiparametric Models”, Econometrica, 82, 785-809.

[32] Chen, X., J. Favilukis and S. Ludvigson (2003) “An Estimation of Economic Models with Recursive
Preferences ,”Quantitative Economics, 4(1), 39-83.

[33] Chen, X., O. Linton and I. van Keilegom (2003) “Estimation of Semiparametric Models when the
Criterion Function is not Smooth”, Econometrica, 71, 1591-1608.

[34] Chen, X. and Z. Liao (2015) “Sieve Semiparametric Two-step GMM Under Weak Dependence, ”Journal
of Econometrics 189 163-186.

[35] Chen, X., Z. Liao and Y. Sun (2014) “Sieve Inference on Semi-nonparametric Time Series Models,
”Journal of Econometrics 178(3) 639-658.

[36] Chen, X. and S. Ludvigson (2009) “Land of Addicts? An Empirical Investigation of Habit-Based Asset
Pricing Models”, Journal of Applied Econometrics, 24, 1057-1093.

[37] Chen, X. and D. Pouzo (2009) “Efficient Estimation of Semiparametric Conditional Moment Models
with Possibly Nonsmooth Residuals”, Journal of Econometrics, 152, 46–60.

[38] Chen, X., and D. Pouzo (2012) “Estimation of Nonparametric Conditional Moment Models with Possible
Nonsmooth Generalized Residuals ”, Econometrica 80 277-321

[39] Chen, X., and D. Pouzo (2015) “Sieve Quasi Likelihood Ratio Inference on Semi/nonparametric Condi-
tional Moment Models ”, Econometrica 83 1013-1079

[40] Chen, X. and M. Reiß (2011) “On Rate Optimality for Ill-Posed Inverse Problems in Econometrics”,
Econometric Theory, 27, 497-521.

[41] Chen, X. and A. Santos (2015) “Overidentification in Regular Models”, Cowles Foundation Discussion
Paper, d1999.

[42] Chen, X. and X. Shen (1998) “Sieve Extremum Estimates for Weakly Dependent Data”, Econometrica,
66, 289-314.

[43] Chesher, A. (2003) “Identification in Nonseparable Models”, Econometrica, 77, 1405-41.

[44] Chernozhukov, V., and C. Hansen (2005) “An IV Model of Quantile Treatment Effects”, Econometrica,
73, 245-261.

46



[45] Chernozhukov, V., and C. Hansen (2013) “Quantile Models With Endogeneity”, Annual Reviews of
Economics, 5:57-81

[46] Chernozhukov, V., G.W. Imbens, and W.K. Newey (2007) “Instrumental Variable Estimation of Non-
separable Models”, Journal of Econometrics, 139, 4-14.

[47] Chernozhukov, V., W. Newey and A. Santos (2015) “Constrained Conditional Moment Restriction Mod-
els ”, Working Paper.

[48] Chetverikov, D. and W. Wilhelm (2015) “Nonparametric Instrumental Variable Estimation Under Mono-
tonicity ”, Working Paper.

[49] Chui, C (1992) An Introduction to Wavelets. Academic Press, Inc., San Diego

[50] Conley, T. and W. Dupor (2003) “A Spatial Analysis of Sectoral Complementarity,”Journal of Political
Economy 111, 311-352.

[51] Darolles, S, Y. Fan, J.-P. Florens, and E. Renault (2011) “Nonparametric Instrumental Regression”,
Econometrica, 79, 1541-1566.

[52] De Loecker, P. Goldberg, A. Khandelwal and N. Pavcnik (2015) “Prices, Markups and Trade Reform”,
Econometrica, Forthcoming.

[53] Dechevsky, L., and S. Penev (1997) “On Shape-preserving Probabilistic Wavelet Approximators ”, S-
tochastic Analysis and Applications,15(2), 187-215.

[54] DeVore, R.A. (1977a) “Monotone Approximation by Splines”, SIAM Journal on Mathematical Analysis,
8, 891-905.

[55] DeVore, R.A. (1977b) “Monotone Approximation by Polynomials”, SIAM Journal on Mathematical
Analysis, 8, 906-921.

[56] DeVore, R.A. and G. G. Lorentz (1993) Constructive Approximation. Springer-Verlag, Berlin.

[57] Donald, S., G.W. Imbens, and W.K. Newey (2003) “Empirical Likelihood Estimation and Consistent
Tests with Conditional moment Restrictions”, Journal of Econometrics, 117, 55-93.

[58] Engle, R. and G. Gonzalez-Rivera (1991) “Semiparametric ARCH Models”, Journal of Business and
Economic Statistics, 9, 345-359.

[59] Engle, R. and J. G. Rangel (2008) “The Spline-GARCH Model for Low-Frequency Volatility and Its
Global Macroeconomic Gauses”, The Review of Financial Studies, 21 1187-1222.

[60] Fan, J. and I. Gijbels (1996) Local Polynomial Modelling and Its Applications. London: Chapman and
Hall.

[61] Florens, J.P. and A. Simoni. (2012) “Nonparametric Estimation of an Instrumental Regression: A Quasi-
Bayesian Approach Based On Regularized Posterior, Journal of Econometrics 170 458-475.

[62] Florens, J.P., J. Heckman, C. Meghir and E. Vytlacil. (2008) “Identification of Treatment Effects Us-
ing Control Functions in Models with Continuous Endogenous Treatment and Heterogeneous Effects”,
Econometrica, 76, 1191-1206.

[63] Freyberger, J., and J. Horowitz. (2013) “Identification and Shape Restrictions in Nonparametric Instru-
mental Variables Estimation, Working Paper CWP31/13, commas.

[64] Gagliardini, P. and O. Scailet (2012) “Semiparametric Estimation of Conditional Constrained Heteroge-
nous Processes: Asset Pricing Applications”, Econometrica, 80, 1533-1562.

47



[65] Gallant, A.R., Hansen, L.P., Tauchen, G., “Using Conditional Moments of Asset Payoffs to Infer the
Volatility of Intertemporal Marginal Rates of Substitution, ”Journal of Econometrics 45, 141-179.

[66] Gallant, A.R. and G. Tauchen (1989) “Semiparametric Estimation of Conditional Constrained Heteroge-
nous Processes: Asset Pricing Applications”, Econometrica, 57, 1091-1120.

[67] Gandhi, A., S. Navarro and D. Rivers (2015) “Which Moments to Match? ”Journal of Political Economy
forthcoming.

[68] Grasmair, M., O. Scherzer and A. Vanhems (2013) “Nonparametric Instrumental Regression with non-
convex Constraints”Inverse Problems 29.

[69] Grenander, U. (1981) Abstract Inference, New York: Wiley Series.

[70] Groeneboom, P. and G. Jongbloed (2014) Nonparametric Estimation under Shape Constraints, Cam-
bridge: Cambridge University Press. Series.

[71] Hahn, J. and G. Ridder (2013) “Asymptotic Variance of Semiparametric Estimators with Generated
Regressors”,Econometrica, 81, 315-340.

[72] Hall, P. and J. Horowitz (2005): “Nonparametric Methods for Inference in the Presence of Instrumental
Variables”, Annals of Statistics, 33, 2904-2929.

[73] Han, Q. and J. Wellner (2016): “Multivariate Convex Regression: Global Risk Bounds and Adaptation”,
arXiv preprint arXiv:1601.06844

[74] Hansen, L.P. (1982) “Large Sample Properties of Generalized Method of Moments Estima-
tors”,Econometrica, 50, 1029-1054.

[75] Hansen, L.P. (2014) “Nobel Lecture: Uncertainty Outside and Inside Economic Models”,Journal of
Political Economy, vol. 122, issue 5, 945-987.

[76] Hausman, J (1987) “Specification and Estimation of Simultaneous Equation Models”, in Zvi Griliches
and Michael D. Intriligator (eds.), The Handbook of Econometrics, vol. 1. Amsterdam: North-Holland.

[77] Heckman, J.J. (1979) “Sample Selection Bias as a Specification Error ”,Econometrica, vol. 47, issue 1,
153-161.

[78] Heckman, J.J. and R. Robb (1985): “Alternative Methods for Evaluating the Impact of Interventions
An Overview ”, Journal of Econometrics, 30, 239-267.

[79] Heckman, J.J. and B, Singer (1984): “A Method for Minimizing the Impact of Distributional Assump-
tions in Econometric Models for Duration Data ”, Econometrica, 68, 839-874.

[80] Hong, S. (2012) “Inference in Semiparametric Conditional Moment Models with Partial Identification,
”Working Paper.

[81] Horowitz, J. (2006) “Testing a Parametric Model Against a Nonparametric Alterative with Identification
through Instrumental Variables”, Econometrica, 74 521-538.

[82] Horowitz, J. (2011) “Applied Nonparametric Instrumental Variables Estimation”, Econometrica, 79,
347–394.

[83] Horowitz, J. (2013) “Ill-Posed Inverse Problems in Economics,”Annual Review of Economics, 6, 21-51

[84] Horowitz, J. (2014) “Adaptive Nonparametric Instrumental Variables Estimation: Empirical Choice of
the Regularization Parameter,”Journal of Econometrics, 180, 158-173.

[85] Horowitz, J. and S. Lee (2007) “Nonparametric Instrumental Variables Estimation of a Quantile Regres-
sion Model”, Econometrica, 75, 1191–1208.

48



[86] Horowitz, J. and S. Lee (2012) “Uniform Confidence Bands for Functions Estimated Nonparametrically
with Instrumental Variables,”Journal of Econometrics, 168, 175-188.

[87] Ichimura, H. (1993) “Semiparametric Least Squares (SLS) and Weighted SLS Estimation of Single Index
Models”, Journal of Econometrics, 58, 71-120.

[88] Imbens, G. (2002) “Generalized Method of Moments and Empirical Likelihood,”Journal of Business and
Economic Statistics, 20(4), 493-506.

[89] Imbens, G. and W. Newey (2009) “Identification and Estimation of Triangular Simultaneous Equations
Models Without Additivity ”, Econometrica, 77, 1481-1512.

[90] Kato, K. (2013) “Quasi-Bayesian Analysis of Nonparametric Instrumental Variables Model, ”Annals of
Statistics, 41, 2359-2390.

[91] Kawai, K. (2011) “Auction Design and the Incentives to Invest: Evidence from Procurement Auctions,
”Working Paper, NYU Stern.

[92] Kitamura, Y. (2007) “Empirical Lieklihood Methods in Econometrics: Theory and Practice,”in Ad-
vances in Economics and Econometrics: Ninth World Congress of the Econometric Society Cambridge
University Press

[93] Lepskii, O. V. (1990) “On a Problem of Adaptive Estimation in Gaussian White Noise, ”Theory of
Probability and its Applications 35(3), 454-466.

[94] Liao, Y. and W. Jiang (2011). “Posterior Consistency of Nonparametric Conditional Moment Restricted
Models, ”Annals of Statistics 39 3003-3031.

[95] Mammen, E. (1993) “Bootstrap and Wild Bootstrap for High Dimensional Linear Models, ”Annals of
Statistics 21(1), 255-285.

[96] Mammen, E., C. Rothe and M. Schienle (2012) “Nonparametric Regression with Nonparametrically
Generated Covariates, ”Annals of Statistics 40, 1132-1170.

[97] Mammen, E., C. Rothe and M. Schienle (2016) “Semiparametric Estimation with Generated Covariates,
”Econometric Theory forthcoming.

[98] Matzkin, R.L. (1994) “Restrictions of Economic Theory in Nonparametric Methods”, in R.F. Engle III
and D.F. McFadden (eds.), The Handbook of Econometrics, vol. 4. Amsterdam: North-Holland.

[99] Matzkin, R.L. (2007) “Nonparametric Identification”, Chapter 73 in J.J. Heckman and E.E. Leamer
(eds.), The Handbook of Econometrics, vol. 6B. Amsterdam: North-Holland.

[100] Matzkin, R.L. (2013) “Nonparametric Identification in Structural Economic Models”, Annual Review
of Economics, Vol 5.

[101] Merlo, A. and A. De Paula (2015) “Identification and Estimation of Voter Preferences”, CeMMAP
Working Paper 50/15.

[102] Meyer, M. (2008) “Inference Using Shape-restricted Regression Splines”, The Annals of Applied Statis-
tics, 2, 1013-1033.

[103] Newey, W.K. (1994) “The Asymptotic Variance of Semiparametric Estimators”, Econometrica, 62,
1349-1382.

[104] Newey, W.K. (1997) “Convergence Rates and Asymptotic Normality for Series Estimators”, Journal of
Econometrics, 79, 147-168.

49



[105] Newey, W.K. and J.L Powell (2003) “Instrumental Variable Estimation of Nonparametric Models”,
Econometrica, 71, 1565-1578. Working paper version, 1989.

[106] Newey, W.K., J.L. Powell and F. Vella (1999) “Nonparametric Estimation of Triangular Simultaneous
Equations Models”, Econometrica, 67, 565-603.

[107] Nevo, A. (2011) “Empirical Models of Consumer Behavior, ”Annual Review of Economics 3:51-75.

[108] Olley, S. and A. Pakes (1996) “The Dynamics of Productivity in the Telecommunications Equipment
Industry, ”Econometrica, 65, 1263-1297.

[109] Otsu, T. (2011) “Empirical Likelihood Estimation of Conditional Moment Restriction Models with
Unknown Functions”, Econometric Theory, 27, 8-46.

[110] Pakes, A. and S. Olley (1995) “A Limit Theorem for A Smooth Class of Semiparametric Estimators,”
Journal of Econometrics, 65, 295-332.

[111] Parente, P., and R. Smith (2014) “Recent Developments in Empirical Likelihood and Related Method-
s,”Annual Review of Economics, vol. 6(1), 77-102, 08.

[112] Pinkse, J., Slade, M. E. and Bret, C. (2002), “Spatial Price Competition: A Semiparametric Approach.
”, Econometrica, 70, 1111-1153.

[113] Pouzo, D. (2015) “Bootstrap Consistency for Quadratic Forms of Sample Averages with Increasing
Dimension ”, Electronic Journal of Statistics, Forthcoming.

[114] Robinson, P. (1988) “Root-N-Consistent Semiparametric Regression”, Econometrica, 56, 931-954.

[115] Santos, A. (2012) “Inference in Nonparametric Instrumental Variables with Partial Identification”,
Econometrica, 80 213-275.

[116] Smith, R. (1997) “Alternative Semi-Parametric Likelihood Approaches to Generalized Method of Mo-
ments Estimation ”, Economic Journal, 107, 509-519.

[117] Sueishi, N. (2014) “Efficient Estimation via Conditional Moment Restrictions Containing Unknown
Functions ”, Working Paper, Kyoto University.

[118] Tao, J. (2015) “Inference for Point and Partially Identified Semi-Nonparametric Conditional Moment
Models ”, Working Paper.

[119] Vanhems, A. (2010) “Non-parametric estimation of exact consumer surplus with endogeneity in price
”, Econometrics Journal, 13, S80-S98.

[120] Wang, J., S.K. Ghosh (2012) “Shape Restricted Nonparametric Regression With Berstein Polynomials
”, Computational Statistics and Data Analysis, 56, 2729-2741.

[121] Wooldridge, J. (2002) Econometric Analysis of Cross Section and Panel Data, MIT Press.

[122] Wooldridge, J. (2009) “On Estimating Firm-Level Production Functions Using Proxy Variables to
Control for Unobservables ”, Economics Letters, 104, 112-114.

[123] Zhang, J. and I. Gijbels (2003) “Sieve Empirical Likelihood and Extensions of the Generalized Least
Squares”, Scandinavian Journal of Statistics, 30, 1-24.

50


	Methods for Nonparametric and Semiparametric Regressions with Endogeneity: a Gentle Guide
	Recommended Citation

	Introduction
	Conditional Moment Restrictions Containing Unknown Functions
	Models
	Penalized Sieve Extremum Estimation
	Criteria based on nonparametrically estimated conditional moments
	Criteria based on unconditional moments of increasing dimension
	Computation and Heuristic choices of regularization parameters
	Consistency and Convergence rates of nonparametric part with endogeneity
	Shape Restrictions and Shape-preserving Sieves


	Sieve Inferences on Functionals of Nonparametric Endogeneity
	The simpler case when ()= is regular
	Possibly irregular functional () of model (2.1)
	Sieve t (or Wald) statistic
	Sieve QLR statistic
	Closely related inference results


	Sieve NPIV: rate-adaptivity and uniform inference
	Sup-norm rate-adaptive sieve NPIV estimation
	Bootstrap uniform confidence band for nonlinear functional processes

	Semiparametric Two-step GMM
	Simulation
	Experiment 1: Partially Linear Additive IV Regression
	Experiment 2: NPIV Adaptive Procedure
	Experiment 3: Bootstrap Uniform Confidence Bands for Functional of NPIV

	Concluding Remarks

